1 |
104 |
markom |
/* Event loop machinery for GDB, the GNU debugger.
|
2 |
|
|
Copyright 1999 Free Software Foundation, Inc.
|
3 |
|
|
Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
20 |
|
|
Boston, MA 02111-1307, USA. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "top.h"
|
24 |
|
|
#include "event-loop.h"
|
25 |
|
|
#include "event-top.h"
|
26 |
|
|
#ifdef HAVE_POLL
|
27 |
|
|
#include <poll.h>
|
28 |
|
|
#endif
|
29 |
|
|
#include <sys/types.h>
|
30 |
|
|
#include <string.h>
|
31 |
|
|
#include <errno.h>
|
32 |
|
|
#include <setjmp.h>
|
33 |
|
|
#include <sys/time.h>
|
34 |
|
|
|
35 |
|
|
/* Type of the mask arguments to select. */
|
36 |
|
|
|
37 |
|
|
#ifndef HAVE_POLL
|
38 |
|
|
#ifdef NO_FD_SET
|
39 |
|
|
/* All this stuff below is not required if select is used as God(tm)
|
40 |
|
|
intended, with the FD_* macros. Are there any implementations of
|
41 |
|
|
select which don't have FD_SET and other standard FD_* macros? I
|
42 |
|
|
don't think there are, but if I'm wrong, we need to catch them. */
|
43 |
|
|
#error FD_SET must be defined if select function is to be used!
|
44 |
|
|
|
45 |
|
|
#ifndef _AIX
|
46 |
|
|
typedef long fd_mask;
|
47 |
|
|
#endif
|
48 |
|
|
#if defined(_IBMR2)
|
49 |
|
|
#define SELECT_MASK void
|
50 |
|
|
#else
|
51 |
|
|
#define SELECT_MASK int
|
52 |
|
|
#endif /* !_IBMR2 */
|
53 |
|
|
|
54 |
|
|
/* Define "NBBY" (number of bits per byte) if it's not already defined. */
|
55 |
|
|
|
56 |
|
|
#ifndef NBBY
|
57 |
|
|
#define NBBY 8
|
58 |
|
|
#endif
|
59 |
|
|
|
60 |
|
|
/* Define the number of fd_masks in an fd_set */
|
61 |
|
|
|
62 |
|
|
#ifndef FD_SETSIZE
|
63 |
|
|
#ifdef OPEN_MAX
|
64 |
|
|
#define FD_SETSIZE OPEN_MAX
|
65 |
|
|
#else
|
66 |
|
|
#define FD_SETSIZE 256
|
67 |
|
|
#endif
|
68 |
|
|
#endif
|
69 |
|
|
#if !defined(howmany)
|
70 |
|
|
#define howmany(x, y) (((x)+((y)-1))/(y))
|
71 |
|
|
#endif
|
72 |
|
|
#ifndef NFDBITS
|
73 |
|
|
#define NFDBITS NBBY*sizeof(fd_mask)
|
74 |
|
|
#endif
|
75 |
|
|
#define MASK_SIZE howmany(FD_SETSIZE, NFDBITS)
|
76 |
|
|
|
77 |
|
|
#endif /* NO_FD_SET */
|
78 |
|
|
#endif /* !HAVE_POLL */
|
79 |
|
|
|
80 |
|
|
|
81 |
|
|
typedef struct gdb_event gdb_event;
|
82 |
|
|
typedef void (event_handler_func) (int);
|
83 |
|
|
|
84 |
|
|
/* Event for the GDB event system. Events are queued by calling
|
85 |
|
|
async_queue_event and serviced later on by gdb_do_one_event. An
|
86 |
|
|
event can be, for instance, a file descriptor becoming ready to be
|
87 |
|
|
read. Servicing an event simply means that the procedure PROC will
|
88 |
|
|
be called. We have 2 queues, one for file handlers that we listen
|
89 |
|
|
to in the event loop, and one for the file handlers+events that are
|
90 |
|
|
ready. The procedure PROC associated with each event is always the
|
91 |
|
|
same (handle_file_event). Its duty is to invoke the handler
|
92 |
|
|
associated with the file descriptor whose state change generated
|
93 |
|
|
the event, plus doing other cleanups adn such. */
|
94 |
|
|
|
95 |
|
|
struct gdb_event
|
96 |
|
|
{
|
97 |
|
|
event_handler_func *proc; /* Procedure to call to service this event. */
|
98 |
|
|
int fd; /* File descriptor that is ready. */
|
99 |
|
|
struct gdb_event *next_event; /* Next in list of events or NULL. */
|
100 |
|
|
};
|
101 |
|
|
|
102 |
|
|
/* Information about each file descriptor we register with the event
|
103 |
|
|
loop. */
|
104 |
|
|
|
105 |
|
|
typedef struct file_handler
|
106 |
|
|
{
|
107 |
|
|
int fd; /* File descriptor. */
|
108 |
|
|
int mask; /* Events we want to monitor: POLLIN, etc. */
|
109 |
|
|
int ready_mask; /* Events that have been seen since
|
110 |
|
|
the last time. */
|
111 |
|
|
handler_func *proc; /* Procedure to call when fd is ready. */
|
112 |
|
|
gdb_client_data client_data; /* Argument to pass to proc. */
|
113 |
|
|
int error; /* Was an error detected on this fd? */
|
114 |
|
|
struct file_handler *next_file; /* Next registered file descriptor. */
|
115 |
|
|
}
|
116 |
|
|
file_handler;
|
117 |
|
|
|
118 |
|
|
/* PROC is a function to be invoked when the READY flag is set. This
|
119 |
|
|
happens when there has been a signal and the corresponding signal
|
120 |
|
|
handler has 'triggered' this async_signal_handler for
|
121 |
|
|
execution. The actual work to be done in response to a signal will
|
122 |
|
|
be carried out by PROC at a later time, within process_event. This
|
123 |
|
|
provides a deferred execution of signal handlers.
|
124 |
|
|
Async_init_signals takes care of setting up such an
|
125 |
|
|
asyn_signal_handler for each interesting signal. */
|
126 |
|
|
typedef struct async_signal_handler
|
127 |
|
|
{
|
128 |
|
|
int ready; /* If ready, call this handler from the main event loop,
|
129 |
|
|
using invoke_async_handler. */
|
130 |
|
|
struct async_signal_handler *next_handler; /* Ptr to next handler */
|
131 |
|
|
sig_handler_func *proc; /* Function to call to do the work */
|
132 |
|
|
gdb_client_data client_data; /* Argument to async_handler_func */
|
133 |
|
|
}
|
134 |
|
|
async_signal_handler;
|
135 |
|
|
|
136 |
|
|
|
137 |
|
|
/* Event queue:
|
138 |
|
|
- the first event in the queue is the head of the queue.
|
139 |
|
|
It will be the next to be serviced.
|
140 |
|
|
- the last event in the queue
|
141 |
|
|
|
142 |
|
|
Events can be inserted at the front of the queue or at the end of
|
143 |
|
|
the queue. Events will be extracted from the queue for processing
|
144 |
|
|
starting from the head. Therefore, events inserted at the head of
|
145 |
|
|
the queue will be processed in a last in first out fashion, while
|
146 |
|
|
those inserted at the tail of the queue will be processed in a first
|
147 |
|
|
in first out manner. All the fields are NULL if the queue is
|
148 |
|
|
empty. */
|
149 |
|
|
|
150 |
|
|
static struct
|
151 |
|
|
{
|
152 |
|
|
gdb_event *first_event; /* First pending event */
|
153 |
|
|
gdb_event *last_event; /* Last pending event */
|
154 |
|
|
}
|
155 |
|
|
event_queue;
|
156 |
|
|
|
157 |
|
|
/* Gdb_notifier is just a list of file descriptors gdb is interested in.
