1 |
104 |
markom |
/* Target-dependent code for GDB, the GNU debugger.
|
2 |
|
|
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 2000
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
20 |
|
|
Boston, MA 02111-1307, USA. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "frame.h"
|
24 |
|
|
#include "inferior.h"
|
25 |
|
|
#include "symtab.h"
|
26 |
|
|
#include "target.h"
|
27 |
|
|
#include "gdbcore.h"
|
28 |
|
|
#include "gdbcmd.h"
|
29 |
|
|
#include "symfile.h"
|
30 |
|
|
#include "objfiles.h"
|
31 |
|
|
#include "xcoffsolib.h"
|
32 |
|
|
|
33 |
|
|
extern int errno;
|
34 |
|
|
|
35 |
|
|
/* Breakpoint shadows for the single step instructions will be kept here. */
|
36 |
|
|
|
37 |
|
|
static struct sstep_breaks
|
38 |
|
|
{
|
39 |
|
|
/* Address, or 0 if this is not in use. */
|
40 |
|
|
CORE_ADDR address;
|
41 |
|
|
/* Shadow contents. */
|
42 |
|
|
char data[4];
|
43 |
|
|
}
|
44 |
|
|
stepBreaks[2];
|
45 |
|
|
|
46 |
|
|
/* Hook for determining the TOC address when calling functions in the
|
47 |
|
|
inferior under AIX. The initialization code in rs6000-nat.c sets
|
48 |
|
|
this hook to point to find_toc_address. */
|
49 |
|
|
|
50 |
|
|
CORE_ADDR (*find_toc_address_hook) PARAMS ((CORE_ADDR)) = NULL;
|
51 |
|
|
|
52 |
|
|
/* Static function prototypes */
|
53 |
|
|
|
54 |
|
|
static CORE_ADDR branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc,
|
55 |
|
|
CORE_ADDR safety));
|
56 |
|
|
|
57 |
|
|
static void frame_get_saved_regs PARAMS ((struct frame_info * fi,
|
58 |
|
|
struct rs6000_framedata * fdatap));
|
59 |
|
|
|
60 |
|
|
static void pop_dummy_frame PARAMS ((void));
|
61 |
|
|
|
62 |
|
|
static CORE_ADDR frame_initial_stack_address PARAMS ((struct frame_info *));
|
63 |
|
|
|
64 |
|
|
CORE_ADDR
|
65 |
|
|
rs6000_skip_prologue (pc)
|
66 |
|
|
CORE_ADDR pc;
|
67 |
|
|
{
|
68 |
|
|
struct rs6000_framedata frame;
|
69 |
|
|
pc = skip_prologue (pc, &frame);
|
70 |
|
|
return pc;
|
71 |
|
|
}
|
72 |
|
|
|
73 |
|
|
|
74 |
|
|
/* Fill in fi->saved_regs */
|
75 |
|
|
|
76 |
|
|
struct frame_extra_info
|
77 |
|
|
{
|
78 |
|
|
/* Functions calling alloca() change the value of the stack
|
79 |
|
|
pointer. We need to use initial stack pointer (which is saved in
|
80 |
|
|
r31 by gcc) in such cases. If a compiler emits traceback table,
|
81 |
|
|
then we should use the alloca register specified in traceback
|
82 |
|
|
table. FIXME. */
|
83 |
|
|
CORE_ADDR initial_sp; /* initial stack pointer. */
|
84 |
|
|
};
|
85 |
|
|
|
86 |
|
|
void
|
87 |
|
|
rs6000_init_extra_frame_info (fromleaf, fi)
|
88 |
|
|
int fromleaf;
|
89 |
|
|
struct frame_info *fi;
|
90 |
|
|
{
|
91 |
|
|
fi->extra_info = (struct frame_extra_info *)
|
92 |
|
|
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
93 |
|
|
fi->extra_info->initial_sp = 0;
|
94 |
|
|
if (fi->next != (CORE_ADDR) 0
|
95 |
|
|
&& fi->pc < TEXT_SEGMENT_BASE)
|
96 |
|
|
/* We're in get_prev_frame */
|
97 |
|
|
/* and this is a special signal frame. */
|
98 |
|
|
/* (fi->pc will be some low address in the kernel, */
|
99 |
|
|
/* to which the signal handler returns). */
|
100 |
|
|
fi->signal_handler_caller = 1;
|
101 |
|
|
}
|
102 |
|
|
|
103 |
|
|
|
104 |
|
|
void
|
105 |
|
|
rs6000_frame_init_saved_regs (fi)
|
106 |
|
|
struct frame_info *fi;
|
107 |
|
|
{
|
108 |
|
|
frame_get_saved_regs (fi, NULL);
|
109 |
|
|
}
|
110 |
|
|
|
111 |
|
|
CORE_ADDR
|
112 |
|
|
rs6000_frame_args_address (fi)
|
113 |
|
|
struct frame_info *fi;
|
114 |
|
|
{
|
115 |
|
|
if (fi->extra_info->initial_sp != 0)
|
116 |
|
|
return fi->extra_info->initial_sp;
|
117 |
|
|
else
|
118 |
|
|
return frame_initial_stack_address (fi);
|
119 |
|
|
}
|
120 |
|
|
|
121 |
|
|
|
122 |
|
|
/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
|
123 |
|
|
|
124 |
|
|
static CORE_ADDR
|
125 |
|
|
branch_dest (opcode, instr, pc, safety)
|
126 |
|
|
int opcode;
|
127 |
|
|
int instr;
|
128 |
|
|
CORE_ADDR pc;
|
129 |
|
|
CORE_ADDR safety;
|
130 |
|
|
{
|
131 |
|
|
CORE_ADDR dest;
|
132 |
|
|
int immediate;
|
133 |
|
|
int absolute;
|
134 |
|
|
int ext_op;
|
135 |
|
|
|
136 |
|
|
absolute = (int) ((instr >> 1) & 1);
|
137 |
|
|
|
138 |
|
|
switch (opcode)
|
139 |
|
|
{
|
140 |
|
|
case 18:
|
141 |
|
|
immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
|
142 |
|
|
if (absolute)
|
143 |
|
|
dest = immediate;
|
144 |
|
|
else
|
145 |
|
|
dest = pc + immediate;
|
146 |
|
|
break;
|
147 |
|
|
|
148 |
|
|
case 16:
|
149 |
|
|
immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
|
150 |
|
|
if (absolute)
|
151 |
|
|
dest = immediate;
|
152 |
|
|
else
|
153 |
|
|
dest = pc + immediate;
|
154 |
|
|
break;
|
155 |
|
|
|
156 |
|
|
case 19:
|
157 |
|
|
ext_op = (instr >> 1) & 0x3ff;
|
158 |
|
|
|
159 |
|
|
if (ext_op == 16) /* br conditional register */
|
160 |
|
|
{
|
161 |
|
|
dest = read_register (LR_REGNUM) & ~3;
|
162 |
|
|
|
163 |
|
|
/* If we are about to return from a signal handler, dest is
|
164 |
|
|
something like 0x3c90. The current frame is a signal handler
|
165 |
|
|
caller frame, upon completion of the sigreturn system call
|
166 |
|
|
execution will return to the saved PC in the frame. */
|
167 |
|
|
if (dest < TEXT_SEGMENT_BASE)
|
168 |
|
|
{
|
169 |
|
|
struct frame_info *fi;
|
170 |
|
|
|
171 |
|
|
fi = get_current_frame ();
|
172 |
|
|
if (fi != NULL)
|
173 |
|
|
dest = read_memory_integer (fi->frame + SIG_FRAME_PC_OFFSET,
|
174 |
|
|
4);
|
175 |
|
|
}
|
176 |
|
|
}
|
177 |
|
|
|
178 |
|
|
else if (ext_op == 528) /* br cond to count reg */
|
179 |
|
|
{
|
180 |
|
|
dest = read_register (CTR_REGNUM) & ~3;
|
181 |
|
|
|
182 |
|
|
/* If we are about to execute a system call, dest is something
|
183 |
|
|
like 0x22fc or 0x3b00. Upon completion the system call
|
184 |
|
|
will return to the address in the link register. */
|
185 |
|
|
if (dest < TEXT_SEGMENT_BASE)
|
186 |
|
|
dest = read_register (LR_REGNUM) & ~3;
|
187 |
|
|
}
|
188 |
|
|
else
|
189 |
|
|
return -1;
|
190 |
|
|
break;
|
191 |
|
|
|
192 |
|
|
default:
|
193 |
|
|
return -1;
|
194 |
|
|
}
|
195 |
|
|
return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
|
196 |
|
|
}
|
197 |
|
|
|
198 |
|
|
|
199 |
|
|
/* Sequence of bytes for breakpoint instruction. */
|
200 |
|
|
|
201 |
|
|
#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
|
202 |
|
|
#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
|
203 |
|
|
|
204 |
|
|
unsigned char *
|
205 |
|
|
rs6000_breakpoint_from_pc (bp_addr, bp_size)
|
206 |
|
|
CORE_ADDR *bp_addr;
|
207 |
|
|
int *bp_size;
|
208 |
|
|
{
|
209 |
|
|
static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
|
210 |
|
|
static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
|
211 |
|
|
*bp_size = 4;
|
212 |
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
213 |
|
|
return big_breakpoint;
|
214 |
|
|
else
|
215 |
|
|
return little_breakpoint;
|
216 |
|
|
}
|
217 |
|
|
|
218 |
|
|
|
219 |
|
|
/* AIX does not support PT_STEP. Simulate it. */
|
220 |
|
|
|
221 |
|
|
void
|
222 |
|
|
rs6000_software_single_step (signal, insert_breakpoints_p)
|
223 |
|
|
unsigned int signal;
|
224 |
|
|
int insert_breakpoints_p;
|
225 |
|
|
{
|
226 |
|
|
#define INSNLEN(OPCODE) 4
|
227 |
|
|
|
228 |
|
|
static char le_breakp[] = LITTLE_BREAKPOINT;
|
229 |
|
|
static char be_breakp[] = BIG_BREAKPOINT;
|
230 |
|
|
char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp;
|
231 |
|
|
int ii, insn;
|
232 |
|
|
CORE_ADDR loc;
|
233 |
|
|
CORE_ADDR breaks[2];
|
234 |
|
|
int opcode;
|
235 |
|
|
|
236 |
|
|
if (insert_breakpoints_p)
|
237 |
|
|
{
|
238 |
|
|
|
239 |
|
|
loc = read_pc ();
|
240 |
|
|
|
241 |
|
|
insn = read_memory_integer (loc, 4);
|
242 |
|
|
|
243 |
|
|
breaks[0] = loc + INSNLEN (insn);
|
244 |
|
|
opcode = insn >> 26;
|
245 |
|
|
breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
|
246 |
|
|
|
247 |
|
|
/* Don't put two breakpoints on the same address. */
|
248 |
|
|
if (breaks[1] == breaks[0])
|
249 |
|
|
breaks[1] = -1;
|
250 |
|
|
|
251 |
|
|
stepBreaks[1].address = 0;
|
252 |
|
|
|
253 |
|
|
for (ii = 0; ii < 2; ++ii)
|
254 |
|
|
{
|
255 |
|
|
|
256 |
|
|
/* ignore invalid breakpoint. */
|
257 |
|
|
if (breaks[ii] == -1)
|
258 |
|
|
continue;
|
259 |
|
|
|
260 |
|
|
read_memory (breaks[ii], stepBreaks[ii].data, 4);
|
261 |
|
|
|
262 |
|
|
write_memory (breaks[ii], breakp, 4);
|
263 |
|
|
stepBreaks[ii].address = breaks[ii];
|
264 |
|
|
}
|
265 |
|
|
|
266 |
|
|
}
|
267 |
|
|
else
|
268 |
|
|
{
|
269 |
|
|
|
270 |
|
|
/* remove step breakpoints. */
|
271 |
|
|
for (ii = 0; ii < 2; ++ii)
|
272 |
|
|
if (stepBreaks[ii].address != 0)
|
273 |
|
|
write_memory
|
274 |
|
|
(stepBreaks[ii].address, stepBreaks[ii].data, 4);
|
275 |
|
|
|
276 |
|
|
}
|
277 |
|
|
errno = 0; /* FIXME, don't ignore errors! */
|
278 |
|
|
/* What errors? {read,write}_memory call error(). */
|
279 |
|
|
}
|
280 |
|
|
|
281 |
|
|
|
282 |
|
|
/* return pc value after skipping a function prologue and also return
|
283 |
|
|
information about a function frame.
|
284 |
|
|
|
285 |
|
|
in struct rs6000_framedata fdata:
|
286 |
|
|
- frameless is TRUE, if function does not have a frame.
