1 |
104 |
markom |
/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
|
2 |
|
|
Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
20 |
|
|
Boston, MA 02111-1307, USA. */
|
21 |
|
|
|
22 |
|
|
|
23 |
|
|
#include "defs.h"
|
24 |
|
|
|
25 |
|
|
/* This file is only compilable if link.h is available. */
|
26 |
|
|
|
27 |
|
|
#ifdef HAVE_LINK_H
|
28 |
|
|
|
29 |
|
|
#include <sys/types.h>
|
30 |
|
|
#include <signal.h>
|
31 |
|
|
#include "gdb_string.h"
|
32 |
|
|
#include <sys/param.h>
|
33 |
|
|
#include <fcntl.h>
|
34 |
|
|
|
35 |
|
|
#ifndef SVR4_SHARED_LIBS
|
36 |
|
|
/* SunOS shared libs need the nlist structure. */
|
37 |
|
|
#include <a.out.h>
|
38 |
|
|
#else
|
39 |
|
|
#include "elf/external.h"
|
40 |
|
|
#endif
|
41 |
|
|
|
42 |
|
|
#include <link.h>
|
43 |
|
|
|
44 |
|
|
#include "symtab.h"
|
45 |
|
|
#include "bfd.h"
|
46 |
|
|
#include "symfile.h"
|
47 |
|
|
#include "objfiles.h"
|
48 |
|
|
#include "gdbcore.h"
|
49 |
|
|
#include "command.h"
|
50 |
|
|
#include "target.h"
|
51 |
|
|
#include "frame.h"
|
52 |
|
|
#include "gdb_regex.h"
|
53 |
|
|
#include "inferior.h"
|
54 |
|
|
#include "environ.h"
|
55 |
|
|
#include "language.h"
|
56 |
|
|
#include "gdbcmd.h"
|
57 |
|
|
|
58 |
|
|
#define MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
|
59 |
|
|
|
60 |
|
|
/* On SVR4 systems, a list of symbols in the dynamic linker where
|
61 |
|
|
GDB can try to place a breakpoint to monitor shared library
|
62 |
|
|
events.
|
63 |
|
|
|
64 |
|
|
If none of these symbols are found, or other errors occur, then
|
65 |
|
|
SVR4 systems will fall back to using a symbol as the "startup
|
66 |
|
|
mapping complete" breakpoint address. */
|
67 |
|
|
|
68 |
|
|
#ifdef SVR4_SHARED_LIBS
|
69 |
|
|
static char *solib_break_names[] =
|
70 |
|
|
{
|
71 |
|
|
"r_debug_state",
|
72 |
|
|
"_r_debug_state",
|
73 |
|
|
"_dl_debug_state",
|
74 |
|
|
"rtld_db_dlactivity",
|
75 |
|
|
NULL
|
76 |
|
|
};
|
77 |
|
|
#endif
|
78 |
|
|
|
79 |
|
|
#define BKPT_AT_SYMBOL 1
|
80 |
|
|
|
81 |
|
|
#if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
|
82 |
|
|
static char *bkpt_names[] =
|
83 |
|
|
{
|
84 |
|
|
#ifdef SOLIB_BKPT_NAME
|
85 |
|
|
SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */
|
86 |
|
|
#endif
|
87 |
|
|
"_start",
|
88 |
|
|
"main",
|
89 |
|
|
NULL
|
90 |
|
|
};
|
91 |
|
|
#endif
|
92 |
|
|
|
93 |
|
|
/* Symbols which are used to locate the base of the link map structures. */
|
94 |
|
|
|
95 |
|
|
#ifndef SVR4_SHARED_LIBS
|
96 |
|
|
static char *debug_base_symbols[] =
|
97 |
|
|
{
|
98 |
|
|
"_DYNAMIC",
|
99 |
|
|
"_DYNAMIC__MGC",
|
100 |
|
|
NULL
|
101 |
|
|
};
|
102 |
|
|
#endif
|
103 |
|
|
|
104 |
|
|
static char *main_name_list[] =
|
105 |
|
|
{
|
106 |
|
|
"main_$main",
|
107 |
|
|
NULL
|
108 |
|
|
};
|
109 |
|
|
|
110 |
|
|
/* local data declarations */
|
111 |
|
|
|
112 |
|
|
/* Macro to extract an address from a solib structure.
|
113 |
|
|
When GDB is configured for some 32-bit targets (e.g. Solaris 2.7
|
114 |
|
|
sparc), BFD is configured to handle 64-bit targets, so CORE_ADDR is
|
115 |
|
|
64 bits. We have to extract only the significant bits of addresses
|
116 |
|
|
to get the right address when accessing the core file BFD. */
|
117 |
|
|
|
118 |
|
|
#define SOLIB_EXTRACT_ADDRESS(member) \
|
119 |
|
|
extract_address (&member, sizeof (member))
|
120 |
|
|
|
121 |
|
|
#ifndef SVR4_SHARED_LIBS
|
122 |
|
|
|
123 |
|
|
#define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_addr))
|
124 |
|
|
#define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_next))
|
125 |
|
|
#define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_name))
|
126 |
|
|
/* Test for first link map entry; first entry is a shared library. */
|
127 |
|
|
#define IGNORE_FIRST_LINK_MAP_ENTRY(so) (0)
|
128 |
|
|
static struct link_dynamic dynamic_copy;
|
129 |
|
|
static struct link_dynamic_2 ld_2_copy;
|
130 |
|
|
static struct ld_debug debug_copy;
|
131 |
|
|
static CORE_ADDR debug_addr;
|
132 |
|
|
static CORE_ADDR flag_addr;
|
133 |
|
|
|
134 |
|
|
#else /* SVR4_SHARED_LIBS */
|
135 |
|
|
|
136 |
|
|
#define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_addr))
|
137 |
|
|
#define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_next))
|
138 |
|
|
#define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_name))
|
139 |
|
|
/* Test for first link map entry; first entry is the exec-file. */
|
140 |
|
|
#define IGNORE_FIRST_LINK_MAP_ENTRY(so) \
|
141 |
|
|
(SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_prev) == 0)
|
142 |
|
|
static struct r_debug debug_copy;
|
143 |
|
|
char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
|
144 |
|
|
|
145 |
|
|
#endif /* !SVR4_SHARED_LIBS */
|
146 |
|
|
|
147 |
|
|
struct so_list
|
148 |
|
|
{
|
149 |
|
|
/* The following fields of the structure come directly from the
|
150 |
|
|
dynamic linker's tables in the inferior, and are initialized by
|
151 |
|
|
current_sos. */
|
152 |
|
|
|
153 |
|
|
struct so_list *next; /* next structure in linked list */
|
154 |
|
|
struct link_map lm; /* copy of link map from inferior */
|
155 |
|
|
CORE_ADDR lmaddr; /* addr in inferior lm was read from */
|
156 |
|
|
|
157 |
|
|
/* Shared object file name, exactly as it appears in the
|
158 |
|
|
inferior's link map. This may be a relative path, or something
|
159 |
|
|
which needs to be looked up in LD_LIBRARY_PATH, etc. We use it
|
160 |
|
|
to tell which entries in the inferior's dynamic linker's link
|
161 |
|
|
map we've already loaded. */
|
162 |
|
|
char so_original_name[MAX_PATH_SIZE];
|
163 |
|
|
|
164 |
|
|
/* shared object file name, expanded to something GDB can open */
|
165 |
|
|
char so_name[MAX_PATH_SIZE];
|
166 |
|
|
|
167 |
|
|
/* The following fields of the structure are built from
|
168 |
|
|
information gathered from the shared object file itself, and
|
169 |
|
|
are initialized when we actually add it to our symbol tables. */
|
170 |
|
|
|
171 |
|
|
bfd *abfd;
|
172 |
|
|
CORE_ADDR lmend; /* upper addr bound of mapped object */
|
173 |
|
|
char symbols_loaded; /* flag: symbols read in yet? */
|
174 |
|
|
char from_tty; /* flag: print msgs? */
|
175 |
|
|
struct objfile *objfile; /* objfile for loaded lib */
|
176 |
|
|
struct section_table *sections;
|
177 |
|
|
struct section_table *sections_end;
|
178 |
|
|
struct section_table *textsection;
|
179 |
|
|
};
|
180 |
|
|
|
181 |
|
|
static struct so_list *so_list_head; /* List of known shared objects */
|
182 |
|
|
static CORE_ADDR debug_base; /* Base of dynamic linker structures */
|
183 |
|
|
static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
|
184 |
|
|
|
185 |
|
|
static int solib_cleanup_queued = 0; /* make_run_cleanup called */
|
186 |
|
|
|
187 |
|
|
extern int
|
188 |
|
|
fdmatch PARAMS ((int, int)); /* In libiberty */
|
189 |
|
|
|
190 |
|
|
/* Local function prototypes */
|
191 |
|
|
|
192 |
|
|
static void
|
193 |
|
|
do_clear_solib PARAMS ((PTR));
|
194 |
|
|
|
195 |
|
|
static int
|
196 |
|
|
match_main PARAMS ((char *));
|
197 |
|
|
|
198 |
|
|
static void
|
199 |
|
|
special_symbol_handling PARAMS ((void));
|
200 |
|
|
|
201 |
|
|
static void
|
202 |
|
|
sharedlibrary_command PARAMS ((char *, int));
|
203 |
|
|
|
204 |
|
|
static int
|
205 |
|
|
enable_break PARAMS ((void));
|
206 |
|
|
|
207 |
|
|
static void
|
208 |
|
|
info_sharedlibrary_command PARAMS ((char *, int));
|
209 |
|
|
|
210 |
|
|
static int symbol_add_stub PARAMS ((PTR));
|
211 |
|
|
|
212 |
|
|
static CORE_ADDR
|
213 |
|
|
first_link_map_member PARAMS ((void));
|
214 |
|
|
|
215 |
|
|
static CORE_ADDR
|
216 |
|
|
locate_base PARAMS ((void));
|
217 |
|
|
|
218 |
|
|
static int solib_map_sections PARAMS ((PTR));
|
219 |
|
|
|
220 |
|
|
#ifdef SVR4_SHARED_LIBS
|
221 |
|
|
|
222 |
|
|
static CORE_ADDR
|
223 |
|
|
elf_locate_base PARAMS ((void));
|
224 |
|
|
|
225 |
|
|
#else
|
226 |
|
|
|
227 |
|
|
static struct so_list *current_sos (void);
|
228 |
|
|
static void free_so (struct so_list *node);
|
229 |
|
|
|
230 |
|
|
static int
|
231 |
|
|
disable_break PARAMS ((void));
|
232 |
|
|
|
233 |
|
|
static void
|
234 |
|
|
allocate_rt_common_objfile PARAMS ((void));
|
235 |
|
|
|
236 |
|
|
static void
|
237 |
|
|
solib_add_common_symbols (CORE_ADDR);
|
238 |
|
|
|
239 |
|
|
#endif
|
240 |
|
|
|
241 |
|
|
void _initialize_solib PARAMS ((void));
|
242 |
|
|
|
243 |
|
|
/* If non-zero, this is a prefix that will be added to the front of the name
|
244 |
|
|
shared libraries with an absolute filename for loading. */
|
245 |
|
|
static char *solib_absolute_prefix = NULL;
|
246 |
|
|
|
247 |
|
|
/* If non-empty, this is a search path for loading non-absolute shared library
|
248 |
|
|
symbol files. This takes precedence over the environment variables PATH
|
249 |
|
|
and LD_LIBRARY_PATH. */
|
250 |
|
|
static char *solib_search_path = NULL;
|
251 |
|
|
|
252 |
|
|
/*
|
253 |
|
|
|
254 |
|
|
LOCAL FUNCTION
|
255 |
|
|
|
256 |
|
|
solib_map_sections -- open bfd and build sections for shared lib
|
257 |
|
|
|
258 |
|
|
SYNOPSIS
|
259 |
|
|
|
260 |
|
|
static int solib_map_sections (struct so_list *so)
|
261 |
|
|
|
262 |
|
|
DESCRIPTION
|
263 |
|
|
|
264 |
|
|
Given a pointer to one of the shared objects in our list
|
265 |
|
|
of mapped objects, use the recorded name to open a bfd
|
266 |
|
|
descriptor for the object, build a section table, and then
|
267 |
|
|
relocate all the section addresses by the base address at
|
268 |
|
|
which the shared object was mapped.