|
158 |
|
|
These are the input file descriptor, and the target file
|
159 |
|
|
descriptor. We have two flavors of the notifier, one for platforms
|
160 |
|
|
that have the POLL function, the other for those that don't, and
|
161 |
|
|
only support SELECT. Each of the elements in the gdb_notifier list is
|
162 |
|
|
basically a description of what kind of events gdb is interested
|
163 |
|
|
in, for each fd. */
|
164 |
|
|
|
165 |
|
|
/* As of 1999-04-30 only the input file descriptor is registered with the
|
166 |
|
|
event loop. */
|
167 |
|
|
|
168 |
|
|
/* Do we use poll or select ? */
|
169 |
|
|
#ifdef HAVE_POLL
|
170 |
|
|
#define USE_POLL 1
|
171 |
|
|
#else
|
172 |
|
|
#define USE_POLL 0
|
173 |
|
|
#endif /* HAVE_POLL */
|
174 |
|
|
|
175 |
|
|
static unsigned char use_poll = USE_POLL;
|
176 |
|
|
|
177 |
|
|
static struct
|
178 |
|
|
{
|
179 |
|
|
/* Ptr to head of file handler list. */
|
180 |
|
|
file_handler *first_file_handler;
|
181 |
|
|
|
182 |
|
|
#ifdef HAVE_POLL
|
183 |
|
|
/* Ptr to array of pollfd structures. */
|
184 |
|
|
struct pollfd *poll_fds;
|
185 |
|
|
|
186 |
|
|
/* Timeout in milliseconds for calls to poll(). */
|
187 |
|
|
int poll_timeout;
|
188 |
|
|
#endif
|
189 |
|
|
|
190 |
|
|
/* Masks to be used in the next call to select.
|
191 |
|
|
Bits are set in response to calls to create_file_handler. */
|
192 |
|
|
fd_set check_masks[3];
|
193 |
|
|
|
194 |
|
|
/* What file descriptors were found ready by select. */
|
195 |
|
|
fd_set ready_masks[3];
|
196 |
|
|
|
197 |
|
|
/* Number of file descriptors to monitor. (for poll) */
|
198 |
|
|
/* Number of valid bits (highest fd value + 1). (for select) */
|
199 |
|
|
int num_fds;
|
200 |
|
|
|
201 |
|
|
/* Time structure for calls to select(). */
|
202 |
|
|
struct timeval select_timeout;
|
203 |
|
|
|
204 |
|
|
/* Flag to tell whether the timeout should be used. */
|
205 |
|
|
int timeout_valid;
|
206 |
|
|
}
|
207 |
|
|
gdb_notifier;
|
208 |
|
|
|
209 |
|
|
/* Structure associated with a timer. PROC will be executed at the
|
210 |
|
|
first occasion after WHEN. */
|
211 |
|
|
struct gdb_timer
|
212 |
|
|
{
|
213 |
|
|
struct timeval when;
|
214 |
|
|
int timer_id;
|
215 |
|
|
struct gdb_timer *next;
|
216 |
|
|
timer_handler_func *proc; /* Function to call to do the work */
|
217 |
|
|
gdb_client_data client_data; /* Argument to async_handler_func */
|
218 |
|
|
}
|
219 |
|
|
gdb_timer;
|
220 |
|
|
|
221 |
|
|
/* List of currently active timers. It is sorted in order of
|
222 |
|
|
increasing timers. */
|
223 |
|
|
static struct
|
224 |
|
|
{
|
225 |
|
|
/* Pointer to first in timer list. */
|
226 |
|
|
struct gdb_timer *first_timer;
|
227 |
|
|
|
228 |
|
|
/* Id of the last timer created. */
|
229 |
|
|
int num_timers;
|
230 |
|
|
}
|
231 |
|
|
timer_list;
|
232 |
|
|
|
233 |
|
|
/* All the async_signal_handlers gdb is interested in are kept onto
|
234 |
|
|
this list. */
|
235 |
|
|
static struct
|
236 |
|
|
{
|
237 |
|
|
/* Pointer to first in handler list. */
|
238 |
|
|
async_signal_handler *first_handler;
|
239 |
|
|
|
240 |
|
|
/* Pointer to last in handler list. */
|
241 |
|
|
async_signal_handler *last_handler;
|
242 |
|
|
}
|
243 |
|
|
sighandler_list;
|
244 |
|
|
|
245 |
|
|
/* Is any of the handlers ready? Check this variable using
|
246 |
|
|
check_async_ready. This is used by process_event, to determine
|
247 |
|
|
whether or not to invoke the invoke_async_signal_handler
|
248 |
|
|
function. */
|
249 |
|
|
static int async_handler_ready = 0;
|
250 |
|
|
|
251 |
|
|
static void create_file_handler (int fd, int mask, handler_func * proc, gdb_client_data client_data);
|
252 |
|
|
static void invoke_async_signal_handler (void);
|
253 |
|
|
static void handle_file_event (int event_file_desc);
|
254 |
|
|
static int gdb_wait_for_event (void);
|
255 |
|
|
static int gdb_do_one_event (void *data);
|
256 |
|
|
static int check_async_ready (void);
|
257 |
|
|
static void async_queue_event (gdb_event * event_ptr, queue_position position);
|
258 |
|
|
static gdb_event *create_file_event (int fd);
|
259 |
|
|
static int process_event (void);
|
260 |
|
|
static void handle_timer_event (int dummy);
|
261 |
|
|
static void poll_timers (void);
|
262 |
|
|
|
263 |
|
|
|
264 |
|
|
/* Insert an event object into the gdb event queue at
|
265 |
|
|
the specified position.
|
266 |
|
|
POSITION can be head or tail, with values TAIL, HEAD.
|
267 |
|
|
EVENT_PTR points to the event to be inserted into the queue.
|
268 |
|
|
The caller must allocate memory for the event. It is freed
|
269 |
|
|
after the event has ben handled.
|
270 |
|
|
Events in the queue will be processed head to tail, therefore,
|
271 |
|
|
events inserted at the head of the queue will be processed
|
272 |
|
|
as last in first out. Event appended at the tail of the queue
|
273 |
|
|
will be processed first in first out. */
|
274 |
|
|
static void
|
275 |
|
|
async_queue_event (gdb_event * event_ptr, queue_position position)
|
276 |
|
|
{
|
277 |
|
|
if (position == TAIL)
|
278 |
|
|
{
|
279 |
|
|
/* The event will become the new last_event. */
|
280 |
|
|
|
281 |
|
|
event_ptr->next_event = NULL;
|
282 |
|
|
if (event_queue.first_event == NULL)
|
283 |
|
|
event_queue.first_event = event_ptr;
|
284 |
|
|
else
|
285 |
|
|
event_queue.last_event->next_event = event_ptr;
|
286 |
|
|
event_queue.last_event = event_ptr;
|
287 |
|
|
}
|
288 |
|
|
else if (position == HEAD)
|
289 |
|
|
{
|
290 |
|
|
/* The event becomes the new first_event. */
|
291 |
|
|
|
292 |
|
|
event_ptr->next_event = event_queue.first_event;
|
293 |
|
|
if (event_queue.first_event == NULL)
|
294 |
|
|
event_queue.last_event = event_ptr;
|
295 |
|
|
event_queue.first_event = event_ptr;
|
296 |
|
|
}
|
297 |
|
|
}
|
298 |
|
|
|
299 |
|
|
/* Create a file event, to be enqueued in the event queue for
|
300 |
|
|
processing. The procedure associated to this event is always
|
301 |
|
|
handle_file_event, which will in turn invoke the one that was
|
302 |
|
|
associated to FD when it was registered with the event loop. */
|
303 |
|
|
static gdb_event *
|
304 |
|
|
create_file_event (int fd)
|
305 |
|
|
{
|
306 |
|
|
gdb_event *file_event_ptr;
|
307 |
|
|
|
308 |
|
|
file_event_ptr = (gdb_event *) xmalloc (sizeof (gdb_event));
|
309 |
|
|
file_event_ptr->proc = handle_file_event;
|
310 |
|
|
file_event_ptr->fd = fd;
|
311 |
|
|
return (file_event_ptr);
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
/* Process one event.