|
287 |
|
|
- nosavedpc is TRUE, if function does not save %pc value in its frame.
|
288 |
|
|
- offset is the initial size of this stack frame --- the amount by
|
289 |
|
|
which we decrement the sp to allocate the frame.
|
290 |
|
|
- saved_gpr is the number of the first saved gpr.
|
291 |
|
|
- saved_fpr is the number of the first saved fpr.
|
292 |
|
|
- alloca_reg is the number of the register used for alloca() handling.
|
293 |
|
|
Otherwise -1.
|
294 |
|
|
- gpr_offset is the offset of the first saved gpr from the previous frame.
|
295 |
|
|
- fpr_offset is the offset of the first saved fpr from the previous frame.
|
296 |
|
|
- lr_offset is the offset of the saved lr
|
297 |
|
|
- cr_offset is the offset of the saved cr
|
298 |
|
|
*/
|
299 |
|
|
|
300 |
|
|
#define SIGNED_SHORT(x) \
|
301 |
|
|
((sizeof (short) == 2) \
|
302 |
|
|
? ((int)(short)(x)) \
|
303 |
|
|
: ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
|
304 |
|
|
|
305 |
|
|
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
|
306 |
|
|
|
307 |
|
|
CORE_ADDR
|
308 |
|
|
skip_prologue (CORE_ADDR pc, struct rs6000_framedata *fdata)
|
309 |
|
|
{
|
310 |
|
|
CORE_ADDR orig_pc = pc;
|
311 |
|
|
CORE_ADDR last_prologue_pc;
|
312 |
|
|
char buf[4];
|
313 |
|
|
unsigned long op;
|
314 |
|
|
long offset = 0;
|
315 |
|
|
int lr_reg = -1;
|
316 |
|
|
int cr_reg = -1;
|
317 |
|
|
int reg;
|
318 |
|
|
int framep = 0;
|
319 |
|
|
int minimal_toc_loaded = 0;
|
320 |
|
|
int prev_insn_was_prologue_insn = 1;
|
321 |
|
|
|
322 |
|
|
memset (fdata, 0, sizeof (struct rs6000_framedata));
|
323 |
|
|
fdata->saved_gpr = -1;
|
324 |
|
|
fdata->saved_fpr = -1;
|
325 |
|
|
fdata->alloca_reg = -1;
|
326 |
|
|
fdata->frameless = 1;
|
327 |
|
|
fdata->nosavedpc = 1;
|
328 |
|
|
|
329 |
|
|
pc -= 4;
|
330 |
|
|
for (;;)
|
331 |
|
|
{
|
332 |
|
|
pc += 4;
|
333 |
|
|
|
334 |
|
|
/* Sometimes it isn't clear if an instruction is a prologue
|
335 |
|
|
instruction or not. When we encounter one of these ambiguous
|
336 |
|
|
cases, we'll set prev_insn_was_prologue_insn to 0 (false).
|
337 |
|
|
Otherwise, we'll assume that it really is a prologue instruction. */
|
338 |
|
|
if (prev_insn_was_prologue_insn)
|
339 |
|
|
last_prologue_pc = pc;
|
340 |
|
|
prev_insn_was_prologue_insn = 1;
|
341 |
|
|
|
342 |
|
|
if (target_read_memory (pc, buf, 4))
|
343 |
|
|
break;
|
344 |
|
|
op = extract_signed_integer (buf, 4);
|
345 |
|
|
|
346 |
|
|
if ((op & 0xfc1fffff) == 0x7c0802a6)
|
347 |
|
|
{ /* mflr Rx */
|
348 |
|
|
lr_reg = (op & 0x03e00000) | 0x90010000;
|
349 |
|
|
continue;
|
350 |
|
|
|
351 |
|
|
}
|
352 |
|
|
else if ((op & 0xfc1fffff) == 0x7c000026)
|
353 |
|
|
{ /* mfcr Rx */
|
354 |
|
|
cr_reg = (op & 0x03e00000) | 0x90010000;
|
355 |
|
|
continue;
|
356 |
|
|
|
357 |
|
|
}
|
358 |
|
|
else if ((op & 0xfc1f0000) == 0xd8010000)
|
359 |
|
|
{ /* stfd Rx,NUM(r1) */
|
360 |
|
|
reg = GET_SRC_REG (op);
|
361 |
|
|
if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
|
362 |
|
|
{
|
363 |
|
|
fdata->saved_fpr = reg;
|
364 |
|
|
fdata->fpr_offset = SIGNED_SHORT (op) + offset;
|
365 |
|
|
}
|
366 |
|
|
continue;
|
367 |
|
|
|
368 |
|
|
}
|
369 |
|
|
else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
|
370 |
|
|
((op & 0xfc1f0000) == 0x90010000 && /* st rx,NUM(r1),
|
371 |
|
|
rx >= r13 */
|
372 |
|
|
(op & 0x03e00000) >= 0x01a00000))
|
373 |
|
|
{
|
374 |
|
|
|
375 |
|
|
reg = GET_SRC_REG (op);
|
376 |
|
|
if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
|
377 |
|
|
{
|
378 |
|
|
fdata->saved_gpr = reg;
|
379 |
|
|
fdata->gpr_offset = SIGNED_SHORT (op) + offset;
|
380 |
|
|
}
|
381 |
|
|
continue;
|
382 |
|
|
|
383 |
|
|
}
|
384 |
|
|
else if ((op & 0xffff0000) == 0x60000000)
|
385 |
|
|
{
|
386 |
|
|
/* nop */
|
387 |
|
|
/* Allow nops in the prologue, but do not consider them to
|
388 |
|
|
be part of the prologue unless followed by other prologue
|
389 |
|
|
instructions. */
|
390 |
|
|
prev_insn_was_prologue_insn = 0;
|
391 |
|
|
continue;
|
392 |
|
|
|
393 |
|
|
}
|
394 |
|
|
else if ((op & 0xffff0000) == 0x3c000000)
|
395 |
|
|
{ /* addis 0,0,NUM, used
|
396 |
|
|
for >= 32k frames */
|
397 |
|
|
fdata->offset = (op & 0x0000ffff) << 16;
|
398 |
|
|
fdata->frameless = 0;
|
399 |
|
|
continue;
|
400 |
|
|
|
401 |
|
|
}
|
402 |
|
|
else if ((op & 0xffff0000) == 0x60000000)
|
403 |
|
|
{ /* ori 0,0,NUM, 2nd ha
|
404 |
|
|
lf of >= 32k frames */
|
405 |
|
|
fdata->offset |= (op & 0x0000ffff);
|
406 |
|
|
fdata->frameless = 0;
|
407 |
|
|
continue;
|
408 |
|
|
|
409 |
|
|
}
|
410 |
|
|
else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
|
411 |
|
|
{ /* st Rx,NUM(r1)
|
412 |
|
|
where Rx == lr */
|
413 |
|
|
fdata->lr_offset = SIGNED_SHORT (op) + offset;
|
414 |
|
|
fdata->nosavedpc = 0;
|
415 |
|
|
lr_reg = 0;
|
416 |
|
|
continue;
|
417 |
|
|
|
418 |
|
|
}
|
419 |
|
|
else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
|
420 |
|
|
{ /* st Rx,NUM(r1)
|
421 |
|
|
where Rx == cr */
|
422 |
|
|
fdata->cr_offset = SIGNED_SHORT (op) + offset;
|
423 |
|
|
cr_reg = 0;
|
424 |
|
|
continue;
|
425 |
|
|
|
426 |
|
|
}
|
427 |
|
|
else if (op == 0x48000005)
|
428 |
|
|
{ /* bl .+4 used in
|
429 |
|
|
-mrelocatable */
|
430 |
|
|
continue;
|
431 |
|
|
|
432 |
|
|
}
|
433 |
|
|
else if (op == 0x48000004)
|
434 |
|
|
{ /* b .+4 (xlc) */
|
435 |
|
|
break;
|
436 |
|
|
|
437 |
|
|
}
|
438 |
|
|
else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used
|
439 |
|
|
in V.4 -mrelocatable */
|
440 |
|
|
op == 0x7fc0f214) && /* add r30,r0,r30, used
|
441 |
|
|
in V.4 -mrelocatable */
|
442 |
|
|
lr_reg == 0x901e0000)
|
443 |
|
|
{
|
444 |
|
|
continue;
|
445 |
|
|
|
446 |
|
|
}
|
447 |
|
|
else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
|
448 |
|
|
in V.4 -mminimal-toc */
|
449 |
|
|
(op & 0xffff0000) == 0x3bde0000)
|
450 |
|
|
{ /* addi 30,30,foo@l */
|
451 |
|
|
continue;
|
452 |
|
|
|
453 |
|
|
}
|
454 |
|
|
else if ((op & 0xfc000001) == 0x48000001)
|
455 |
|
|
{ /* bl foo,
|
456 |
|
|
to save fprs??? */
|
457 |
|
|
|
458 |
|
|
fdata->frameless = 0;
|
459 |
|
|
/* Don't skip over the subroutine call if it is not within the first
|
460 |
|
|
three instructions of the prologue. */
|
461 |
|
|
if ((pc - orig_pc) > 8)
|
462 |
|
|
break;
|
463 |
|
|
|
464 |
|
|
op = read_memory_integer (pc + 4, 4);
|
465 |
|
|
|
466 |
|
|
/* At this point, make sure this is not a trampoline function
|
467 |
|
|
(a function that simply calls another functions, and nothing else).
|
468 |
|
|
If the next is not a nop, this branch was part of the function
|
469 |
|
|
prologue. */
|
470 |
|
|
|
471 |
|
|
if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
|
472 |
|
|
break; /* don't skip over
|
473 |
|
|
this branch */
|
474 |
|
|
continue;
|
475 |
|
|
|
476 |
|
|
/* update stack pointer */
|
477 |
|
|
}
|
478 |
|
|
else if ((op & 0xffff0000) == 0x94210000)
|
479 |
|
|
{ /* stu r1,NUM(r1) */
|
480 |
|
|
fdata->frameless = 0;
|
481 |
|
|
fdata->offset = SIGNED_SHORT (op);
|
482 |
|
|
offset = fdata->offset;
|
483 |
|
|
continue;
|
484 |
|
|
|
485 |
|
|
}
|
486 |
|
|
else if (op == 0x7c21016e)
|
487 |
|
|
{ /* stwux 1,1,0 */
|
488 |
|
|
fdata->frameless = 0;
|
489 |
|
|
offset = fdata->offset;
|
490 |
|
|
continue;
|
491 |
|
|
|
492 |
|
|
/* Load up minimal toc pointer */
|
493 |
|
|
}
|
494 |
|
|
else if ((op >> 22) == 0x20f
|
495 |
|
|
&& !minimal_toc_loaded)
|
496 |
|
|
{ /* l r31,... or l r30,... */
|
497 |
|
|
minimal_toc_loaded = 1;
|
498 |
|
|
continue;
|
499 |
|
|
|
500 |
|
|
/* move parameters from argument registers to local variable
|
501 |
|
|
registers */
|
502 |
|
|
}
|
503 |
|
|
else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
|
504 |
|
|
(((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
|
505 |
|
|
(((op >> 21) & 31) <= 10) &&
|
506 |
|
|
(((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
|
507 |
|
|
{
|
508 |
|
|
continue;
|
509 |
|
|
|
510 |
|
|
/* store parameters in stack */
|
511 |
|
|
}
|
512 |
|
|
else if ((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
|
513 |
|
|
(op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
|
514 |
|
|
(op & 0xfc1f0000) == 0xfc010000)
|
515 |
|
|
{ /* frsp, fp?,NUM(r1) */
|
516 |
|
|
continue;
|
517 |
|
|
|
518 |
|
|
/* store parameters in stack via frame pointer */
|
519 |
|
|
}
|
520 |
|
|
else if (framep &&
|
521 |
|
|
((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
|
522 |
|
|
(op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
|
523 |
|
|
(op & 0xfc1f0000) == 0xfc1f0000))
|
524 |
|
|
{ /* frsp, fp?,NUM(r1) */
|
525 |
|
|
continue;
|
526 |
|
|
|
527 |
|
|
/* Set up frame pointer */
|
528 |
|
|
}
|
529 |
|
|
else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
|
530 |
|
|
|| op == 0x7c3f0b78)
|
531 |
|
|
{ /* mr r31, r1 */
|
532 |
|
|
fdata->frameless = 0;
|
533 |
|
|
framep = 1;
|
534 |
|
|
fdata->alloca_reg = 31;
|
535 |
|
|
continue;
|
536 |
|
|
|
537 |
|
|
/* Another way to set up the frame pointer. */
|
538 |
|
|
}
|
539 |
|
|
else if ((op & 0xfc1fffff) == 0x38010000)
|
540 |
|
|
{ /* addi rX, r1, 0x0 */
|
541 |
|
|
fdata->frameless = 0;
|
542 |
|
|
framep = 1;
|
543 |
|
|
fdata->alloca_reg = (op & ~0x38010000) >> 21;
|
544 |
|
|
continue;
|
545 |
|
|
|
546 |
|
|
}
|
547 |
|
|
else
|
548 |
|
|
{
|
549 |
|
|
break;
|
550 |
|
|
}
|
551 |
|
|
}
|
552 |
|
|
|
553 |
|
|
#if 0
|
554 |
|
|
/* I have problems with skipping over __main() that I need to address
|
555 |
|
|
* sometime. Previously, I used to use misc_function_vector which
|
556 |
|
|
* didn't work as well as I wanted to be. -MGO */
|
557 |
|
|
|
558 |
|
|
/* If the first thing after skipping a prolog is a branch to a function,
|
559 |
|
|
this might be a call to an initializer in main(), introduced by gcc2.
