OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [branches/] [oc/] [gdb-5.0/] [gdb/] [m88k-tdep.c] - Blame information for rev 1771

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 104 markom
/* Target-machine dependent code for Motorola 88000 series, for GDB.
2
   Copyright 1988, 1990, 1991, 1994, 1995 Free Software Foundation, Inc.
3
 
4
   This file is part of GDB.
5
 
6
   This program is free software; you can redistribute it and/or modify
7
   it under the terms of the GNU General Public License as published by
8
   the Free Software Foundation; either version 2 of the License, or
9
   (at your option) any later version.
10
 
11
   This program is distributed in the hope that it will be useful,
12
   but WITHOUT ANY WARRANTY; without even the implied warranty of
13
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
   GNU General Public License for more details.
15
 
16
   You should have received a copy of the GNU General Public License
17
   along with this program; if not, write to the Free Software
18
   Foundation, Inc., 59 Temple Place - Suite 330,
19
   Boston, MA 02111-1307, USA.  */
20
 
21
#include "defs.h"
22
#include "frame.h"
23
#include "inferior.h"
24
#include "value.h"
25
#include "gdbcore.h"
26
#include "symtab.h"
27
#include "setjmp.h"
28
#include "value.h"
29
 
30
/* Size of an instruction */
31
#define BYTES_PER_88K_INSN      4
32
 
33
void frame_find_saved_regs ();
34
 
35
/* Is this target an m88110?  Otherwise assume m88100.  This has
36
   relevance for the ways in which we screw with instruction pointers.  */
37
 
38
int target_is_m88110 = 0;
39
 
40
/* The m88k kernel aligns all instructions on 4-byte boundaries.  The
41
   kernel also uses the least significant two bits for its own hocus
42
   pocus.  When gdb receives an address from the kernel, it needs to
43
   preserve those right-most two bits, but gdb also needs to be careful
44
   to realize that those two bits are not really a part of the address
45
   of an instruction.  Shrug.  */
46
 
47
CORE_ADDR
48
m88k_addr_bits_remove (addr)
49
     CORE_ADDR addr;
50
{
51
  return ((addr) & ~3);
52
}
53
 
54
 
55
/* Given a GDB frame, determine the address of the calling function's frame.
56
   This will be used to create a new GDB frame struct, and then
57
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
58
 
59
   For us, the frame address is its stack pointer value, so we look up
60
   the function prologue to determine the caller's sp value, and return it.  */
61
 
62
CORE_ADDR
63
frame_chain (thisframe)
64
     struct frame_info *thisframe;
65
{
66
 
67
  frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
68
  /* NOTE:  this depends on frame_find_saved_regs returning the VALUE, not
69
     the ADDRESS, of SP_REGNUM.  It also depends on the cache of
70
     frame_find_saved_regs results.  */
71
  if (thisframe->fsr->regs[SP_REGNUM])
72
    return thisframe->fsr->regs[SP_REGNUM];
73
  else
74
    return thisframe->frame;    /* Leaf fn -- next frame up has same SP. */
75
}
76
 
77
int
78
frameless_function_invocation (frame)
79
     struct frame_info *frame;
80
{
81
 
82
  frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
83
  /* NOTE:  this depends on frame_find_saved_regs returning the VALUE, not
84
     the ADDRESS, of SP_REGNUM.  It also depends on the cache of
85
     frame_find_saved_regs results.  */
86
  if (frame->fsr->regs[SP_REGNUM])
87
    return 0;                    /* Frameful -- return addr saved somewhere */
88
  else
89
    return 1;                   /* Frameless -- no saved return address */
90
}
91
 
92
void
93
init_extra_frame_info (fromleaf, frame)
94
     int fromleaf;
95
     struct frame_info *frame;
96
{
97
  frame->fsr = 0;                /* Not yet allocated */
98
  frame->args_pointer = 0;       /* Unknown */
99
  frame->locals_pointer = 0;     /* Unknown */
100
}
101
 
102
/* Examine an m88k function prologue, recording the addresses at which
103
   registers are saved explicitly by the prologue code, and returning
104
   the address of the first instruction after the prologue (but not
105
   after the instruction at address LIMIT, as explained below).
106
 