|
269 |
|
|
|
270 |
|
|
FIXMES
|
271 |
|
|
|
272 |
|
|
In most (all?) cases the shared object file name recorded in the
|
273 |
|
|
dynamic linkage tables will be a fully qualified pathname. For
|
274 |
|
|
cases where it isn't, do we really mimic the systems search
|
275 |
|
|
mechanism correctly in the below code (particularly the tilde
|
276 |
|
|
expansion stuff?).
|
277 |
|
|
*/
|
278 |
|
|
|
279 |
|
|
static int
|
280 |
|
|
solib_map_sections (arg)
|
281 |
|
|
PTR arg;
|
282 |
|
|
{
|
283 |
|
|
struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
|
284 |
|
|
char *filename;
|
285 |
|
|
char *scratch_pathname;
|
286 |
|
|
int scratch_chan;
|
287 |
|
|
struct section_table *p;
|
288 |
|
|
struct cleanup *old_chain;
|
289 |
|
|
bfd *abfd;
|
290 |
|
|
|
291 |
|
|
filename = tilde_expand (so->so_name);
|
292 |
|
|
|
293 |
|
|
if (solib_absolute_prefix && ROOTED_P (filename))
|
294 |
|
|
/* Prefix shared libraries with absolute filenames with
|
295 |
|
|
SOLIB_ABSOLUTE_PREFIX. */
|
296 |
|
|
{
|
297 |
|
|
char *pfxed_fn;
|
298 |
|
|
int pfx_len;
|
299 |
|
|
|
300 |
|
|
pfx_len = strlen (solib_absolute_prefix);
|
301 |
|
|
|
302 |
|
|
/* Remove trailing slashes. */
|
303 |
|
|
while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
|
304 |
|
|
pfx_len--;
|
305 |
|
|
|
306 |
|
|
pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
|
307 |
|
|
strcpy (pfxed_fn, solib_absolute_prefix);
|
308 |
|
|
strcat (pfxed_fn, filename);
|
309 |
|
|
free (filename);
|
310 |
|
|
|
311 |
|
|
filename = pfxed_fn;
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
old_chain = make_cleanup (free, filename);
|
315 |
|
|
|
316 |
|
|
scratch_chan = -1;
|
317 |
|
|
|
318 |
|
|
if (solib_search_path)
|
319 |
|
|
scratch_chan = openp (solib_search_path,
|
320 |
|
|
1, filename, O_RDONLY, 0, &scratch_pathname);
|
321 |
|
|
if (scratch_chan < 0)
|
322 |
|
|
scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
|
323 |
|
|
1, filename, O_RDONLY, 0, &scratch_pathname);
|
324 |
|
|
if (scratch_chan < 0)
|
325 |
|
|
{
|
326 |
|
|
scratch_chan = openp (get_in_environ
|
327 |
|
|
(inferior_environ, "LD_LIBRARY_PATH"),
|
328 |
|
|
1, filename, O_RDONLY, 0, &scratch_pathname);
|
329 |
|
|
}
|
330 |
|
|
if (scratch_chan < 0)
|
331 |
|
|
{
|
332 |
|
|
perror_with_name (filename);
|
333 |
|
|
}
|
334 |
|
|
/* Leave scratch_pathname allocated. abfd->name will point to it. */
|
335 |
|
|
|
336 |
|
|
abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
|
337 |
|
|
if (!abfd)
|
338 |
|
|
{
|
339 |
|
|
close (scratch_chan);
|
340 |
|
|
error ("Could not open `%s' as an executable file: %s",
|
341 |
|
|
scratch_pathname, bfd_errmsg (bfd_get_error ()));
|
342 |
|
|
}
|
343 |
|
|
/* Leave bfd open, core_xfer_memory and "info files" need it. */
|
344 |
|
|
so->abfd = abfd;
|
345 |
|
|
abfd->cacheable = true;
|
346 |
|
|
|
347 |
|
|
/* copy full path name into so_name, so that later symbol_file_add can find
|
348 |
|
|
it */
|
349 |
|
|
if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
|
350 |
|
|
error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
|
351 |
|
|
strcpy (so->so_name, scratch_pathname);
|
352 |
|
|
|
353 |
|
|
if (!bfd_check_format (abfd, bfd_object))
|
354 |
|
|
{
|
355 |
|
|
error ("\"%s\": not in executable format: %s.",
|
356 |
|
|
scratch_pathname, bfd_errmsg (bfd_get_error ()));
|
357 |
|
|
}
|
358 |
|
|
if (build_section_table (abfd, &so->sections, &so->sections_end))
|
359 |
|
|
{
|
360 |
|
|
error ("Can't find the file sections in `%s': %s",
|
361 |
|
|
bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
|
362 |
|
|
}
|
363 |
|
|
|
364 |
|
|
for (p = so->sections; p < so->sections_end; p++)
|
365 |
|
|
{
|
366 |
|
|
/* Relocate the section binding addresses as recorded in the shared
|
367 |
|
|
object's file by the base address to which the object was actually
|
368 |
|
|
mapped. */
|
369 |
|
|
p->addr += LM_ADDR (so);
|
370 |
|
|
p->endaddr += LM_ADDR (so);
|
371 |
|
|
so->lmend = max (p->endaddr, so->lmend);
|
372 |
|
|
if (STREQ (p->the_bfd_section->name, ".text"))
|
373 |
|
|
{
|
374 |
|
|
so->textsection = p;
|
375 |
|
|
}
|
376 |
|
|
}
|
377 |
|
|
|
378 |
|
|
/* Free the file names, close the file now. */
|
379 |
|
|
do_cleanups (old_chain);
|
380 |
|
|
|
381 |
|
|
return (1);
|
382 |
|
|
}
|
383 |
|
|
|
384 |
|
|
#ifndef SVR4_SHARED_LIBS
|
385 |
|
|
|
386 |
|
|
/* Allocate the runtime common object file. */
|
387 |
|
|
|
388 |
|
|
static void
|
389 |
|
|
allocate_rt_common_objfile ()
|
390 |
|
|
{
|
391 |
|
|
struct objfile *objfile;
|
392 |
|
|
struct objfile *last_one;
|
393 |
|
|
|
394 |
|
|
objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
|
395 |
|
|
memset (objfile, 0, sizeof (struct objfile));
|
396 |
|
|
objfile->md = NULL;
|
397 |
|
|
obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
|
398 |
|
|
xmalloc, free);
|
399 |
|
|
obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
|
400 |
|
|
free);
|
401 |
|
|
obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
|
402 |
|
|
free);
|
403 |
|
|
obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
|
404 |
|
|
free);
|
405 |
|
|
objfile->name = mstrsave (objfile->md, "rt_common");
|
406 |
|
|
|
407 |
|
|
/* Add this file onto the tail of the linked list of other such files. */
|
408 |
|
|
|
409 |
|
|
objfile->next = NULL;
|
410 |
|
|
if (object_files == NULL)
|
411 |
|
|
object_files = objfile;
|
412 |
|
|
else
|
413 |
|
|
{
|
414 |
|
|
for (last_one = object_files;
|
415 |
|
|
last_one->next;
|
416 |
|
|
last_one = last_one->next);
|
417 |
|
|
last_one->next = objfile;
|
418 |
|
|
}
|
419 |
|
|
|
420 |
|
|
rt_common_objfile = objfile;
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
/* Read all dynamically loaded common symbol definitions from the inferior
|
424 |
|
|
and put them into the minimal symbol table for the runtime common
|
425 |
|
|
objfile. */
|
426 |
|
|
|
427 |
|
|
static void
|
428 |
|
|
solib_add_common_symbols (rtc_symp)
|
429 |
|
|
CORE_ADDR rtc_symp;
|
430 |
|
|
{
|
431 |
|
|
struct rtc_symb inferior_rtc_symb;
|
432 |
|
|
struct nlist inferior_rtc_nlist;
|
433 |
|
|
int len;
|
434 |
|
|
char *name;
|
435 |
|
|
|
436 |
|
|
/* Remove any runtime common symbols from previous runs. */
|
437 |
|
|
|
438 |
|
|
if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
|
439 |
|
|
{
|
440 |
|
|
obstack_free (&rt_common_objfile->symbol_obstack, 0);
|
441 |
|
|
obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
|
442 |
|
|
xmalloc, free);
|
443 |
|
|
rt_common_objfile->minimal_symbol_count = 0;
|
444 |
|
|
rt_common_objfile->msymbols = NULL;
|
445 |
|
|
}
|
446 |
|
|
|
447 |
|
|
init_minimal_symbol_collection ();
|
448 |
|
|
make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0);
|
449 |
|
|
|
450 |
|
|
while (rtc_symp)
|
451 |
|
|
{
|
452 |
|
|
read_memory (rtc_symp,
|
453 |
|
|
(char *) &inferior_rtc_symb,
|
454 |
|
|
sizeof (inferior_rtc_symb));
|
455 |
|
|
read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
|
456 |
|
|
(char *) &inferior_rtc_nlist,
|
457 |
|
|
sizeof (inferior_rtc_nlist));
|
458 |
|
|
if (inferior_rtc_nlist.n_type == N_COMM)
|
459 |
|
|
{
|
460 |
|
|
/* FIXME: The length of the symbol name is not available, but in the
|
461 |
|
|
current implementation the common symbol is allocated immediately
|
462 |
|
|
behind the name of the symbol. */
|
463 |
|
|
len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
|
464 |
|
|
|
465 |
|
|
name = xmalloc (len);
|
466 |
|
|
read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
|
467 |
|
|
name, len);
|
468 |
|
|
|
469 |
|
|
/* Allocate the runtime common objfile if necessary. */
|
470 |
|
|
if (rt_common_objfile == NULL)
|
471 |
|
|
allocate_rt_common_objfile ();
|
472 |
|
|
|
473 |
|
|
prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
|
474 |
|
|
mst_bss, rt_common_objfile);
|
475 |
|
|
free (name);
|
476 |
|
|
}
|
477 |
|
|
rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
|
478 |
|
|
}
|
479 |
|
|
|
480 |
|
|
/* Install any minimal symbols that have been collected as the current
|
481 |
|
|
minimal symbols for the runtime common objfile. */
|
482 |
|
|
|
483 |
|
|
install_minimal_symbols (rt_common_objfile);
|
484 |
|
|
}
|
485 |
|
|
|
486 |
|
|
#endif /* SVR4_SHARED_LIBS */
|
487 |
|
|
|
488 |
|
|
|
489 |
|
|
#ifdef SVR4_SHARED_LIBS
|
490 |
|
|
|
491 |
|
|
static CORE_ADDR
|
492 |
|
|
bfd_lookup_symbol PARAMS ((bfd *, char *));
|
493 |
|
|
|
494 |
|
|
/*
|
495 |
|
|
|
496 |
|
|
LOCAL FUNCTION
|
497 |
|
|
|
498 |
|
|
bfd_lookup_symbol -- lookup the value for a specific symbol
|
499 |
|
|
|
500 |
|
|
SYNOPSIS
|
501 |
|
|
|
502 |
|
|
CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
|
503 |
|
|
|
504 |
|
|
DESCRIPTION
|
505 |
|
|
|
506 |
|
|
An expensive way to lookup the value of a single symbol for
|
507 |
|
|
bfd's that are only temporary anyway. This is used by the
|
508 |
|
|
shared library support to find the address of the debugger
|
509 |
|
|
interface structures in the shared library.