|
560 |
|
|
We'd like to skip over it as well. Fortunately, xlc does some extra
|
561 |
|
|
work before calling a function right after a prologue, thus we can
|
562 |
|
|
single out such gcc2 behaviour. */
|
563 |
|
|
|
564 |
|
|
|
565 |
|
|
if ((op & 0xfc000001) == 0x48000001)
|
566 |
|
|
{ /* bl foo, an initializer function? */
|
567 |
|
|
op = read_memory_integer (pc + 4, 4);
|
568 |
|
|
|
569 |
|
|
if (op == 0x4def7b82)
|
570 |
|
|
{ /* cror 0xf, 0xf, 0xf (nop) */
|
571 |
|
|
|
572 |
|
|
/* check and see if we are in main. If so, skip over this initializer
|
573 |
|
|
function as well. */
|
574 |
|
|
|
575 |
|
|
tmp = find_pc_misc_function (pc);
|
576 |
|
|
if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, "main"))
|
577 |
|
|
return pc + 8;
|
578 |
|
|
}
|
579 |
|
|
}
|
580 |
|
|
#endif /* 0 */
|
581 |
|
|
|
582 |
|
|
fdata->offset = -fdata->offset;
|
583 |
|
|
return last_prologue_pc;
|
584 |
|
|
}
|
585 |
|
|
|
586 |
|
|
|
587 |
|
|
/*************************************************************************
|
588 |
|
|
Support for creating pushing a dummy frame into the stack, and popping
|
589 |
|
|
frames, etc.
|
590 |
|
|
*************************************************************************/
|
591 |
|
|
|
592 |
|
|
/* The total size of dummy frame is 436, which is;
|
593 |
|
|
|
594 |
|
|
32 gpr's - 128 bytes
|
595 |
|
|
32 fpr's - 256 bytes
|
596 |
|
|
7 the rest - 28 bytes
|
597 |
|
|
callee's link area - 24 bytes
|
598 |
|
|
padding - 12 bytes
|
599 |
|
|
|
600 |
|
|
Note that the last 24 bytes for the link area might not be necessary,
|
601 |
|
|
since it will be taken care of by push_arguments(). */
|
602 |
|
|
|
603 |
|
|
#define DUMMY_FRAME_SIZE 448
|
604 |
|
|
|
605 |
|
|
#define DUMMY_FRAME_ADDR_SIZE 10
|
606 |
|
|
|
607 |
|
|
/* Make sure you initialize these in somewhere, in case gdb gives up what it
|
608 |
|
|
was debugging and starts debugging something else. FIXMEibm */
|
609 |
|
|
|
610 |
|
|
static int dummy_frame_count = 0;
|
611 |
|
|
static int dummy_frame_size = 0;
|
612 |
|
|
static CORE_ADDR *dummy_frame_addr = 0;
|
613 |
|
|
|
614 |
|
|
extern int stop_stack_dummy;
|
615 |
|
|
|
616 |
|
|
/* push a dummy frame into stack, save all register. Currently we are saving
|
617 |
|
|
only gpr's and fpr's, which is not good enough! FIXMEmgo */
|
618 |
|
|
|
619 |
|
|
void
|
620 |
|
|
push_dummy_frame ()
|
621 |
|
|
{
|
622 |
|
|
/* stack pointer. */
|
623 |
|
|
CORE_ADDR sp;
|
624 |
|
|
/* Same thing, target byte order. */
|
625 |
|
|
char sp_targ[4];
|
626 |
|
|
|
627 |
|
|
/* link register. */
|
628 |
|
|
CORE_ADDR pc;
|
629 |
|
|
/* Same thing, target byte order. */
|
630 |
|
|
char pc_targ[4];
|
631 |
|
|
|
632 |
|
|
/* Needed to figure out where to save the dummy link area.
|
633 |
|
|
FIXME: There should be an easier way to do this, no? tiemann 9/9/95. */
|
634 |
|
|
struct rs6000_framedata fdata;
|
635 |
|
|
|
636 |
|
|
int ii;
|
637 |
|
|
|
638 |
|
|
target_fetch_registers (-1);
|
639 |
|
|
|
640 |
|
|
if (dummy_frame_count >= dummy_frame_size)
|
641 |
|
|
{
|
642 |
|
|
dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
|
643 |
|
|
if (dummy_frame_addr)
|
644 |
|
|
dummy_frame_addr = (CORE_ADDR *) xrealloc
|
645 |
|
|
(dummy_frame_addr, sizeof (CORE_ADDR) * (dummy_frame_size));
|
646 |
|
|
else
|
647 |
|
|
dummy_frame_addr = (CORE_ADDR *)
|
648 |
|
|
xmalloc (sizeof (CORE_ADDR) * (dummy_frame_size));
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
sp = read_register (SP_REGNUM);
|
652 |
|
|
pc = read_register (PC_REGNUM);
|
653 |
|
|
store_address (pc_targ, 4, pc);
|
654 |
|
|
|
655 |
|
|
skip_prologue (get_pc_function_start (pc), &fdata);
|
656 |
|
|
|
657 |
|
|
dummy_frame_addr[dummy_frame_count++] = sp;
|
658 |
|
|
|
659 |
|
|
/* Be careful! If the stack pointer is not decremented first, then kernel
|
660 |
|
|
thinks he is free to use the space underneath it. And kernel actually
|
661 |
|
|
uses that area for IPC purposes when executing ptrace(2) calls. So
|
662 |
|
|
before writing register values into the new frame, decrement and update
|
663 |
|
|
%sp first in order to secure your frame. */
|
664 |
|
|
|
665 |
|
|
/* FIXME: We don't check if the stack really has this much space.
|
666 |
|
|
This is a problem on the ppc simulator (which only grants one page
|
667 |
|
|
(4096 bytes) by default. */
|
668 |
|
|
|
669 |
|
|
write_register (SP_REGNUM, sp - DUMMY_FRAME_SIZE);
|
670 |
|
|
|
671 |
|
|
/* gdb relies on the state of current_frame. We'd better update it,
|
672 |
|
|
otherwise things like do_registers_info() wouldn't work properly! */
|
673 |
|
|
|
674 |
|
|
flush_cached_frames ();
|
675 |
|
|
|
676 |
|
|
/* save program counter in link register's space. */
|
677 |
|
|
write_memory (sp + (fdata.lr_offset ? fdata.lr_offset : DEFAULT_LR_SAVE),
|
678 |
|
|
pc_targ, 4);
|
679 |
|
|
|
680 |
|
|
/* save all floating point and general purpose registers here. */
|
681 |
|
|
|
682 |
|
|
/* fpr's, f0..f31 */
|
683 |
|
|
for (ii = 0; ii < 32; ++ii)
|
684 |
|
|
write_memory (sp - 8 - (ii * 8), ®isters[REGISTER_BYTE (31 - ii + FP0_REGNUM)], 8);
|
685 |
|
|
|
686 |
|
|
/* gpr's r0..r31 */
|
687 |
|
|
for (ii = 1; ii <= 32; ++ii)
|
688 |
|
|
write_memory (sp - 256 - (ii * 4), ®isters[REGISTER_BYTE (32 - ii)], 4);
|
689 |
|
|
|
690 |
|
|
/* so far, 32*2 + 32 words = 384 bytes have been written.
|
691 |
|
|
7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
|
692 |
|
|
|
693 |
|
|
for (ii = 1; ii <= (LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM + 1); ++ii)
|
694 |
|
|
{
|
695 |
|
|
write_memory (sp - 384 - (ii * 4),
|
696 |
|
|
®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
/* Save sp or so called back chain right here. */
|
700 |
|
|
store_address (sp_targ, 4, sp);
|
701 |
|
|
write_memory (sp - DUMMY_FRAME_SIZE, sp_targ, 4);
|
702 |
|
|
sp -= DUMMY_FRAME_SIZE;
|
703 |
|
|
|
704 |
|
|
/* And finally, this is the back chain. */
|
705 |
|
|
write_memory (sp + 8, pc_targ, 4);
|
706 |
|
|
}
|
707 |
|
|
|
708 |
|
|
|
709 |
|
|
/* Pop a dummy frame.
|
710 |
|
|
|
711 |
|
|
In rs6000 when we push a dummy frame, we save all of the registers. This
|
712 |
|
|
is usually done before user calls a function explicitly.
|
713 |
|
|
|
714 |
|
|
After a dummy frame is pushed, some instructions are copied into stack,
|
715 |
|
|
and stack pointer is decremented even more. Since we don't have a frame
|
716 |
|
|
pointer to get back to the parent frame of the dummy, we start having
|
717 |
|
|
trouble poping it. Therefore, we keep a dummy frame stack, keeping
|
718 |
|
|
addresses of dummy frames as such. When poping happens and when we
|
719 |
|
|
detect that was a dummy frame, we pop it back to its parent by using
|
720 |
|
|
dummy frame stack (`dummy_frame_addr' array).