107
   LIMIT places an upper bound on addresses of the instructions to be
108
   examined.  If the prologue code scan reaches LIMIT, the scan is
109
   aborted and LIMIT is returned.  This is used, when examining the
110
   prologue for the current frame, to keep examine_prologue () from
111
   claiming that a given register has been saved when in fact the
112
   instruction that saves it has not yet been executed.  LIMIT is used
113
   at other times to stop the scan when we hit code after the true
114
   function prologue (e.g. for the first source line) which might
115
   otherwise be mistaken for function prologue.
116
 
117
   The format of the function prologue matched by this routine is
118
   derived from examination of the source to gcc 1.95, particularly
119
   the routine output_prologue () in config/out-m88k.c.
120
 
121
   subu r31,r31,n                       # stack pointer update
122
 
123
   (st rn,r31,offset)?                  # save incoming regs
124
   (st.d rn,r31,offset)?
125
 
126
   (addu r30,r31,n)?                    # frame pointer update
127
 
128
   (pic sequence)?                      # PIC code prologue
129
 
130
   (or   rn,rm,0)?                      # Move parameters to other regs
131
 */
132
 
133
/* Macros for extracting fields from instructions.  */
134
 
135
#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
136
#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
137
#define SUBU_OFFSET(x)  ((unsigned)(x & 0xFFFF))
138
#define ST_OFFSET(x)    ((unsigned)((x) & 0xFFFF))
139
#define ST_SRC(x)       EXTRACT_FIELD ((x), 21, 5)
140
#define ADDU_OFFSET(x)  ((unsigned)(x & 0xFFFF))
141
 
142
/*
143
 * prologue_insn_tbl is a table of instructions which may comprise a
144
 * function prologue.  Associated with each table entry (corresponding
145
 * to a single instruction or group of instructions), is an action.
146
 * This action is used by examine_prologue (below) to determine
147
 * the state of certain machine registers and where the stack frame lives.
148
 */
149
 
150
enum prologue_insn_action
151
{
152
  PIA_SKIP,                     /* don't care what the instruction does */
153
  PIA_NOTE_ST,                  /* note register stored and where */
154
  PIA_NOTE_STD,                 /* note pair of registers stored and where */
155
  PIA_NOTE_SP_ADJUSTMENT,       /* note stack pointer adjustment */
156
  PIA_NOTE_FP_ASSIGNMENT,       /* note frame pointer assignment */
157
  PIA_NOTE_PROLOGUE_END,        /* no more prologue */
158
};
159
 
160
struct prologue_insns
161
  {
162
    unsigned long insn;
163
    unsigned long mask;
164
    enum prologue_insn_action action;
165
  };
166
 
167
struct prologue_insns prologue_insn_tbl[] =
168
{
169
  /* Various register move instructions */
170
  {0x58000000, 0xf800ffff, PIA_SKIP},   /* or/or.u with immed of 0 */
171
  {0xf4005800, 0xfc1fffe0, PIA_SKIP},   /* or rd, r0, rs */
172
  {0xf4005800, 0xfc00ffff, PIA_SKIP},   /* or rd, rs, r0 */
173
 
174
  /* Stack pointer setup: "subu sp, sp, n" where n is a multiple of 8 */
175
  {0x67ff0000, 0xffff0007, PIA_NOTE_SP_ADJUSTMENT},
176
 
177
  /* Frame pointer assignment: "addu r30, r31, n" */
178
  {0x63df0000, 0xffff0000, PIA_NOTE_FP_ASSIGNMENT},
179
 
180
  /* Store to stack instructions; either "st rx, sp, n" or "st.d rx, sp, n" */
181
  {0x241f0000, 0xfc1f0000, PIA_NOTE_ST},        /* st rx, sp, n */
182
  {0x201f0000, 0xfc1f0000, PIA_NOTE_STD},       /* st.d rs, sp, n */
183
 
184
  /* Instructions needed for setting up r25 for pic code. */
185
  {0x5f200000, 0xffff0000, PIA_SKIP},   /* or.u r25, r0, offset_high */
186
  {0xcc000002, 0xffffffff, PIA_SKIP},   /* bsr.n Lab */
187
  {0x5b390000, 0xffff0000, PIA_SKIP},   /* or r25, r25, offset_low */
188
  {0xf7396001, 0xffffffff, PIA_SKIP},   /* Lab: addu r25, r25, r1 */
189
 