|
315 |
|
|
The event can be the next one to be serviced in the event queue,
|
316 |
|
|
or an asynchronous event handler can be invoked in response to
|
317 |
|
|
the reception of a signal.
|
318 |
|
|
If an event was processed (either way), 1 is returned otherwise
|
319 |
|
|
|
320 |
|
|
Scan the queue from head to tail, processing therefore the high
|
321 |
|
|
priority events first, by invoking the associated event handler
|
322 |
|
|
procedure. */
|
323 |
|
|
static int
|
324 |
|
|
process_event (void)
|
325 |
|
|
{
|
326 |
|
|
gdb_event *event_ptr, *prev_ptr;
|
327 |
|
|
event_handler_func *proc;
|
328 |
|
|
int fd;
|
329 |
|
|
|
330 |
|
|
/* First let's see if there are any asynchronous event handlers that
|
331 |
|
|
are ready. These would be the result of invoking any of the
|
332 |
|
|
signal handlers. */
|
333 |
|
|
|
334 |
|
|
if (check_async_ready ())
|
335 |
|
|
{
|
336 |
|
|
invoke_async_signal_handler ();
|
337 |
|
|
return 1;
|
338 |
|
|
}
|
339 |
|
|
|
340 |
|
|
/* Look in the event queue to find an event that is ready
|
341 |
|
|
to be processed. */
|
342 |
|
|
|
343 |
|
|
for (event_ptr = event_queue.first_event; event_ptr != NULL;
|
344 |
|
|
event_ptr = event_ptr->next_event)
|
345 |
|
|
{
|
346 |
|
|
/* Call the handler for the event. */
|
347 |
|
|
|
348 |
|
|
proc = event_ptr->proc;
|
349 |
|
|
fd = event_ptr->fd;
|
350 |
|
|
|
351 |
|
|
/* Let's get rid of the event from the event queue. We need to
|
352 |
|
|
do this now because while processing the event, the proc
|
353 |
|
|
function could end up calling 'error' and therefore jump out
|
354 |
|
|
to the caller of this function, gdb_do_one_event. In that
|
355 |
|
|
case, we would have on the event queue an event wich has been
|
356 |
|
|
processed, but not deleted. */
|
357 |
|
|
|
358 |
|
|
if (event_queue.first_event == event_ptr)
|
359 |
|
|
{
|
360 |
|
|
event_queue.first_event = event_ptr->next_event;
|
361 |
|
|
if (event_ptr->next_event == NULL)
|
362 |
|
|
event_queue.last_event = NULL;
|
363 |
|
|
}
|
364 |
|
|
else
|
365 |
|
|
{
|
366 |
|
|
prev_ptr = event_queue.first_event;
|
367 |
|
|
while (prev_ptr->next_event != event_ptr)
|
368 |
|
|
prev_ptr = prev_ptr->next_event;
|
369 |
|
|
|
370 |
|
|
prev_ptr->next_event = event_ptr->next_event;
|
371 |
|
|
if (event_ptr->next_event == NULL)
|
372 |
|
|
event_queue.last_event = prev_ptr;
|
373 |
|
|
}
|
374 |
|
|
free ((char *) event_ptr);
|
375 |
|
|
|
376 |
|
|
/* Now call the procedure associated with the event. */
|
377 |
|
|
(*proc) (fd);
|
378 |
|
|
return 1;
|
379 |
|
|
}
|
380 |
|
|
|
381 |
|
|
/* this is the case if there are no event on the event queue. */
|
382 |
|
|
return 0;
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
/* Process one high level event. If nothing is ready at this time,
|
386 |
|
|
wait for something to happen (via gdb_wait_for_event), then process
|
387 |
|
|
it. Returns >0 if something was done otherwise returns <0 (this
|
388 |
|
|
can happen if there are no event sources to wait for). If an error
|
389 |
|
|
occures catch_errors() which calls this function returns zero. */
|
390 |
|
|
|
391 |
|
|
static int
|
392 |
|
|
gdb_do_one_event (void *data)
|
393 |
|
|
{
|
394 |
|
|
/* Any events already waiting in the queue? */
|
395 |
|
|
if (process_event ())
|
396 |
|
|
{
|
397 |
|
|
return 1;
|
398 |
|
|
}
|
399 |
|
|
|
400 |
|
|
/* Are any timers that are ready? If so, put an event on the queue. */
|
401 |
|
|
poll_timers ();
|
402 |
|
|
|
403 |
|
|
/* Wait for a new event. If gdb_wait_for_event returns -1,
|
404 |
|
|
we should get out because this means that there are no
|
405 |
|
|
event sources left. This will make the event loop stop,
|
406 |
|
|
and the application exit. */
|
407 |
|
|
|
408 |
|
|
if (gdb_wait_for_event () < 0)
|
409 |
|
|
{
|
410 |
|
|
return -1;
|
411 |
|
|
}
|
412 |
|
|
|
413 |
|
|
/* Handle any new events occurred while waiting. */
|
414 |
|
|
if (process_event ())
|
415 |
|
|
{
|
416 |
|
|
return 1;
|
417 |
|
|
}
|
418 |
|
|
|
419 |
|
|
/* If gdb_wait_for_event has returned 1, it means that one
|
420 |
|
|
event has been handled. We break out of the loop. */
|
421 |
|
|
return 1;
|
422 |
|
|
}
|
423 |
|
|
|
424 |
|
|
/* Start up the event loop. This is the entry point to the event loop
|
425 |
|
|
from the command loop. */
|
426 |
|
|
|
427 |
|
|
void
|
428 |
|
|
start_event_loop (void)
|
429 |
|
|
{
|
430 |
|
|
/* Loop until there is nothing to do. This is the entry point to the
|
431 |
|
|
event loop engine. gdb_do_one_event, called via catch_errors()
|
432 |
|
|
will process one event for each invocation. It blocks waits for
|
433 |
|
|
an event and then processes it. >0 when an event is processed, 0
|
434 |
|
|
when catch_errors() caught an error and <0 when there are no
|
435 |
|
|
longer any event sources registered. */
|
436 |
|
|
while (1)
|
437 |
|
|
{
|
438 |
|
|
int result = catch_errors (gdb_do_one_event, 0, "", RETURN_MASK_ALL);
|
439 |
|
|
if (result < 0)
|
440 |
|
|
break;
|
441 |
|
|
if (result == 0)
|
442 |
|
|
{
|
443 |
|
|
/* FIXME: this should really be a call to a hook that is
|
444 |
|
|
interface specific, because interfaces can display the
|
445 |
|
|
prompt in their own way. */
|
446 |
|
|
display_gdb_prompt (0);
|
447 |
|
|
/* Maybe better to set a flag to be checked somewhere as to
|
448 |
|
|
whether display the prompt or not. */
|
449 |
|
|
}
|
450 |
|
|
}
|
451 |
|
|
|
452 |
|
|
/* We are done with the event loop. There are no more event sources
|
453 |
|
|
to listen to. So we exit GDB. */
|
454 |
|
|
return;
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
|
458 |
|
|
/* Wrapper function for create_file_handler, so that the caller
|
459 |
|
|
doesn't have to know implementation details about the use of poll
|
460 |
|
|
vs. select. */
|
461 |
|
|
void
|
462 |
|
|
add_file_handler (int fd, handler_func * proc, gdb_client_data client_data)
|
463 |
|
|
{
|
464 |
|
|
#ifdef HAVE_POLL
|
465 |
|
|
struct pollfd fds;
|
466 |
|
|
#endif
|
467 |
|
|
|
468 |
|
|
if (use_poll)
|
469 |
|
|
{
|
470 |
|
|
#ifdef HAVE_POLL
|
471 |
|
|
/* Check to see if poll () is usable. If not, we'll switch to
|
472 |
|
|
use select. This can happen on systems like
|
473 |
|
|
m68k-motorola-sys, `poll' cannot be used to wait for `stdin'.