|
721 |
|
|
|
722 |
|
|
FIXME: This whole concept is broken. You should be able to detect
|
723 |
|
|
a dummy stack frame *on the user's stack itself*. When you do,
|
724 |
|
|
then you know the format of that stack frame -- including its
|
725 |
|
|
saved SP register! There should *not* be a separate stack in the
|
726 |
|
|
GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
|
727 |
|
|
*/
|
728 |
|
|
|
729 |
|
|
static void
|
730 |
|
|
pop_dummy_frame ()
|
731 |
|
|
{
|
732 |
|
|
CORE_ADDR sp, pc;
|
733 |
|
|
int ii;
|
734 |
|
|
sp = dummy_frame_addr[--dummy_frame_count];
|
735 |
|
|
|
736 |
|
|
/* restore all fpr's. */
|
737 |
|
|
for (ii = 1; ii <= 32; ++ii)
|
738 |
|
|
read_memory (sp - (ii * 8), ®isters[REGISTER_BYTE (32 - ii + FP0_REGNUM)], 8);
|
739 |
|
|
|
740 |
|
|
/* restore all gpr's */
|
741 |
|
|
for (ii = 1; ii <= 32; ++ii)
|
742 |
|
|
{
|
743 |
|
|
read_memory (sp - 256 - (ii * 4), ®isters[REGISTER_BYTE (32 - ii)], 4);
|
744 |
|
|
}
|
745 |
|
|
|
746 |
|
|
/* restore the rest of the registers. */
|
747 |
|
|
for (ii = 1; ii <= (LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM + 1); ++ii)
|
748 |
|
|
read_memory (sp - 384 - (ii * 4),
|
749 |
|
|
®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
|
750 |
|
|
|
751 |
|
|
read_memory (sp - (DUMMY_FRAME_SIZE - 8),
|
752 |
|
|
®isters[REGISTER_BYTE (PC_REGNUM)], 4);
|
753 |
|
|
|
754 |
|
|
/* when a dummy frame was being pushed, we had to decrement %sp first, in
|
755 |
|
|
order to secure astack space. Thus, saved %sp (or %r1) value, is not the
|
756 |
|
|
one we should restore. Change it with the one we need. */
|
757 |
|
|
|
758 |
|
|
memcpy (®isters[REGISTER_BYTE (FP_REGNUM)], (char *) &sp, sizeof (int));
|
759 |
|
|
|
760 |
|
|
/* Now we can restore all registers. */
|
761 |
|
|
|
762 |
|
|
target_store_registers (-1);
|
763 |
|
|
pc = read_pc ();
|
764 |
|
|
flush_cached_frames ();
|
765 |
|
|
}
|
766 |
|
|
|
767 |
|
|
|
768 |
|
|
/* pop the innermost frame, go back to the caller. */
|
769 |
|
|
|
770 |
|
|
void
|
771 |
|
|
pop_frame ()
|
772 |
|
|
{
|
773 |
|
|
CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
|
774 |
|
|
struct rs6000_framedata fdata;
|
775 |
|
|
struct frame_info *frame = get_current_frame ();
|
776 |
|
|
int addr, ii;
|
777 |
|
|
|
778 |
|
|
pc = read_pc ();
|
779 |
|
|
sp = FRAME_FP (frame);
|
780 |
|
|
|
781 |
|
|
if (stop_stack_dummy)
|
782 |
|
|
{
|
783 |
|
|
if (USE_GENERIC_DUMMY_FRAMES)
|
784 |
|
|
{
|
785 |
|
|
generic_pop_dummy_frame ();
|
786 |
|
|
flush_cached_frames ();
|
787 |
|
|
return;
|
788 |
|
|
}
|
789 |
|
|
else
|
790 |
|
|
{
|
791 |
|
|
if (dummy_frame_count)
|
792 |
|
|
pop_dummy_frame ();
|
793 |
|
|
return;
|
794 |
|
|
}
|
795 |
|
|
}
|
796 |
|
|
|
797 |
|
|
/* Make sure that all registers are valid. */
|
798 |
|
|
read_register_bytes (0, NULL, REGISTER_BYTES);
|
799 |
|
|
|
800 |
|
|
/* figure out previous %pc value. If the function is frameless, it is
|
801 |
|
|
still in the link register, otherwise walk the frames and retrieve the
|
802 |
|
|
saved %pc value in the previous frame. */
|
803 |
|
|
|
804 |
|
|
addr = get_pc_function_start (frame->pc);
|
805 |
|
|
(void) skip_prologue (addr, &fdata);
|
806 |
|
|
|
807 |
|
|
if (fdata.frameless)
|
808 |
|
|
prev_sp = sp;
|
809 |
|
|
else
|
810 |
|
|
prev_sp = read_memory_integer (sp, 4);
|
811 |
|
|
if (fdata.lr_offset == 0)
|
812 |
|
|
lr = read_register (LR_REGNUM);
|
813 |
|
|
else
|
814 |
|
|
lr = read_memory_integer (prev_sp + fdata.lr_offset, 4);
|
815 |
|
|
|
816 |
|
|
/* reset %pc value. */
|
817 |
|
|
write_register (PC_REGNUM, lr);
|
818 |
|
|
|
819 |
|
|
/* reset register values if any was saved earlier. */
|
820 |
|
|
|
821 |
|
|
if (fdata.saved_gpr != -1)
|
822 |
|
|
{
|
823 |
|
|
addr = prev_sp + fdata.gpr_offset;
|
824 |
|
|
for (ii = fdata.saved_gpr; ii <= 31; ++ii)
|
825 |
|
|
{
|
826 |
|
|
read_memory (addr, ®isters[REGISTER_BYTE (ii)], 4);
|
827 |
|
|
addr += 4;
|
828 |
|
|
}
|
829 |
|
|
}
|
830 |
|
|
|
831 |
|
|
if (fdata.saved_fpr != -1)
|
832 |
|
|
{
|
833 |
|
|
addr = prev_sp + fdata.fpr_offset;
|
834 |
|
|
for (ii = fdata.saved_fpr; ii <= 31; ++ii)
|
835 |
|
|
{
|
836 |
|
|
read_memory (addr, ®isters[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
|
837 |
|
|
addr += 8;
|
838 |
|
|
}
|
839 |
|
|
}
|
840 |
|
|
|
841 |
|
|
write_register (SP_REGNUM, prev_sp);
|
842 |
|
|
target_store_registers (-1);
|
843 |
|
|
flush_cached_frames ();
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
/* fixup the call sequence of a dummy function, with the real function address.
|
847 |
|
|
its argumets will be passed by gdb. */
|
848 |
|
|
|
849 |
|
|
void
|
850 |
|
|
rs6000_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
|
851 |
|
|
char *dummyname;
|
852 |
|
|
CORE_ADDR pc;
|
853 |
|
|
CORE_ADDR fun;
|
854 |
|
|
int nargs;
|
855 |
|
|
value_ptr *args;
|
856 |
|
|
struct type *type;
|
857 |
|
|
int gcc_p;
|
858 |
|
|
{
|
859 |
|
|
#define TOC_ADDR_OFFSET 20
|
860 |
|
|
#define TARGET_ADDR_OFFSET 28
|
861 |
|
|
|
862 |
|
|
int ii;
|
863 |
|
|
CORE_ADDR target_addr;
|
864 |
|
|
|
865 |
|
|
if (USE_GENERIC_DUMMY_FRAMES)
|
866 |
|
|
{
|
867 |
|
|
if (find_toc_address_hook != NULL)
|
868 |
|
|
{
|
869 |
|
|
CORE_ADDR tocvalue = (*find_toc_address_hook) (fun);
|
870 |
|
|
write_register (TOC_REGNUM, tocvalue);
|
871 |
|
|
}
|
872 |
|
|
}
|
873 |
|
|
else
|
874 |
|
|
{
|
875 |
|
|
if (find_toc_address_hook != NULL)
|
876 |
|
|
{
|
877 |
|
|
CORE_ADDR tocvalue;
|
878 |
|
|
|
879 |
|
|
tocvalue = (*find_toc_address_hook) (fun);
|
880 |
|
|
ii = *(int *) ((char *) dummyname + TOC_ADDR_OFFSET);
|
881 |
|
|
ii = (ii & 0xffff0000) | (tocvalue >> 16);
|
882 |
|
|
*(int *) ((char *) dummyname + TOC_ADDR_OFFSET) = ii;
|
883 |
|
|
|
884 |
|
|
ii = *(int *) ((char *) dummyname + TOC_ADDR_OFFSET + 4);
|
885 |
|
|
ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
|
886 |
|
|
*(int *) ((char *) dummyname + TOC_ADDR_OFFSET + 4) = ii;
|
887 |
|
|
}
|
888 |
|
|
|
889 |
|
|
target_addr = fun;
|
890 |
|
|
ii = *(int *) ((char *) dummyname + TARGET_ADDR_OFFSET);
|
891 |
|
|
ii = (ii & 0xffff0000) | (target_addr >> 16);
|
892 |
|
|
*(int *) ((char *) dummyname + TARGET_ADDR_OFFSET) = ii;
|
893 |
|
|
|
894 |
|
|
ii = *(int *) ((char *) dummyname + TARGET_ADDR_OFFSET + 4);
|
895 |
|
|
ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
|
896 |
|
|
*(int *) ((char *) dummyname + TARGET_ADDR_OFFSET + 4) = ii;
|
897 |
|
|
}
|
898 |
|
|
}
|
899 |
|
|
|
900 |
|
|
/* Pass the arguments in either registers, or in the stack. In RS6000,
|
901 |
|
|
the first eight words of the argument list (that might be less than
|
902 |
|
|
eight parameters if some parameters occupy more than one word) are
|
903 |
|
|
passed in r3..r11 registers. float and double parameters are
|
904 |
|
|
passed in fpr's, in addition to that. Rest of the parameters if any
|
905 |
|
|
are passed in user stack. There might be cases in which half of the
|
906 |
|
|
parameter is copied into registers, the other half is pushed into
|
907 |
|
|
stack.
|
908 |
|
|
|
909 |
|
|
If the function is returning a structure, then the return address is passed
|
910 |
|
|
in r3, then the first 7 words of the parameters can be passed in registers,
|
911 |
|
|
starting from r4. */
|
912 |
|
|
|
913 |
|
|
CORE_ADDR
|
914 |
|
|
rs6000_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
915 |
|
|
int nargs;
|
916 |
|
|
value_ptr *args;
|
917 |
|
|
CORE_ADDR sp;
|
918 |
|
|
int struct_return;
|
919 |
|
|
CORE_ADDR struct_addr;
|
920 |
|
|
{
|
921 |
|
|
int ii;
|
922 |
|
|
int len = 0;
|
923 |
|
|
int argno; /* current argument number */
|
924 |
|
|
int argbytes; /* current argument byte */
|
925 |
|
|
char tmp_buffer[50];
|
926 |
|
|
int f_argno = 0; /* current floating point argno */
|
927 |
|
|
|
928 |
|
|
value_ptr arg = 0;
|
929 |
|
|
struct type *type;
|
930 |
|
|
|
931 |
|
|
CORE_ADDR saved_sp;
|
932 |
|
|
|
933 |
|
|
if (!USE_GENERIC_DUMMY_FRAMES)
|
934 |
|
|
{
|
935 |
|
|
if (dummy_frame_count <= 0)
|
936 |
|
|
printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n");
|
937 |
|
|
}
|
938 |
|
|
|
939 |
|
|
/* The first eight words of ther arguments are passed in registers. Copy
|
940 |
|
|
them appropriately.
|
941 |
|
|
|
942 |
|
|
If the function is returning a `struct', then the first word (which
|
943 |
|
|
will be passed in r3) is used for struct return address. In that
|
944 |
|
|
case we should advance one word and start from r4 register to copy
|
945 |
|
|
parameters. */
|
946 |
|
|
|
947 |
|
|
ii = struct_return ? 1 : 0;
|
948 |
|
|
|
949 |
|
|
/*
|
950 |
|
|
effectively indirect call... gcc does...
|
951 |
|
|
|
952 |
|
|
return_val example( float, int);
|
953 |
|
|
|
954 |
|
|
eabi:
|
955 |
|
|
float in fp0, int in r3
|
956 |
|
|
offset of stack on overflow 8/16
|
957 |
|
|
for varargs, must go by type.
|
958 |
|
|
power open:
|
959 |
|
|
float in r3&r4, int in r5
|
960 |
|
|
offset of stack on overflow different
|
961 |
|
|
both:
|
962 |
|
|
return in r3 or f0. If no float, must study how gcc emulates floats;
|
963 |
|
|
pay attention to arg promotion.
|
964 |
|
|
User may have to cast\args to handle promotion correctly
|
965 |
|
|
since gdb won't know if prototype supplied or not.
|
966 |
|
|
*/
|
967 |
|
|
|
968 |
|
|
for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
|
969 |
|
|
{
|
970 |
|
|
int reg_size = REGISTER_RAW_SIZE (ii + 3);
|
971 |
|
|
|
972 |
|
|
arg = args[argno];
|
973 |
|
|
type = check_typedef (VALUE_TYPE (arg));
|
974 |
|
|
len = TYPE_LENGTH (type);
|
975 |
|
|
|
976 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
977 |
|
|
{
|
978 |
|
|
|
979 |
|
|
/* floating point arguments are passed in fpr's, as well as gpr's.
