1 |
104 |
markom |
/* Native support for the SGI Iris running IRIX version 5, for GDB.
|
2 |
|
|
Copyright 1988, 89, 90, 91, 92, 93, 94, 95, 96, 98, 1999
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
|
5 |
|
|
and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
|
6 |
|
|
Implemented for Irix 4.x by Garrett A. Wollman.
|
7 |
|
|
Modified for Irix 5.x by Ian Lance Taylor.
|
8 |
|
|
|
9 |
|
|
This file is part of GDB.
|
10 |
|
|
|
11 |
|
|
This program is free software; you can redistribute it and/or modify
|
12 |
|
|
it under the terms of the GNU General Public License as published by
|
13 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
14 |
|
|
(at your option) any later version.
|
15 |
|
|
|
16 |
|
|
This program is distributed in the hope that it will be useful,
|
17 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
18 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
19 |
|
|
GNU General Public License for more details.
|
20 |
|
|
|
21 |
|
|
You should have received a copy of the GNU General Public License
|
22 |
|
|
along with this program; if not, write to the Free Software
|
23 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
24 |
|
|
Boston, MA 02111-1307, USA. */
|
25 |
|
|
|
26 |
|
|
#include "defs.h"
|
27 |
|
|
#include "inferior.h"
|
28 |
|
|
#include "gdbcore.h"
|
29 |
|
|
#include "target.h"
|
30 |
|
|
|
31 |
|
|
#include "gdb_string.h"
|
32 |
|
|
#include <sys/time.h>
|
33 |
|
|
#include <sys/procfs.h>
|
34 |
|
|
#include <setjmp.h> /* For JB_XXX. */
|
35 |
|
|
|
36 |
|
|
static void
|
37 |
|
|
fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
|
38 |
|
|
|
39 |
|
|
/* Size of elements in jmpbuf */
|
40 |
|
|
|
41 |
|
|
#define JB_ELEMENT_SIZE 4
|
42 |
|
|
|
43 |
|
|
/*
|
44 |
|
|
* See the comment in m68k-tdep.c regarding the utility of these functions.
|
45 |
|
|
*
|
46 |
|
|
* These definitions are from the MIPS SVR4 ABI, so they may work for
|
47 |
|
|
* any MIPS SVR4 target.
|
48 |
|
|
*/
|
49 |
|
|
|
50 |
|
|
void
|
51 |
|
|
supply_gregset (gregsetp)
|
52 |
|
|
gregset_t *gregsetp;
|
53 |
|
|
{
|
54 |
|
|
register int regi;
|
55 |
|
|
register greg_t *regp = &(*gregsetp)[0];
|
56 |
|
|
int gregoff = sizeof (greg_t) - MIPS_REGSIZE;
|
57 |
|
|
static char zerobuf[MAX_REGISTER_RAW_SIZE] =
|
58 |
|
|
{0};
|
59 |
|
|
|
60 |
|
|
for (regi = 0; regi <= CTX_RA; regi++)
|
61 |
|
|
supply_register (regi, (char *) (regp + regi) + gregoff);
|
62 |
|
|
|
63 |
|
|
supply_register (PC_REGNUM, (char *) (regp + CTX_EPC) + gregoff);
|
64 |
|
|
supply_register (HI_REGNUM, (char *) (regp + CTX_MDHI) + gregoff);
|
65 |
|
|
supply_register (LO_REGNUM, (char *) (regp + CTX_MDLO) + gregoff);
|
66 |
|
|
supply_register (CAUSE_REGNUM, (char *) (regp + CTX_CAUSE) + gregoff);
|
67 |
|
|
|
68 |
|
|
/* Fill inaccessible registers with zero. */
|
69 |
|
|
supply_register (BADVADDR_REGNUM, zerobuf);
|
70 |
|
|
}
|
71 |
|
|
|
72 |
|
|
void
|
73 |
|
|
fill_gregset (gregsetp, regno)
|
74 |
|
|
gregset_t *gregsetp;
|
75 |
|
|
int regno;
|
76 |
|
|
{
|
77 |
|
|
int regi;
|
78 |
|
|
register greg_t *regp = &(*gregsetp)[0];
|
79 |
|
|
|
80 |
|
|
/* Under Irix6, if GDB is built with N32 ABI and is debugging an O32
|
81 |
|
|
executable, we have to sign extend the registers to 64 bits before
|
82 |
|
|
filling in the gregset structure. */
|
83 |
|
|
|
84 |
|
|
for (regi = 0; regi <= CTX_RA; regi++)
|
85 |
|
|
if ((regno == -1) || (regno == regi))
|
86 |
|
|
*(regp + regi) =
|
87 |
|
|
extract_signed_integer (®isters[REGISTER_BYTE (regi)],
|
88 |
|
|
REGISTER_RAW_SIZE (regi));
|
89 |
|
|
|
90 |
|
|
if ((regno == -1) || (regno == PC_REGNUM))
|
91 |
|
|
*(regp + CTX_EPC) =
|
92 |
|
|
extract_signed_integer (®isters[REGISTER_BYTE (PC_REGNUM)],
|
93 |
|
|
REGISTER_RAW_SIZE (PC_REGNUM));
|
94 |
|
|
|
95 |
|
|
if ((regno == -1) || (regno == CAUSE_REGNUM))
|
96 |
|
|
*(regp + CTX_CAUSE) =
|
97 |
|
|
extract_signed_integer (®isters[REGISTER_BYTE (CAUSE_REGNUM)],
|
98 |
|
|
REGISTER_RAW_SIZE (CAUSE_REGNUM));
|
99 |
|
|
|
100 |
|
|
if ((regno == -1) || (regno == HI_REGNUM))
|
101 |
|
|
*(regp + CTX_MDHI) =
|
102 |
|
|
extract_signed_integer (®isters[REGISTER_BYTE (HI_REGNUM)],
|
103 |
|
|
REGISTER_RAW_SIZE (HI_REGNUM));
|
104 |
|
|
|
105 |
|
|
if ((regno == -1) || (regno == LO_REGNUM))
|
106 |
|
|
*(regp + CTX_MDLO) =
|
107 |
|
|
extract_signed_integer (®isters[REGISTER_BYTE (LO_REGNUM)],
|
108 |
|
|
REGISTER_RAW_SIZE (LO_REGNUM));
|
109 |
|
|
}
|
110 |
|
|
|
111 |
|
|
/*
|
112 |
|
|
* Now we do the same thing for floating-point registers.
|
113 |
|
|
* We don't bother to condition on FP0_REGNUM since any
|
114 |
|
|
* reasonable MIPS configuration has an R3010 in it.
|
115 |
|
|
*
|
116 |
|
|
* Again, see the comments in m68k-tdep.c.
|
117 |
|
|
*/
|
118 |
|
|
|
119 |
|
|
void
|
120 |
|
|
supply_fpregset (fpregsetp)
|
121 |
|
|
fpregset_t *fpregsetp;
|
122 |
|
|
{
|
123 |
|
|
register int regi;
|
124 |
|
|
static char zerobuf[MAX_REGISTER_RAW_SIZE] =
|
125 |
|
|
{0};
|
126 |
|
|
|
127 |
|
|
/* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
|
128 |
|
|
|
129 |
|
|
for (regi = 0; regi < 32; regi++)
|
130 |
|
|
supply_register (FP0_REGNUM + regi,
|
131 |
|
|
(char *) &fpregsetp->fp_r.fp_regs[regi]);
|
132 |
|
|
|
133 |
|
|
supply_register (FCRCS_REGNUM, (char *) &fpregsetp->fp_csr);
|
134 |
|
|
|
135 |
|
|
/* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
|
136 |
|
|
supply_register (FCRIR_REGNUM, zerobuf);
|
137 |
|
|
}
|
138 |
|
|
|
139 |
|
|
void
|
140 |
|
|
fill_fpregset (fpregsetp, regno)
|
141 |
|
|
fpregset_t *fpregsetp;
|
142 |
|
|
int regno;
|
143 |
|
|
{
|
144 |
|
|
int regi;
|
145 |
|
|
char *from, *to;
|
146 |
|
|
|
147 |
|
|
/* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
|
148 |
|
|
|
149 |
|
|
for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
|
150 |
|
|
{
|
151 |
|
|
if ((regno == -1) || (regno == regi))
|
152 |
|
|
{
|
153 |
|
|
from = (char *) ®isters[REGISTER_BYTE (regi)];
|
154 |
|
|
to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
|
155 |
|
|
memcpy (to, from, REGISTER_RAW_SIZE (regi));
|
156 |
|
|
}
|
157 |
|
|
}
|
158 |
|
|
|
159 |
|
|
if ((regno == -1) || (regno == FCRCS_REGNUM))
|
160 |
|
|
fpregsetp->fp_csr = *(unsigned *) ®isters[REGISTER_BYTE (FCRCS_REGNUM)];
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
|
164 |
|
|
/* Figure out where the longjmp will land.