190
  /* Various branch or jump instructions which have a delay slot -- these
191
     do not form part of the prologue, but the instruction in the delay
192
     slot might be a store instruction which should be noted. */
193
  {0xc4000000, 0xe4000000, PIA_NOTE_PROLOGUE_END},
194
                                        /* br.n, bsr.n, bb0.n, or bb1.n */
195
  {0xec000000, 0xfc000000, PIA_NOTE_PROLOGUE_END},      /* bcnd.n */
196
  {0xf400c400, 0xfffff7e0, PIA_NOTE_PROLOGUE_END}       /* jmp.n or jsr.n */
197
 
198
};
199
 
200
 
201
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
202
   is not the address of a valid instruction, the address of the next
203
   instruction beyond ADDR otherwise.  *PWORD1 receives the first word
204
   of the instruction. */
205
 
206
#define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
207
  (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
208
 
209
/* Read the m88k instruction at 'memaddr' and return the address of
210
   the next instruction after that, or 0 if 'memaddr' is not the
211
   address of a valid instruction.  The instruction
212
   is stored at 'pword1'.  */
213
 
214
CORE_ADDR
215
next_insn (memaddr, pword1)
216
     unsigned long *pword1;
217
     CORE_ADDR memaddr;
218
{
219
  *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
220
  return memaddr + BYTES_PER_88K_INSN;
221
}
222
 
223
/* Read a register from frames called by us (or from the hardware regs).  */
224
 
225
static int
226
read_next_frame_reg (frame, regno)
227
     struct frame_info *frame;
228
     int regno;
229
{
230
  for (; frame; frame = frame->next)
231
    {
232
      if (regno == SP_REGNUM)
233
        return FRAME_FP (frame);
234
      else if (frame->fsr->regs[regno])
235
        return read_memory_integer (frame->fsr->regs[regno], 4);
236
    }
237
  return read_register (regno);
238
}
239
 
240
/* Examine the prologue of a function.  `ip' points to the first instruction.
241
   `limit' is the limit of the prologue (e.g. the addr of the first
242
   linenumber, or perhaps the program counter if we're stepping through).
243
   `frame_sp' is the stack pointer value in use in this frame.
244
   `fsr' is a pointer to a frame_saved_regs structure into which we put
245
   info about the registers saved by this frame.
246
   `fi' is a struct frame_info pointer; we fill in various fields in it
247
   to reflect the offsets of the arg pointer and the locals pointer.  */
248
 
249
static CORE_ADDR
250
examine_prologue (ip, limit, frame_sp, fsr, fi)
251
     register CORE_ADDR ip;
252
     register CORE_ADDR limit;
253
     CORE_ADDR frame_sp;
254
     struct frame_saved_regs *fsr;
255
     struct frame_info *fi;
256
{
257
  register CORE_ADDR next_ip;
258
  register int src;
259
  unsigned int insn;
260
  int size, offset;
261
  char must_adjust[32];         /* If set, must adjust offsets in fsr */
262
  int sp_offset = -1;           /* -1 means not set (valid must be mult of 8) */
263
  int fp_offset = -1;           /* -1 means not set */
264
  CORE_ADDR frame_fp;
265
  CORE_ADDR prologue_end = 0;
266
 
267
  memset (must_adjust, '\0', sizeof (must_adjust));
268
  next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
269
 
270
  while (next_ip)
271
    {
272
      struct prologue_insns *pip;
273
 
274
      for (pip = prologue_insn_tbl; (insn & pip->mask) != pip->insn;)
275
        if (++pip >= prologue_insn_tbl + sizeof prologue_insn_tbl)
276
          goto end_of_prologue_found;   /* not a prologue insn */
277
 