|
980 |
|
|
There are 13 fpr's reserved for passing parameters. At this point
|
981 |
|
|
there is no way we would run out of them. */
|
982 |
|
|
|
983 |
|
|
if (len > 8)
|
984 |
|
|
printf_unfiltered (
|
985 |
|
|
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
|
986 |
|
|
|
987 |
|
|
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
|
988 |
|
|
VALUE_CONTENTS (arg),
|
989 |
|
|
len);
|
990 |
|
|
++f_argno;
|
991 |
|
|
}
|
992 |
|
|
|
993 |
|
|
if (len > reg_size)
|
994 |
|
|
{
|
995 |
|
|
|
996 |
|
|
/* Argument takes more than one register. */
|
997 |
|
|
while (argbytes < len)
|
998 |
|
|
{
|
999 |
|
|
memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size);
|
1000 |
|
|
memcpy (®isters[REGISTER_BYTE (ii + 3)],
|
1001 |
|
|
((char *) VALUE_CONTENTS (arg)) + argbytes,
|
1002 |
|
|
(len - argbytes) > reg_size
|
1003 |
|
|
? reg_size : len - argbytes);
|
1004 |
|
|
++ii, argbytes += reg_size;
|
1005 |
|
|
|
1006 |
|
|
if (ii >= 8)
|
1007 |
|
|
goto ran_out_of_registers_for_arguments;
|
1008 |
|
|
}
|
1009 |
|
|
argbytes = 0;
|
1010 |
|
|
--ii;
|
1011 |
|
|
}
|
1012 |
|
|
else
|
1013 |
|
|
{ /* Argument can fit in one register. No problem. */
|
1014 |
|
|
int adj = TARGET_BYTE_ORDER == BIG_ENDIAN ? reg_size - len : 0;
|
1015 |
|
|
memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size);
|
1016 |
|
|
memcpy ((char *)®isters[REGISTER_BYTE (ii + 3)] + adj,
|
1017 |
|
|
VALUE_CONTENTS (arg), len);
|
1018 |
|
|
}
|
1019 |
|
|
++argno;
|
1020 |
|
|
}
|
1021 |
|
|
|
1022 |
|
|
ran_out_of_registers_for_arguments:
|
1023 |
|
|
|
1024 |
|
|
if (USE_GENERIC_DUMMY_FRAMES)
|
1025 |
|
|
{
|
1026 |
|
|
saved_sp = read_sp ();
|
1027 |
|
|
#ifndef ELF_OBJECT_FORMAT
|
1028 |
|
|
/* location for 8 parameters are always reserved. */
|
1029 |
|
|
sp -= 4 * 8;
|
1030 |
|
|
|
1031 |
|
|
/* another six words for back chain, TOC register, link register, etc. */
|
1032 |
|
|
sp -= 24;
|
1033 |
|
|
|
1034 |
|
|
/* stack pointer must be quadword aligned */
|
1035 |
|
|
sp &= -16;
|
1036 |
|
|
#endif
|
1037 |
|
|
}
|
1038 |
|
|
else
|
1039 |
|
|
{
|
1040 |
|
|
/* location for 8 parameters are always reserved. */
|
1041 |
|
|
sp -= 4 * 8;
|
1042 |
|
|
|
1043 |
|
|
/* another six words for back chain, TOC register, link register, etc. */
|
1044 |
|
|
sp -= 24;
|
1045 |
|
|
|
1046 |
|
|
/* stack pointer must be quadword aligned */
|
1047 |
|
|
sp &= -16;
|
1048 |
|
|
}
|
1049 |
|
|
|
1050 |
|
|
/* if there are more arguments, allocate space for them in
|
1051 |
|
|
the stack, then push them starting from the ninth one. */
|
1052 |
|
|
|
1053 |
|
|
if ((argno < nargs) || argbytes)
|
1054 |
|
|
{
|
1055 |
|
|
int space = 0, jj;
|
1056 |
|
|
|
1057 |
|
|
if (argbytes)
|
1058 |
|
|
{
|
1059 |
|
|
space += ((len - argbytes + 3) & -4);
|
1060 |
|
|
jj = argno + 1;
|
1061 |
|
|
}
|
1062 |
|
|
else
|
1063 |
|
|
jj = argno;
|
1064 |
|
|
|
1065 |
|
|
for (; jj < nargs; ++jj)
|
1066 |
|
|
{
|
1067 |
|
|
value_ptr val = args[jj];
|
1068 |
|
|
space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
|
1069 |
|
|
}
|
1070 |
|
|
|
1071 |
|
|
/* add location required for the rest of the parameters */
|
1072 |
|
|
space = (space + 15) & -16;
|
1073 |
|
|
sp -= space;
|
1074 |
|
|
|
1075 |
|
|
/* This is another instance we need to be concerned about securing our
|
1076 |
|
|
stack space. If we write anything underneath %sp (r1), we might conflict
|
1077 |
|
|
with the kernel who thinks he is free to use this area. So, update %sp
|
1078 |
|
|
first before doing anything else. */
|
1079 |
|
|
|
1080 |
|
|
write_register (SP_REGNUM, sp);
|
1081 |
|
|
|
1082 |
|
|
/* if the last argument copied into the registers didn't fit there
|
1083 |
|
|
completely, push the rest of it into stack. */
|
1084 |
|
|
|
1085 |
|
|
if (argbytes)
|
1086 |
|
|
{
|
1087 |
|
|
write_memory (sp + 24 + (ii * 4),
|
1088 |
|
|
((char *) VALUE_CONTENTS (arg)) + argbytes,
|
1089 |
|
|
len - argbytes);
|
1090 |
|
|
++argno;
|
1091 |
|
|
ii += ((len - argbytes + 3) & -4) / 4;
|
1092 |
|
|
}
|
1093 |
|
|
|
1094 |
|
|
/* push the rest of the arguments into stack. */
|
1095 |
|
|
for (; argno < nargs; ++argno)
|
1096 |
|
|
{
|
1097 |
|
|
|
1098 |
|
|
arg = args[argno];
|
1099 |
|
|
type = check_typedef (VALUE_TYPE (arg));
|
1100 |
|
|
len = TYPE_LENGTH (type);
|
1101 |
|
|
|
1102 |
|
|
|
1103 |
|
|
/* float types should be passed in fpr's, as well as in the stack. */
|
1104 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
|
1105 |
|
|
{
|
1106 |
|
|
|
1107 |
|
|
if (len > 8)
|
1108 |
|
|
printf_unfiltered (
|
1109 |
|
|
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
|
1110 |
|
|
|
1111 |
|
|
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
|
1112 |
|
|
VALUE_CONTENTS (arg),
|
1113 |
|
|
len);
|
1114 |
|
|
++f_argno;
|
1115 |
|
|
}
|
1116 |
|
|
|
1117 |
|
|
write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
|
1118 |
|
|
ii += ((len + 3) & -4) / 4;
|
1119 |
|
|
}
|
1120 |
|
|
}
|
1121 |
|
|
else
|
1122 |
|
|
/* Secure stack areas first, before doing anything else. */
|
1123 |
|
|
write_register (SP_REGNUM, sp);
|
1124 |
|
|
|
1125 |
|
|
if (!USE_GENERIC_DUMMY_FRAMES)
|
1126 |
|
|
{
|
1127 |
|
|
/* we want to copy 24 bytes of target's frame to dummy's frame,
|
1128 |
|
|
then set back chain to point to new frame. */
|
1129 |
|
|
|
1130 |
|
|
saved_sp = dummy_frame_addr[dummy_frame_count - 1];
|
1131 |
|
|
read_memory (saved_sp, tmp_buffer, 24);
|
1132 |
|
|
write_memory (sp, tmp_buffer, 24);
|
1133 |
|
|
}
|
1134 |
|
|
|
1135 |
|
|
/* set back chain properly */
|
1136 |
|
|
store_address (tmp_buffer, 4, saved_sp);
|
1137 |
|
|
write_memory (sp, tmp_buffer, 4);
|
1138 |
|
|
|
1139 |
|
|
target_store_registers (-1);
|
1140 |
|
|
return sp;
|
1141 |
|
|
}
|
1142 |
|
|
/* #ifdef ELF_OBJECT_FORMAT */
|
1143 |
|
|
|
1144 |
|
|
/* Function: ppc_push_return_address (pc, sp)
|
1145 |
|
|
Set up the return address for the inferior function call. */
|
1146 |
|
|
|
1147 |
|
|
CORE_ADDR
|
1148 |
|
|
ppc_push_return_address (pc, sp)
|
1149 |
|
|
CORE_ADDR pc;
|
1150 |
|
|
CORE_ADDR sp;
|
1151 |
|
|
{
|
1152 |
|
|
write_register (LR_REGNUM, CALL_DUMMY_ADDRESS ());
|
1153 |
|
|
return sp;
|
1154 |
|
|
}
|
1155 |
|
|
|
1156 |
|
|
/* #endif */
|
1157 |
|
|
|
1158 |
|
|
/* a given return value in `regbuf' with a type `valtype', extract and copy its
|
1159 |
|
|
value into `valbuf' */
|
1160 |
|
|
|
1161 |
|
|
void
|
1162 |
|
|
extract_return_value (valtype, regbuf, valbuf)
|
1163 |
|
|
struct type *valtype;
|
1164 |
|
|
char regbuf[REGISTER_BYTES];
|
1165 |
|
|
char *valbuf;
|
1166 |
|
|
{
|
1167 |
|
|
int offset = 0;
|
1168 |
|
|
|
1169 |
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
1170 |
|
|
{
|
1171 |
|
|
|
1172 |
|
|
double dd;
|
1173 |
|
|
float ff;
|
1174 |
|
|
/* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
|
1175 |
|
|
We need to truncate the return value into float size (4 byte) if
|
1176 |
|
|
necessary. */
|
1177 |
|
|
|
1178 |
|
|
if (TYPE_LENGTH (valtype) > 4) /* this is a double */
|
1179 |
|
|
memcpy (valbuf,
|
1180 |
|
|
®buf[REGISTER_BYTE (FP0_REGNUM + 1)],
|
1181 |
|
|
TYPE_LENGTH (valtype));
|
1182 |
|
|
else
|
1183 |
|
|
{ /* float */
|
1184 |
|
|
memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
|
1185 |
|
|
ff = (float) dd;
|
1186 |
|
|
memcpy (valbuf, &ff, sizeof (float));
|
1187 |
|
|
}
|
1188 |
|
|
}
|
1189 |
|
|
else
|
1190 |
|
|
{
|
1191 |
|
|
/* return value is copied starting from r3. */
|
1192 |
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN
|
1193 |
|
|
&& TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
|
1194 |
|
|
offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
|
1195 |
|
|
|
1196 |
|
|
memcpy (valbuf,
|
1197 |
|
|
regbuf + REGISTER_BYTE (3) + offset,
|
1198 |
|
|
TYPE_LENGTH (valtype));
|
1199 |
|
|
}
|
1200 |
|
|
}
|
1201 |
|
|
|
1202 |
|
|
|
1203 |
|
|
/* keep structure return address in this variable.
|
1204 |
|
|
FIXME: This is a horrid kludge which should not be allowed to continue
|
1205 |
|
|
living. This only allows a single nested call to a structure-returning
|
1206 |
|
|
function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
|
1207 |
|
|
|
1208 |
|
|
CORE_ADDR rs6000_struct_return_address;
|
1209 |
|
|
|
1210 |
|
|
|
1211 |
|
|
/* Indirect function calls use a piece of trampoline code to do context
|
1212 |
|
|
switching, i.e. to set the new TOC table. Skip such code if we are on
|
1213 |
|
|
its first instruction (as when we have single-stepped to here).
|
1214 |
|
|
Also skip shared library trampoline code (which is different from
|
1215 |
|
|
indirect function call trampolines).