|
474 |
|
|
On m68k-motorola-sysv, tty's are not stream-based and not
|
475 |
|
|
`poll'able. */
|
476 |
|
|
fds.fd = fd;
|
477 |
|
|
fds.events = POLLIN;
|
478 |
|
|
if (poll (&fds, 1, 0) == 1 && (fds.revents & POLLNVAL))
|
479 |
|
|
use_poll = 0;
|
480 |
|
|
#else
|
481 |
|
|
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
482 |
|
|
#endif /* HAVE_POLL */
|
483 |
|
|
}
|
484 |
|
|
if (use_poll)
|
485 |
|
|
{
|
486 |
|
|
#ifdef HAVE_POLL
|
487 |
|
|
create_file_handler (fd, POLLIN, proc, client_data);
|
488 |
|
|
#else
|
489 |
|
|
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
490 |
|
|
#endif
|
491 |
|
|
}
|
492 |
|
|
else
|
493 |
|
|
create_file_handler (fd, GDB_READABLE | GDB_EXCEPTION, proc, client_data);
|
494 |
|
|
}
|
495 |
|
|
|
496 |
|
|
/* Add a file handler/descriptor to the list of descriptors we are
|
497 |
|
|
interested in.
|
498 |
|
|
FD is the file descriptor for the file/stream to be listened to.
|
499 |
|
|
For the poll case, MASK is a combination (OR) of
|
500 |
|
|
POLLIN, POLLRDNORM, POLLRDBAND, POLLPRI, POLLOUT, POLLWRNORM,
|
501 |
|
|
POLLWRBAND: these are the events we are interested in. If any of them
|
502 |
|
|
occurs, proc should be called.
|
503 |
|
|
For the select case, MASK is a combination of READABLE, WRITABLE, EXCEPTION.
|
504 |
|
|
PROC is the procedure that will be called when an event occurs for
|
505 |
|
|
FD. CLIENT_DATA is the argument to pass to PROC. */
|
506 |
|
|
static void
|
507 |
|
|
create_file_handler (int fd, int mask, handler_func * proc, gdb_client_data client_data)
|
508 |
|
|
{
|
509 |
|
|
file_handler *file_ptr;
|
510 |
|
|
|
511 |
|
|
/* Do we already have a file handler for this file? (We may be
|
512 |
|
|
changing its associated procedure). */
|
513 |
|
|
for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
|
514 |
|
|
file_ptr = file_ptr->next_file)
|
515 |
|
|
{
|
516 |
|
|
if (file_ptr->fd == fd)
|
517 |
|
|
break;
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
/* It is a new file descriptor. Add it to the list. Otherwise, just
|
521 |
|
|
change the data associated with it. */
|
522 |
|
|
if (file_ptr == NULL)
|
523 |
|
|
{
|
524 |
|
|
file_ptr = (file_handler *) xmalloc (sizeof (file_handler));
|
525 |
|
|
file_ptr->fd = fd;
|
526 |
|
|
file_ptr->ready_mask = 0;
|
527 |
|
|
file_ptr->next_file = gdb_notifier.first_file_handler;
|
528 |
|
|
gdb_notifier.first_file_handler = file_ptr;
|
529 |
|
|
}
|
530 |
|
|
file_ptr->proc = proc;
|
531 |
|
|
file_ptr->client_data = client_data;
|
532 |
|
|
file_ptr->mask = mask;
|
533 |
|
|
|
534 |
|
|
if (use_poll)
|
535 |
|
|
{
|
536 |
|
|
#ifdef HAVE_POLL
|
537 |
|
|
gdb_notifier.num_fds++;
|
538 |
|
|
if (gdb_notifier.poll_fds)
|
539 |
|
|
gdb_notifier.poll_fds =
|
540 |
|
|
(struct pollfd *) realloc (gdb_notifier.poll_fds,
|
541 |
|
|
(gdb_notifier.num_fds) * sizeof (struct pollfd));
|
542 |
|
|
else
|
543 |
|
|
gdb_notifier.poll_fds =
|
544 |
|
|
(struct pollfd *) xmalloc (sizeof (struct pollfd));
|
545 |
|
|
(gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->fd = fd;
|
546 |
|
|
(gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->events = mask;
|
547 |
|
|
(gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->revents = 0;
|
548 |
|
|
#else
|
549 |
|
|
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
550 |
|
|
#endif /* HAVE_POLL */
|
551 |
|
|
}
|
552 |
|
|
else
|
553 |
|
|
{
|
554 |
|
|
if (mask & GDB_READABLE)
|
555 |
|
|
FD_SET (fd, &gdb_notifier.check_masks[0]);
|
556 |
|
|
else
|
557 |
|
|
FD_CLR (fd, &gdb_notifier.check_masks[0]);
|
558 |
|
|
|
559 |
|
|
if (mask & GDB_WRITABLE)
|
560 |
|
|
FD_SET (fd, &gdb_notifier.check_masks[1]);
|
561 |
|
|
else
|
562 |
|
|
FD_CLR (fd, &gdb_notifier.check_masks[1]);
|
563 |
|
|
|
564 |
|
|
if (mask & GDB_EXCEPTION)
|
565 |
|
|
FD_SET (fd, &gdb_notifier.check_masks[2]);
|
566 |
|
|
else
|
567 |
|
|
FD_CLR (fd, &gdb_notifier.check_masks[2]);
|
568 |
|
|
|
569 |
|
|
if (gdb_notifier.num_fds <= fd)
|
570 |
|
|
gdb_notifier.num_fds = fd + 1;
|
571 |
|
|
}
|
572 |
|
|
}
|
573 |
|
|
|
574 |
|
|
/* Remove the file descriptor FD from the list of monitored fd's:
|
575 |
|
|
i.e. we don't care anymore about events on the FD. */
|
576 |
|
|
void
|
577 |
|
|
delete_file_handler (int fd)
|
578 |
|
|
{
|
579 |
|
|
file_handler *file_ptr, *prev_ptr = NULL;
|
580 |
|
|
int i;
|
581 |
|
|
#ifdef HAVE_POLL
|
582 |
|
|
int j;
|
583 |
|
|
struct pollfd *new_poll_fds;
|
584 |
|
|
#endif
|
585 |
|
|
|
586 |
|
|
/* Find the entry for the given file. */
|
587 |
|
|
|
588 |
|
|
for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
|
589 |
|
|
file_ptr = file_ptr->next_file)
|
590 |
|
|
{
|
591 |
|
|
if (file_ptr->fd == fd)
|
592 |
|
|
break;
|
593 |
|
|
}
|
594 |
|
|
|
595 |
|
|
if (file_ptr == NULL)
|
596 |
|
|
return;
|
597 |
|
|
|
598 |
|
|
if (use_poll)
|
599 |
|
|
{
|
600 |
|
|
#ifdef HAVE_POLL
|
601 |
|
|
/* Create a new poll_fds array by copying every fd's information but the
|
602 |
|
|
one we want to get rid of. */
|
603 |
|
|
|
604 |
|
|
new_poll_fds =
|
605 |
|
|
(struct pollfd *) xmalloc ((gdb_notifier.num_fds - 1) * sizeof (struct pollfd));
|
606 |
|
|
|
607 |
|
|
for (i = 0, j = 0; i < gdb_notifier.num_fds; i++)
|
608 |
|
|
{
|
609 |
|
|
if ((gdb_notifier.poll_fds + i)->fd != fd)
|
610 |
|
|
{
|
611 |
|
|
(new_poll_fds + j)->fd = (gdb_notifier.poll_fds + i)->fd;
|
612 |
|
|
(new_poll_fds + j)->events = (gdb_notifier.poll_fds + i)->events;