|
165 |
|
|
We expect the first arg to be a pointer to the jmp_buf structure from which
|
166 |
|
|
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
|
167 |
|
|
This routine returns true on success. */
|
168 |
|
|
|
169 |
|
|
int
|
170 |
|
|
get_longjmp_target (pc)
|
171 |
|
|
CORE_ADDR *pc;
|
172 |
|
|
{
|
173 |
|
|
char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
|
174 |
|
|
CORE_ADDR jb_addr;
|
175 |
|
|
|
176 |
|
|
jb_addr = read_register (A0_REGNUM);
|
177 |
|
|
|
178 |
|
|
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
|
179 |
|
|
TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
180 |
|
|
return 0;
|
181 |
|
|
|
182 |
|
|
*pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
183 |
|
|
|
184 |
|
|
return 1;
|
185 |
|
|
}
|
186 |
|
|
|
187 |
|
|
static void
|
188 |
|
|
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
|
189 |
|
|
char *core_reg_sect;
|
190 |
|
|
unsigned core_reg_size;
|
191 |
|
|
int which; /* Unused */
|
192 |
|
|
CORE_ADDR reg_addr; /* Unused */
|
193 |
|
|
{
|
194 |
|
|
if (core_reg_size == REGISTER_BYTES)
|
195 |
|
|
{
|
196 |
|
|
memcpy ((char *) registers, core_reg_sect, core_reg_size);
|
197 |
|
|
}
|
198 |
|
|
else if (MIPS_REGSIZE == 4 &&
|
199 |
|
|
core_reg_size == (2 * MIPS_REGSIZE) * NUM_REGS)
|
200 |
|
|
{
|
201 |
|
|
/* This is a core file from a N32 executable, 64 bits are saved
|
202 |
|
|
for all registers. */
|
203 |
|
|
char *srcp = core_reg_sect;
|
204 |
|
|
char *dstp = registers;
|
205 |
|
|
int regno;
|
206 |
|
|
|
207 |
|
|
for (regno = 0; regno < NUM_REGS; regno++)
|
208 |
|
|
{
|
209 |
|
|
if (regno >= FP0_REGNUM && regno < (FP0_REGNUM + 32))
|
210 |
|
|
{
|
211 |
|
|
/* FIXME, this is wrong, N32 has 64 bit FP regs, but GDB
|
212 |
|
|
currently assumes that they are 32 bit. */
|
213 |
|
|
*dstp++ = *srcp++;
|
214 |
|
|
*dstp++ = *srcp++;
|
215 |
|
|
*dstp++ = *srcp++;
|
216 |
|
|
*dstp++ = *srcp++;
|
217 |
|
|
if (REGISTER_RAW_SIZE (regno) == 4)
|
218 |
|
|
{
|
219 |
|
|
/* copying 4 bytes from eight bytes?
|
220 |
|
|
I don't see how this can be right... */
|
221 |
|
|
srcp += 4;
|
222 |
|
|
}
|
223 |
|
|
else
|
224 |
|
|
{
|
225 |
|
|
/* copy all 8 bytes (sizeof(double)) */
|
226 |
|
|
*dstp++ = *srcp++;
|
227 |
|
|
*dstp++ = *srcp++;
|
228 |
|
|
*dstp++ = *srcp++;
|
229 |
|
|
*dstp++ = *srcp++;
|
230 |
|
|
}
|
231 |
|
|
}
|
232 |
|
|
else
|
233 |
|
|
{
|
234 |
|
|
srcp += 4;
|
235 |
|
|
*dstp++ = *srcp++;
|
236 |
|
|
*dstp++ = *srcp++;
|
237 |
|
|
*dstp++ = *srcp++;
|
238 |
|
|
*dstp++ = *srcp++;
|
239 |
|
|
}
|
240 |
|
|
}
|
241 |
|
|
}
|
242 |
|
|
else
|
243 |
|
|
{
|
244 |
|
|
warning ("wrong size gregset struct in core file");
|
245 |
|
|
return;
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
registers_fetched ();
|
249 |
|
|
}
|
250 |
|
|
|
251 |
|
|
/* Irix 5 uses what appears to be a unique form of shared library
|
252 |
|
|
support. This is a copy of solib.c modified for Irix 5. */
|
253 |
|
|
/* FIXME: Most of this code could be merged with osfsolib.c and solib.c
|
254 |
|
|
by using next_link_map_member and xfer_link_map_member in solib.c. */
|
255 |
|
|
|
256 |
|
|
#include <sys/types.h>
|
257 |
|
|
#include <signal.h>
|
258 |
|
|
#include <sys/param.h>
|
259 |
|
|
#include <fcntl.h>
|
260 |
|
|
|
261 |
|
|
/* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
|
262 |
|
|
with our versions of those files included by tm-mips.h. Prevent
|
263 |
|
|
<obj.h> from including them with some appropriate defines. */
|
264 |
|
|
#define __SYM_H__
|
265 |
|
|
#define __SYMCONST_H__
|
266 |
|
|
#include <obj.h>
|
267 |
|
|
#ifdef HAVE_OBJLIST_H
|
268 |
|
|
#include <objlist.h>
|
269 |
|
|
#endif
|
270 |
|
|
|
271 |
|
|
#ifdef NEW_OBJ_INFO_MAGIC
|
272 |
|
|
#define HANDLE_NEW_OBJ_LIST
|
273 |
|
|
#endif
|
274 |
|
|
|
275 |
|
|
#include "symtab.h"
|
276 |
|
|
#include "bfd.h"
|
277 |
|
|
#include "symfile.h"
|
278 |
|
|
#include "objfiles.h"
|
279 |
|
|
#include "command.h"
|
280 |
|
|
#include "frame.h"
|
281 |
|
|
#include "gdb_regex.h"
|
282 |
|
|
#include "inferior.h"
|
283 |
|
|
#include "language.h"
|
284 |
|
|
#include "gdbcmd.h"
|
285 |
|
|
|
286 |
|
|
/* The symbol which starts off the list of shared libraries. */
|
287 |
|
|
#define DEBUG_BASE "__rld_obj_head"
|
288 |
|
|
|
289 |
|
|
/* Irix 6.x introduces a new variant of object lists.
|
290 |
|
|
To be able to debug O32 executables under Irix 6, we have to handle both
|
291 |
|
|
variants. */
|
292 |
|
|
|
293 |
|
|
typedef enum
|
294 |
|
|
{
|
295 |
|
|
OBJ_LIST_OLD, /* Pre Irix 6.x object list. */
|
296 |
|
|
OBJ_LIST_32, /* 32 Bit Elf32_Obj_Info. */
|
297 |
|
|
OBJ_LIST_64 /* 64 Bit Elf64_Obj_Info, FIXME not yet implemented. */
|
298 |
|
|
}
|
299 |
|
|
obj_list_variant;
|
300 |
|
|
|
301 |
|
|
/* Define our own link_map structure.
|
302 |
|
|
This will help to share code with osfsolib.c and solib.c. */
|
303 |
|
|
|
304 |
|
|
struct link_map
|
305 |
|
|
{
|
306 |
|
|
obj_list_variant l_variant; /* which variant of object list */
|
307 |
|
|
CORE_ADDR l_lladdr; /* addr in inferior list was read from */
|
308 |
|
|
CORE_ADDR l_next; /* address of next object list entry */
|
309 |
|
|
};
|
310 |
|
|
|
311 |
|
|
/* Irix 5 shared objects are pre-linked to particular addresses
|
312 |
|
|
although the dynamic linker may have to relocate them if the
|
313 |
|
|
address ranges of the libraries used by the main program clash.