278
      switch (pip->action)
279
        {
280
        case PIA_NOTE_ST:
281
        case PIA_NOTE_STD:
282
          if (sp_offset != -1)
283
            {
284
              src = ST_SRC (insn);
285
              offset = ST_OFFSET (insn);
286
              must_adjust[src] = 1;
287
              fsr->regs[src++] = offset;        /* Will be adjusted later */
288
              if (pip->action == PIA_NOTE_STD && src < 32)
289
                {
290
                  offset += 4;
291
                  must_adjust[src] = 1;
292
                  fsr->regs[src++] = offset;
293
                }
294
            }
295
          else
296
            goto end_of_prologue_found;
297
          break;
298
        case PIA_NOTE_SP_ADJUSTMENT:
299
          if (sp_offset == -1)
300
            sp_offset = -SUBU_OFFSET (insn);
301
          else
302
            goto end_of_prologue_found;
303
          break;
304
        case PIA_NOTE_FP_ASSIGNMENT:
305
          if (fp_offset == -1)
306
            fp_offset = ADDU_OFFSET (insn);
307
          else
308
            goto end_of_prologue_found;
309
          break;
310
        case PIA_NOTE_PROLOGUE_END:
311
          if (!prologue_end)
312
            prologue_end = ip;
313
          break;
314
        case PIA_SKIP:
315
        default:
316
          /* Do nothing */
317
          break;
318
        }
319
 
320
      ip = next_ip;
321
      next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
322
    }
323
 
324
end_of_prologue_found:
325
 
326
  if (prologue_end)
327
    ip = prologue_end;
328
 
329
  /* We're done with the prologue.  If we don't care about the stack
330
     frame itself, just return.  (Note that fsr->regs has been trashed,
331
     but the one caller who calls with fi==0 passes a dummy there.)  */
332
 
333
  if (fi == 0)
334
    return ip;
335
 
336
  /*
337
     OK, now we have:
338
 
339
     sp_offset  original (before any alloca calls) displacement of SP
340
     (will be negative).
341
 
342
     fp_offset  displacement from original SP to the FP for this frame
343
     or -1.
344
 
345
     fsr->regs[0..31]   displacement from original SP to the stack
346
     location where reg[0..31] is stored.
347
 
348
     must_adjust[0..31] set if corresponding offset was set.
349
 
350
     If alloca has been called between the function prologue and the current
351
     IP, then the current SP (frame_sp) will not be the original SP as set by
352
     the function prologue.  If the current SP is not the original SP, then the
353
     compiler will have allocated an FP for this frame, fp_offset will be set,
354
     and we can use it to calculate the original SP.
355
 
356
     Then, we figure out where the arguments and locals are, and relocate the
357
     offsets in fsr->regs to absolute addresses.  */
358
 
359
  if (fp_offset != -1)
360
    {
361
      /* We have a frame pointer, so get it, and base our calc's on it.  */
362
      frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
363
      frame_sp = frame_fp - fp_offset;
364
    }
365
  else
366
    {
367
      /* We have no frame pointer, therefore frame_sp is still the same value
368
         as set by prologue.  But where is the frame itself?  */
369
      if (must_adjust[SRP_REGNUM])
370
        {
371
          /* Function header saved SRP (r1), the return address.  Frame starts
372
             4 bytes down from where it was saved.  */
373
          frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
374
          fi->locals_pointer = frame_fp;
375
        }
376
      else
377
        {
378
          /* Function header didn't save SRP (r1), so we are in a leaf fn or
379
             are otherwise confused.  */
380
          frame_fp = -1;
381
        }
382
    }
383
 
384
  /* The locals are relative to the FP (whether it exists as an allocated
385
     register, or just as an assumed offset from the SP) */
386
  fi->locals_pointer = frame_fp;
387
 
388
  /* The arguments are just above the SP as it was before we adjusted it
389
     on entry.  */
390
  fi->args_pointer = frame_sp - sp_offset;
391
 
392
  /* Now that we know the SP value used by the prologue, we know where
393
     it saved all the registers.  */
394
  for (src = 0; src < 32; src++)
395
    if (must_adjust[src])
396
      fsr->regs[src] += frame_sp;
397
 
398
  /* The saved value of the SP is always known.  */
399
  /* (we hope...) */
400
  if (fsr->regs[SP_REGNUM] != 0
401
      && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
402
    fprintf_unfiltered (gdb_stderr, "Bad saved SP value %x != %x, offset %x!\n",
403
                        fsr->regs[SP_REGNUM],
404
                        frame_sp - sp_offset, sp_offset);
405
 