|
510 |
|
|
|
511 |
|
|
Note that 0 is specifically allowed as an error return (no
|
512 |
|
|
such symbol).
|
513 |
|
|
*/
|
514 |
|
|
|
515 |
|
|
static CORE_ADDR
|
516 |
|
|
bfd_lookup_symbol (abfd, symname)
|
517 |
|
|
bfd *abfd;
|
518 |
|
|
char *symname;
|
519 |
|
|
{
|
520 |
|
|
unsigned int storage_needed;
|
521 |
|
|
asymbol *sym;
|
522 |
|
|
asymbol **symbol_table;
|
523 |
|
|
unsigned int number_of_symbols;
|
524 |
|
|
unsigned int i;
|
525 |
|
|
struct cleanup *back_to;
|
526 |
|
|
CORE_ADDR symaddr = 0;
|
527 |
|
|
|
528 |
|
|
storage_needed = bfd_get_symtab_upper_bound (abfd);
|
529 |
|
|
|
530 |
|
|
if (storage_needed > 0)
|
531 |
|
|
{
|
532 |
|
|
symbol_table = (asymbol **) xmalloc (storage_needed);
|
533 |
|
|
back_to = make_cleanup (free, (PTR) symbol_table);
|
534 |
|
|
number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
|
535 |
|
|
|
536 |
|
|
for (i = 0; i < number_of_symbols; i++)
|
537 |
|
|
{
|
538 |
|
|
sym = *symbol_table++;
|
539 |
|
|
if (STREQ (sym->name, symname))
|
540 |
|
|
{
|
541 |
|
|
/* Bfd symbols are section relative. */
|
542 |
|
|
symaddr = sym->value + sym->section->vma;
|
543 |
|
|
break;
|
544 |
|
|
}
|
545 |
|
|
}
|
546 |
|
|
do_cleanups (back_to);
|
547 |
|
|
}
|
548 |
|
|
return (symaddr);
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
#ifdef HANDLE_SVR4_EXEC_EMULATORS
|
552 |
|
|
|
553 |
|
|
/*
|
554 |
|
|
Solaris BCP (the part of Solaris which allows it to run SunOS4
|
555 |
|
|
a.out files) throws in another wrinkle. Solaris does not fill
|
556 |
|
|
in the usual a.out link map structures when running BCP programs,
|
557 |
|
|
the only way to get at them is via groping around in the dynamic
|
558 |
|
|
linker.
|
559 |
|
|
The dynamic linker and it's structures are located in the shared
|
560 |
|
|
C library, which gets run as the executable's "interpreter" by
|
561 |
|
|
the kernel.
|
562 |
|
|
|
563 |
|
|
Note that we can assume nothing about the process state at the time
|
564 |
|
|
we need to find these structures. We may be stopped on the first
|
565 |
|
|
instruction of the interpreter (C shared library), the first
|
566 |
|
|
instruction of the executable itself, or somewhere else entirely
|
567 |
|
|
(if we attached to the process for example).
|
568 |
|
|
*/
|
569 |
|
|
|
570 |
|
|
static char *debug_base_symbols[] =
|
571 |
|
|
{
|
572 |
|
|
"r_debug", /* Solaris 2.3 */
|
573 |
|
|
"_r_debug", /* Solaris 2.1, 2.2 */
|
574 |
|
|
NULL
|
575 |
|
|
};
|
576 |
|
|
|
577 |
|
|
static int
|
578 |
|
|
look_for_base PARAMS ((int, CORE_ADDR));
|
579 |
|
|
|
580 |
|
|
/*
|
581 |
|
|
|
582 |
|
|
LOCAL FUNCTION
|
583 |
|
|
|
584 |
|
|
look_for_base -- examine file for each mapped address segment
|
585 |
|
|
|
586 |
|
|
SYNOPSYS
|
587 |
|
|
|
588 |
|
|
static int look_for_base (int fd, CORE_ADDR baseaddr)
|
589 |
|
|
|
590 |
|
|
DESCRIPTION
|
591 |
|
|
|
592 |
|
|
This function is passed to proc_iterate_over_mappings, which
|
593 |
|
|
causes it to get called once for each mapped address space, with
|
594 |
|
|
an open file descriptor for the file mapped to that space, and the
|
595 |
|
|
base address of that mapped space.
|
596 |
|
|
|
597 |
|
|
Our job is to find the debug base symbol in the file that this
|
598 |
|
|
fd is open on, if it exists, and if so, initialize the dynamic
|
599 |
|
|
linker structure base address debug_base.
|
600 |
|
|
|
601 |
|
|
Note that this is a computationally expensive proposition, since
|
602 |
|
|
we basically have to open a bfd on every call, so we specifically
|
603 |
|
|
avoid opening the exec file.
|
604 |
|
|
*/
|
605 |
|
|
|
606 |
|
|
static int
|
607 |
|
|
look_for_base (fd, baseaddr)
|
608 |
|
|
int fd;
|
609 |
|
|
CORE_ADDR baseaddr;
|
610 |
|
|
{
|
611 |
|
|
bfd *interp_bfd;
|
612 |
|
|
CORE_ADDR address = 0;
|
613 |
|
|
char **symbolp;
|
614 |
|
|
|
615 |
|
|
/* If the fd is -1, then there is no file that corresponds to this
|
616 |
|
|
mapped memory segment, so skip it. Also, if the fd corresponds
|
617 |
|
|
to the exec file, skip it as well. */
|
618 |
|
|
|
619 |
|
|
if (fd == -1
|
620 |
|
|
|| (exec_bfd != NULL
|
621 |
|
|
&& fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
|
622 |
|
|
{
|
623 |
|
|
return (0);
|
624 |
|
|
}
|
625 |
|
|
|
626 |
|
|
/* Try to open whatever random file this fd corresponds to. Note that
|
627 |
|
|
we have no way currently to find the filename. Don't gripe about
|
628 |
|
|
any problems we might have, just fail. */
|
629 |
|
|
|
630 |
|
|
if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
|
631 |
|
|
{
|
632 |
|
|
return (0);
|
633 |
|
|
}
|
634 |
|
|
if (!bfd_check_format (interp_bfd, bfd_object))
|
635 |
|
|
{
|
636 |
|
|
/* FIXME-leak: on failure, might not free all memory associated with
|
637 |
|
|
interp_bfd. */
|
638 |
|
|
bfd_close (interp_bfd);
|
639 |
|
|
return (0);
|
640 |
|
|
}
|
641 |
|
|
|
642 |
|
|
/* Now try to find our debug base symbol in this file, which we at
|
643 |
|
|
least know to be a valid ELF executable or shared library. */
|
644 |
|
|
|
645 |
|
|
for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
|
646 |
|
|
{
|
647 |
|
|
address = bfd_lookup_symbol (interp_bfd, *symbolp);
|
648 |
|
|
if (address != 0)
|
649 |
|
|
{
|
650 |
|
|
break;
|
651 |
|
|
}
|
652 |
|
|
}
|
653 |
|
|
if (address == 0)
|
654 |
|
|
{
|
655 |
|
|
/* FIXME-leak: on failure, might not free all memory associated with
|
656 |
|
|
interp_bfd. */
|
657 |
|
|
bfd_close (interp_bfd);
|
658 |
|
|
return (0);
|
659 |
|
|
}
|
660 |
|
|
|
661 |
|
|
/* Eureka! We found the symbol. But now we may need to relocate it
|
662 |
|
|
by the base address. If the symbol's value is less than the base
|
663 |
|
|
address of the shared library, then it hasn't yet been relocated
|
664 |
|
|
by the dynamic linker, and we have to do it ourself. FIXME: Note
|
665 |
|
|
that we make the assumption that the first segment that corresponds
|
666 |
|
|
to the shared library has the base address to which the library
|
667 |
|
|
was relocated. */
|
668 |
|
|
|
669 |
|
|
if (address < baseaddr)
|
670 |
|
|
{
|
671 |
|
|
address += baseaddr;
|
672 |
|
|
}
|
673 |
|
|
debug_base = address;
|
674 |
|
|
/* FIXME-leak: on failure, might not free all memory associated with
|
675 |
|
|
interp_bfd. */
|
676 |
|
|
bfd_close (interp_bfd);
|
677 |
|
|
return (1);
|
678 |
|
|
}
|
679 |
|
|
#endif /* HANDLE_SVR4_EXEC_EMULATORS */
|
680 |
|
|
|
681 |
|
|
/*
|
682 |
|
|
|
683 |
|
|
LOCAL FUNCTION
|
684 |
|
|
|
685 |
|
|
elf_locate_base -- locate the base address of dynamic linker structs
|
686 |
|
|
for SVR4 elf targets.
|
687 |
|
|
|
688 |
|
|
SYNOPSIS
|
689 |
|
|
|
690 |
|
|
CORE_ADDR elf_locate_base (void)
|
691 |
|
|
|
692 |
|
|
DESCRIPTION
|
693 |
|
|
|
694 |
|
|
For SVR4 elf targets the address of the dynamic linker's runtime
|
695 |
|
|
structure is contained within the dynamic info section in the
|
696 |
|
|
executable file. The dynamic section is also mapped into the
|
697 |
|
|
inferior address space. Because the runtime loader fills in the
|
698 |
|
|
real address before starting the inferior, we have to read in the
|
699 |
|
|
dynamic info section from the inferior address space.
|
700 |
|
|
If there are any errors while trying to find the address, we
|
701 |
|
|
silently return 0, otherwise the found address is returned.
|
702 |
|
|
|
703 |
|
|
*/
|
704 |
|
|
|
705 |
|
|
static CORE_ADDR
|
706 |
|
|
elf_locate_base ()
|
707 |
|
|
{
|
708 |
|
|
sec_ptr dyninfo_sect;
|
709 |
|
|
int dyninfo_sect_size;
|
710 |
|
|
CORE_ADDR dyninfo_addr;
|
711 |
|
|
char *buf;
|
712 |
|
|
char *bufend;
|
713 |
|
|
|
714 |
|
|
/* Find the start address of the .dynamic section. */
|
715 |
|
|
dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
|
716 |
|
|
if (dyninfo_sect == NULL)
|
717 |
|
|
return 0;
|
718 |
|
|
dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
|
719 |
|
|
|
720 |
|
|
/* Read in .dynamic section, silently ignore errors. */
|
721 |
|
|
dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
|
722 |
|
|
buf = alloca (dyninfo_sect_size);
|
723 |
|
|
if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
|
724 |
|
|
return 0;
|
725 |
|
|
|
726 |
|
|
/* Find the DT_DEBUG entry in the the .dynamic section.