|
1216 |
|
|
Result is desired PC to step until, or NULL if we are not in
|
1217 |
|
|
trampoline code. */
|
1218 |
|
|
|
1219 |
|
|
CORE_ADDR
|
1220 |
|
|
skip_trampoline_code (pc)
|
1221 |
|
|
CORE_ADDR pc;
|
1222 |
|
|
{
|
1223 |
|
|
register unsigned int ii, op;
|
1224 |
|
|
CORE_ADDR solib_target_pc;
|
1225 |
|
|
|
1226 |
|
|
static unsigned trampoline_code[] =
|
1227 |
|
|
{
|
1228 |
|
|
0x800b0000, /* l r0,0x0(r11) */
|
1229 |
|
|
0x90410014, /* st r2,0x14(r1) */
|
1230 |
|
|
0x7c0903a6, /* mtctr r0 */
|
1231 |
|
|
0x804b0004, /* l r2,0x4(r11) */
|
1232 |
|
|
0x816b0008, /* l r11,0x8(r11) */
|
1233 |
|
|
0x4e800420, /* bctr */
|
1234 |
|
|
0x4e800020, /* br */
|
1235 |
|
|
|
1236 |
|
|
};
|
1237 |
|
|
|
1238 |
|
|
/* If pc is in a shared library trampoline, return its target. */
|
1239 |
|
|
solib_target_pc = find_solib_trampoline_target (pc);
|
1240 |
|
|
if (solib_target_pc)
|
1241 |
|
|
return solib_target_pc;
|
1242 |
|
|
|
1243 |
|
|
for (ii = 0; trampoline_code[ii]; ++ii)
|
1244 |
|
|
{
|
1245 |
|
|
op = read_memory_integer (pc + (ii * 4), 4);
|
1246 |
|
|
if (op != trampoline_code[ii])
|
1247 |
|
|
return 0;
|
1248 |
|
|
}
|
1249 |
|
|
ii = read_register (11); /* r11 holds destination addr */
|
1250 |
|
|
pc = read_memory_integer (ii, 4); /* (r11) value */
|
1251 |
|
|
return pc;
|
1252 |
|
|
}
|
1253 |
|
|
|
1254 |
|
|
/* Determines whether the function FI has a frame on the stack or not. */
|
1255 |
|
|
|
1256 |
|
|
int
|
1257 |
|
|
rs6000_frameless_function_invocation (struct frame_info *fi)
|
1258 |
|
|
{
|
1259 |
|
|
CORE_ADDR func_start;
|
1260 |
|
|
struct rs6000_framedata fdata;
|
1261 |
|
|
|
1262 |
|
|
/* Don't even think about framelessness except on the innermost frame
|
1263 |
|
|
or if the function was interrupted by a signal. */
|
1264 |
|
|
if (fi->next != NULL && !fi->next->signal_handler_caller)
|
1265 |
|
|
return 0;
|
1266 |
|
|
|
1267 |
|
|
func_start = get_pc_function_start (fi->pc);
|
1268 |
|
|
|
1269 |
|
|
/* If we failed to find the start of the function, it is a mistake
|
1270 |
|
|
to inspect the instructions. */
|
1271 |
|
|
|
1272 |
|
|
if (!func_start)
|
1273 |
|
|
{
|
1274 |
|
|
/* A frame with a zero PC is usually created by dereferencing a NULL
|
1275 |
|
|
function pointer, normally causing an immediate core dump of the
|
1276 |
|
|
inferior. Mark function as frameless, as the inferior has no chance
|
1277 |
|
|
of setting up a stack frame. */
|
1278 |
|
|
if (fi->pc == 0)
|
1279 |
|
|
return 1;
|
1280 |
|
|
else
|
1281 |
|
|
return 0;
|
1282 |
|
|
}
|
1283 |
|
|
|
1284 |
|
|
(void) skip_prologue (func_start, &fdata);
|
1285 |
|
|
return fdata.frameless;
|
1286 |
|
|
}
|
1287 |
|
|
|
1288 |
|
|
/* Return the PC saved in a frame */
|
1289 |
|
|
|
1290 |
|
|
unsigned long
|
1291 |
|
|
rs6000_frame_saved_pc (struct frame_info *fi)
|
1292 |
|
|
{
|
1293 |
|
|
CORE_ADDR func_start;
|
1294 |
|
|
struct rs6000_framedata fdata;
|
1295 |
|
|
|
1296 |
|
|
if (fi->signal_handler_caller)
|
1297 |
|
|
return read_memory_integer (fi->frame + SIG_FRAME_PC_OFFSET, 4);
|
1298 |
|
|
|
1299 |
|
|
if (USE_GENERIC_DUMMY_FRAMES)
|
1300 |
|
|
{
|
1301 |
|
|
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
1302 |
|
|
return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
|
1303 |
|
|
}
|
1304 |
|
|
|
1305 |
|
|
func_start = get_pc_function_start (fi->pc);
|
1306 |
|
|
|
1307 |
|
|
/* If we failed to find the start of the function, it is a mistake
|
1308 |
|
|
to inspect the instructions. */
|
1309 |
|
|
if (!func_start)
|
1310 |
|
|
return 0;
|
1311 |
|
|
|
1312 |
|
|
(void) skip_prologue (func_start, &fdata);
|
1313 |
|
|
|
1314 |
|
|
if (fdata.lr_offset == 0 && fi->next != NULL)
|
1315 |
|
|
{
|
1316 |
|
|
if (fi->next->signal_handler_caller)
|
1317 |
|
|
return read_memory_integer (fi->next->frame + SIG_FRAME_LR_OFFSET, 4);
|
1318 |
|
|
else
|
1319 |
|
|
return read_memory_integer (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE, 4);
|
1320 |
|
|
}
|
1321 |
|
|
|
1322 |
|
|
if (fdata.lr_offset == 0)
|
1323 |
|
|
return read_register (LR_REGNUM);
|
1324 |
|
|
|
1325 |
|
|
return read_memory_integer (FRAME_CHAIN (fi) + fdata.lr_offset, 4);
|
1326 |
|
|
}
|
1327 |
|
|
|
1328 |
|
|
/* If saved registers of frame FI are not known yet, read and cache them.
|
1329 |
|
|
&FDATAP contains rs6000_framedata; TDATAP can be NULL,
|
1330 |
|
|
in which case the framedata are read. */
|
1331 |
|
|
|
1332 |
|
|
static void
|
1333 |
|
|
frame_get_saved_regs (fi, fdatap)
|
1334 |
|
|
struct frame_info *fi;
|
1335 |
|
|
struct rs6000_framedata *fdatap;
|
1336 |
|
|
{
|
1337 |
|
|
CORE_ADDR frame_addr;
|
1338 |
|
|
struct rs6000_framedata work_fdata;
|
1339 |
|
|
|
1340 |
|
|
if (fi->saved_regs)
|
1341 |
|
|
return;
|
1342 |
|
|
|
1343 |
|
|
if (fdatap == NULL)
|
1344 |
|
|
{
|
1345 |
|
|
fdatap = &work_fdata;
|
1346 |
|
|
(void) skip_prologue (get_pc_function_start (fi->pc), fdatap);
|
1347 |
|
|
}
|
1348 |
|
|
|
1349 |
|
|
frame_saved_regs_zalloc (fi);
|
1350 |
|
|
|
1351 |
|
|
/* If there were any saved registers, figure out parent's stack
|
1352 |
|
|
pointer. */
|
1353 |
|
|
/* The following is true only if the frame doesn't have a call to
|
1354 |
|
|
alloca(), FIXME. */
|
1355 |
|
|
|
1356 |
|
|
if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0
|
1357 |
|
|
&& fdatap->lr_offset == 0 && fdatap->cr_offset == 0)
|
1358 |
|
|
frame_addr = 0;
|
1359 |
|
|
else if (fi->prev && fi->prev->frame)
|
1360 |
|
|
frame_addr = fi->prev->frame;
|
1361 |
|
|
else
|
1362 |
|
|
frame_addr = read_memory_integer (fi->frame, 4);
|
1363 |
|
|
|
1364 |
|
|
/* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
|
1365 |
|
|
All fpr's from saved_fpr to fp31 are saved. */
|
1366 |
|
|
|
1367 |
|
|
if (fdatap->saved_fpr >= 0)
|
1368 |
|
|
{
|
1369 |
|
|
int i;
|
1370 |
|
|
int fpr_offset = frame_addr + fdatap->fpr_offset;
|
1371 |
|
|
for (i = fdatap->saved_fpr; i < 32; i++)
|
1372 |
|
|
{
|
1373 |
|
|
fi->saved_regs[FP0_REGNUM + i] = fpr_offset;
|
1374 |
|
|
fpr_offset += 8;
|
1375 |
|
|
}
|
1376 |
|
|
}
|
1377 |
|
|
|
1378 |
|
|
/* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
|
1379 |
|
|
All gpr's from saved_gpr to gpr31 are saved. */
|
1380 |
|
|
|
1381 |
|
|
if (fdatap->saved_gpr >= 0)
|
1382 |
|
|
{
|
1383 |
|
|
int i;
|
1384 |
|
|
int gpr_offset = frame_addr + fdatap->gpr_offset;
|
1385 |
|
|
for (i = fdatap->saved_gpr; i < 32; i++)
|
1386 |
|
|
{
|
1387 |
|
|
fi->saved_regs[i] = gpr_offset;
|
1388 |
|
|
gpr_offset += 4;
|
1389 |
|
|
}
|
1390 |
|
|
}
|
1391 |
|
|
|
1392 |
|
|
/* If != 0, fdatap->cr_offset is the offset from the frame that holds
|
1393 |
|
|
the CR. */
|
1394 |
|
|
if (fdatap->cr_offset != 0)
|
1395 |
|
|
fi->saved_regs[CR_REGNUM] = frame_addr + fdatap->cr_offset;
|
1396 |
|
|
|
1397 |
|
|
/* If != 0, fdatap->lr_offset is the offset from the frame that holds
|
1398 |
|
|
the LR. */
|
1399 |
|
|
if (fdatap->lr_offset != 0)
|
1400 |
|
|
fi->saved_regs[LR_REGNUM] = frame_addr + fdatap->lr_offset;
|
1401 |
|
|
}
|
1402 |
|
|
|
1403 |
|
|
/* Return the address of a frame. This is the inital %sp value when the frame
|
1404 |
|
|
was first allocated. For functions calling alloca(), it might be saved in
|
1405 |
|
|
an alloca register. */
|
1406 |
|
|
|
1407 |
|
|
static CORE_ADDR
|
1408 |
|
|
frame_initial_stack_address (fi)
|
1409 |
|
|
struct frame_info *fi;
|
1410 |
|
|
{
|
1411 |
|
|
CORE_ADDR tmpaddr;
|
1412 |
|
|
struct rs6000_framedata fdata;
|
1413 |
|
|
struct frame_info *callee_fi;
|
1414 |
|
|
|
1415 |
|
|
/* if the initial stack pointer (frame address) of this frame is known,
|
1416 |
|
|
just return it. */
|
1417 |
|
|
|
1418 |
|
|
if (fi->extra_info->initial_sp)
|
1419 |
|
|
return fi->extra_info->initial_sp;
|
1420 |
|
|
|
1421 |
|
|
/* find out if this function is using an alloca register.. */
|
1422 |
|
|
|
1423 |
|
|
(void) skip_prologue (get_pc_function_start (fi->pc), &fdata);
|
1424 |
|
|
|
1425 |
|
|
/* if saved registers of this frame are not known yet, read and cache them. */
|
1426 |
|
|
|
1427 |
|
|
if (!fi->saved_regs)
|
1428 |
|
|
frame_get_saved_regs (fi, &fdata);
|
1429 |
|
|
|
1430 |
|
|
/* If no alloca register used, then fi->frame is the value of the %sp for
|
1431 |
|
|
this frame, and it is good enough. */
|
1432 |
|
|
|
1433 |
|
|
if (fdata.alloca_reg < 0)
|
1434 |
|
|
{
|
1435 |
|
|
fi->extra_info->initial_sp = fi->frame;
|
1436 |
|
|
return fi->extra_info->initial_sp;
|
1437 |
|
|
}
|
1438 |
|
|
|
1439 |
|
|
/* This function has an alloca register. If this is the top-most frame
|
1440 |
|
|
(with the lowest address), the value in alloca register is good. */
|
1441 |
|
|
|
1442 |
|
|
if (!fi->next)
|
1443 |
|
|
return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
|
1444 |
|
|
|
1445 |
|
|
/* Otherwise, this is a caller frame. Callee has usually already saved
|
1446 |
|
|
registers, but there are exceptions (such as when the callee
|
1447 |
|
|
has no parameters). Find the address in which caller's alloca
|
1448 |
|
|
register is saved. */
|
1449 |
|
|
|
1450 |
|
|
for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
|
1451 |
|
|
{
|
1452 |
|
|
|
1453 |
|
|
if (!callee_fi->saved_regs)
|
1454 |
|
|
frame_get_saved_regs (callee_fi, NULL);
|
1455 |
|
|
|
1456 |
|
|
/* this is the address in which alloca register is saved. */
|
1457 |
|
|
|
1458 |
|
|
tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
|
1459 |
|
|
if (tmpaddr)
|
1460 |
|
|
{
|
1461 |
|
|
fi->extra_info->initial_sp = read_memory_integer (tmpaddr, 4);
|
1462 |
|
|
return fi->extra_info->initial_sp;
|
1463 |
|
|
}
|
1464 |
|
|
|
1465 |
|
|
/* Go look into deeper levels of the frame chain to see if any one of
|
1466 |
|
|
the callees has saved alloca register. */
|
1467 |
|
|
}
|
1468 |
|
|
|
1469 |
|
|
/* If alloca register was not saved, by the callee (or any of its callees)
|
1470 |
|
|
then the value in the register is still good. */
|
1471 |
|
|
|
1472 |
|
|
fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
|
1473 |
|
|
return fi->extra_info->initial_sp;
|
1474 |
|
|
}
|
1475 |
|
|
|
1476 |
|
|
CORE_ADDR
|
1477 |
|
|
rs6000_frame_chain (thisframe)
|
1478 |
|
|
struct frame_info *thisframe;
|
1479 |
|
|
{
|
1480 |
|
|
CORE_ADDR fp;
|
1481 |
|
|
|
1482 |
|
|
if (USE_GENERIC_DUMMY_FRAMES)
|
1483 |
|
|
{
|
1484 |
|
|
if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
|
1485 |
|
|
return thisframe->frame; /* dummy frame same as caller's frame */
|
1486 |
|
|
}
|
1487 |
|
|
|
1488 |
|
|
if (inside_entry_file (thisframe->pc) ||
|
1489 |
|
|
thisframe->pc == entry_point_address ())
|
1490 |
|
|
return 0;
|
1491 |
|
|
|
1492 |
|
|
if (thisframe->signal_handler_caller)
|
1493 |
|
|
fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
|
1494 |
|
|
else if (thisframe->next != NULL
|
1495 |
|
|
&& thisframe->next->signal_handler_caller
|
1496 |
|
|
&& FRAMELESS_FUNCTION_INVOCATION (thisframe))
|
1497 |
|
|
/* A frameless function interrupted by a signal did not change the
|
1498 |
|
|
frame pointer. */
|
1499 |
|
|
fp = FRAME_FP (thisframe);
|
1500 |
|
|
else
|
1501 |
|
|
fp = read_memory_integer ((thisframe)->frame, 4);
|
1502 |
|
|
|
1503 |
|
|
if (USE_GENERIC_DUMMY_FRAMES)
|
1504 |
|
|
{
|
1505 |
|
|
CORE_ADDR fpp, lr;
|
1506 |
|
|
|
1507 |
|
|
lr = read_register (LR_REGNUM);
|
1508 |
|
|
if (lr == entry_point_address ())
|
1509 |
|
|
if (fp != 0 && (fpp = read_memory_integer (fp, 4)) != 0)
|
1510 |
|
|
if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
|
1511 |
|
|
return fpp;
|
1512 |
|
|
}
|
1513 |
|
|
|
1514 |
|
|
return fp;
|
1515 |
|
|
}
|
1516 |
|
|
|
1517 |
|
|
/* Return nonzero if ADDR (a function pointer) is in the data space and
|
1518 |
|
|
is therefore a special function pointer. */
|
1519 |
|
|
|
1520 |
|
|
int
|
1521 |
|
|
is_magic_function_pointer (addr)
|
1522 |
|
|
CORE_ADDR addr;
|
1523 |
|
|
{
|
1524 |
|
|
struct obj_section *s;
|
1525 |
|
|
|
1526 |
|
|
s = find_pc_section (addr);
|
1527 |
|
|
if (s && s->the_bfd_section->flags & SEC_CODE)
|
1528 |
|
|
return 0;
|
1529 |
|
|
else
|
1530 |
|
|
return 1;
|
1531 |
|
|
}
|
1532 |
|
|
|
1533 |
|
|
#ifdef GDB_TARGET_POWERPC
|
1534 |
|
|
int
|
1535 |
|
|
gdb_print_insn_powerpc (memaddr, info)
|
1536 |
|
|
bfd_vma memaddr;
|
1537 |
|
|
disassemble_info *info;
|
1538 |
|
|
{
|
1539 |
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
1540 |
|
|
return print_insn_big_powerpc (memaddr, info);
|
1541 |
|
|
else
|
1542 |
|
|
return print_insn_little_powerpc (memaddr, info);
|
1543 |
|
|
}
|
1544 |
|
|
#endif
|
1545 |
|
|
|
1546 |
|
|
|
1547 |
|
|
/* Handling the various PowerPC/RS6000 variants. */
|
1548 |
|
|
|
1549 |
|
|
|
1550 |
|
|
/* The arrays here called register_names_MUMBLE hold names that
|
1551 |
|
|
the rs6000_register_name function returns.