|
613 |
|
|
(new_poll_fds + j)->revents = (gdb_notifier.poll_fds + i)->revents;
|
614 |
|
|
j++;
|
615 |
|
|
}
|
616 |
|
|
}
|
617 |
|
|
free (gdb_notifier.poll_fds);
|
618 |
|
|
gdb_notifier.poll_fds = new_poll_fds;
|
619 |
|
|
gdb_notifier.num_fds--;
|
620 |
|
|
#else
|
621 |
|
|
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
622 |
|
|
#endif /* HAVE_POLL */
|
623 |
|
|
}
|
624 |
|
|
else
|
625 |
|
|
{
|
626 |
|
|
if (file_ptr->mask & GDB_READABLE)
|
627 |
|
|
FD_CLR (fd, &gdb_notifier.check_masks[0]);
|
628 |
|
|
if (file_ptr->mask & GDB_WRITABLE)
|
629 |
|
|
FD_CLR (fd, &gdb_notifier.check_masks[1]);
|
630 |
|
|
if (file_ptr->mask & GDB_EXCEPTION)
|
631 |
|
|
FD_CLR (fd, &gdb_notifier.check_masks[2]);
|
632 |
|
|
|
633 |
|
|
/* Find current max fd. */
|
634 |
|
|
|
635 |
|
|
if ((fd + 1) == gdb_notifier.num_fds)
|
636 |
|
|
{
|
637 |
|
|
gdb_notifier.num_fds--;
|
638 |
|
|
for (i = gdb_notifier.num_fds; i; i--)
|
639 |
|
|
{
|
640 |
|
|
if (FD_ISSET (i - 1, &gdb_notifier.check_masks[0])
|
641 |
|
|
|| FD_ISSET (i - 1, &gdb_notifier.check_masks[1])
|
642 |
|
|
|| FD_ISSET (i - 1, &gdb_notifier.check_masks[2]))
|
643 |
|
|
break;
|
644 |
|
|
}
|
645 |
|
|
gdb_notifier.num_fds = i;
|
646 |
|
|
}
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
/* Deactivate the file descriptor, by clearing its mask,
|
650 |
|
|
so that it will not fire again. */
|
651 |
|
|
|
652 |
|
|
file_ptr->mask = 0;
|
653 |
|
|
|
654 |
|
|
/* Get rid of the file handler in the file handler list. */
|
655 |
|
|
if (file_ptr == gdb_notifier.first_file_handler)
|
656 |
|
|
gdb_notifier.first_file_handler = file_ptr->next_file;
|
657 |
|
|
else
|
658 |
|
|
{
|
659 |
|
|
for (prev_ptr = gdb_notifier.first_file_handler;
|
660 |
|
|
prev_ptr->next_file != file_ptr;
|
661 |
|
|
prev_ptr = prev_ptr->next_file)
|
662 |
|
|
;
|
663 |
|
|
prev_ptr->next_file = file_ptr->next_file;
|
664 |
|
|
}
|
665 |
|
|
free ((char *) file_ptr);
|
666 |
|
|
}
|
667 |
|
|
|
668 |
|
|
/* Handle the given event by calling the procedure associated to the
|
669 |
|
|
corresponding file handler. Called by process_event indirectly,
|
670 |
|
|
through event_ptr->proc. EVENT_FILE_DESC is file descriptor of the
|
671 |
|
|
event in the front of the event queue. */
|
672 |
|
|
static void
|
673 |
|
|
handle_file_event (int event_file_desc)
|
674 |
|
|
{
|
675 |
|
|
file_handler *file_ptr;
|
676 |
|
|
int mask;
|
677 |
|
|
#ifdef HAVE_POLL
|
678 |
|
|
int error_mask;
|
679 |
|
|
int error_mask_returned;
|
680 |
|
|
#endif
|
681 |
|
|
|
682 |
|
|
/* Search the file handler list to find one that matches the fd in
|
683 |
|
|
the event. */
|
684 |
|
|
for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
|
685 |
|
|
file_ptr = file_ptr->next_file)
|
686 |
|
|
{
|
687 |
|
|
if (file_ptr->fd == event_file_desc)
|
688 |
|
|
{
|
689 |
|
|
/* With poll, the ready_mask could have any of three events
|
690 |
|
|
set to 1: POLLHUP, POLLERR, POLLNVAL. These events cannot
|
691 |
|
|
be used in the requested event mask (events), but they
|
692 |
|
|
can be returned in the return mask (revents). We need to
|
693 |
|
|
check for those event too, and add them to the mask which
|
694 |
|
|
will be passed to the handler. */
|
695 |
|
|
|
696 |
|
|
/* See if the desired events (mask) match the received
|
697 |
|
|
events (ready_mask). */
|
698 |
|
|
|
699 |
|
|
if (use_poll)
|
700 |
|
|
{
|
701 |
|
|
#ifdef HAVE_POLL
|
702 |
|
|
error_mask = POLLHUP | POLLERR | POLLNVAL;
|
703 |
|
|
mask = (file_ptr->ready_mask & file_ptr->mask) |
|
704 |
|
|
(file_ptr->ready_mask & error_mask);
|
705 |
|
|
error_mask_returned = mask & error_mask;
|
706 |
|
|
|
707 |
|
|
if (error_mask_returned != 0)
|
708 |
|
|
{
|
709 |
|
|
/* Work in progress. We may need to tell somebody what
|
710 |
|
|
kind of error we had. */
|
711 |
|
|
if (error_mask_returned & POLLHUP)
|
712 |
|
|
printf_unfiltered ("Hangup detected on fd %d\n", file_ptr->fd);
|
713 |
|
|
if (error_mask_returned & POLLERR)
|
714 |
|
|
printf_unfiltered ("Error detected on fd %d\n", file_ptr->fd);
|
715 |
|
|
if (error_mask_returned & POLLNVAL)
|
716 |
|
|
printf_unfiltered ("Invalid or non-`poll'able fd %d\n", file_ptr->fd);
|
717 |
|
|
file_ptr->error = 1;
|
718 |
|
|
}
|
719 |
|
|
else
|
720 |
|
|
file_ptr->error = 0;
|
721 |
|
|
#else
|
722 |
|
|
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
723 |
|
|
#endif /* HAVE_POLL */
|
724 |
|
|
}
|
725 |
|
|
else
|
726 |
|
|
{
|
727 |
|
|
if (file_ptr->ready_mask & GDB_EXCEPTION)
|
728 |
|
|
{
|
729 |
|
|
printf_unfiltered ("Exception condition detected on fd %d\n", file_ptr->fd);
|
730 |
|
|
file_ptr->error = 1;
|
731 |
|
|
}
|
732 |
|
|
else
|
733 |
|
|
file_ptr->error = 0;
|
734 |
|
|
mask = file_ptr->ready_mask & file_ptr->mask;
|
735 |
|
|
}
|
736 |
|
|
|
737 |
|
|
/* Clear the received events for next time around. */
|
738 |
|
|
file_ptr->ready_mask = 0;
|
739 |
|
|
|
740 |
|
|
/* If there was a match, then call the handler. */
|
741 |
|
|
if (mask != 0)
|
742 |
|
|
(*file_ptr->proc) (file_ptr->error, file_ptr->client_data);
|
743 |
|
|
break;
|
744 |
|
|
}
|
745 |
|
|
}
|
746 |
|
|
}
|
747 |
|
|
|
748 |
|
|
/* Called by gdb_do_one_event to wait for new events on the
|
749 |
|
|
monitored file descriptors. Queue file events as they are
|
750 |
|
|
detected by the poll.
|
751 |
|
|
If there are no events, this function will block in the
|
752 |
|
|
call to poll.