|
727 |
|
|
For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
|
728 |
|
|
no DT_DEBUG entries. */
|
729 |
|
|
#ifndef TARGET_ELF64
|
730 |
|
|
for (bufend = buf + dyninfo_sect_size;
|
731 |
|
|
buf < bufend;
|
732 |
|
|
buf += sizeof (Elf32_External_Dyn))
|
733 |
|
|
{
|
734 |
|
|
Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
|
735 |
|
|
long dyn_tag;
|
736 |
|
|
CORE_ADDR dyn_ptr;
|
737 |
|
|
|
738 |
|
|
dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
|
739 |
|
|
if (dyn_tag == DT_NULL)
|
740 |
|
|
break;
|
741 |
|
|
else if (dyn_tag == DT_DEBUG)
|
742 |
|
|
{
|
743 |
|
|
dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
|
744 |
|
|
return dyn_ptr;
|
745 |
|
|
}
|
746 |
|
|
#ifdef DT_MIPS_RLD_MAP
|
747 |
|
|
else if (dyn_tag == DT_MIPS_RLD_MAP)
|
748 |
|
|
{
|
749 |
|
|
char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
|
750 |
|
|
|
751 |
|
|
/* DT_MIPS_RLD_MAP contains a pointer to the address
|
752 |
|
|
of the dynamic link structure. */
|
753 |
|
|
dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
|
754 |
|
|
if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
|
755 |
|
|
return 0;
|
756 |
|
|
return extract_unsigned_integer (pbuf, sizeof (pbuf));
|
757 |
|
|
}
|
758 |
|
|
#endif
|
759 |
|
|
}
|
760 |
|
|
#else /* ELF64 */
|
761 |
|
|
for (bufend = buf + dyninfo_sect_size;
|
762 |
|
|
buf < bufend;
|
763 |
|
|
buf += sizeof (Elf64_External_Dyn))
|
764 |
|
|
{
|
765 |
|
|
Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
|
766 |
|
|
long dyn_tag;
|
767 |
|
|
CORE_ADDR dyn_ptr;
|
768 |
|
|
|
769 |
|
|
dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
|
770 |
|
|
if (dyn_tag == DT_NULL)
|
771 |
|
|
break;
|
772 |
|
|
else if (dyn_tag == DT_DEBUG)
|
773 |
|
|
{
|
774 |
|
|
dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
|
775 |
|
|
return dyn_ptr;
|
776 |
|
|
}
|
777 |
|
|
}
|
778 |
|
|
#endif
|
779 |
|
|
|
780 |
|
|
/* DT_DEBUG entry not found. */
|
781 |
|
|
return 0;
|
782 |
|
|
}
|
783 |
|
|
|
784 |
|
|
#endif /* SVR4_SHARED_LIBS */
|
785 |
|
|
|
786 |
|
|
/*
|
787 |
|
|
|
788 |
|
|
LOCAL FUNCTION
|
789 |
|
|
|
790 |
|
|
locate_base -- locate the base address of dynamic linker structs
|
791 |
|
|
|
792 |
|
|
SYNOPSIS
|
793 |
|
|
|
794 |
|
|
CORE_ADDR locate_base (void)
|
795 |
|
|
|
796 |
|
|
DESCRIPTION
|
797 |
|
|
|
798 |
|
|
For both the SunOS and SVR4 shared library implementations, if the
|
799 |
|
|
inferior executable has been linked dynamically, there is a single
|
800 |
|
|
address somewhere in the inferior's data space which is the key to
|
801 |
|
|
locating all of the dynamic linker's runtime structures. This
|
802 |
|
|
address is the value of the debug base symbol. The job of this
|
803 |
|
|
function is to find and return that address, or to return 0 if there
|
804 |
|
|
is no such address (the executable is statically linked for example).
|
805 |
|
|
|
806 |
|
|
For SunOS, the job is almost trivial, since the dynamic linker and
|
807 |
|
|
all of it's structures are statically linked to the executable at
|
808 |
|
|
link time. Thus the symbol for the address we are looking for has
|
809 |
|
|
already been added to the minimal symbol table for the executable's
|
810 |
|
|
objfile at the time the symbol file's symbols were read, and all we
|
811 |
|
|
have to do is look it up there. Note that we explicitly do NOT want
|
812 |
|
|
to find the copies in the shared library.
|
813 |
|
|
|
814 |
|
|
The SVR4 version is a bit more complicated because the address
|
815 |
|
|
is contained somewhere in the dynamic info section. We have to go
|
816 |
|
|
to a lot more work to discover the address of the debug base symbol.
|
817 |
|
|
Because of this complexity, we cache the value we find and return that
|
818 |
|
|
value on subsequent invocations. Note there is no copy in the
|
819 |
|
|
executable symbol tables.
|
820 |
|
|
|
821 |
|
|
*/
|
822 |
|
|
|
823 |
|
|
static CORE_ADDR
|
824 |
|
|
locate_base ()
|
825 |
|
|
{
|
826 |
|
|
|
827 |
|
|
#ifndef SVR4_SHARED_LIBS
|
828 |
|
|
|
829 |
|
|
struct minimal_symbol *msymbol;
|
830 |
|
|
CORE_ADDR address = 0;
|
831 |
|
|
char **symbolp;
|
832 |
|
|
|
833 |
|
|
/* For SunOS, we want to limit the search for the debug base symbol to the
|
834 |
|
|
executable being debugged, since there is a duplicate named symbol in the
|
835 |
|
|
shared library. We don't want the shared library versions. */
|
836 |
|
|
|
837 |
|
|
for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
|
838 |
|
|
{
|
839 |
|
|
msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
|
840 |
|
|
if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
|
841 |
|
|
{
|
842 |
|
|
address = SYMBOL_VALUE_ADDRESS (msymbol);
|
843 |
|
|
return (address);
|
844 |
|
|
}
|
845 |
|
|
}
|
846 |
|
|
return (0);
|
847 |
|
|
|
848 |
|
|
#else /* SVR4_SHARED_LIBS */
|
849 |
|
|
|
850 |
|
|
/* Check to see if we have a currently valid address, and if so, avoid
|
851 |
|
|
doing all this work again and just return the cached address. If
|
852 |
|
|
we have no cached address, try to locate it in the dynamic info
|
853 |
|
|
section for ELF executables. */
|
854 |
|
|
|
855 |
|
|
if (debug_base == 0)
|
856 |
|
|
{
|
857 |
|
|
if (exec_bfd != NULL
|
858 |
|
|
&& bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
|
859 |
|
|
debug_base = elf_locate_base ();
|
860 |
|
|
#ifdef HANDLE_SVR4_EXEC_EMULATORS
|
861 |
|
|
/* Try it the hard way for emulated executables. */
|
862 |
|
|
else if (inferior_pid != 0 && target_has_execution)
|
863 |
|
|
proc_iterate_over_mappings (look_for_base);
|
864 |
|
|
#endif
|
865 |
|
|
}
|
866 |
|
|
return (debug_base);
|
867 |
|
|
|
868 |
|
|
#endif /* !SVR4_SHARED_LIBS */
|
869 |
|
|
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
/*
|
873 |
|
|
|
874 |
|
|
LOCAL FUNCTION
|
875 |
|
|
|
876 |
|
|
first_link_map_member -- locate first member in dynamic linker's map
|
877 |
|
|
|
878 |
|
|
SYNOPSIS
|
879 |
|
|
|
880 |
|
|
static CORE_ADDR first_link_map_member (void)
|
881 |
|
|
|
882 |
|
|
DESCRIPTION
|
883 |
|
|
|
884 |
|
|
Find the first element in the inferior's dynamic link map, and
|
885 |
|
|
return its address in the inferior. This function doesn't copy the
|
886 |
|
|
link map entry itself into our address space; current_sos actually
|
887 |
|
|
does the reading. */
|
888 |
|
|
|
889 |
|
|
static CORE_ADDR
|
890 |
|
|
first_link_map_member ()
|
891 |
|
|
{
|
892 |
|
|
CORE_ADDR lm = 0;
|
893 |
|
|
|
894 |
|
|
#ifndef SVR4_SHARED_LIBS
|
895 |
|
|
|
896 |
|
|
read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
|
897 |
|
|
if (dynamic_copy.ld_version >= 2)
|
898 |
|
|
{
|
899 |
|
|
/* It is a version that we can deal with, so read in the secondary
|
900 |
|
|
structure and find the address of the link map list from it. */
|
901 |
|
|
read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
|
902 |
|
|
(char *) &ld_2_copy, sizeof (struct link_dynamic_2));
|
903 |
|
|
lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
|
904 |
|
|
}
|
905 |
|
|
|
906 |
|
|
#else /* SVR4_SHARED_LIBS */
|
907 |
|
|
|
908 |
|
|
read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
|
909 |
|
|
/* FIXME: Perhaps we should validate the info somehow, perhaps by
|
910 |
|
|
checking r_version for a known version number, or r_state for
|
911 |
|
|
RT_CONSISTENT. */
|
912 |
|
|
lm = SOLIB_EXTRACT_ADDRESS (debug_copy.r_map);
|
913 |
|
|
|
914 |
|
|
#endif /* !SVR4_SHARED_LIBS */
|
915 |
|
|
|
916 |
|
|
return (lm);
|
917 |
|
|
}
|
918 |
|
|
|
919 |
|
|
#ifdef SVR4_SHARED_LIBS
|
920 |
|
|
/*
|
921 |
|
|
|
922 |
|
|
LOCAL FUNCTION
|
923 |
|
|
|
924 |
|
|
open_symbol_file_object
|
925 |
|
|
|
926 |
|
|
SYNOPSIS
|
927 |
|
|
|
928 |
|
|
void open_symbol_file_object (int from_tty)
|
929 |
|
|
|
930 |
|
|
DESCRIPTION
|
931 |
|
|
|
932 |
|
|
If no open symbol file, attempt to locate and open the main symbol
|
933 |
|
|
file. On SVR4 systems, this is the first link map entry. If its
|
934 |
|
|
name is here, we can open it. Useful when attaching to a process
|
935 |
|
|
without first loading its symbol file.
|
936 |
|
|
|
937 |
|
|
*/
|
938 |
|
|
|
939 |
|
|
static int
|
940 |
|
|
open_symbol_file_object (from_ttyp)
|
941 |
|
|
int *from_ttyp; /* sneak past catch_errors */
|
942 |
|
|
{
|
943 |
|
|
CORE_ADDR lm;
|
944 |
|
|
struct link_map lmcopy;
|
945 |
|
|
char *filename;
|
946 |
|
|
int errcode;
|
947 |
|
|
|
948 |
|
|
if (symfile_objfile)
|
949 |
|
|
if (!query ("Attempt to reload symbols from process? "))
|
950 |
|
|
return 0;
|
951 |
|
|
|
952 |
|
|
if ((debug_base = locate_base ()) == 0)
|
953 |
|
|
return 0; /* failed somehow... */
|
954 |
|
|
|
955 |
|
|
/* First link map member should be the executable. */
|
956 |
|
|
if ((lm = first_link_map_member ()) == 0)
|
957 |
|
|
return 0; /* failed somehow... */
|
958 |
|
|
|
959 |
|
|
/* Read from target memory to GDB. */
|
960 |
|
|
read_memory (lm, (void *) &lmcopy, sizeof (lmcopy));
|
961 |
|
|
|
962 |
|
|
if (lmcopy.l_name == 0)
|
963 |
|
|
return 0; /* no filename. */
|
964 |
|
|
|
965 |
|
|
/* Now fetch the filename from target memory. */
|
966 |
|
|
target_read_string (SOLIB_EXTRACT_ADDRESS (lmcopy.l_name), &filename,
|
967 |
|
|
MAX_PATH_SIZE - 1, &errcode);
|
968 |
|
|
if (errcode)
|
969 |
|
|
{
|
970 |
|
|
warning ("failed to read exec filename from attached file: %s",
|
971 |
|
|
safe_strerror (errcode));
|
972 |
|
|
return 0;
|
973 |
|
|
}
|
974 |
|
|
|
975 |
|
|
make_cleanup ((make_cleanup_func) free, (void *) filename);
|
976 |
|
|
/* Have a pathname: read the symbol file. */
|
977 |
|
|
symbol_file_command (filename, *from_ttyp);
|
978 |
|
|
|
979 |
|
|
return 1;
|
980 |
|
|
}
|
981 |
|
|
#endif /* SVR4_SHARED_LIBS */
|
982 |
|
|
|
983 |
|
|
|
984 |
|
|
/* LOCAL FUNCTION
|
985 |
|
|
|
986 |
|
|
free_so --- free a `struct so_list' object
|
987 |
|
|
|
988 |
|
|
SYNOPSIS
|
989 |
|
|
|
990 |
|
|
void free_so (struct so_list *so)
|
991 |
|
|
|
992 |
|
|
DESCRIPTION
|
993 |
|
|
|
994 |
|
|
Free the storage associated with the `struct so_list' object SO.
|
995 |
|
|
If we have opened a BFD for SO, close it.
|
996 |
|
|
|
997 |
|
|
The caller is responsible for removing SO from whatever list it is
|
998 |
|
|
a member of. If we have placed SO's sections in some target's
|
999 |
|
|
section table, the caller is responsible for removing them.