|
314 |
|
|
The offset is the difference between the address where the object
|
315 |
|
|
is mapped and the binding address of the shared library. */
|
316 |
|
|
#define LM_OFFSET(so) ((so) -> offset)
|
317 |
|
|
/* Loaded address of shared library. */
|
318 |
|
|
#define LM_ADDR(so) ((so) -> lmstart)
|
319 |
|
|
|
320 |
|
|
char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
|
321 |
|
|
|
322 |
|
|
struct so_list
|
323 |
|
|
{
|
324 |
|
|
struct so_list *next; /* next structure in linked list */
|
325 |
|
|
struct link_map lm;
|
326 |
|
|
CORE_ADDR offset; /* prelink to load address offset */
|
327 |
|
|
char *so_name; /* shared object lib name */
|
328 |
|
|
CORE_ADDR lmstart; /* lower addr bound of mapped object */
|
329 |
|
|
CORE_ADDR lmend; /* upper addr bound of mapped object */
|
330 |
|
|
char symbols_loaded; /* flag: symbols read in yet? */
|
331 |
|
|
char from_tty; /* flag: print msgs? */
|
332 |
|
|
struct objfile *objfile; /* objfile for loaded lib */
|
333 |
|
|
struct section_table *sections;
|
334 |
|
|
struct section_table *sections_end;
|
335 |
|
|
struct section_table *textsection;
|
336 |
|
|
bfd *abfd;
|
337 |
|
|
};
|
338 |
|
|
|
339 |
|
|
static struct so_list *so_list_head; /* List of known shared objects */
|
340 |
|
|
static CORE_ADDR debug_base; /* Base of dynamic linker structures */
|
341 |
|
|
static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
|
342 |
|
|
|
343 |
|
|
/* Local function prototypes */
|
344 |
|
|
|
345 |
|
|
static void
|
346 |
|
|
sharedlibrary_command PARAMS ((char *, int));
|
347 |
|
|
|
348 |
|
|
static int
|
349 |
|
|
enable_break PARAMS ((void));
|
350 |
|
|
|
351 |
|
|
static int
|
352 |
|
|
disable_break PARAMS ((void));
|
353 |
|
|
|
354 |
|
|
static void
|
355 |
|
|
info_sharedlibrary_command PARAMS ((char *, int));
|
356 |
|
|
|
357 |
|
|
static int
|
358 |
|
|
symbol_add_stub PARAMS ((char *));
|
359 |
|
|
|
360 |
|
|
static struct so_list *
|
361 |
|
|
find_solib PARAMS ((struct so_list *));
|
362 |
|
|
|
363 |
|
|
static struct link_map *
|
364 |
|
|
first_link_map_member PARAMS ((void));
|
365 |
|
|
|
366 |
|
|
static struct link_map *
|
367 |
|
|
next_link_map_member PARAMS ((struct so_list *));
|
368 |
|
|
|
369 |
|
|
static void
|
370 |
|
|
xfer_link_map_member PARAMS ((struct so_list *, struct link_map *));
|
371 |
|
|
|
372 |
|
|
static CORE_ADDR
|
373 |
|
|
locate_base PARAMS ((void));
|
374 |
|
|
|
375 |
|
|
static int
|
376 |
|
|
solib_map_sections PARAMS ((char *));
|
377 |
|
|
|
378 |
|
|
/*
|
379 |
|
|
|
380 |
|
|
LOCAL FUNCTION
|
381 |
|
|
|
382 |
|
|
solib_map_sections -- open bfd and build sections for shared lib
|
383 |
|
|
|
384 |
|
|
SYNOPSIS
|
385 |
|
|
|
386 |
|
|
static int solib_map_sections (struct so_list *so)
|
387 |
|
|
|
388 |
|
|
DESCRIPTION
|
389 |
|
|
|
390 |
|
|
Given a pointer to one of the shared objects in our list
|
391 |
|
|
of mapped objects, use the recorded name to open a bfd
|
392 |
|
|
descriptor for the object, build a section table, and then
|
393 |
|
|
relocate all the section addresses by the base address at
|
394 |
|
|
which the shared object was mapped.
|
395 |
|
|
|
396 |
|
|
FIXMES
|
397 |
|
|
|
398 |
|
|
In most (all?) cases the shared object file name recorded in the
|
399 |
|
|
dynamic linkage tables will be a fully qualified pathname. For
|
400 |
|
|
cases where it isn't, do we really mimic the systems search
|
401 |
|
|
mechanism correctly in the below code (particularly the tilde
|
402 |
|
|
expansion stuff?).
|
403 |
|
|
*/
|
404 |
|
|
|
405 |
|
|
static int
|
406 |
|
|
solib_map_sections (arg)
|
407 |
|
|
char *arg;
|
408 |
|
|
{
|
409 |
|
|
struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
|
410 |
|
|
char *filename;
|
411 |
|
|
char *scratch_pathname;
|
412 |
|
|
int scratch_chan;
|
413 |
|
|
struct section_table *p;
|
414 |
|
|
struct cleanup *old_chain;
|
415 |
|
|
bfd *abfd;
|
416 |
|
|
|
417 |
|
|
filename = tilde_expand (so->so_name);
|
418 |
|
|
old_chain = make_cleanup (free, filename);
|
419 |
|
|
|
420 |
|
|
scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
|
421 |
|
|
&scratch_pathname);
|
422 |
|
|
if (scratch_chan < 0)
|
423 |
|
|
{
|
424 |
|
|
scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
|
425 |
|
|
O_RDONLY, 0, &scratch_pathname);
|
426 |
|
|
}
|
427 |
|
|
if (scratch_chan < 0)
|
428 |
|
|
{
|
429 |
|
|
perror_with_name (filename);
|
430 |
|
|
}
|
431 |
|
|
/* Leave scratch_pathname allocated. abfd->name will point to it. */
|
432 |
|
|
|
433 |
|
|
abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
|
434 |
|
|
if (!abfd)
|
435 |
|
|
{
|
436 |
|
|
close (scratch_chan);
|
437 |
|
|
error ("Could not open `%s' as an executable file: %s",
|
438 |
|
|
scratch_pathname, bfd_errmsg (bfd_get_error ()));
|
439 |
|
|
}
|
440 |
|
|
/* Leave bfd open, core_xfer_memory and "info files" need it. */
|
441 |
|
|
so->abfd = abfd;
|
442 |
|
|
abfd->cacheable = true;
|
443 |
|
|
|
444 |
|
|
if (!bfd_check_format (abfd, bfd_object))
|
445 |
|
|
{
|
446 |
|
|
error ("\"%s\": not in executable format: %s.",
|
447 |
|
|
scratch_pathname, bfd_errmsg (bfd_get_error ()));
|
448 |
|
|
}
|
449 |
|
|
if (build_section_table (abfd, &so->sections, &so->sections_end))
|
450 |
|
|
{
|
451 |
|
|
error ("Can't find the file sections in `%s': %s",
|
452 |
|
|
bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
|
453 |
|
|
}
|
454 |
|
|
|
455 |
|
|
for (p = so->sections; p < so->sections_end; p++)
|
456 |
|
|
{
|
457 |
|
|
/* Relocate the section binding addresses as recorded in the shared
|
458 |
|
|
object's file by the offset to get the address to which the
|
459 |
|
|
object was actually mapped. */
|
460 |
|
|
p->addr += LM_OFFSET (so);
|
461 |
|
|
p->endaddr += LM_OFFSET (so);
|
462 |
|
|
so->lmend = (CORE_ADDR) max (p->endaddr, so->lmend);
|
463 |
|
|
if (STREQ (p->the_bfd_section->name, ".text"))
|
464 |
|
|
{
|
465 |
|
|
so->textsection = p;
|
466 |
|
|
}
|
467 |
|
|
}
|
468 |
|
|
|
469 |
|
|
/* Free the file names, close the file now. */
|
470 |
|
|
do_cleanups (old_chain);
|
471 |
|
|
|
472 |
|
|
return (1);
|
473 |
|
|
}
|
474 |
|
|
|
475 |
|
|
/*
|
476 |
|
|
|
477 |
|
|
LOCAL FUNCTION
|
478 |
|
|
|
479 |
|
|
locate_base -- locate the base address of dynamic linker structs
|
480 |
|
|
|
481 |
|
|
SYNOPSIS
|
482 |
|
|
|
483 |
|
|
CORE_ADDR locate_base (void)
|
484 |
|
|
|
485 |
|
|
DESCRIPTION
|
486 |
|
|
|
487 |
|
|
For both the SunOS and SVR4 shared library implementations, if the
|
488 |
|
|
inferior executable has been linked dynamically, there is a single
|
489 |
|
|
address somewhere in the inferior's data space which is the key to
|
490 |
|
|
locating all of the dynamic linker's runtime structures. This
|
491 |
|
|
address is the value of the symbol defined by the macro DEBUG_BASE.