|
1552 |
|
|
|
1553 |
|
|
For each family of PPC variants, I've tried to isolate out the
|
1554 |
|
|
common registers and put them up front, so that as long as you get
|
1555 |
|
|
the general family right, GDB will correctly identify the registers
|
1556 |
|
|
common to that family. The common register sets are:
|
1557 |
|
|
|
1558 |
|
|
For the 60x family: hid0 hid1 iabr dabr pir
|
1559 |
|
|
|
1560 |
|
|
For the 505 and 860 family: eie eid nri
|
1561 |
|
|
|
1562 |
|
|
For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
|
1563 |
|
|
tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
|
1564 |
|
|
pbu1 pbl2 pbu2
|
1565 |
|
|
|
1566 |
|
|
Most of these register groups aren't anything formal. I arrived at
|
1567 |
|
|
them by looking at the registers that occurred in more than one
|
1568 |
|
|
processor. */
|
1569 |
|
|
|
1570 |
|
|
/* UISA register names common across all architectures, including POWER. */
|
1571 |
|
|
|
1572 |
|
|
#define COMMON_UISA_REG_NAMES \
|
1573 |
|
|
/* 0 */ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
|
1574 |
|
|
/* 8 */ "r8", "r9", "r10","r11","r12","r13","r14","r15", \
|
1575 |
|
|
/* 16 */ "r16","r17","r18","r19","r20","r21","r22","r23", \
|
1576 |
|
|
/* 24 */ "r24","r25","r26","r27","r28","r29","r30","r31", \
|
1577 |
|
|
/* 32 */ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
|
1578 |
|
|
/* 40 */ "f8", "f9", "f10","f11","f12","f13","f14","f15", \
|
1579 |
|
|
/* 48 */ "f16","f17","f18","f19","f20","f21","f22","f23", \
|
1580 |
|
|
/* 56 */ "f24","f25","f26","f27","f28","f29","f30","f31", \
|
1581 |
|
|
/* 64 */ "pc", "ps"
|
1582 |
|
|
|
1583 |
|
|
/* UISA-level SPR names for PowerPC. */
|
1584 |
|
|
#define PPC_UISA_SPR_NAMES \
|
1585 |
|
|
/* 66 */ "cr", "lr", "ctr", "xer", ""
|
1586 |
|
|
|
1587 |
|
|
/* Segment register names, for PowerPC. */
|
1588 |
|
|
#define PPC_SEGMENT_REG_NAMES \
|
1589 |
|
|
/* 71 */ "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7", \
|
1590 |
|
|
/* 79 */ "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
|
1591 |
|
|
|
1592 |
|
|
/* OEA SPR names for 32-bit PowerPC implementations.
|
1593 |
|
|
The blank space is for "asr", which is only present on 64-bit
|
1594 |
|
|
implementations. */
|
1595 |
|
|
#define PPC_32_OEA_SPR_NAMES \
|
1596 |
|
|
/* 87 */ "pvr", \
|
1597 |
|
|
/* 88 */ "ibat0u", "ibat0l", "ibat1u", "ibat1l", \
|
1598 |
|
|
/* 92 */ "ibat2u", "ibat2l", "ibat3u", "ibat3l", \
|
1599 |
|
|
/* 96 */ "dbat0u", "dbat0l", "dbat1u", "dbat1l", \
|
1600 |
|
|
/* 100 */ "dbat2u", "dbat2l", "dbat3u", "dbat3l", \
|
1601 |
|
|
/* 104 */ "sdr1", "", "dar", "dsisr", "sprg0", "sprg1", "sprg2", "sprg3",\
|
1602 |
|
|
/* 112 */ "srr0", "srr1", "tbl", "tbu", "dec", "dabr", "ear"
|
1603 |
|
|
|
1604 |
|
|
/* For the RS6000, we only cover user-level SPR's. */
|
1605 |
|
|
char *register_names_rs6000[] =
|
1606 |
|
|
{
|
1607 |
|
|
COMMON_UISA_REG_NAMES,
|
1608 |
|
|
/* 66 */ "cnd", "lr", "cnt", "xer", "mq"
|
1609 |
|
|
};
|
1610 |
|
|
|
1611 |
|
|
/* a UISA-only view of the PowerPC. */
|
1612 |
|
|
char *register_names_uisa[] =
|
1613 |
|
|
{
|
1614 |
|
|
COMMON_UISA_REG_NAMES,
|
1615 |
|
|
PPC_UISA_SPR_NAMES
|
1616 |
|
|
};
|
1617 |
|
|
|
1618 |
|
|
char *register_names_403[] =
|
1619 |
|
|
{
|
1620 |
|
|
COMMON_UISA_REG_NAMES,
|
1621 |
|
|
PPC_UISA_SPR_NAMES,
|
1622 |
|
|
PPC_SEGMENT_REG_NAMES,
|
1623 |
|
|
PPC_32_OEA_SPR_NAMES,
|
1624 |
|
|
/* 119 */ "icdbdr", "esr", "dear", "evpr", "cdbcr", "tsr", "tcr", "pit",
|
1625 |
|
|
/* 127 */ "tbhi", "tblo", "srr2", "srr3", "dbsr", "dbcr", "iac1", "iac2",
|
1626 |
|
|
/* 135 */ "dac1", "dac2", "dccr", "iccr", "pbl1", "pbu1", "pbl2", "pbu2"
|
1627 |
|
|
};
|
1628 |
|
|
|
1629 |
|
|
char *register_names_403GC[] =
|
1630 |
|
|
{
|
1631 |
|
|
COMMON_UISA_REG_NAMES,
|
1632 |
|
|
PPC_UISA_SPR_NAMES,
|
1633 |
|
|
PPC_SEGMENT_REG_NAMES,
|
1634 |
|
|
PPC_32_OEA_SPR_NAMES,
|
1635 |
|
|
/* 119 */ "icdbdr", "esr", "dear", "evpr", "cdbcr", "tsr", "tcr", "pit",
|
1636 |
|
|
/* 127 */ "tbhi", "tblo", "srr2", "srr3", "dbsr", "dbcr", "iac1", "iac2",
|
1637 |
|
|
/* 135 */ "dac1", "dac2", "dccr", "iccr", "pbl1", "pbu1", "pbl2", "pbu2",
|
1638 |
|
|
/* 143 */ "zpr", "pid", "sgr", "dcwr", "tbhu", "tblu"
|
1639 |
|
|
};
|
1640 |
|
|
|
1641 |
|
|
char *register_names_505[] =
|
1642 |
|
|
{
|
1643 |
|
|
COMMON_UISA_REG_NAMES,
|
1644 |
|
|
PPC_UISA_SPR_NAMES,
|
1645 |
|
|
PPC_SEGMENT_REG_NAMES,
|
1646 |
|
|
PPC_32_OEA_SPR_NAMES,
|
1647 |
|
|
/* 119 */ "eie", "eid", "nri"
|
1648 |
|
|
};
|
1649 |
|
|
|
1650 |
|
|
char *register_names_860[] =
|
1651 |
|
|
{
|
1652 |
|
|
COMMON_UISA_REG_NAMES,
|
1653 |
|
|
PPC_UISA_SPR_NAMES,
|
1654 |
|
|
PPC_SEGMENT_REG_NAMES,
|
1655 |
|
|
PPC_32_OEA_SPR_NAMES,
|
1656 |
|
|
/* 119 */ "eie", "eid", "nri", "cmpa", "cmpb", "cmpc", "cmpd", "icr",
|
1657 |
|
|
/* 127 */ "der", "counta", "countb", "cmpe", "cmpf", "cmpg", "cmph",
|
1658 |
|
|
/* 134 */ "lctrl1", "lctrl2", "ictrl", "bar", "ic_cst", "ic_adr", "ic_dat",
|
1659 |
|
|
/* 141 */ "dc_cst", "dc_adr", "dc_dat", "dpdr", "dpir", "immr", "mi_ctr",
|
1660 |
|
|
/* 148 */ "mi_ap", "mi_epn", "mi_twc", "mi_rpn", "md_ctr", "m_casid",
|
1661 |
|
|
/* 154 */ "md_ap", "md_epn", "md_twb", "md_twc", "md_rpn", "m_tw",
|
1662 |
|
|
/* 160 */ "mi_dbcam", "mi_dbram0", "mi_dbram1", "md_dbcam", "md_dbram0",
|
1663 |
|
|
/* 165 */ "md_dbram1"
|
1664 |
|
|
};
|
1665 |
|
|
|
1666 |
|
|
/* Note that the 601 has different register numbers for reading and
|
1667 |
|
|
writing RTCU and RTCL. However, how one reads and writes a
|
1668 |
|
|
register is the stub's problem. */
|
1669 |
|
|
char *register_names_601[] =
|
1670 |
|
|
{
|
1671 |
|
|
COMMON_UISA_REG_NAMES,
|
1672 |
|
|
PPC_UISA_SPR_NAMES,
|
1673 |
|
|
PPC_SEGMENT_REG_NAMES,
|
1674 |
|
|
PPC_32_OEA_SPR_NAMES,
|
1675 |
|
|
/* 119 */ "hid0", "hid1", "iabr", "dabr", "pir", "mq", "rtcu",
|
1676 |
|
|
/* 126 */ "rtcl"
|
1677 |
|
|
};
|
1678 |
|
|
|
1679 |
|
|
char *register_names_602[] =
|
1680 |
|
|
{
|
1681 |
|
|
COMMON_UISA_REG_NAMES,
|
1682 |
|
|
PPC_UISA_SPR_NAMES,
|
1683 |
|
|
PPC_SEGMENT_REG_NAMES,
|
1684 |
|
|
PPC_32_OEA_SPR_NAMES,
|
1685 |
|
|
/* 119 */ "hid0", "hid1", "iabr", "", "", "tcr", "ibr", "esassr", "sebr",
|
1686 |
|
|
/* 128 */ "ser", "sp", "lt"
|
1687 |
|
|
};
|
1688 |
|
|
|
1689 |
|
|
char *register_names_603[] =
|
1690 |
|
|
{
|
1691 |
|
|
COMMON_UISA_REG_NAMES,
|
1692 |
|
|
PPC_UISA_SPR_NAMES,
|
1693 |
|
|
PPC_SEGMENT_REG_NAMES,
|
1694 |
|
|
PPC_32_OEA_SPR_NAMES,
|
1695 |
|
|
/* 119 */ "hid0", "hid1", "iabr", "", "", "dmiss", "dcmp", "hash1",
|
1696 |
|
|
/* 127 */ "hash2", "imiss", "icmp", "rpa"
|
1697 |
|
|
};
|
1698 |
|
|
|
1699 |
|
|
char *register_names_604[] =
|
1700 |
|
|
{
|
1701 |
|
|
COMMON_UISA_REG_NAMES,
|
1702 |
|
|
PPC_UISA_SPR_NAMES,
|
1703 |
|
|
PPC_SEGMENT_REG_NAMES,
|
1704 |
|
|
PPC_32_OEA_SPR_NAMES,
|
1705 |
|
|
/* 119 */ "hid0", "hid1", "iabr", "dabr", "pir", "mmcr0", "pmc1", "pmc2",
|
1706 |
|
|
/* 127 */ "sia", "sda"
|
1707 |
|
|
};
|
1708 |
|
|
|
1709 |
|
|
char *register_names_750[] =
|
1710 |
|
|
{
|
1711 |
|
|
COMMON_UISA_REG_NAMES,
|
1712 |
|
|
PPC_UISA_SPR_NAMES,
|
1713 |
|
|
PPC_SEGMENT_REG_NAMES,
|
1714 |
|
|
PPC_32_OEA_SPR_NAMES,
|
1715 |
|
|
/* 119 */ "hid0", "hid1", "iabr", "dabr", "", "ummcr0", "upmc1", "upmc2",
|
1716 |
|
|
/* 127 */ "usia", "ummcr1", "upmc3", "upmc4", "mmcr0", "pmc1", "pmc2",
|
1717 |
|
|
/* 134 */ "sia", "mmcr1", "pmc3", "pmc4", "l2cr", "ictc", "thrm1", "thrm2",
|
1718 |
|
|
/* 142 */ "thrm3"
|
1719 |
|
|
};
|
1720 |
|
|
|
1721 |
|
|
|
1722 |
|
|
/* Information about a particular processor variant. */
|
1723 |
|
|
struct variant
|
1724 |
|
|
{
|
1725 |
|
|
/* Name of this variant. */
|
1726 |
|
|
char *name;
|
1727 |
|
|
|
1728 |
|
|
/* English description of the variant. */
|
1729 |
|
|
char *description;
|
1730 |
|
|
|
1731 |
|
|
/* Table of register names; registers[R] is the name of the register
|
1732 |
|
|
number R. */
|
1733 |
|
|
int num_registers;
|
1734 |
|
|
char **registers;
|
1735 |
|
|
};
|
1736 |
|
|
|
1737 |
|
|
#define num_registers(list) (sizeof (list) / sizeof((list)[0]))
|
1738 |
|
|
|
1739 |
|
|
|
1740 |
|
|
/* Information in this table comes from the following web sites:
|
1741 |
|
|
IBM: http://www.chips.ibm.com:80/products/embedded/
|
1742 |
|
|
Motorola: http://www.mot.com/SPS/PowerPC/
|
1743 |
|
|
|
1744 |
|
|
I'm sure I've got some of the variant descriptions not quite right.