|
753 |
|
|
Return -1 if there are no files descriptors to monitor,
|
754 |
|
|
otherwise return 0. */
|
755 |
|
|
static int
|
756 |
|
|
gdb_wait_for_event (void)
|
757 |
|
|
{
|
758 |
|
|
file_handler *file_ptr;
|
759 |
|
|
gdb_event *file_event_ptr;
|
760 |
|
|
int num_found = 0;
|
761 |
|
|
int i;
|
762 |
|
|
|
763 |
|
|
/* Make sure all output is done before getting another event. */
|
764 |
|
|
gdb_flush (gdb_stdout);
|
765 |
|
|
gdb_flush (gdb_stderr);
|
766 |
|
|
|
767 |
|
|
if (gdb_notifier.num_fds == 0)
|
768 |
|
|
return -1;
|
769 |
|
|
|
770 |
|
|
if (use_poll)
|
771 |
|
|
{
|
772 |
|
|
#ifdef HAVE_POLL
|
773 |
|
|
num_found =
|
774 |
|
|
poll (gdb_notifier.poll_fds,
|
775 |
|
|
(unsigned long) gdb_notifier.num_fds,
|
776 |
|
|
gdb_notifier.timeout_valid ? gdb_notifier.poll_timeout : -1);
|
777 |
|
|
|
778 |
|
|
/* Don't print anything if we get out of poll because of a
|
779 |
|
|
signal. */
|
780 |
|
|
if (num_found == -1 && errno != EINTR)
|
781 |
|
|
perror_with_name ("Poll");
|
782 |
|
|
#else
|
783 |
|
|
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
784 |
|
|
#endif /* HAVE_POLL */
|
785 |
|
|
}
|
786 |
|
|
else
|
787 |
|
|
{
|
788 |
|
|
gdb_notifier.ready_masks[0] = gdb_notifier.check_masks[0];
|
789 |
|
|
gdb_notifier.ready_masks[1] = gdb_notifier.check_masks[1];
|
790 |
|
|
gdb_notifier.ready_masks[2] = gdb_notifier.check_masks[2];
|
791 |
|
|
num_found = select (gdb_notifier.num_fds,
|
792 |
|
|
&gdb_notifier.ready_masks[0],
|
793 |
|
|
&gdb_notifier.ready_masks[1],
|
794 |
|
|
&gdb_notifier.ready_masks[2],
|
795 |
|
|
gdb_notifier.timeout_valid
|
796 |
|
|
? &gdb_notifier.select_timeout : NULL);
|
797 |
|
|
|
798 |
|
|
/* Clear the masks after an error from select. */
|
799 |
|
|
if (num_found == -1)
|
800 |
|
|
{
|
801 |
|
|
FD_ZERO (&gdb_notifier.ready_masks[0]);
|
802 |
|
|
FD_ZERO (&gdb_notifier.ready_masks[1]);
|
803 |
|
|
FD_ZERO (&gdb_notifier.ready_masks[2]);
|
804 |
|
|
/* Dont print anything is we got a signal, let gdb handle it. */
|
805 |
|
|
if (errno != EINTR)
|
806 |
|
|
perror_with_name ("Select");
|
807 |
|
|
}
|
808 |
|
|
}
|
809 |
|
|
|
810 |
|
|
/* Enqueue all detected file events. */
|
811 |
|
|
|
812 |
|
|
if (use_poll)
|
813 |
|
|
{
|
814 |
|
|
#ifdef HAVE_POLL
|
815 |
|
|
for (i = 0; (i < gdb_notifier.num_fds) && (num_found > 0); i++)
|
816 |
|
|
{
|
817 |
|
|
if ((gdb_notifier.poll_fds + i)->revents)
|
818 |
|
|
num_found--;
|
819 |
|
|
else
|
820 |
|
|
continue;
|
821 |
|
|
|
822 |
|
|
for (file_ptr = gdb_notifier.first_file_handler;
|
823 |
|
|
file_ptr != NULL;
|
824 |
|
|
file_ptr = file_ptr->next_file)
|
825 |
|
|
{
|
826 |
|
|
if (file_ptr->fd == (gdb_notifier.poll_fds + i)->fd)
|
827 |
|
|
break;
|
828 |
|
|
}
|
829 |
|
|
|
830 |
|
|
if (file_ptr)
|
831 |
|
|
{
|
832 |
|
|
/* Enqueue an event only if this is still a new event for
|
833 |
|
|
this fd. */
|
834 |
|
|
if (file_ptr->ready_mask == 0)
|
835 |
|
|
{
|
836 |
|
|
file_event_ptr = create_file_event (file_ptr->fd);
|
837 |
|
|
async_queue_event (file_event_ptr, TAIL);
|
838 |
|
|
}
|
839 |
|
|
}
|
840 |
|
|
|
841 |
|
|
file_ptr->ready_mask = (gdb_notifier.poll_fds + i)->revents;
|
842 |
|
|
}
|
843 |
|
|
#else
|
844 |
|
|
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
845 |
|
|
#endif /* HAVE_POLL */
|
846 |
|
|
}
|
847 |
|
|
else
|
848 |
|
|
{
|
849 |
|
|
for (file_ptr = gdb_notifier.first_file_handler;
|
850 |
|
|
(file_ptr != NULL) && (num_found > 0);
|
851 |
|
|
file_ptr = file_ptr->next_file)
|
852 |
|
|
{
|
853 |
|
|
int mask = 0;
|
854 |
|
|
|
855 |
|
|
if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[0]))
|
856 |
|
|
mask |= GDB_READABLE;
|
857 |
|
|
if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[1]))
|
858 |
|
|
mask |= GDB_WRITABLE;
|
859 |
|
|
if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[2]))
|
860 |
|
|
mask |= GDB_EXCEPTION;
|
861 |
|
|
|
862 |
|
|
if (!mask)
|
863 |
|
|
continue;
|
864 |
|
|
else
|
865 |
|
|
num_found--;
|
866 |
|
|
|
867 |
|
|
/* Enqueue an event only if this is still a new event for
|
868 |
|
|
this fd. */
|
869 |
|
|
|
870 |
|
|
if (file_ptr->ready_mask == 0)
|
871 |
|
|
{
|
872 |
|
|
file_event_ptr = create_file_event (file_ptr->fd);
|
873 |
|
|
async_queue_event (file_event_ptr, TAIL);
|
874 |
|
|
}
|
875 |
|
|
file_ptr->ready_mask = mask;
|
876 |
|
|
}
|
877 |
|
|
}
|
878 |
|
|
return 0;
|
879 |
|
|
}
|
880 |
|
|
|
881 |
|
|
|
882 |
|
|
/* Create an asynchronous handler, allocating memory for it.
|
883 |
|
|
Return a pointer to the newly created handler.
|
884 |
|
|
This pointer will be used to invoke the handler by
|
885 |
|
|
invoke_async_signal_handler.