|
492 |
|
|
The job of this function is to find and return that address, or to
|
493 |
|
|
return 0 if there is no such address (the executable is statically
|
494 |
|
|
linked for example).
|
495 |
|
|
|
496 |
|
|
For SunOS, the job is almost trivial, since the dynamic linker and
|
497 |
|
|
all of it's structures are statically linked to the executable at
|
498 |
|
|
link time. Thus the symbol for the address we are looking for has
|
499 |
|
|
already been added to the minimal symbol table for the executable's
|
500 |
|
|
objfile at the time the symbol file's symbols were read, and all we
|
501 |
|
|
have to do is look it up there. Note that we explicitly do NOT want
|
502 |
|
|
to find the copies in the shared library.
|
503 |
|
|
|
504 |
|
|
The SVR4 version is much more complicated because the dynamic linker
|
505 |
|
|
and it's structures are located in the shared C library, which gets
|
506 |
|
|
run as the executable's "interpreter" by the kernel. We have to go
|
507 |
|
|
to a lot more work to discover the address of DEBUG_BASE. Because
|
508 |
|
|
of this complexity, we cache the value we find and return that value
|
509 |
|
|
on subsequent invocations. Note there is no copy in the executable
|
510 |
|
|
symbol tables.
|
511 |
|
|
|
512 |
|
|
Irix 5 is basically like SunOS.
|
513 |
|
|
|
514 |
|
|
Note that we can assume nothing about the process state at the time
|
515 |
|
|
we need to find this address. We may be stopped on the first instruc-
|
516 |
|
|
tion of the interpreter (C shared library), the first instruction of
|
517 |
|
|
the executable itself, or somewhere else entirely (if we attached
|
518 |
|
|
to the process for example).
|
519 |
|
|
|
520 |
|
|
*/
|
521 |
|
|
|
522 |
|
|
static CORE_ADDR
|
523 |
|
|
locate_base ()
|
524 |
|
|
{
|
525 |
|
|
struct minimal_symbol *msymbol;
|
526 |
|
|
CORE_ADDR address = 0;
|
527 |
|
|
|
528 |
|
|
msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
|
529 |
|
|
if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
|
530 |
|
|
{
|
531 |
|
|
address = SYMBOL_VALUE_ADDRESS (msymbol);
|
532 |
|
|
}
|
533 |
|
|
return (address);
|
534 |
|
|
}
|
535 |
|
|
|
536 |
|
|
/*
|
537 |
|
|
|
538 |
|
|
LOCAL FUNCTION
|
539 |
|
|
|
540 |
|
|
first_link_map_member -- locate first member in dynamic linker's map
|
541 |
|
|
|
542 |
|
|
SYNOPSIS
|
543 |
|
|
|
544 |
|
|
static struct link_map *first_link_map_member (void)
|
545 |
|
|
|
546 |
|
|
DESCRIPTION
|
547 |
|
|
|
548 |
|
|
Read in a copy of the first member in the inferior's dynamic
|
549 |
|
|
link map from the inferior's dynamic linker structures, and return
|
550 |
|
|
a pointer to the link map descriptor.
|
551 |
|
|
*/
|
552 |
|
|
|
553 |
|
|
static struct link_map *
|
554 |
|
|
first_link_map_member ()
|
555 |
|
|
{
|
556 |
|
|
struct obj_list *listp;
|
557 |
|
|
struct obj_list list_old;
|
558 |
|
|
struct link_map *lm;
|
559 |
|
|
static struct link_map first_lm;
|
560 |
|
|
CORE_ADDR lladdr;
|
561 |
|
|
CORE_ADDR next_lladdr;
|
562 |
|
|
|
563 |
|
|
/* We have not already read in the dynamic linking structures
|
564 |
|
|
from the inferior, lookup the address of the base structure. */
|
565 |
|
|
debug_base = locate_base ();
|
566 |
|
|
if (debug_base == 0)
|
567 |
|
|
return NULL;
|
568 |
|
|
|
569 |
|
|
/* Get address of first list entry. */
|
570 |
|
|
read_memory (debug_base, (char *) &listp, sizeof (struct obj_list *));
|
571 |
|
|
|
572 |
|
|
if (listp == NULL)
|
573 |
|
|
return NULL;
|
574 |
|
|
|
575 |
|
|
/* Get first list entry. */
|
576 |
|
|
lladdr = (CORE_ADDR) listp;
|
577 |
|
|
read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
|
578 |
|
|
|
579 |
|
|
/* The first entry in the list is the object file we are debugging,
|
580 |
|
|
so skip it. */
|
581 |
|
|
next_lladdr = (CORE_ADDR) list_old.next;
|
582 |
|
|
|
583 |
|
|
#ifdef HANDLE_NEW_OBJ_LIST
|
584 |
|
|
if (list_old.data == NEW_OBJ_INFO_MAGIC)
|
585 |
|
|
{
|
586 |
|
|
Elf32_Obj_Info list_32;
|
587 |
|
|
|
588 |
|
|
read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
|
589 |
|
|
if (list_32.oi_size != sizeof (Elf32_Obj_Info))
|
590 |
|
|
return NULL;
|
591 |
|
|
next_lladdr = (CORE_ADDR) list_32.oi_next;
|
592 |
|
|
}
|
593 |
|
|
#endif
|
594 |
|
|
|
595 |
|
|
if (next_lladdr == 0)
|
596 |
|
|
return NULL;
|
597 |
|
|
|
598 |
|
|
first_lm.l_lladdr = next_lladdr;
|
599 |
|
|
lm = &first_lm;
|
600 |
|
|
return lm;
|
601 |
|
|
}
|
602 |
|
|
|
603 |
|
|
/*
|
604 |
|
|
|
605 |
|
|
LOCAL FUNCTION
|
606 |
|
|
|
607 |
|
|
next_link_map_member -- locate next member in dynamic linker's map
|
608 |
|
|
|
609 |
|
|
SYNOPSIS
|
610 |
|
|
|
611 |
|
|
static struct link_map *next_link_map_member (so_list_ptr)
|
612 |
|
|
|
613 |
|
|
DESCRIPTION
|
614 |
|
|
|
615 |
|
|
Read in a copy of the next member in the inferior's dynamic
|
616 |
|
|
link map from the inferior's dynamic linker structures, and return
|
617 |
|
|
a pointer to the link map descriptor.
|
618 |
|
|
*/
|
619 |
|
|
|
620 |
|
|
static struct link_map *
|
621 |
|
|
next_link_map_member (so_list_ptr)
|
622 |
|
|
struct so_list *so_list_ptr;
|
623 |
|
|
{
|
624 |
|
|
struct link_map *lm = &so_list_ptr->lm;
|
625 |
|
|
CORE_ADDR next_lladdr = lm->l_next;
|
626 |
|
|
static struct link_map next_lm;
|
627 |
|
|
|
628 |
|
|
if (next_lladdr == 0)
|
629 |
|
|
{
|
630 |
|
|
/* We have hit the end of the list, so check to see if any were
|
631 |
|
|
added, but be quiet if we can't read from the target any more. */
|
632 |
|
|
int status = 0;
|
633 |
|
|
|
634 |
|
|
if (lm->l_variant == OBJ_LIST_OLD)
|
635 |
|
|
{
|
636 |
|
|
struct obj_list list_old;
|
637 |
|
|
|
638 |
|
|
status = target_read_memory (lm->l_lladdr,
|
639 |
|
|
(char *) &list_old,
|
640 |
|
|
sizeof (struct obj_list));
|
641 |
|
|
next_lladdr = (CORE_ADDR) list_old.next;
|
642 |
|
|
}
|
643 |
|
|
#ifdef HANDLE_NEW_OBJ_LIST
|
644 |
|
|
else if (lm->l_variant == OBJ_LIST_32)
|
645 |
|
|
{
|
646 |
|
|
Elf32_Obj_Info list_32;
|
647 |
|
|
status = target_read_memory (lm->l_lladdr,
|
648 |
|
|
(char *) &list_32,
|
649 |
|
|
sizeof (Elf32_Obj_Info));
|
650 |
|
|
next_lladdr = (CORE_ADDR) list_32.oi_next;
|
651 |
|
|
}
|
652 |
|
|
#endif
|
653 |
|
|
|
654 |
|
|
if (status != 0 || next_lladdr == 0)
|
655 |
|
|
return NULL;
|
656 |
|
|
}
|
657 |
|
|
|
658 |
|
|
next_lm.l_lladdr = next_lladdr;
|
659 |
|
|
lm = &next_lm;
|
660 |
|
|
return lm;
|
661 |
|
|
}
|
662 |
|
|
|
663 |
|
|
/*
|
664 |
|
|
|
665 |
|
|
LOCAL FUNCTION
|
666 |
|
|
|
667 |
|
|
xfer_link_map_member -- set local variables from dynamic linker's map
|
668 |
|
|
|
669 |
|
|
SYNOPSIS
|
670 |
|
|
|
671 |
|
|
static void xfer_link_map_member (so_list_ptr, lm)
|
672 |
|
|
|
673 |
|
|
DESCRIPTION
|
674 |
|
|
|
675 |
|
|
Read in a copy of the requested member in the inferior's dynamic
|
676 |
|
|
link map from the inferior's dynamic linker structures, and fill
|
677 |
|
|
in the necessary so_list_ptr elements.