406
  fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
407
 
408
  return (ip);
409
}
410
 
411
/* Given an ip value corresponding to the start of a function,
412
   return the ip of the first instruction after the function
413
   prologue.  */
414
 
415
CORE_ADDR
416
m88k_skip_prologue (ip)
417
CORE_ADDR (ip);
418
{
419
  struct frame_saved_regs saved_regs_dummy;
420
  struct symtab_and_line sal;
421
  CORE_ADDR limit;
422
 
423
  sal = find_pc_line (ip, 0);
424
  limit = (sal.end) ? sal.end : 0xffffffff;
425
 
426
  return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy,
427
                            (struct frame_info *) 0));
428
}
429
 
430
/* Put here the code to store, into a struct frame_saved_regs,
431
   the addresses of the saved registers of frame described by FRAME_INFO.
432
   This includes special registers such as pc and fp saved in special
433
   ways in the stack frame.  sp is even more special:
434
   the address we return for it IS the sp for the next frame.
435
 
436
   We cache the result of doing this in the frame_obstack, since it is
437
   fairly expensive.  */
438
 
439
void
440
frame_find_saved_regs (fi, fsr)
441
     struct frame_info *fi;
442
     struct frame_saved_regs *fsr;
443
{
444
  register struct frame_saved_regs *cache_fsr;
445
  CORE_ADDR ip;
446
  struct symtab_and_line sal;
447
  CORE_ADDR limit;
448
 
449
  if (!fi->fsr)
450
    {
451
      cache_fsr = (struct frame_saved_regs *)
452
        frame_obstack_alloc (sizeof (struct frame_saved_regs));
453
      memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
454
      fi->fsr = cache_fsr;
455
 
456
      /* Find the start and end of the function prologue.  If the PC
457
         is in the function prologue, we only consider the part that
458
         has executed already.  In the case where the PC is not in
459
         the function prologue, we set limit to two instructions beyond
460
         where the prologue ends in case if any of the prologue instructions
461
         were moved into a delay slot of a branch instruction. */
462
 
463
      ip = get_pc_function_start (fi->pc);
464
      sal = find_pc_line (ip, 0);
465
      limit = (sal.end && sal.end < fi->pc) ? sal.end + 2 * BYTES_PER_88K_INSN
466
        : fi->pc;
467
 
468
      /* This will fill in fields in *fi as well as in cache_fsr.  */
469
#ifdef SIGTRAMP_FRAME_FIXUP
470
      if (fi->signal_handler_caller)
471
        SIGTRAMP_FRAME_FIXUP (fi->frame);
472
#endif
473
      examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
474
#ifdef SIGTRAMP_SP_FIXUP
475
      if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
476
        SIGTRAMP_SP_FIXUP (fi->fsr->regs[SP_REGNUM]);
477
#endif
478
    }
479
 
480
  if (fsr)
481
    *fsr = *fi->fsr;
482
}
483
 
484
/* Return the address of the locals block for the frame
485
   described by FI.  Returns 0 if the address is unknown.
486
   NOTE!  Frame locals are referred to by negative offsets from the
487
   argument pointer, so this is the same as frame_args_address().  */
488
 
489
CORE_ADDR
490
frame_locals_address (fi)
491
     struct frame_info *fi;
492
{
493
  struct frame_saved_regs fsr;
494
 
495
  if (fi->args_pointer)         /* Cached value is likely there.  */
496
    return fi->args_pointer;
497
 
498
  /* Nope, generate it.  */
499
 
500
  get_frame_saved_regs (fi, &fsr);
501
 
502
  return fi->args_pointer;
503
}
504
 
505
/* Return the address of the argument block for the frame
506
   described by FI.  Returns 0 if the address is unknown.  */
507
 
508
CORE_ADDR
509
frame_args_address (fi)
510
     struct frame_info *fi;
511
{
512
  struct frame_saved_regs fsr;
513
 
514
  if (fi->args_pointer)         /* Cached value is likely there.  */
515
    return fi->args_pointer;
516
 