|
886 |
|
|
PROC is the function to call with CLIENT_DATA argument
|
887 |
|
|
whenever the handler is invoked. */
|
888 |
|
|
async_signal_handler *
|
889 |
|
|
create_async_signal_handler (sig_handler_func * proc, gdb_client_data client_data)
|
890 |
|
|
{
|
891 |
|
|
async_signal_handler *async_handler_ptr;
|
892 |
|
|
|
893 |
|
|
async_handler_ptr =
|
894 |
|
|
(async_signal_handler *) xmalloc (sizeof (async_signal_handler));
|
895 |
|
|
async_handler_ptr->ready = 0;
|
896 |
|
|
async_handler_ptr->next_handler = NULL;
|
897 |
|
|
async_handler_ptr->proc = proc;
|
898 |
|
|
async_handler_ptr->client_data = client_data;
|
899 |
|
|
if (sighandler_list.first_handler == NULL)
|
900 |
|
|
sighandler_list.first_handler = async_handler_ptr;
|
901 |
|
|
else
|
902 |
|
|
sighandler_list.last_handler->next_handler = async_handler_ptr;
|
903 |
|
|
sighandler_list.last_handler = async_handler_ptr;
|
904 |
|
|
return async_handler_ptr;
|
905 |
|
|
}
|
906 |
|
|
|
907 |
|
|
/* Mark the handler (ASYNC_HANDLER_PTR) as ready. This information will
|
908 |
|
|
be used when the handlers are invoked, after we have waited for
|
909 |
|
|
some event. The caller of this function is the interrupt handler
|
910 |
|
|
associated with a signal. */
|
911 |
|
|
void
|
912 |
|
|
mark_async_signal_handler (async_signal_handler * async_handler_ptr)
|
913 |
|
|
{
|
914 |
|
|
((async_signal_handler *) async_handler_ptr)->ready = 1;
|
915 |
|
|
async_handler_ready = 1;
|
916 |
|
|
}
|
917 |
|
|
|
918 |
|
|
/* Call all the handlers that are ready. */
|
919 |
|
|
static void
|
920 |
|
|
invoke_async_signal_handler (void)
|
921 |
|
|
{
|
922 |
|
|
async_signal_handler *async_handler_ptr;
|
923 |
|
|
|
924 |
|
|
if (async_handler_ready == 0)
|
925 |
|
|
return;
|
926 |
|
|
async_handler_ready = 0;
|
927 |
|
|
|
928 |
|
|
/* Invoke ready handlers. */
|
929 |
|
|
|
930 |
|
|
while (1)
|
931 |
|
|
{
|
932 |
|
|
for (async_handler_ptr = sighandler_list.first_handler;
|
933 |
|
|
async_handler_ptr != NULL;
|
934 |
|
|
async_handler_ptr = async_handler_ptr->next_handler)
|
935 |
|
|
{
|
936 |
|
|
if (async_handler_ptr->ready)
|
937 |
|
|
break;
|
938 |
|
|
}
|
939 |
|
|
if (async_handler_ptr == NULL)
|
940 |
|
|
break;
|
941 |
|
|
async_handler_ptr->ready = 0;
|
942 |
|
|
(*async_handler_ptr->proc) (async_handler_ptr->client_data);
|
943 |
|
|
}
|
944 |
|
|
|
945 |
|
|
return;
|
946 |
|
|
}
|
947 |
|
|
|
948 |
|
|
/* Delete an asynchronous handler (ASYNC_HANDLER_PTR).
|
949 |
|
|
Free the space allocated for it. */
|
950 |
|
|
void
|
951 |
|
|
delete_async_signal_handler (async_signal_handler ** async_handler_ptr)
|
952 |
|
|
{
|
953 |
|
|
async_signal_handler *prev_ptr;
|
954 |
|
|
|
955 |
|
|
if (sighandler_list.first_handler == (*async_handler_ptr))
|
956 |
|
|
{
|
957 |
|
|
sighandler_list.first_handler = (*async_handler_ptr)->next_handler;
|
958 |
|
|
if (sighandler_list.first_handler == NULL)
|
959 |
|
|
sighandler_list.last_handler = NULL;
|
960 |
|
|
}
|
961 |
|
|
else
|
962 |
|
|
{
|
963 |
|
|
prev_ptr = sighandler_list.first_handler;
|
964 |
|
|
while (prev_ptr->next_handler != (*async_handler_ptr) && prev_ptr)
|
965 |
|
|
prev_ptr = prev_ptr->next_handler;
|
966 |
|
|
prev_ptr->next_handler = (*async_handler_ptr)->next_handler;
|
967 |
|
|
if (sighandler_list.last_handler == (*async_handler_ptr))
|
968 |
|
|
sighandler_list.last_handler = prev_ptr;
|
969 |
|
|
}
|
970 |
|
|
free ((char *) (*async_handler_ptr));
|
971 |
|
|
(*async_handler_ptr) = NULL;
|
972 |
|
|
}
|
973 |
|
|
|
974 |
|
|
/* Is it necessary to call invoke_async_signal_handler? */
|
975 |
|
|
static int
|
976 |
|
|
check_async_ready (void)
|
977 |
|
|
{
|
978 |
|
|
return async_handler_ready;
|
979 |
|
|
}
|
980 |
|
|
|
981 |
|
|
/* Create a timer that will expire in MILLISECONDS from now. When the
|
982 |
|
|
timer is ready, PROC will be executed. At creation, the timer is
|
983 |
|
|
aded to the timers queue. This queue is kept sorted in order of
|
984 |
|
|
increasing timers. Return a handle to the timer struct. */
|
985 |
|
|
int
|
986 |
|
|
create_timer (int milliseconds, timer_handler_func * proc, gdb_client_data client_data)
|
987 |
|
|
{
|
988 |
|
|
struct gdb_timer *timer_ptr, *timer_index, *prev_timer;
|
989 |
|
|
struct timeval time_now, delta;
|
990 |
|
|
|
991 |
|
|
/* compute seconds */
|
992 |
|
|
delta.tv_sec = milliseconds / 1000;
|
993 |
|
|
/* compute microseconds */
|
994 |
|
|
delta.tv_usec = (milliseconds % 1000) * 1000;
|
995 |
|
|
|
996 |
|
|
gettimeofday (&time_now, NULL);
|
997 |
|
|
|
998 |
|
|
timer_ptr = (struct gdb_timer *) xmalloc (sizeof (gdb_timer));
|
999 |
|
|
timer_ptr->when.tv_sec = time_now.tv_sec + delta.tv_sec;
|
1000 |
|
|
timer_ptr->when.tv_usec = time_now.tv_usec + delta.tv_usec;
|
1001 |
|
|
/* carry? */
|
1002 |
|
|
if (timer_ptr->when.tv_usec >= 1000000)
|
1003 |
|
|
{
|
1004 |
|
|
timer_ptr->when.tv_sec += 1;
|
1005 |
|
|
timer_ptr->when.tv_usec -= 1000000;
|
1006 |
|
|
}
|
1007 |
|
|
timer_ptr->proc = proc;
|
1008 |
|
|
timer_ptr->client_data = client_data;
|
1009 |
|
|
timer_list.num_timers++;
|
1010 |
|
|
timer_ptr->timer_id = timer_list.num_timers;
|
1011 |
|
|
|
1012 |
|
|
/* Now add the timer to the timer queue, making sure it is sorted in
|
1013 |
|
|
increasing order of expiration. */
|
1014 |
|
|
|
1015 |
|
|
for (timer_index = timer_list.first_timer;
|
1016 |
|
|
timer_index != NULL;
|
1017 |
|
|
timer_index = timer_index->next)
|
1018 |
|
|
{
|
1019 |
|
|
/* If the seconds field is greater or if it is the same, but the
|
1020 |
|
|
microsecond field is greater. */
|
1021 |
|
|
if ((timer_index->when.tv_sec > timer_ptr->when.tv_sec) ||
|
1022 |
|
|
((timer_index->when.tv_sec == timer_ptr->when.tv_sec)
|
1023 |
|
|
&& (timer_index->when.tv_usec > timer_ptr->when.tv_usec)))
|
1024 |
|
|
break;
|
1025 |
|
|