|
678 |
|
|
*/
|
679 |
|
|
|
680 |
|
|
static void
|
681 |
|
|
xfer_link_map_member (so_list_ptr, lm)
|
682 |
|
|
struct so_list *so_list_ptr;
|
683 |
|
|
struct link_map *lm;
|
684 |
|
|
{
|
685 |
|
|
struct obj_list list_old;
|
686 |
|
|
CORE_ADDR lladdr = lm->l_lladdr;
|
687 |
|
|
struct link_map *new_lm = &so_list_ptr->lm;
|
688 |
|
|
int errcode;
|
689 |
|
|
|
690 |
|
|
read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
|
691 |
|
|
|
692 |
|
|
new_lm->l_variant = OBJ_LIST_OLD;
|
693 |
|
|
new_lm->l_lladdr = lladdr;
|
694 |
|
|
new_lm->l_next = (CORE_ADDR) list_old.next;
|
695 |
|
|
|
696 |
|
|
#ifdef HANDLE_NEW_OBJ_LIST
|
697 |
|
|
if (list_old.data == NEW_OBJ_INFO_MAGIC)
|
698 |
|
|
{
|
699 |
|
|
Elf32_Obj_Info list_32;
|
700 |
|
|
|
701 |
|
|
read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
|
702 |
|
|
if (list_32.oi_size != sizeof (Elf32_Obj_Info))
|
703 |
|
|
return;
|
704 |
|
|
new_lm->l_variant = OBJ_LIST_32;
|
705 |
|
|
new_lm->l_next = (CORE_ADDR) list_32.oi_next;
|
706 |
|
|
|
707 |
|
|
target_read_string ((CORE_ADDR) list_32.oi_pathname,
|
708 |
|
|
&so_list_ptr->so_name,
|
709 |
|
|
list_32.oi_pathname_len + 1, &errcode);
|
710 |
|
|
if (errcode != 0)
|
711 |
|
|
memory_error (errcode, (CORE_ADDR) list_32.oi_pathname);
|
712 |
|
|
|
713 |
|
|
LM_ADDR (so_list_ptr) = (CORE_ADDR) list_32.oi_ehdr;
|
714 |
|
|
LM_OFFSET (so_list_ptr) =
|
715 |
|
|
(CORE_ADDR) list_32.oi_ehdr - (CORE_ADDR) list_32.oi_orig_ehdr;
|
716 |
|
|
}
|
717 |
|
|
else
|
718 |
|
|
#endif
|
719 |
|
|
{
|
720 |
|
|
#if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
|
721 |
|
|
/* If we are compiling GDB under N32 ABI, the alignments in
|
722 |
|
|
the obj struct are different from the O32 ABI and we will get
|
723 |
|
|
wrong values when accessing the struct.
|
724 |
|
|
As a workaround we use fixed values which are good for
|
725 |
|
|
Irix 6.2. */
|
726 |
|
|
char buf[432];
|
727 |
|
|
|
728 |
|
|
read_memory ((CORE_ADDR) list_old.data, buf, sizeof (buf));
|
729 |
|
|
|
730 |
|
|
target_read_string (extract_address (&buf[236], 4),
|
731 |
|
|
&so_list_ptr->so_name,
|
732 |
|
|
INT_MAX, &errcode);
|
733 |
|
|
if (errcode != 0)
|
734 |
|
|
memory_error (errcode, extract_address (&buf[236], 4));
|
735 |
|
|
|
736 |
|
|
LM_ADDR (so_list_ptr) = extract_address (&buf[196], 4);
|
737 |
|
|
LM_OFFSET (so_list_ptr) =
|
738 |
|
|
extract_address (&buf[196], 4) - extract_address (&buf[248], 4);
|
739 |
|
|
#else
|
740 |
|
|
struct obj obj_old;
|
741 |
|
|
|
742 |
|
|
read_memory ((CORE_ADDR) list_old.data, (char *) &obj_old,
|
743 |
|
|
sizeof (struct obj));
|
744 |
|
|
|
745 |
|
|
target_read_string ((CORE_ADDR) obj_old.o_path,
|
746 |
|
|
&so_list_ptr->so_name,
|
747 |
|
|
INT_MAX, &errcode);
|
748 |
|
|
if (errcode != 0)
|
749 |
|
|
memory_error (errcode, (CORE_ADDR) obj_old.o_path);
|
750 |
|
|
|
751 |
|
|
LM_ADDR (so_list_ptr) = (CORE_ADDR) obj_old.o_praw;
|
752 |
|
|
LM_OFFSET (so_list_ptr) =
|
753 |
|
|
(CORE_ADDR) obj_old.o_praw - obj_old.o_base_address;
|
754 |
|
|
#endif
|
755 |
|
|
}
|
756 |
|
|
|
757 |
|
|
catch_errors (solib_map_sections, (char *) so_list_ptr,
|
758 |
|
|
"Error while mapping shared library sections:\n",
|
759 |
|
|
RETURN_MASK_ALL);
|
760 |
|
|
}
|
761 |
|
|
|
762 |
|
|
|
763 |
|
|
/*
|
764 |
|
|
|
765 |
|
|
LOCAL FUNCTION
|
766 |
|
|
|
767 |
|
|
find_solib -- step through list of shared objects
|
768 |
|
|
|
769 |
|
|
SYNOPSIS
|
770 |
|
|
|
771 |
|
|
struct so_list *find_solib (struct so_list *so_list_ptr)
|
772 |
|
|
|
773 |
|
|
DESCRIPTION
|
774 |
|
|
|
775 |
|
|
This module contains the routine which finds the names of any
|
776 |
|
|
loaded "images" in the current process. The argument in must be
|
777 |
|
|
NULL on the first call, and then the returned value must be passed
|
778 |
|
|
in on subsequent calls. This provides the capability to "step" down
|
779 |
|
|
the list of loaded objects. On the last object, a NULL value is
|
780 |
|
|
returned.