|
1000 |
|
|
|
1001 |
|
|
This function doesn't mess with objfiles at all. If there is an
|
1002 |
|
|
objfile associated with SO that needs to be removed, the caller is
|
1003 |
|
|
responsible for taking care of that. */
|
1004 |
|
|
|
1005 |
|
|
static void
|
1006 |
|
|
free_so (struct so_list *so)
|
1007 |
|
|
{
|
1008 |
|
|
char *bfd_filename = 0;
|
1009 |
|
|
|
1010 |
|
|
if (so->sections)
|
1011 |
|
|
free (so->sections);
|
1012 |
|
|
|
1013 |
|
|
if (so->abfd)
|
1014 |
|
|
{
|
1015 |
|
|
bfd_filename = bfd_get_filename (so->abfd);
|
1016 |
|
|
if (! bfd_close (so->abfd))
|
1017 |
|
|
warning ("cannot close \"%s\": %s",
|
1018 |
|
|
bfd_filename, bfd_errmsg (bfd_get_error ()));
|
1019 |
|
|
}
|
1020 |
|
|
|
1021 |
|
|
if (bfd_filename)
|
1022 |
|
|
free (bfd_filename);
|
1023 |
|
|
|
1024 |
|
|
free (so);
|
1025 |
|
|
}
|
1026 |
|
|
|
1027 |
|
|
|
1028 |
|
|
/* On some systems, the only way to recognize the link map entry for
|
1029 |
|
|
the main executable file is by looking at its name. Return
|
1030 |
|
|
non-zero iff SONAME matches one of the known main executable names. */
|
1031 |
|
|
|
1032 |
|
|
static int
|
1033 |
|
|
match_main (soname)
|
1034 |
|
|
char *soname;
|
1035 |
|
|
{
|
1036 |
|
|
char **mainp;
|
1037 |
|
|
|
1038 |
|
|
for (mainp = main_name_list; *mainp != NULL; mainp++)
|
1039 |
|
|
{
|
1040 |
|
|
if (strcmp (soname, *mainp) == 0)
|
1041 |
|
|
return (1);
|
1042 |
|
|
}
|
1043 |
|
|
|
1044 |
|
|
return (0);
|
1045 |
|
|
}
|
1046 |
|
|
|
1047 |
|
|
|
1048 |
|
|
/* LOCAL FUNCTION
|
1049 |
|
|
|
1050 |
|
|
current_sos -- build a list of currently loaded shared objects
|
1051 |
|
|
|
1052 |
|
|
SYNOPSIS
|
1053 |
|
|
|
1054 |
|
|
struct so_list *current_sos ()
|
1055 |
|
|
|
1056 |
|
|
DESCRIPTION
|
1057 |
|
|
|
1058 |
|
|
Build a list of `struct so_list' objects describing the shared
|
1059 |
|
|
objects currently loaded in the inferior. This list does not
|
1060 |
|
|
include an entry for the main executable file.
|
1061 |
|
|
|
1062 |
|
|
Note that we only gather information directly available from the
|
1063 |
|
|
inferior --- we don't examine any of the shared library files
|
1064 |
|
|
themselves. The declaration of `struct so_list' says which fields
|
1065 |
|
|
we provide values for. */
|
1066 |
|
|
|
1067 |
|
|
static struct so_list *
|
1068 |
|
|
current_sos ()
|
1069 |
|
|
{
|
1070 |
|
|
CORE_ADDR lm;
|
1071 |
|
|
struct so_list *head = 0;
|
1072 |
|
|
struct so_list **link_ptr = &head;
|
1073 |
|
|
|
1074 |
|
|
/* Make sure we've looked up the inferior's dynamic linker's base
|
1075 |
|
|
structure. */
|
1076 |
|
|
if (! debug_base)
|
1077 |
|
|
{
|
1078 |
|
|
debug_base = locate_base ();
|
1079 |
|
|
|
1080 |
|
|
/* If we can't find the dynamic linker's base structure, this
|
1081 |
|
|
must not be a dynamically linked executable. Hmm. */
|
1082 |
|
|
if (! debug_base)
|
1083 |
|
|
return 0;
|
1084 |
|
|
}
|
1085 |
|
|
|
1086 |
|
|
/* Walk the inferior's link map list, and build our list of
|
1087 |
|
|
`struct so_list' nodes. */
|
1088 |
|
|
lm = first_link_map_member ();
|
1089 |
|
|
while (lm)
|
1090 |
|
|
{
|
1091 |
|
|
struct so_list *new
|
1092 |
|
|
= (struct so_list *) xmalloc (sizeof (struct so_list));
|
1093 |
|
|
struct cleanup *old_chain = make_cleanup (free, new);
|
1094 |
|
|
memset (new, 0, sizeof (*new));
|
1095 |
|
|
|
1096 |
|
|
new->lmaddr = lm;
|
1097 |
|
|
read_memory (lm, (char *) &(new->lm), sizeof (struct link_map));
|
1098 |
|
|
|
1099 |
|
|
lm = LM_NEXT (new);
|
1100 |
|
|
|
1101 |
|
|
/* For SVR4 versions, the first entry in the link map is for the
|
1102 |
|
|
inferior executable, so we must ignore it. For some versions of
|
1103 |
|
|
SVR4, it has no name. For others (Solaris 2.3 for example), it
|
1104 |
|
|
does have a name, so we can no longer use a missing name to
|
1105 |
|
|
decide when to ignore it. */
|
1106 |
|
|
if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
|
1107 |
|
|
free_so (new);
|
1108 |
|
|
else
|
1109 |
|
|
{
|
1110 |
|
|
int errcode;
|
1111 |
|
|
char *buffer;
|
1112 |
|
|
|
1113 |
|
|
/* Extract this shared object's name. */
|
1114 |
|
|
target_read_string (LM_NAME (new), &buffer,
|
1115 |
|
|
MAX_PATH_SIZE - 1, &errcode);
|
1116 |
|
|
if (errcode != 0)
|
1117 |
|
|
{
|
1118 |
|
|
warning ("current_sos: Can't read pathname for load map: %s\n",
|
1119 |
|
|
safe_strerror (errcode));
|
1120 |
|
|
}
|
1121 |
|
|
else
|
1122 |
|
|
{
|
1123 |
|
|
strncpy (new->so_name, buffer, MAX_PATH_SIZE - 1);
|
1124 |
|
|
new->so_name[MAX_PATH_SIZE - 1] = '\0';
|
1125 |
|
|
free (buffer);
|
1126 |
|
|
strcpy (new->so_original_name, new->so_name);
|
1127 |
|
|
}
|
1128 |
|
|
|
1129 |
|
|
/* If this entry has no name, or its name matches the name
|
1130 |
|
|
for the main executable, don't include it in the list. */
|
1131 |
|
|
if (! new->so_name[0]
|
1132 |
|
|
|| match_main (new->so_name))
|
1133 |
|
|
free_so (new);
|
1134 |
|
|
else
|
1135 |
|
|
{
|
1136 |
|
|
new->next = 0;
|
1137 |
|
|
*link_ptr = new;
|
1138 |
|
|
link_ptr = &new->next;
|
1139 |
|
|
}
|
1140 |
|
|
}
|
1141 |
|
|
|
1142 |
|
|
discard_cleanups (old_chain);
|
1143 |
|
|
}
|
1144 |
|
|
|
1145 |
|
|
return head;
|
1146 |
|
|
}
|
1147 |
|
|
|
1148 |
|
|
|
1149 |
|
|
/* A small stub to get us past the arg-passing pinhole of catch_errors. */
|
1150 |
|
|
|
1151 |
|
|
static int
|
1152 |
|
|
symbol_add_stub (arg)
|
1153 |
|
|
PTR arg;
|
1154 |
|
|
{
|
1155 |
|
|
register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
|
1156 |
|
|
CORE_ADDR text_addr = 0;
|
1157 |
|
|
struct section_addr_info *sap;
|
1158 |
|
|
|
1159 |
|
|
/* Have we already loaded this shared object? */
|
1160 |
|
|
ALL_OBJFILES (so->objfile)
|
1161 |
|
|
{
|
1162 |
|
|
if (strcmp (so->objfile->name, so->so_name) == 0)
|
1163 |
|
|
return 1;
|
1164 |
|
|
}
|
1165 |
|
|
|
1166 |
|
|
/* Find the shared object's text segment. */
|
1167 |
|
|
if (so->textsection)
|
1168 |
|
|
text_addr = so->textsection->addr;
|
1169 |
|
|
else if (so->abfd != NULL)
|
1170 |
|
|
{
|
1171 |
|
|
asection *lowest_sect;
|
1172 |
|
|
|
1173 |
|
|
/* If we didn't find a mapped non zero sized .text section, set up
|
1174 |
|
|
text_addr so that the relocation in symbol_file_add does no harm. */
|
1175 |
|
|
lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
|
1176 |
|
|
if (lowest_sect == NULL)
|
1177 |
|
|
bfd_map_over_sections (so->abfd, find_lowest_section,
|
1178 |
|
|
(PTR) &lowest_sect);
|
1179 |
|
|
if (lowest_sect)
|
1180 |
|
|
text_addr = bfd_section_vma (so->abfd, lowest_sect)
|
1181 |
|
|
+ LM_ADDR (so);
|
1182 |
|
|
}
|
1183 |
|
|
|
1184 |
|
|
sap = build_section_addr_info_from_section_table (so->sections,
|
1185 |
|
|
so->sections_end);
|
1186 |
|
|
sap->text_addr = text_addr;
|
1187 |
|
|
so->objfile = symbol_file_add (so->so_name, so->from_tty,
|
1188 |
|
|
sap, 0, OBJF_SHARED);
|
1189 |
|
|
free_section_addr_info (sap);
|
1190 |
|
|
|
1191 |
|
|
return (1);
|
1192 |
|
|
}
|
1193 |
|
|
|
1194 |
|
|
|
1195 |
|
|
/* LOCAL FUNCTION
|
1196 |
|
|
|
1197 |
|
|
update_solib_list --- synchronize GDB's shared object list with inferior's
|
1198 |
|
|
|
1199 |
|
|
SYNOPSIS
|
1200 |
|
|
|
1201 |
|
|
void update_solib_list (int from_tty, struct target_ops *TARGET)
|
1202 |
|
|
|
1203 |
|
|
Extract the list of currently loaded shared objects from the
|
1204 |
|
|
inferior, and compare it with the list of shared objects currently
|
1205 |
|
|
in GDB's so_list_head list. Edit so_list_head to bring it in sync
|
1206 |
|
|
with the inferior's new list.
|
1207 |
|
|
|
1208 |
|
|
If we notice that the inferior has unloaded some shared objects,
|
1209 |
|
|
free any symbolic info GDB had read about those shared objects.
|
1210 |
|
|
|
1211 |
|
|
Don't load symbolic info for any new shared objects; just add them
|
1212 |
|
|
to the list, and leave their symbols_loaded flag clear.
|
1213 |
|
|
|
1214 |
|
|
If FROM_TTY is non-null, feel free to print messages about what
|
1215 |
|
|
we're doing.