}
|
1026 |
|
|
|
1027 |
|
|
if (timer_index == timer_list.first_timer)
|
1028 |
|
|
{
|
1029 |
|
|
timer_ptr->next = timer_list.first_timer;
|
1030 |
|
|
timer_list.first_timer = timer_ptr;
|
1031 |
|
|
|
1032 |
|
|
}
|
1033 |
|
|
else
|
1034 |
|
|
{
|
1035 |
|
|
for (prev_timer = timer_list.first_timer;
|
1036 |
|
|
prev_timer->next != timer_index;
|
1037 |
|
|
prev_timer = prev_timer->next)
|
1038 |
|
|
;
|
1039 |
|
|
|
1040 |
|
|
prev_timer->next = timer_ptr;
|
1041 |
|
|
timer_ptr->next = timer_index;
|
1042 |
|
|
}
|
1043 |
|
|
|
1044 |
|
|
gdb_notifier.timeout_valid = 0;
|
1045 |
|
|
return timer_ptr->timer_id;
|
1046 |
|
|
}
|
1047 |
|
|
|
1048 |
|
|
/* There is a chance that the creator of the timer wants to get rid of
|
1049 |
|
|
it before it expires. */
|
1050 |
|
|
void
|
1051 |
|
|
delete_timer (int id)
|
1052 |
|
|
{
|
1053 |
|
|
struct gdb_timer *timer_ptr, *prev_timer = NULL;
|
1054 |
|
|
|
1055 |
|
|
/* Find the entry for the given timer. */
|
1056 |
|
|
|
1057 |
|
|
for (timer_ptr = timer_list.first_timer; timer_ptr != NULL;
|
1058 |
|
|
timer_ptr = timer_ptr->next)
|
1059 |
|
|
{
|
1060 |
|
|
if (timer_ptr->timer_id == id)
|
1061 |
|
|
break;
|
1062 |
|
|
}
|
1063 |
|
|
|
1064 |
|
|
if (timer_ptr == NULL)
|
1065 |
|
|
return;
|
1066 |
|
|
/* Get rid of the timer in the timer list. */
|
1067 |
|
|
if (timer_ptr == timer_list.first_timer)
|
1068 |
|
|
timer_list.first_timer = timer_ptr->next;
|
1069 |
|
|
else
|
1070 |
|
|
{
|
1071 |
|
|
for (prev_timer = timer_list.first_timer;
|
1072 |
|
|
prev_timer->next != timer_ptr;
|
1073 |
|
|
prev_timer = prev_timer->next)
|
1074 |
|
|
;
|
1075 |
|
|
prev_timer->next = timer_ptr->next;
|
1076 |
|
|
}
|
1077 |
|
|
free ((char *) timer_ptr);
|
1078 |
|
|
|
1079 |
|
|
gdb_notifier.timeout_valid = 0;
|
1080 |
|
|
}
|
1081 |
|
|
|
1082 |
|
|
/* When a timer event is put on the event queue, it will be handled by
|
1083 |
|
|
this function. Just call the assiciated procedure and delete the
|
1084 |
|
|
timer event from the event queue. Repeat this for each timer that
|
1085 |
|
|
has expired. */
|
1086 |
|
|
static void
|
1087 |
|
|
handle_timer_event (int dummy)
|
1088 |
|
|
{
|
1089 |
|
|
struct timeval time_now;
|
1090 |
|
|
struct gdb_timer *timer_ptr, *saved_timer;
|
1091 |
|
|
|
1092 |
|
|
gettimeofday (&time_now, NULL);
|
1093 |
|
|
timer_ptr = timer_list.first_timer;
|
1094 |
|
|
|
1095 |
|
|
while (timer_ptr != NULL)
|
1096 |
|
|
{
|
1097 |
|
|
if ((timer_ptr->when.tv_sec > time_now.tv_sec) ||
|
1098 |
|
|
((timer_ptr->when.tv_sec == time_now.tv_sec) &&
|
1099 |
|
|
(timer_ptr->when.tv_usec > time_now.tv_usec)))
|
1100 |
|
|
break;
|
1101 |
|
|
|
1102 |
|
|
/* Get rid of the timer from the beginning of the list. */
|
1103 |
|
|
timer_list.first_timer = timer_ptr->next;
|
1104 |
|
|
saved_timer = timer_ptr;
|
1105 |
|
|
timer_ptr = timer_ptr->next;
|
1106 |
|
|
/* Call the procedure associated with that timer. */
|
1107 |
|
|
(*saved_timer->proc) (saved_timer->client_data);
|
1108 |
|
|
free (saved_timer);
|
1109 |
|
|
}
|
1110 |
|
|
|
1111 |
|
|
gdb_notifier.timeout_valid = 0;
|
1112 |
|
|
}
|
1113 |
|
|
|
1114 |
|
|
/* Check whether any timers in the timers queue are ready. If at least
|
1115 |
|
|
one timer is ready, stick an event onto the event queue. Even in
|
1116 |
|
|
case more than one timer is ready, one event is enough, because the
|
1117 |
|
|
handle_timer_event() will go through the timers list and call the
|
1118 |
|
|
procedures associated with all that have expired. Update the
|
1119 |
|
|
timeout for the select() or poll() as well. */
|
1120 |
|
|
static void
|
1121 |
|
|
poll_timers (void)
|
1122 |
|
|
{
|
1123 |
|
|
struct timeval time_now, delta;
|
1124 |
|
|
gdb_event *event_ptr;
|
1125 |
|
|
|
1126 |
|
|
if (timer_list.first_timer != NULL)
|
1127 |
|
|
{
|
1128 |
|
|
gettimeofday (&time_now, NULL);
|
1129 |
|
|
delta.tv_sec = timer_list.first_timer->when.tv_sec - time_now.tv_sec;
|
1130 |
|
|
delta.tv_usec = timer_list.first_timer->when.tv_usec - time_now.tv_usec;
|
1131 |
|
|
/* borrow? */
|
1132 |
|
|
if (delta.tv_usec < 0)
|
1133 |
|
|
{
|
1134 |
|
|
delta.tv_sec -= 1;
|
1135 |
|
|
delta.tv_usec += 1000000;
|
1136 |
|
|
}
|
1137 |
|
|
|
1138 |
|
|
/* Oops it expired already. Tell select / poll to return
|
1139 |
|
|
immediately. (Cannot simply test if delta.tv_sec is negative
|
1140 |
|
|
because time_t might be unsigned.) */
|
1141 |
|
|
if (timer_list.first_timer->when.tv_sec < time_now.tv_sec
|
1142 |
|
|
|| (timer_list.first_timer->when.tv_sec == time_now.tv_sec
|
1143 |
|
|
&& timer_list.first_timer->when.tv_usec < time_now.tv_usec))
|
1144 |
|
|
{
|
1145 |
|
|
delta.tv_sec = 0;
|
1146 |
|
|
delta.tv_usec = 0;
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
if (delta.tv_sec == 0 && delta.tv_usec == 0)
|
1150 |
|
|
{
|
1151 |
|
|
event_ptr = (gdb_event *) xmalloc (sizeof (gdb_event));
|
1152 |
|
|
event_ptr->proc = handle_timer_event;
|
1153 |
|
|
event_ptr->fd = timer_list.first_timer->timer_id;
|
1154 |
|
|
async_queue_event (event_ptr, TAIL);
|
1155 |
|
|
}
|
1156 |
|
|
|
1157 |
|
|
/* Now we need to update the timeout for select/ poll, because we
|
1158 |
|
|
don't want to sit there while this timer is expiring. */
|
1159 |
|
|
if (use_poll)
|
1160 |
|
|
{
|
1161 |
|
|
#ifdef HAVE_POLL
|
1162 |
|
|
gdb_notifier.poll_timeout = delta.tv_sec * 1000;
|
1163 |
|
|
#else
|
1164 |
|
|
internal_error ("event-loop.c : use_poll without HAVE_POLL");
|
1165 |
|
|
#endif /* HAVE_POLL */
|
1166 |
|
|
}
|
1167 |
|
|
else
|
1168 |
|
|
{
|
1169 |
|
|
gdb_notifier.select_timeout.tv_sec = delta.tv_sec;
|
1170 |
|
|
gdb_notifier.select_timeout.tv_usec = delta.tv_usec;
|
1171 |
|
|
}
|
1172 |
|
|
gdb_notifier.timeout_valid = 1;
|
1173 |
|
|
}
|
1174 |
|
|
else
|
1175 |
|
|
gdb_notifier.timeout_valid = 0;
|
1176 |
|
|
}
|