|
781 |
|
|
*/
|
782 |
|
|
|
783 |
|
|
static struct so_list *
|
784 |
|
|
find_solib (so_list_ptr)
|
785 |
|
|
struct so_list *so_list_ptr; /* Last lm or NULL for first one */
|
786 |
|
|
{
|
787 |
|
|
struct so_list *so_list_next = NULL;
|
788 |
|
|
struct link_map *lm = NULL;
|
789 |
|
|
struct so_list *new;
|
790 |
|
|
|
791 |
|
|
if (so_list_ptr == NULL)
|
792 |
|
|
{
|
793 |
|
|
/* We are setting up for a new scan through the loaded images. */
|
794 |
|
|
if ((so_list_next = so_list_head) == NULL)
|
795 |
|
|
{
|
796 |
|
|
/* Find the first link map list member. */
|
797 |
|
|
lm = first_link_map_member ();
|
798 |
|
|
}
|
799 |
|
|
}
|
800 |
|
|
else
|
801 |
|
|
{
|
802 |
|
|
/* We have been called before, and are in the process of walking
|
803 |
|
|
the shared library list. Advance to the next shared object. */
|
804 |
|
|
lm = next_link_map_member (so_list_ptr);
|
805 |
|
|
so_list_next = so_list_ptr->next;
|
806 |
|
|
}
|
807 |
|
|
if ((so_list_next == NULL) && (lm != NULL))
|
808 |
|
|
{
|
809 |
|
|
new = (struct so_list *) xmalloc (sizeof (struct so_list));
|
810 |
|
|
memset ((char *) new, 0, sizeof (struct so_list));
|
811 |
|
|
/* Add the new node as the next node in the list, or as the root
|
812 |
|
|
node if this is the first one. */
|
813 |
|
|
if (so_list_ptr != NULL)
|
814 |
|
|
{
|
815 |
|
|
so_list_ptr->next = new;
|
816 |
|
|
}
|
817 |
|
|
else
|
818 |
|
|
{
|
819 |
|
|
so_list_head = new;
|
820 |
|
|
}
|
821 |
|
|
so_list_next = new;
|
822 |
|
|
xfer_link_map_member (new, lm);
|
823 |
|
|
}
|
824 |
|
|
return (so_list_next);
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
/* A small stub to get us past the arg-passing pinhole of catch_errors. */
|
828 |
|
|
|
829 |
|
|
static int
|
830 |
|
|
symbol_add_stub (arg)
|
831 |
|
|
char *arg;
|
832 |
|
|
{
|
833 |
|
|
register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
|
834 |
|
|
CORE_ADDR text_addr = 0;
|
835 |
|
|
struct section_addr_info section_addrs;
|
836 |
|
|
|
837 |
|
|
memset (§ion_addrs, 0, sizeof (section_addrs));
|
838 |
|
|
if (so->textsection)
|
839 |
|
|
text_addr = so->textsection->addr;
|
840 |
|
|
else if (so->abfd != NULL)
|
841 |
|
|
{
|
842 |
|
|
asection *lowest_sect;
|
843 |
|
|
|
844 |
|
|
/* If we didn't find a mapped non zero sized .text section, set up
|
845 |
|
|
text_addr so that the relocation in symbol_file_add does no harm. */
|
846 |
|
|
|
847 |
|
|
lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
|
848 |
|
|
if (lowest_sect == NULL)
|
849 |
|
|
bfd_map_over_sections (so->abfd, find_lowest_section,
|
850 |
|
|
(PTR) &lowest_sect);
|
851 |
|
|
if (lowest_sect)
|
852 |
|
|
text_addr = bfd_section_vma (so->abfd, lowest_sect) + LM_OFFSET (so);
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
section_addrs.text_addr = text_addr;
|
856 |
|
|
so->objfile = symbol_file_add (so->so_name, so->from_tty,
|
857 |
|
|
§ion_addrs, 0, 0);
|
858 |
|
|
return (1);
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
/*
|
862 |
|
|
|
863 |
|
|
GLOBAL FUNCTION
|
864 |
|
|
|
865 |
|
|
solib_add -- add a shared library file to the symtab and section list
|
866 |
|
|
|
867 |
|
|
SYNOPSIS
|
868 |
|
|
|
869 |
|
|
void solib_add (char *arg_string, int from_tty,
|
870 |
|
|
struct target_ops *target)
|
871 |
|
|
|
872 |
|
|
DESCRIPTION
|
873 |
|
|
|
874 |
|
|
*/
|
875 |
|
|
|
876 |
|
|
void
|
877 |
|
|
solib_add (arg_string, from_tty, target)
|
878 |
|
|
char *arg_string;
|
879 |
|
|
int from_tty;
|
880 |
|
|
struct target_ops *target;
|
881 |
|
|
{
|
882 |
|
|
register struct so_list *so = NULL; /* link map state variable */
|
883 |
|
|
|
884 |
|
|
/* Last shared library that we read. */
|
885 |
|
|
struct so_list *so_last = NULL;
|
886 |
|
|
|
887 |
|
|
char *re_err;
|
888 |
|
|
int count;
|
889 |
|
|
int old;
|
890 |
|
|
|
891 |
|
|
if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
|
892 |
|
|
{
|
893 |
|
|
error ("Invalid regexp: %s", re_err);
|
894 |
|
|
}
|
895 |
|
|
|
896 |
|
|
/* Add the shared library sections to the section table of the
|
897 |
|
|
specified target, if any. */
|
898 |
|
|
if (target)
|
899 |
|
|
{
|
900 |
|
|
/* Count how many new section_table entries there are. */
|
901 |
|
|
so = NULL;
|
902 |
|
|
count = 0;
|
903 |
|
|
while ((so = find_solib (so)) != NULL)
|
904 |
|
|
{
|
905 |
|
|
if (so->so_name[0])
|
906 |
|
|
{
|
907 |
|
|
count += so->sections_end - so->sections;
|
908 |
|
|
}
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
if (count)
|
912 |
|
|
{
|
913 |
|
|
old = target_resize_to_sections (target, count);
|
914 |
|
|
|
915 |
|
|
/* Add these section table entries to the target's table. */
|
916 |
|
|
while ((so = find_solib (so)) != NULL)
|
917 |
|
|
{
|
918 |
|
|
if (so->so_name[0])
|
919 |
|
|
{
|
920 |
|
|
count = so->sections_end - so->sections;
|
921 |
|
|
memcpy ((char *) (target->to_sections + old),
|
922 |
|
|
so->sections,
|
923 |
|
|
(sizeof (struct section_table)) * count);
|
924 |
|
|
old += count;
|
925 |
|
|
}
|
926 |
|
|
}
|
927 |
|
|
}
|
928 |
|
|
}
|
929 |
|
|
|
930 |
|
|
/* Now add the symbol files. */
|
931 |
|
|
while ((so = find_solib (so)) != NULL)
|
932 |
|
|
{
|
933 |
|
|
if (so->so_name[0] && re_exec (so->so_name))
|
934 |
|
|
{
|
935 |
|
|
so->from_tty = from_tty;
|
936 |
|
|
if (so->symbols_loaded)
|
937 |
|
|
{
|
938 |
|
|
if (from_tty)
|
939 |
|
|
{
|
940 |
|
|
printf_unfiltered ("Symbols already loaded for %s\n", so->so_name);
|
941 |
|
|
}
|
942 |
|
|
}
|
943 |
|
|
else if (catch_errors
|
944 |
|
|
(symbol_add_stub, (char *) so,
|
945 |
|
|
"Error while reading shared library symbols:\n",
|
946 |
|
|
RETURN_MASK_ALL))
|
947 |
|
|
{
|
948 |
|
|
so_last = so;
|
949 |
|
|
so->symbols_loaded = 1;
|
950 |
|
|
}
|
951 |
|
|
}
|
952 |
|
|
}
|
953 |
|
|
|
954 |
|
|
/* Getting new symbols may change our opinion about what is
|
955 |
|
|
frameless. */
|
956 |
|
|
if (so_last)
|
957 |
|
|
reinit_frame_cache ();
|
958 |
|
|
}
|
959 |
|
|
|
960 |
|
|
/*
|
961 |
|
|
|
962 |
|
|
LOCAL FUNCTION
|
963 |
|
|
|
964 |
|
|
info_sharedlibrary_command -- code for "info sharedlibrary"
|
965 |
|
|
|
966 |
|
|
SYNOPSIS
|
967 |
|
|
|
968 |
|
|
static void info_sharedlibrary_command ()
|
969 |
|
|
|
970 |
|
|
DESCRIPTION
|
971 |
|
|
|
972 |
|
|
Walk through the shared library list and print information
|
973 |
|
|
about each attached library.