|
1216 |
|
|
|
1217 |
|
|
If TARGET is non-null, add the sections of all new shared objects
|
1218 |
|
|
to TARGET's section table. Note that this doesn't remove any
|
1219 |
|
|
sections for shared objects that have been unloaded, and it
|
1220 |
|
|
doesn't check to see if the new shared objects are already present in
|
1221 |
|
|
the section table. But we only use this for core files and
|
1222 |
|
|
processes we've just attached to, so that's okay. */
|
1223 |
|
|
|
1224 |
|
|
void
|
1225 |
|
|
update_solib_list (int from_tty, struct target_ops *target)
|
1226 |
|
|
{
|
1227 |
|
|
struct so_list *inferior = current_sos ();
|
1228 |
|
|
struct so_list *gdb, **gdb_link;
|
1229 |
|
|
|
1230 |
|
|
#ifdef SVR4_SHARED_LIBS
|
1231 |
|
|
/* If we are attaching to a running process for which we
|
1232 |
|
|
have not opened a symbol file, we may be able to get its
|
1233 |
|
|
symbols now! */
|
1234 |
|
|
if (attach_flag &&
|
1235 |
|
|
symfile_objfile == NULL)
|
1236 |
|
|
catch_errors (open_symbol_file_object, (PTR) &from_tty,
|
1237 |
|
|
"Error reading attached process's symbol file.\n",
|
1238 |
|
|
RETURN_MASK_ALL);
|
1239 |
|
|
|
1240 |
|
|
#endif SVR4_SHARED_LIBS
|
1241 |
|
|
|
1242 |
|
|
/* Since this function might actually add some elements to the
|
1243 |
|
|
so_list_head list, arrange for it to be cleaned up when
|
1244 |
|
|
appropriate. */
|
1245 |
|
|
if (!solib_cleanup_queued)
|
1246 |
|
|
{
|
1247 |
|
|
make_run_cleanup (do_clear_solib, NULL);
|
1248 |
|
|
solib_cleanup_queued = 1;
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
/* GDB and the inferior's dynamic linker each maintain their own
|
1252 |
|
|
list of currently loaded shared objects; we want to bring the
|
1253 |
|
|
former in sync with the latter. Scan both lists, seeing which
|
1254 |
|
|
shared objects appear where. There are three cases:
|
1255 |
|
|
|
1256 |
|
|
- A shared object appears on both lists. This means that GDB
|
1257 |
|
|
knows about it already, and it's still loaded in the inferior.
|
1258 |
|
|
Nothing needs to happen.
|
1259 |
|
|
|
1260 |
|
|
- A shared object appears only on GDB's list. This means that
|
1261 |
|
|
the inferior has unloaded it. We should remove the shared
|
1262 |
|
|
object from GDB's tables.
|
1263 |
|
|
|
1264 |
|
|
- A shared object appears only on the inferior's list. This
|
1265 |
|
|
means that it's just been loaded. We should add it to GDB's
|
1266 |
|
|
tables.
|
1267 |
|
|
|
1268 |
|
|
So we walk GDB's list, checking each entry to see if it appears
|
1269 |
|
|
in the inferior's list too. If it does, no action is needed, and
|
1270 |
|
|
we remove it from the inferior's list. If it doesn't, the
|
1271 |
|
|
inferior has unloaded it, and we remove it from GDB's list. By
|
1272 |
|
|
the time we're done walking GDB's list, the inferior's list
|
1273 |
|
|
contains only the new shared objects, which we then add. */
|
1274 |
|
|
|
1275 |
|
|
gdb = so_list_head;
|
1276 |
|
|
gdb_link = &so_list_head;
|
1277 |
|
|
while (gdb)
|
1278 |
|
|
{
|
1279 |
|
|
struct so_list *i = inferior;
|
1280 |
|
|
struct so_list **i_link = &inferior;
|
1281 |
|
|
|
1282 |
|
|
/* Check to see whether the shared object *gdb also appears in
|
1283 |
|
|
the inferior's current list. */
|
1284 |
|
|
while (i)
|
1285 |
|
|
{
|
1286 |
|
|
if (! strcmp (gdb->so_original_name, i->so_original_name))
|
1287 |
|
|
break;
|
1288 |
|
|
|
1289 |
|
|
i_link = &i->next;
|
1290 |
|
|
i = *i_link;
|
1291 |
|
|
}
|
1292 |
|
|
|
1293 |
|
|
/* If the shared object appears on the inferior's list too, then
|
1294 |
|
|
it's still loaded, so we don't need to do anything. Delete
|
1295 |
|
|
it from the inferior's list, and leave it on GDB's list. */
|
1296 |
|
|
if (i)
|
1297 |
|
|
{
|
1298 |
|
|
*i_link = i->next;
|
1299 |
|
|
free_so (i);
|
1300 |
|
|
gdb_link = &gdb->next;
|
1301 |
|
|
gdb = *gdb_link;
|
1302 |
|
|
}
|
1303 |
|
|
|
1304 |
|
|
/* If it's not on the inferior's list, remove it from GDB's tables. */
|
1305 |
|
|
else
|
1306 |
|
|
{
|
1307 |
|
|
*gdb_link = gdb->next;
|
1308 |
|
|
|
1309 |
|
|
/* Unless the user loaded it explicitly, free SO's objfile. */
|
1310 |
|
|
if (gdb->objfile && ! (gdb->objfile->flags & OBJF_USERLOADED))
|
1311 |
|
|
free_objfile (gdb->objfile);
|
1312 |
|
|
|
1313 |
|
|
/* Some targets' section tables might be referring to
|
1314 |
|
|
sections from so->abfd; remove them. */
|
1315 |
|
|
remove_target_sections (gdb->abfd);
|
1316 |
|
|
|
1317 |
|
|
free_so (gdb);
|
1318 |
|
|
gdb = *gdb_link;
|
1319 |
|
|
}
|
1320 |
|
|
}
|
1321 |
|
|
|
1322 |
|
|
/* Now the inferior's list contains only shared objects that don't
|
1323 |
|
|
appear in GDB's list --- those that are newly loaded. Add them
|
1324 |
|
|
to GDB's shared object list. */
|
1325 |
|
|
if (inferior)
|
1326 |
|
|
{
|
1327 |
|
|
struct so_list *i;
|
1328 |
|
|
|
1329 |
|
|
/* Add the new shared objects to GDB's list. */
|
1330 |
|
|
*gdb_link = inferior;
|
1331 |
|
|
|
1332 |
|
|
/* Fill in the rest of each of the `struct so_list' nodes. */
|
1333 |
|
|
for (i = inferior; i; i = i->next)
|
1334 |
|
|
{
|
1335 |
|
|
i->from_tty = from_tty;
|
1336 |
|
|
|
1337 |
|
|
/* Fill in the rest of the `struct so_list' node. */
|
1338 |
|
|
catch_errors (solib_map_sections, i,
|
1339 |
|
|
"Error while mapping shared library sections:\n",
|
1340 |
|
|
RETURN_MASK_ALL);
|
1341 |
|
|
}
|
1342 |
|
|
|
1343 |
|
|
/* If requested, add the shared objects' sections to the the
|
1344 |
|
|
TARGET's section table. */
|
1345 |
|
|
if (target)
|
1346 |
|
|
{
|
1347 |
|
|
int new_sections;
|
1348 |
|
|
|
1349 |
|
|
/* Figure out how many sections we'll need to add in total. */
|
1350 |
|
|
new_sections = 0;
|
1351 |
|
|
for (i = inferior; i; i = i->next)
|
1352 |
|
|
new_sections += (i->sections_end - i->sections);
|
1353 |
|
|
|
1354 |
|
|
if (new_sections > 0)
|
1355 |
|
|
{
|
1356 |
|
|
int space = target_resize_to_sections (target, new_sections);
|
1357 |
|
|
|
1358 |
|
|
for (i = inferior; i; i = i->next)
|
1359 |
|
|
{
|
1360 |
|
|
int count = (i->sections_end - i->sections);
|
1361 |
|
|
memcpy (target->to_sections + space,
|
1362 |
|
|
i->sections,
|
1363 |
|
|
count * sizeof (i->sections[0]));
|
1364 |
|
|
space += count;
|
1365 |
|
|
}
|
1366 |
|
|
}
|
1367 |
|
|
}
|
1368 |
|
|
}
|
1369 |
|
|
}
|
1370 |
|
|
|
1371 |
|
|
|
1372 |
|
|
/* GLOBAL FUNCTION
|
1373 |
|
|
|
1374 |
|
|
solib_add -- read in symbol info for newly added shared libraries
|
1375 |
|
|
|
1376 |
|
|
SYNOPSIS
|
1377 |
|
|
|
1378 |
|
|
void solib_add (char *pattern, int from_tty, struct target_ops *TARGET)
|
1379 |
|
|
|
1380 |
|
|
DESCRIPTION
|
1381 |
|
|
|
1382 |
|
|
Read in symbolic information for any shared objects whose names
|
1383 |
|
|
match PATTERN. (If we've already read a shared object's symbol
|
1384 |
|
|
info, leave it alone.) If PATTERN is zero, read them all.
|
1385 |
|
|
|
1386 |
|
|
FROM_TTY and TARGET are as described for update_solib_list, above. */
|
1387 |
|
|
|
1388 |
|
|
void
|
1389 |
|
|
solib_add (char *pattern, int from_tty, struct target_ops *target)
|
1390 |
|
|
{
|
1391 |
|
|
struct so_list *gdb;
|
1392 |
|
|
|
1393 |
|
|
if (pattern)
|
1394 |
|
|
{
|
1395 |
|
|
char *re_err = re_comp (pattern);
|
1396 |
|
|
|
1397 |
|
|
if (re_err)
|
1398 |
|
|
error ("Invalid regexp: %s", re_err);
|
1399 |
|
|
}
|
1400 |
|
|
|
1401 |
|
|
update_solib_list (from_tty, target);
|
1402 |
|
|
|
1403 |
|
|
/* Walk the list of currently loaded shared libraries, and read
|
1404 |
|
|
symbols for any that match the pattern --- or any whose symbols
|
1405 |
|
|
aren't already loaded, if no pattern was given. */
|
1406 |
|
|
{
|
1407 |
|
|
int any_matches = 0;
|
1408 |
|
|
int loaded_any_symbols = 0;
|
1409 |
|
|
|
1410 |
|
|
for (gdb = so_list_head; gdb; gdb = gdb->next)
|
1411 |
|
|
if (! pattern || re_exec (gdb->so_name))
|
1412 |
|
|
{
|
1413 |
|
|
any_matches = 1;
|
1414 |
|
|
|
1415 |
|
|
if (gdb->symbols_loaded)
|
1416 |
|
|
{
|
1417 |
|
|
if (from_tty)
|
1418 |
|
|
printf_unfiltered ("Symbols already loaded for %s\n",
|
1419 |
|
|
gdb->so_name);
|
1420 |
|
|
}
|
1421 |
|
|
else
|
1422 |
|
|
{
|
1423 |
|
|
if (catch_errors
|
1424 |
|
|
(symbol_add_stub, gdb,
|
1425 |
|
|
"Error while reading shared library symbols:\n",
|
1426 |
|
|
RETURN_MASK_ALL))
|
1427 |
|
|
{
|
1428 |
|
|
if (from_tty)
|
1429 |
|
|
printf_unfiltered ("Loaded symbols for %s\n",
|
1430 |
|
|
gdb->so_name);
|
1431 |
|
|
gdb->symbols_loaded = 1;
|
1432 |
|
|
loaded_any_symbols = 1;
|
1433 |
|
|
}
|
1434 |
|
|
}
|
1435 |
|
|
}
|
1436 |
|
|
|
1437 |
|
|
if (from_tty && pattern && ! any_matches)
|
1438 |
|
|
printf_unfiltered
|
1439 |
|
|
("No loaded shared libraries match the pattern `%s'.\n", pattern);
|
1440 |
|
|
|
1441 |
|
|
if (loaded_any_symbols)
|
1442 |
|
|
{
|
1443 |
|
|
/* Getting new symbols may change our opinion about what is
|
1444 |
|
|
frameless. */
|
1445 |
|
|
reinit_frame_cache ();
|
1446 |
|
|
|
1447 |
|
|
special_symbol_handling ();
|
1448 |
|
|
}
|
1449 |
|
|
}
|
1450 |
|
|
}
|
1451 |
|
|
|
1452 |
|
|
|
1453 |
|
|
/*
|
1454 |
|
|
|
1455 |
|
|
LOCAL FUNCTION
|
1456 |
|
|
|
1457 |
|
|
info_sharedlibrary_command -- code for "info sharedlibrary"
|
1458 |
|
|
|
1459 |
|
|
SYNOPSIS
|
1460 |
|
|
|
1461 |
|
|
static void info_sharedlibrary_command ()
|
1462 |
|
|
|
1463 |
|
|
DESCRIPTION
|
1464 |
|
|
|
1465 |
|
|
Walk through the shared library list and print information
|
1466 |
|
|
about each attached library.