517
  /* Nope, generate it.  */
518
 
519
  get_frame_saved_regs (fi, &fsr);
520
 
521
  return fi->args_pointer;
522
}
523
 
524
/* Return the saved PC from this frame.
525
 
526
   If the frame has a memory copy of SRP_REGNUM, use that.  If not,
527
   just use the register SRP_REGNUM itself.  */
528
 
529
CORE_ADDR
530
frame_saved_pc (frame)
531
     struct frame_info *frame;
532
{
533
  return read_next_frame_reg (frame, SRP_REGNUM);
534
}
535
 
536
 
537
#define DUMMY_FRAME_SIZE 192
538
 
539
static void
540
write_word (sp, word)
541
     CORE_ADDR sp;
542
     ULONGEST word;
543
{
544
  register int len = REGISTER_SIZE;
545
  char buffer[MAX_REGISTER_RAW_SIZE];
546
 
547
  store_unsigned_integer (buffer, len, word);
548
  write_memory (sp, buffer, len);
549
}
550
 
551
void
552
m88k_push_dummy_frame ()
553
{
554
  register CORE_ADDR sp = read_register (SP_REGNUM);
555
  register int rn;
556
  int offset;
557
 
558
  sp -= DUMMY_FRAME_SIZE;       /* allocate a bunch of space */
559
 
560
  for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset += 4)
561
    write_word (sp + offset, read_register (rn));
562
 
563
  write_word (sp + offset, read_register (SXIP_REGNUM));
564
  offset += 4;
565
 
566
  write_word (sp + offset, read_register (SNIP_REGNUM));
567
  offset += 4;
568
 
569
  write_word (sp + offset, read_register (SFIP_REGNUM));
570
  offset += 4;
571
 
572
  write_word (sp + offset, read_register (PSR_REGNUM));
573
  offset += 4;
574
 
575
  write_word (sp + offset, read_register (FPSR_REGNUM));
576
  offset += 4;
577
 
578
  write_word (sp + offset, read_register (FPCR_REGNUM));
579
  offset += 4;
580
 
581
  write_register (SP_REGNUM, sp);
582
  write_register (ACTUAL_FP_REGNUM, sp);
583
}
584
 
585
void
586
pop_frame ()
587
{
588
  register struct frame_info *frame = get_current_frame ();
589
  register CORE_ADDR fp;
590
  register int regnum;
591
  struct frame_saved_regs fsr;
592
 
593
  fp = FRAME_FP (frame);
594
  get_frame_saved_regs (frame, &fsr);
595
 
596
  if (PC_IN_CALL_DUMMY (read_pc (), read_register (SP_REGNUM), FRAME_FP (fi)))
597
    {
598
      /* FIXME: I think get_frame_saved_regs should be handling this so
599
         that we can deal with the saved registers properly (e.g. frame
600
         1 is a call dummy, the user types "frame 2" and then "print $ps").  */
601
      register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
602
      int offset;
603
 
604
      for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset += 4)
605
        (void) write_register (regnum, read_memory_integer (sp + offset, 4));
606
 
607
      write_register (SXIP_REGNUM, read_memory_integer (sp + offset, 4));
608
      offset += 4;
609
 
610
      write_register (SNIP_REGNUM, read_memory_integer (sp + offset, 4));
611
      offset += 4;
612
 
613
      write_register (SFIP_REGNUM, read_memory_integer (sp + offset, 4));
614
      offset += 4;
615
 
616
      write_register (PSR_REGNUM, read_memory_integer (sp + offset, 4));
617
      offset += 4;
618
 
619
      write_register (FPSR_REGNUM, read_memory_integer (sp + offset, 4));
620
      offset += 4;
621
 
622
      write_register (FPCR_REGNUM, read_memory_integer (sp + offset, 4));
623
      offset += 4;
624
 
625
    }
626
  else
627
    {
628
      for (regnum = FP_REGNUM; regnum > 0; regnum--)
629
        if (fsr.regs[regnum])
630
          write_register (regnum,
631
                          read_memory_integer (fsr.regs[regnum], 4));
632
      write_pc (frame_saved_pc (frame));
633
    }
634
  reinit_frame_cache ();
635
}
636
 
637
void
638
_initialize_m88k_tdep ()
639
{
640
  tm_print_insn = print_insn_m88k;
641
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.