|
974 |
|
|
*/
|
975 |
|
|
|
976 |
|
|
static void
|
977 |
|
|
info_sharedlibrary_command (ignore, from_tty)
|
978 |
|
|
char *ignore;
|
979 |
|
|
int from_tty;
|
980 |
|
|
{
|
981 |
|
|
register struct so_list *so = NULL; /* link map state variable */
|
982 |
|
|
int header_done = 0;
|
983 |
|
|
|
984 |
|
|
if (exec_bfd == NULL)
|
985 |
|
|
{
|
986 |
|
|
printf_unfiltered ("No executable file.\n");
|
987 |
|
|
return;
|
988 |
|
|
}
|
989 |
|
|
while ((so = find_solib (so)) != NULL)
|
990 |
|
|
{
|
991 |
|
|
if (so->so_name[0])
|
992 |
|
|
{
|
993 |
|
|
if (!header_done)
|
994 |
|
|
{
|
995 |
|
|
printf_unfiltered ("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
|
996 |
|
|
"Shared Object Library");
|
997 |
|
|
header_done++;
|
998 |
|
|
}
|
999 |
|
|
printf_unfiltered ("%-12s",
|
1000 |
|
|
local_hex_string_custom ((unsigned long) LM_ADDR (so),
|
1001 |
|
|
"08l"));
|
1002 |
|
|
printf_unfiltered ("%-12s",
|
1003 |
|
|
local_hex_string_custom ((unsigned long) so->lmend,
|
1004 |
|
|
"08l"));
|
1005 |
|
|
printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
|
1006 |
|
|
printf_unfiltered ("%s\n", so->so_name);
|
1007 |
|
|
}
|
1008 |
|
|
}
|
1009 |
|
|
if (so_list_head == NULL)
|
1010 |
|
|
{
|
1011 |
|
|
printf_unfiltered ("No shared libraries loaded at this time.\n");
|
1012 |
|
|
}
|
1013 |
|
|
}
|
1014 |
|
|
|
1015 |
|
|
/*
|
1016 |
|
|
|
1017 |
|
|
GLOBAL FUNCTION
|
1018 |
|
|
|
1019 |
|
|
solib_address -- check to see if an address is in a shared lib
|
1020 |
|
|
|
1021 |
|
|
SYNOPSIS
|
1022 |
|
|
|
1023 |
|
|
char *solib_address (CORE_ADDR address)
|
1024 |
|
|
|
1025 |
|
|
DESCRIPTION
|
1026 |
|
|
|
1027 |
|
|
Provides a hook for other gdb routines to discover whether or
|
1028 |
|
|
not a particular address is within the mapped address space of
|
1029 |
|
|
a shared library. Any address between the base mapping address
|
1030 |
|
|
and the first address beyond the end of the last mapping, is
|
1031 |
|
|
considered to be within the shared library address space, for
|
1032 |
|
|
our purposes.
|
1033 |
|
|
|
1034 |
|
|
For example, this routine is called at one point to disable
|
1035 |
|
|
breakpoints which are in shared libraries that are not currently
|
1036 |
|
|
mapped in.
|
1037 |
|
|
*/
|
1038 |
|
|
|
1039 |
|
|
char *
|
1040 |
|
|
solib_address (address)
|
1041 |
|
|
CORE_ADDR address;
|
1042 |
|
|
{
|
1043 |
|
|
register struct so_list *so = 0; /* link map state variable */
|
1044 |
|
|
|
1045 |
|
|
while ((so = find_solib (so)) != NULL)
|
1046 |
|
|
{
|
1047 |
|
|
if (so->so_name[0])
|
1048 |
|
|
{
|
1049 |
|
|
if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
|
1050 |
|
|
(address < (CORE_ADDR) so->lmend))
|
1051 |
|
|
return (so->so_name);
|
1052 |
|
|
}
|
1053 |
|
|
}
|
1054 |
|
|
return (0);
|
1055 |
|
|
}
|
1056 |
|
|
|
1057 |
|
|
/* Called by free_all_symtabs */
|
1058 |
|
|
|
1059 |
|
|
void
|
1060 |
|
|
clear_solib ()
|
1061 |
|
|
{
|
1062 |
|
|
struct so_list *next;
|
1063 |
|
|
char *bfd_filename;
|
1064 |
|
|
|
1065 |
|
|
disable_breakpoints_in_shlibs (1);
|
1066 |
|
|
|
1067 |
|
|
while (so_list_head)
|
1068 |
|
|
{
|
1069 |
|
|
if (so_list_head->sections)
|
1070 |
|
|
{
|
1071 |
|
|
free ((PTR) so_list_head->sections);
|
1072 |
|
|
}
|
1073 |
|
|
if (so_list_head->abfd)
|
1074 |
|
|
{
|
1075 |
|
|
bfd_filename = bfd_get_filename (so_list_head->abfd);
|
1076 |
|
|
if (!bfd_close (so_list_head->abfd))
|
1077 |
|
|
warning ("cannot close \"%s\": %s",
|
1078 |
|
|
bfd_filename, bfd_errmsg (bfd_get_error ()));
|
1079 |
|
|
}
|
1080 |
|
|
else
|
1081 |
|
|
/* This happens for the executable on SVR4. */
|
1082 |
|
|
bfd_filename = NULL;
|
1083 |
|
|
|
1084 |
|
|
next = so_list_head->next;
|
1085 |
|
|
if (bfd_filename)
|
1086 |
|
|
free ((PTR) bfd_filename);
|
1087 |
|
|
free (so_list_head->so_name);
|
1088 |
|
|
free ((PTR) so_list_head);
|
1089 |
|
|
so_list_head = next;
|
1090 |
|
|
}
|
1091 |
|
|
debug_base = 0;
|
1092 |
|
|
}
|
1093 |
|
|
|
1094 |
|
|
/*
|
1095 |
|
|
|
1096 |
|
|
LOCAL FUNCTION
|
1097 |
|
|
|
1098 |
|
|
disable_break -- remove the "mapping changed" breakpoint
|
1099 |
|
|
|
1100 |
|
|
SYNOPSIS
|
1101 |
|
|
|
1102 |
|
|
static int disable_break ()
|
1103 |
|
|
|
1104 |
|
|
DESCRIPTION
|
1105 |
|
|
|
1106 |
|
|
Removes the breakpoint that gets hit when the dynamic linker
|
1107 |
|
|
completes a mapping change.
|
1108 |
|
|
|
1109 |
|
|
*/
|
1110 |
|
|
|
1111 |
|
|
static int
|
1112 |
|
|
disable_break ()
|
1113 |
|
|
{
|
1114 |
|
|
int status = 1;
|
1115 |
|
|
|
1116 |
|
|
|
1117 |
|
|
/* Note that breakpoint address and original contents are in our address
|
1118 |
|
|
space, so we just need to write the original contents back. */
|
1119 |
|
|
|
1120 |
|
|
if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
|
1121 |
|
|
{
|
1122 |
|
|
status = 0;
|
1123 |
|
|
}
|
1124 |
|
|
|
1125 |
|
|
/* For the SVR4 version, we always know the breakpoint address. For the
|
1126 |
|
|
SunOS version we don't know it until the above code is executed.
|
1127 |
|
|
Grumble if we are stopped anywhere besides the breakpoint address. */
|
1128 |
|
|
|
1129 |
|
|
if (stop_pc != breakpoint_addr)
|
1130 |
|
|
{
|
1131 |
|
|
warning ("stopped at unknown breakpoint while handling shared libraries");
|
1132 |
|
|
}
|
1133 |
|
|
|
1134 |
|
|
return (status);
|
1135 |
|
|
}
|
1136 |
|
|
|
1137 |
|
|
/*
|
1138 |
|
|
|
1139 |
|
|
LOCAL FUNCTION
|
1140 |
|
|
|
1141 |
|
|
enable_break -- arrange for dynamic linker to hit breakpoint
|
1142 |
|
|
|
1143 |
|
|
SYNOPSIS
|
1144 |
|
|
|
1145 |
|
|
int enable_break (void)
|
1146 |
|
|
|
1147 |
|
|
DESCRIPTION
|
1148 |
|
|
|
1149 |
|
|
This functions inserts a breakpoint at the entry point of the
|
1150 |
|
|
main executable, where all shared libraries are mapped in.
|
1151 |
|
|
*/
|
1152 |
|
|
|
1153 |
|
|
static int
|
1154 |
|
|
enable_break ()
|
1155 |
|
|
{
|
1156 |
|
|
if (symfile_objfile != NULL
|
1157 |
|
|
&& target_insert_breakpoint (symfile_objfile->ei.entry_point,
|
1158 |
|
|
shadow_contents) == 0)
|
1159 |
|
|
{
|
1160 |
|
|
breakpoint_addr = symfile_objfile->ei.entry_point;
|
1161 |
|
|
return 1;
|
1162 |
|
|
}
|
1163 |
|
|
|
1164 |
|
|
return 0;
|
1165 |
|
|
}
|
1166 |
|
|
|
1167 |
|
|
/*
|
1168 |
|
|
|
1169 |
|
|
GLOBAL FUNCTION
|
1170 |
|
|
|
1171 |
|
|
solib_create_inferior_hook -- shared library startup support
|
1172 |
|
|
|
1173 |
|
|
SYNOPSIS
|
1174 |
|
|
|
1175 |
|
|
void solib_create_inferior_hook()
|
1176 |
|
|
|
1177 |
|
|
DESCRIPTION
|
1178 |
|
|
|
1179 |
|
|
When gdb starts up the inferior, it nurses it along (through the
|
1180 |
|
|
shell) until it is ready to execute it's first instruction. At this
|
1181 |
|
|
point, this function gets called via expansion of the macro
|
1182 |
|
|
SOLIB_CREATE_INFERIOR_HOOK.