|
1467 |
|
|
*/
|
1468 |
|
|
|
1469 |
|
|
static void
|
1470 |
|
|
info_sharedlibrary_command (ignore, from_tty)
|
1471 |
|
|
char *ignore;
|
1472 |
|
|
int from_tty;
|
1473 |
|
|
{
|
1474 |
|
|
register struct so_list *so = NULL; /* link map state variable */
|
1475 |
|
|
int header_done = 0;
|
1476 |
|
|
int addr_width;
|
1477 |
|
|
char *addr_fmt;
|
1478 |
|
|
|
1479 |
|
|
if (exec_bfd == NULL)
|
1480 |
|
|
{
|
1481 |
|
|
printf_unfiltered ("No executable file.\n");
|
1482 |
|
|
return;
|
1483 |
|
|
}
|
1484 |
|
|
|
1485 |
|
|
#ifndef TARGET_ELF64
|
1486 |
|
|
addr_width = 8 + 4;
|
1487 |
|
|
addr_fmt = "08l";
|
1488 |
|
|
#else
|
1489 |
|
|
addr_width = 16 + 4;
|
1490 |
|
|
addr_fmt = "016l";
|
1491 |
|
|
#endif
|
1492 |
|
|
|
1493 |
|
|
update_solib_list (from_tty, 0);
|
1494 |
|
|
|
1495 |
|
|
for (so = so_list_head; so; so = so->next)
|
1496 |
|
|
{
|
1497 |
|
|
if (so->so_name[0])
|
1498 |
|
|
{
|
1499 |
|
|
if (!header_done)
|
1500 |
|
|
{
|
1501 |
|
|
printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
|
1502 |
|
|
addr_width, "To", "Syms Read",
|
1503 |
|
|
"Shared Object Library");
|
1504 |
|
|
header_done++;
|
1505 |
|
|
}
|
1506 |
|
|
|
1507 |
|
|
printf_unfiltered ("%-*s", addr_width,
|
1508 |
|
|
local_hex_string_custom ((unsigned long) LM_ADDR (so),
|
1509 |
|
|
addr_fmt));
|
1510 |
|
|
printf_unfiltered ("%-*s", addr_width,
|
1511 |
|
|
local_hex_string_custom ((unsigned long) so->lmend,
|
1512 |
|
|
addr_fmt));
|
1513 |
|
|
printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
|
1514 |
|
|
printf_unfiltered ("%s\n", so->so_name);
|
1515 |
|
|
}
|
1516 |
|
|
}
|
1517 |
|
|
if (so_list_head == NULL)
|
1518 |
|
|
{
|
1519 |
|
|
printf_unfiltered ("No shared libraries loaded at this time.\n");
|
1520 |
|
|
}
|
1521 |
|
|
}
|
1522 |
|
|
|
1523 |
|
|
/*
|
1524 |
|
|
|
1525 |
|
|
GLOBAL FUNCTION
|
1526 |
|
|
|
1527 |
|
|
solib_address -- check to see if an address is in a shared lib
|
1528 |
|
|
|
1529 |
|
|
SYNOPSIS
|
1530 |
|
|
|
1531 |
|
|
char * solib_address (CORE_ADDR address)
|
1532 |
|
|
|
1533 |
|
|
DESCRIPTION
|
1534 |
|
|
|
1535 |
|
|
Provides a hook for other gdb routines to discover whether or
|
1536 |
|
|
not a particular address is within the mapped address space of
|
1537 |
|
|
a shared library. Any address between the base mapping address
|
1538 |
|
|
and the first address beyond the end of the last mapping, is
|
1539 |
|
|
considered to be within the shared library address space, for
|
1540 |
|
|
our purposes.
|
1541 |
|
|
|
1542 |
|
|
For example, this routine is called at one point to disable
|
1543 |
|
|
breakpoints which are in shared libraries that are not currently
|
1544 |
|
|
mapped in.
|
1545 |
|
|
*/
|
1546 |
|
|
|
1547 |
|
|
char *
|
1548 |
|
|
solib_address (address)
|
1549 |
|
|
CORE_ADDR address;
|
1550 |
|
|
{
|
1551 |
|
|
register struct so_list *so = 0; /* link map state variable */
|
1552 |
|
|
|
1553 |
|
|
for (so = so_list_head; so; so = so->next)
|
1554 |
|
|
{
|
1555 |
|
|
if (LM_ADDR (so) <= address && address < so->lmend)
|
1556 |
|
|
return (so->so_name);
|
1557 |
|
|
}
|
1558 |
|
|
|
1559 |
|
|
return (0);
|
1560 |
|
|
}
|
1561 |
|
|
|
1562 |
|
|
/* Called by free_all_symtabs */
|
1563 |
|
|
|
1564 |
|
|
void
|
1565 |
|
|
clear_solib ()
|
1566 |
|
|
{
|
1567 |
|
|
/* This function is expected to handle ELF shared libraries. It is
|
1568 |
|
|
also used on Solaris, which can run either ELF or a.out binaries
|
1569 |
|
|
(for compatibility with SunOS 4), both of which can use shared
|
1570 |
|
|
libraries. So we don't know whether we have an ELF executable or
|
1571 |
|
|
an a.out executable until the user chooses an executable file.
|
1572 |
|
|
|
1573 |
|
|
ELF shared libraries don't get mapped into the address space
|
1574 |
|
|
until after the program starts, so we'd better not try to insert
|
1575 |
|
|
breakpoints in them immediately. We have to wait until the
|
1576 |
|
|
dynamic linker has loaded them; we'll hit a bp_shlib_event
|
1577 |
|
|
breakpoint (look for calls to create_solib_event_breakpoint) when
|
1578 |
|
|
it's ready.
|
1579 |
|
|
|
1580 |
|
|
SunOS shared libraries seem to be different --- they're present
|
1581 |
|
|
as soon as the process begins execution, so there's no need to
|
1582 |
|
|
put off inserting breakpoints. There's also nowhere to put a
|
1583 |
|
|
bp_shlib_event breakpoint, so if we put it off, we'll never get
|
1584 |
|
|
around to it.
|
1585 |
|
|
|
1586 |
|
|
So: disable breakpoints only if we're using ELF shared libs. */
|
1587 |
|
|
if (exec_bfd != NULL
|
1588 |
|
|
&& bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
|
1589 |
|
|
disable_breakpoints_in_shlibs (1);
|
1590 |
|
|
|
1591 |
|
|
while (so_list_head)
|
1592 |
|
|
{
|
1593 |
|
|
struct so_list *so = so_list_head;
|
1594 |
|
|
so_list_head = so->next;
|
1595 |
|
|
free_so (so);
|
1596 |
|
|
}
|
1597 |
|
|
|
1598 |
|
|
debug_base = 0;
|
1599 |
|
|
}
|
1600 |
|
|
|
1601 |
|
|
static void
|
1602 |
|
|
do_clear_solib (dummy)
|
1603 |
|
|
PTR dummy;
|
1604 |
|
|
{
|
1605 |
|
|
solib_cleanup_queued = 0;
|
1606 |
|
|
clear_solib ();
|
1607 |
|
|
}
|
1608 |
|
|
|
1609 |
|
|
#ifdef SVR4_SHARED_LIBS
|
1610 |
|
|
|
1611 |
|
|
/* Return 1 if PC lies in the dynamic symbol resolution code of the
|
1612 |
|
|
SVR4 run time loader. */
|
1613 |
|
|
|
1614 |
|
|
static CORE_ADDR interp_text_sect_low;
|
1615 |
|
|
static CORE_ADDR interp_text_sect_high;
|
1616 |
|
|
static CORE_ADDR interp_plt_sect_low;
|
1617 |
|
|
static CORE_ADDR interp_plt_sect_high;
|
1618 |
|
|
|
1619 |
|
|
int
|
1620 |
|
|
in_svr4_dynsym_resolve_code (pc)
|
1621 |
|
|
CORE_ADDR pc;
|
1622 |
|
|
{
|
1623 |
|
|
return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
|
1624 |
|
|
|| (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
|
1625 |
|
|
|| in_plt_section (pc, NULL));
|
1626 |
|
|
}
|
1627 |
|
|
#endif
|
1628 |
|
|
|
1629 |
|
|
/*
|
1630 |
|
|
|
1631 |
|
|
LOCAL FUNCTION
|
1632 |
|
|
|
1633 |
|
|
disable_break -- remove the "mapping changed" breakpoint
|
1634 |
|
|
|
1635 |
|
|
SYNOPSIS
|
1636 |
|
|
|
1637 |
|
|
static int disable_break ()
|
1638 |
|
|
|
1639 |
|
|
DESCRIPTION
|
1640 |
|
|
|
1641 |
|
|
Removes the breakpoint that gets hit when the dynamic linker
|
1642 |
|
|
completes a mapping change.
|
1643 |
|
|
|
1644 |
|
|
*/
|
1645 |
|
|
|
1646 |
|
|
#ifndef SVR4_SHARED_LIBS
|
1647 |
|
|
|
1648 |
|
|
static int
|
1649 |
|
|
disable_break ()
|
1650 |
|
|
{
|
1651 |
|
|
int status = 1;
|
1652 |
|
|
|
1653 |
|
|
#ifndef SVR4_SHARED_LIBS
|
1654 |
|
|
|
1655 |
|
|
int in_debugger = 0;
|
1656 |
|
|
|
1657 |
|
|
/* Read the debugger structure from the inferior to retrieve the
|
1658 |
|
|
address of the breakpoint and the original contents of the
|
1659 |
|
|
breakpoint address. Remove the breakpoint by writing the original
|
1660 |
|
|
contents back. */
|
1661 |
|
|
|
1662 |
|
|
read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
|
1663 |
|
|
|
1664 |
|
|
/* Set `in_debugger' to zero now. */
|
1665 |
|
|
|
1666 |
|
|
write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
|
1667 |
|
|
|
1668 |
|
|
breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
|
1669 |
|
|
write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
|
1670 |
|
|
sizeof (debug_copy.ldd_bp_inst));
|
1671 |
|
|
|
1672 |
|
|
#else /* SVR4_SHARED_LIBS */
|
1673 |
|
|
|
1674 |
|
|
/* Note that breakpoint address and original contents are in our address
|
1675 |
|
|
space, so we just need to write the original contents back. */
|
1676 |
|
|
|
1677 |
|
|
if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
|
1678 |
|
|
{
|
1679 |
|
|
status = 0;
|
1680 |
|
|
}
|
1681 |
|
|
|
1682 |
|
|
#endif /* !SVR4_SHARED_LIBS */
|
1683 |
|
|
|
1684 |
|
|
/* For the SVR4 version, we always know the breakpoint address. For the
|
1685 |
|
|
SunOS version we don't know it until the above code is executed.
|
1686 |
|
|
Grumble if we are stopped anywhere besides the breakpoint address. */
|
1687 |
|
|
|
1688 |
|
|
if (stop_pc != breakpoint_addr)
|
1689 |
|
|
{
|
1690 |
|
|
warning ("stopped at unknown breakpoint while handling shared libraries");
|
1691 |
|
|
}
|
1692 |
|
|
|
1693 |
|
|
return (status);
|
1694 |
|
|
}
|
1695 |
|
|
|
1696 |
|
|
#endif /* #ifdef SVR4_SHARED_LIBS */
|
1697 |
|
|
|
1698 |
|
|
/*
|
1699 |
|
|
|
1700 |
|
|
LOCAL FUNCTION
|
1701 |
|
|
|
1702 |
|
|
enable_break -- arrange for dynamic linker to hit breakpoint
|
1703 |
|
|
|
1704 |
|
|
SYNOPSIS
|
1705 |
|
|
|
1706 |
|
|
int enable_break (void)
|
1707 |
|
|
|
1708 |
|
|
DESCRIPTION
|
1709 |
|
|
|
1710 |
|
|
Both the SunOS and the SVR4 dynamic linkers have, as part of their
|
1711 |
|
|
debugger interface, support for arranging for the inferior to hit
|
1712 |
|
|
a breakpoint after mapping in the shared libraries. This function
|
1713 |
|
|
enables that breakpoint.