|
1745 |
|
|
Please report any inaccuracies you find to GDB's maintainer.
|
1746 |
|
|
|
1747 |
|
|
If you add entries to this table, please be sure to allow the new
|
1748 |
|
|
value as an argument to the --with-cpu flag, in configure.in. */
|
1749 |
|
|
|
1750 |
|
|
static struct variant
|
1751 |
|
|
variants[] =
|
1752 |
|
|
{
|
1753 |
|
|
{"ppc-uisa", "PowerPC UISA - a PPC processor as viewed by user-level code",
|
1754 |
|
|
num_registers (register_names_uisa), register_names_uisa},
|
1755 |
|
|
{"rs6000", "IBM RS6000 (\"POWER\") architecture, user-level view",
|
1756 |
|
|
num_registers (register_names_rs6000), register_names_rs6000},
|
1757 |
|
|
{"403", "IBM PowerPC 403",
|
1758 |
|
|
num_registers (register_names_403), register_names_403},
|
1759 |
|
|
{"403GC", "IBM PowerPC 403GC",
|
1760 |
|
|
num_registers (register_names_403GC), register_names_403GC},
|
1761 |
|
|
{"505", "Motorola PowerPC 505",
|
1762 |
|
|
num_registers (register_names_505), register_names_505},
|
1763 |
|
|
{"860", "Motorola PowerPC 860 or 850",
|
1764 |
|
|
num_registers (register_names_860), register_names_860},
|
1765 |
|
|
{"601", "Motorola PowerPC 601",
|
1766 |
|
|
num_registers (register_names_601), register_names_601},
|
1767 |
|
|
{"602", "Motorola PowerPC 602",
|
1768 |
|
|
num_registers (register_names_602), register_names_602},
|
1769 |
|
|
{"603", "Motorola/IBM PowerPC 603 or 603e",
|
1770 |
|
|
num_registers (register_names_603), register_names_603},
|
1771 |
|
|
{"604", "Motorola PowerPC 604 or 604e",
|
1772 |
|
|
num_registers (register_names_604), register_names_604},
|
1773 |
|
|
{"750", "Motorola/IBM PowerPC 750 or 740",
|
1774 |
|
|
num_registers (register_names_750), register_names_750},
|
1775 |
|
|
{0, 0, 0, 0}
|
1776 |
|
|
};
|
1777 |
|
|
|
1778 |
|
|
|
1779 |
|
|
static struct variant *current_variant;
|
1780 |
|
|
|
1781 |
|
|
char *
|
1782 |
|
|
rs6000_register_name (int i)
|
1783 |
|
|
{
|
1784 |
|
|
if (i < 0 || i >= NUM_REGS)
|
1785 |
|
|
error ("GDB bug: rs6000-tdep.c (rs6000_register_name): strange register number");
|
1786 |
|
|
|
1787 |
|
|
return ((i < current_variant->num_registers)
|
1788 |
|
|
? current_variant->registers[i]
|
1789 |
|
|
: "");
|
1790 |
|
|
}
|
1791 |
|
|
|
1792 |
|
|
|
1793 |
|
|
static void
|
1794 |
|
|
install_variant (struct variant *v)
|
1795 |
|
|
{
|
1796 |
|
|
current_variant = v;
|
1797 |
|
|
}
|
1798 |
|
|
|
1799 |
|
|
|
1800 |
|
|
/* Look up the variant named NAME in the `variants' table. Return a
|
1801 |
|
|
pointer to the struct variant, or null if we couldn't find it. */
|
1802 |
|
|
static struct variant *
|
1803 |
|
|
find_variant_by_name (char *name)
|
1804 |
|
|
{
|
1805 |
|
|
int i;
|
1806 |
|
|
|
1807 |
|
|
for (i = 0; variants[i].name; i++)
|
1808 |
|
|
if (!strcmp (name, variants[i].name))
|
1809 |
|
|
return &variants[i];
|
1810 |
|
|
|
1811 |
|
|
return 0;
|
1812 |
|
|
}
|
1813 |
|
|
|
1814 |
|
|
|
1815 |
|
|
/* Install the PPC/RS6000 variant named NAME in the `variants' table.
|
1816 |
|
|
Return zero if we installed it successfully, or a non-zero value if
|
1817 |
|
|
we couldn't do it.
|
1818 |
|
|
|
1819 |
|
|
This might be useful to code outside this file, which doesn't want
|
1820 |
|
|
to depend on the exact indices of the entries in the `variants'
|
1821 |
|
|
table. Just make it non-static if you want that. */
|
1822 |
|
|
static int
|
1823 |
|
|
install_variant_by_name (char *name)
|
1824 |
|
|
{
|
1825 |
|
|
struct variant *v = find_variant_by_name (name);
|
1826 |
|
|
|
1827 |
|
|
if (v)
|
1828 |
|
|
{
|
1829 |
|
|
install_variant (v);
|
1830 |
|
|
return 0;
|
1831 |
|
|
}
|
1832 |
|
|
else
|
1833 |
|
|
return 1;
|
1834 |
|
|
}
|
1835 |
|
|
|
1836 |
|
|
|
1837 |
|
|
static void
|
1838 |
|
|
list_variants ()
|
1839 |
|
|
{
|
1840 |
|
|
int i;
|
1841 |
|
|
|
1842 |
|
|
printf_filtered ("GDB knows about the following PowerPC and RS6000 variants:\n");
|
1843 |
|
|
|
1844 |
|
|
for (i = 0; variants[i].name; i++)
|
1845 |
|
|
printf_filtered (" %-8s %s\n",
|
1846 |
|
|
variants[i].name, variants[i].description);
|
1847 |
|
|
}
|
1848 |
|
|
|
1849 |
|
|
|
1850 |
|
|
static void
|
1851 |
|
|
show_current_variant ()
|
1852 |
|
|
{
|
1853 |
|
|
printf_filtered ("PowerPC / RS6000 processor variant is set to `%s'.\n",
|
1854 |
|
|
current_variant->name);
|
1855 |
|
|
}
|
1856 |
|
|
|
1857 |
|
|
|
1858 |
|
|
static void
|
1859 |
|
|
set_processor (char *arg, int from_tty)
|
1860 |
|
|
{
|
1861 |
|
|
if (!arg || arg[0] == '\0')
|
1862 |
|
|
{
|
1863 |
|
|
list_variants ();
|
1864 |
|
|
return;
|
1865 |
|
|
}
|
1866 |
|
|
|
1867 |
|
|
if (install_variant_by_name (arg))
|
1868 |
|
|
{
|
1869 |
|
|
error_begin ();
|
1870 |
|
|
fprintf_filtered (gdb_stderr,
|
1871 |
|
|
"`%s' is not a recognized PowerPC / RS6000 variant name.\n\n", arg);
|
1872 |
|
|
list_variants ();
|
1873 |
|
|
return_to_top_level (RETURN_ERROR);
|
1874 |
|
|
}
|
1875 |
|
|
|
1876 |
|
|
show_current_variant ();
|
1877 |
|
|
}
|
1878 |
|
|
|
1879 |
|
|
static void
|
1880 |
|
|
show_processor (char *arg, int from_tty)
|
1881 |
|
|
{
|
1882 |
|
|
show_current_variant ();
|
1883 |
|
|
}
|
1884 |
|
|
|
1885 |
|
|
|
1886 |
|
|
|
1887 |
|
|
|
1888 |
|
|
/* Initialization code. */
|
1889 |
|
|
|
1890 |
|
|
void
|
1891 |
|
|
_initialize_rs6000_tdep ()
|
1892 |
|
|
{
|
1893 |
|
|
/* FIXME, this should not be decided via ifdef. */
|
1894 |
|
|
#ifdef GDB_TARGET_POWERPC
|
1895 |
|
|
tm_print_insn = gdb_print_insn_powerpc;
|
1896 |
|
|
#else
|
1897 |
|
|
tm_print_insn = print_insn_rs6000;
|
1898 |
|
|
#endif
|
1899 |
|
|
|
1900 |
|
|
/* I don't think we should use the set/show command arrangement
|
1901 |
|
|
here, because the way that's implemented makes it hard to do the
|
1902 |
|
|
error checking we want in a reasonable way. So we just add them
|
1903 |
|
|
as two separate commands. */
|
1904 |
|
|
add_cmd ("processor", class_support, set_processor,
|
1905 |
|
|
"`set processor NAME' sets the PowerPC/RS6000 variant to NAME.\n\
|
1906 |
|
|
If you set this, GDB will know about the special-purpose registers that are\n\
|
1907 |
|
|
available on the given variant.\n\
|
1908 |
|
|
Type `set processor' alone for a list of recognized variant names.",
|
1909 |
|
|
&setlist);
|
1910 |
|
|
add_cmd ("processor", class_support, show_processor,
|
1911 |
|
|
"Show the variant of the PowerPC or RS6000 processor in use.\n\
|
1912 |
|
|
Use `set processor' to change this.",
|
1913 |
|
|
&showlist);
|
1914 |
|
|
|
1915 |
|
|
/* Set the current PPC processor variant. */
|
1916 |
|
|
{
|
1917 |
|
|
int status = 1;
|
1918 |
|
|
|
1919 |
|
|
#ifdef TARGET_CPU_DEFAULT
|
1920 |
|
|
status = install_variant_by_name (TARGET_CPU_DEFAULT);
|
1921 |
|
|
#endif
|
1922 |
|
|
|
1923 |
|
|
if (status)
|
1924 |
|
|
{
|
1925 |
|
|
#ifdef GDB_TARGET_POWERPC
|
1926 |
|
|
install_variant_by_name ("ppc-uisa");
|
1927 |
|
|
#else
|
1928 |
|
|
install_variant_by_name ("rs6000");
|
1929 |
|
|
#endif
|
1930 |
|
|
}
|
1931 |
|
|
}
|
1932 |
|
|
}
|