|
1183 |
|
|
|
1184 |
|
|
For SunOS executables, this first instruction is typically the
|
1185 |
|
|
one at "_start", or a similar text label, regardless of whether
|
1186 |
|
|
the executable is statically or dynamically linked. The runtime
|
1187 |
|
|
startup code takes care of dynamically linking in any shared
|
1188 |
|
|
libraries, once gdb allows the inferior to continue.
|
1189 |
|
|
|
1190 |
|
|
For SVR4 executables, this first instruction is either the first
|
1191 |
|
|
instruction in the dynamic linker (for dynamically linked
|
1192 |
|
|
executables) or the instruction at "start" for statically linked
|
1193 |
|
|
executables. For dynamically linked executables, the system
|
1194 |
|
|
first exec's /lib/libc.so.N, which contains the dynamic linker,
|
1195 |
|
|
and starts it running. The dynamic linker maps in any needed
|
1196 |
|
|
shared libraries, maps in the actual user executable, and then
|
1197 |
|
|
jumps to "start" in the user executable.
|
1198 |
|
|
|
1199 |
|
|
For both SunOS shared libraries, and SVR4 shared libraries, we
|
1200 |
|
|
can arrange to cooperate with the dynamic linker to discover the
|
1201 |
|
|
names of shared libraries that are dynamically linked, and the
|
1202 |
|
|
base addresses to which they are linked.
|
1203 |
|
|
|
1204 |
|
|
This function is responsible for discovering those names and
|
1205 |
|
|
addresses, and saving sufficient information about them to allow
|
1206 |
|
|
their symbols to be read at a later time.
|
1207 |
|
|
|
1208 |
|
|
FIXME
|
1209 |
|
|
|
1210 |
|
|
Between enable_break() and disable_break(), this code does not
|
1211 |
|
|
properly handle hitting breakpoints which the user might have
|
1212 |
|
|
set in the startup code or in the dynamic linker itself. Proper
|
1213 |
|
|
handling will probably have to wait until the implementation is
|
1214 |
|
|
changed to use the "breakpoint handler function" method.
|
1215 |
|
|
|
1216 |
|
|
Also, what if child has exit()ed? Must exit loop somehow.
|
1217 |
|
|
*/
|
1218 |
|
|
|
1219 |
|
|
void
|
1220 |
|
|
solib_create_inferior_hook ()
|
1221 |
|
|
{
|
1222 |
|
|
if (!enable_break ())
|
1223 |
|
|
{
|
1224 |
|
|
warning ("shared library handler failed to enable breakpoint");
|
1225 |
|
|
return;
|
1226 |
|
|
}
|
1227 |
|
|
|
1228 |
|
|
/* Now run the target. It will eventually hit the breakpoint, at
|
1229 |
|
|
which point all of the libraries will have been mapped in and we
|
1230 |
|
|
can go groveling around in the dynamic linker structures to find
|
1231 |
|
|
out what we need to know about them. */
|
1232 |
|
|
|
1233 |
|
|
clear_proceed_status ();
|
1234 |
|
|
stop_soon_quietly = 1;
|
1235 |
|
|
stop_signal = TARGET_SIGNAL_0;
|
1236 |
|
|
do
|
1237 |
|
|
{
|
1238 |
|
|
target_resume (-1, 0, stop_signal);
|
1239 |
|
|
wait_for_inferior ();
|
1240 |
|
|
}
|
1241 |
|
|
while (stop_signal != TARGET_SIGNAL_TRAP);
|
1242 |
|
|
|
1243 |
|
|
/* We are now either at the "mapping complete" breakpoint (or somewhere
|
1244 |
|
|
else, a condition we aren't prepared to deal with anyway), so adjust
|
1245 |
|
|
the PC as necessary after a breakpoint, disable the breakpoint, and
|
1246 |
|
|
add any shared libraries that were mapped in. */
|
1247 |
|
|
|
1248 |
|
|
if (DECR_PC_AFTER_BREAK)
|
1249 |
|
|
{
|
1250 |
|
|
stop_pc -= DECR_PC_AFTER_BREAK;
|
1251 |
|
|
write_register (PC_REGNUM, stop_pc);
|
1252 |
|
|
}
|
1253 |
|
|
|
1254 |
|
|
if (!disable_break ())
|
1255 |
|
|
{
|
1256 |
|
|
warning ("shared library handler failed to disable breakpoint");
|
1257 |
|
|
}
|
1258 |
|
|
|
1259 |
|
|
/* solib_add will call reinit_frame_cache.
|
1260 |
|
|
But we are stopped in the startup code and we might not have symbols
|
1261 |
|
|
for the startup code, so heuristic_proc_start could be called
|
1262 |
|
|
and will put out an annoying warning.
|
1263 |
|
|
Delaying the resetting of stop_soon_quietly until after symbol loading
|
1264 |
|
|
suppresses the warning. */
|
1265 |
|
|
if (auto_solib_add)
|
1266 |
|
|
solib_add ((char *) 0, 0, (struct target_ops *) 0);
|
1267 |
|
|
stop_soon_quietly = 0;
|
1268 |
|
|
}
|
1269 |
|
|
|
1270 |
|
|
/*
|
1271 |
|
|
|
1272 |
|
|
LOCAL FUNCTION
|
1273 |
|
|
|
1274 |
|
|
sharedlibrary_command -- handle command to explicitly add library
|
1275 |
|
|
|
1276 |
|
|
SYNOPSIS
|
1277 |
|
|
|
1278 |
|
|
static void sharedlibrary_command (char *args, int from_tty)
|
1279 |
|
|
|
1280 |
|
|
DESCRIPTION
|
1281 |
|
|
|
1282 |
|
|
*/
|
1283 |
|
|
|
1284 |
|
|
static void
|
1285 |
|
|
sharedlibrary_command (args, from_tty)
|
1286 |
|
|
char *args;
|
1287 |
|
|
int from_tty;
|
1288 |
|
|
{
|
1289 |
|
|
dont_repeat ();
|
1290 |
|
|
solib_add (args, from_tty, (struct target_ops *) 0);
|
1291 |
|
|
}
|
1292 |
|
|
|
1293 |
|
|
void
|
1294 |
|
|
_initialize_solib ()
|
1295 |
|
|
{
|
1296 |
|
|
add_com ("sharedlibrary", class_files, sharedlibrary_command,
|
1297 |
|
|
"Load shared object library symbols for files matching REGEXP.");
|
1298 |
|
|
add_info ("sharedlibrary", info_sharedlibrary_command,
|
1299 |
|
|
"Status of loaded shared object libraries.");
|
1300 |
|
|
|
1301 |
|
|
add_show_from_set
|
1302 |
|
|
(add_set_cmd ("auto-solib-add", class_support, var_zinteger,
|
1303 |
|
|
(char *) &auto_solib_add,
|
1304 |
|
|
"Set autoloading of shared library symbols.\n\
|
1305 |
|
|
If nonzero, symbols from all shared object libraries will be loaded\n\
|
1306 |
|
|
automatically when the inferior begins execution or when the dynamic linker\n\
|
1307 |
|
|
informs gdb that a new library has been loaded. Otherwise, symbols\n\
|
1308 |
|
|
must be loaded manually, using `sharedlibrary'.",
|
1309 |
|
|
&setlist),
|
1310 |
|
|
&showlist);
|
1311 |
|
|
}
|
1312 |
|
|
|
1313 |
|
|
|
1314 |
|
|
/* Register that we are able to handle irix5 core file formats.
|
1315 |
|
|
This really is bfd_target_unknown_flavour */
|
1316 |
|
|
|
1317 |
|
|
static struct core_fns irix5_core_fns =
|
1318 |
|
|
{
|
1319 |
|
|
bfd_target_unknown_flavour, /* core_flavour */
|
1320 |
|
|
default_check_format, /* check_format */
|
1321 |
|
|
default_core_sniffer, /* core_sniffer */
|
1322 |
|
|
fetch_core_registers, /* core_read_registers */
|
1323 |
|
|
NULL /* next */
|
1324 |
|
|
};
|
1325 |
|
|
|
1326 |
|
|
void
|
1327 |
|
|
_initialize_core_irix5 ()
|
1328 |
|
|
{
|
1329 |
|
|
add_core_fns (&irix5_core_fns);
|
1330 |
|
|
}
|