|
1714 |
|
|
|
1715 |
|
|
For SunOS, there is a special flag location (in_debugger) which we
|
1716 |
|
|
set to 1. When the dynamic linker sees this flag set, it will set
|
1717 |
|
|
a breakpoint at a location known only to itself, after saving the
|
1718 |
|
|
original contents of that place and the breakpoint address itself,
|
1719 |
|
|
in it's own internal structures. When we resume the inferior, it
|
1720 |
|
|
will eventually take a SIGTRAP when it runs into the breakpoint.
|
1721 |
|
|
We handle this (in a different place) by restoring the contents of
|
1722 |
|
|
the breakpointed location (which is only known after it stops),
|
1723 |
|
|
chasing around to locate the shared libraries that have been
|
1724 |
|
|
loaded, then resuming.
|
1725 |
|
|
|
1726 |
|
|
For SVR4, the debugger interface structure contains a member (r_brk)
|
1727 |
|
|
which is statically initialized at the time the shared library is
|
1728 |
|
|
built, to the offset of a function (_r_debug_state) which is guaran-
|
1729 |
|
|
teed to be called once before mapping in a library, and again when
|
1730 |
|
|
the mapping is complete. At the time we are examining this member,
|
1731 |
|
|
it contains only the unrelocated offset of the function, so we have
|
1732 |
|
|
to do our own relocation. Later, when the dynamic linker actually
|
1733 |
|
|
runs, it relocates r_brk to be the actual address of _r_debug_state().
|
1734 |
|
|
|
1735 |
|
|
The debugger interface structure also contains an enumeration which
|
1736 |
|
|
is set to either RT_ADD or RT_DELETE prior to changing the mapping,
|
1737 |
|
|
depending upon whether or not the library is being mapped or unmapped,
|
1738 |
|
|
and then set to RT_CONSISTENT after the library is mapped/unmapped.
|
1739 |
|
|
*/
|
1740 |
|
|
|
1741 |
|
|
static int
|
1742 |
|
|
enable_break ()
|
1743 |
|
|
{
|
1744 |
|
|
int success = 0;
|
1745 |
|
|
|
1746 |
|
|
#ifndef SVR4_SHARED_LIBS
|
1747 |
|
|
|
1748 |
|
|
int j;
|
1749 |
|
|
int in_debugger;
|
1750 |
|
|
|
1751 |
|
|
/* Get link_dynamic structure */
|
1752 |
|
|
|
1753 |
|
|
j = target_read_memory (debug_base, (char *) &dynamic_copy,
|
1754 |
|
|
sizeof (dynamic_copy));
|
1755 |
|
|
if (j)
|
1756 |
|
|
{
|
1757 |
|
|
/* unreadable */
|
1758 |
|
|
return (0);
|
1759 |
|
|
}
|
1760 |
|
|
|
1761 |
|
|
/* Calc address of debugger interface structure */
|
1762 |
|
|
|
1763 |
|
|
debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
|
1764 |
|
|
|
1765 |
|
|
/* Calc address of `in_debugger' member of debugger interface structure */
|
1766 |
|
|
|
1767 |
|
|
flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
|
1768 |
|
|
(char *) &debug_copy);
|
1769 |
|
|
|
1770 |
|
|
/* Write a value of 1 to this member. */
|
1771 |
|
|
|
1772 |
|
|
in_debugger = 1;
|
1773 |
|
|
write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
|
1774 |
|
|
success = 1;
|
1775 |
|
|
|
1776 |
|
|
#else /* SVR4_SHARED_LIBS */
|
1777 |
|
|
|
1778 |
|
|
#ifdef BKPT_AT_SYMBOL
|
1779 |
|
|
|
1780 |
|
|
struct minimal_symbol *msymbol;
|
1781 |
|
|
char **bkpt_namep;
|
1782 |
|
|
asection *interp_sect;
|
1783 |
|
|
|
1784 |
|
|
/* First, remove all the solib event breakpoints. Their addresses
|
1785 |
|
|
may have changed since the last time we ran the program. */
|
1786 |
|
|
remove_solib_event_breakpoints ();
|
1787 |
|
|
|
1788 |
|
|
#ifdef SVR4_SHARED_LIBS
|
1789 |
|
|
interp_text_sect_low = interp_text_sect_high = 0;
|
1790 |
|
|
interp_plt_sect_low = interp_plt_sect_high = 0;
|
1791 |
|
|
|
1792 |
|
|
/* Find the .interp section; if not found, warn the user and drop
|
1793 |
|
|
into the old breakpoint at symbol code. */
|
1794 |
|
|
interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
|
1795 |
|
|
if (interp_sect)
|
1796 |
|
|
{
|
1797 |
|
|
unsigned int interp_sect_size;
|
1798 |
|
|
char *buf;
|
1799 |
|
|
CORE_ADDR load_addr;
|
1800 |
|
|
bfd *tmp_bfd;
|
1801 |
|
|
CORE_ADDR sym_addr = 0;
|
1802 |
|
|
|
1803 |
|
|
/* Read the contents of the .interp section into a local buffer;
|
1804 |
|
|
the contents specify the dynamic linker this program uses. */
|
1805 |
|
|
interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
|
1806 |
|
|
buf = alloca (interp_sect_size);
|
1807 |
|
|
bfd_get_section_contents (exec_bfd, interp_sect,
|
1808 |
|
|
buf, 0, interp_sect_size);
|
1809 |
|
|
|
1810 |
|
|
/* Now we need to figure out where the dynamic linker was
|
1811 |
|
|
loaded so that we can load its symbols and place a breakpoint
|
1812 |
|
|
in the dynamic linker itself.
|
1813 |
|
|
|
1814 |
|
|
This address is stored on the stack. However, I've been unable
|
1815 |
|
|
to find any magic formula to find it for Solaris (appears to
|
1816 |
|
|
be trivial on GNU/Linux). Therefore, we have to try an alternate
|
1817 |
|
|
mechanism to find the dynamic linker's base address. */
|
1818 |
|
|
tmp_bfd = bfd_openr (buf, gnutarget);
|
1819 |
|
|
if (tmp_bfd == NULL)
|
1820 |
|
|
goto bkpt_at_symbol;
|
1821 |
|
|
|
1822 |
|
|
/* Make sure the dynamic linker's really a useful object. */
|
1823 |
|
|
if (!bfd_check_format (tmp_bfd, bfd_object))
|
1824 |
|
|
{
|
1825 |
|
|
warning ("Unable to grok dynamic linker %s as an object file", buf);
|
1826 |
|
|
bfd_close (tmp_bfd);
|
1827 |
|
|
goto bkpt_at_symbol;
|
1828 |
|
|
}
|
1829 |
|
|
|
1830 |
|
|
/* We find the dynamic linker's base address by examining the
|
1831 |
|
|
current pc (which point at the entry point for the dynamic
|
1832 |
|
|
linker) and subtracting the offset of the entry point. */
|
1833 |
|
|
load_addr = read_pc () - tmp_bfd->start_address;
|
1834 |
|
|
|
1835 |
|
|
/* Record the relocated start and end address of the dynamic linker
|
1836 |
|
|
text and plt section for in_svr4_dynsym_resolve_code. */
|
1837 |
|
|
interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
|
1838 |
|
|
if (interp_sect)
|
1839 |
|
|
{
|
1840 |
|
|
interp_text_sect_low =
|
1841 |
|
|
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
|
1842 |
|
|
interp_text_sect_high =
|
1843 |
|
|
interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
|
1844 |
|
|
}
|
1845 |
|
|
interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
|
1846 |
|
|
if (interp_sect)
|
1847 |
|
|
{
|
1848 |
|
|
interp_plt_sect_low =
|
1849 |
|
|
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
|
1850 |
|
|
interp_plt_sect_high =
|
1851 |
|
|
interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
|
1852 |
|
|
}
|
1853 |
|
|
|
1854 |
|
|
/* Now try to set a breakpoint in the dynamic linker. */
|
1855 |
|
|
for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
|
1856 |
|
|
{
|
1857 |
|
|
sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
|
1858 |
|
|
if (sym_addr != 0)
|
1859 |
|
|
break;
|
1860 |
|
|
}
|
1861 |
|
|
|
1862 |
|
|
/* We're done with the temporary bfd. */
|
1863 |
|
|
bfd_close (tmp_bfd);
|
1864 |
|
|
|
1865 |
|
|
if (sym_addr != 0)
|
1866 |
|
|
{
|
1867 |
|
|
create_solib_event_breakpoint (load_addr + sym_addr);
|
1868 |
|
|
return 1;
|
1869 |
|
|
}
|
1870 |
|
|
|
1871 |
|
|
/* For whatever reason we couldn't set a breakpoint in the dynamic
|
1872 |
|
|
linker. Warn and drop into the old code. */
|
1873 |
|
|
bkpt_at_symbol:
|
1874 |
|
|
warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
|
1875 |
|
|
}
|
1876 |
|
|
#endif
|
1877 |
|
|
|
1878 |
|
|
/* Scan through the list of symbols, trying to look up the symbol and
|
1879 |
|
|
set a breakpoint there. Terminate loop when we/if we succeed. */
|
1880 |
|
|
|
1881 |
|
|
breakpoint_addr = 0;
|
1882 |
|
|
for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
|
1883 |
|
|
{
|
1884 |
|
|
msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
|
1885 |
|
|
if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
|
1886 |
|
|
{
|
1887 |
|
|
create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
|
1888 |
|
|
return 1;
|
1889 |
|
|
}
|
1890 |
|
|
}
|
1891 |
|
|
|
1892 |
|
|
/* Nothing good happened. */
|
1893 |
|
|
success = 0;
|
1894 |
|
|
|
1895 |
|
|
#endif /* BKPT_AT_SYMBOL */
|
1896 |
|
|
|
1897 |
|
|
#endif /* !SVR4_SHARED_LIBS */
|
1898 |
|
|
|
1899 |
|
|
return (success);
|
1900 |
|
|
}
|
1901 |
|
|
|
1902 |
|
|
/*
|
1903 |
|
|
|
1904 |
|
|
GLOBAL FUNCTION
|
1905 |
|
|
|
1906 |
|
|
solib_create_inferior_hook -- shared library startup support
|
1907 |
|
|
|
1908 |
|
|
SYNOPSIS
|
1909 |
|
|
|
1910 |
|
|
void solib_create_inferior_hook()
|
1911 |
|
|
|
1912 |
|
|
DESCRIPTION
|
1913 |
|
|
|
1914 |
|
|
When gdb starts up the inferior, it nurses it along (through the
|
1915 |
|
|
shell) until it is ready to execute it's first instruction. At this
|
1916 |
|
|
point, this function gets called via expansion of the macro
|
1917 |
|
|
SOLIB_CREATE_INFERIOR_HOOK.
|
1918 |
|
|
|
1919 |
|
|
For SunOS executables, this first instruction is typically the
|
1920 |
|
|
one at "_start", or a similar text label, regardless of whether
|
1921 |
|
|
the executable is statically or dynamically linked. The runtime
|
1922 |
|
|
startup code takes care of dynamically linking in any shared
|
1923 |
|
|
libraries, once gdb allows the inferior to continue.
|
1924 |
|
|
|
1925 |
|
|
For SVR4 executables, this first instruction is either the first
|
1926 |
|
|
instruction in the dynamic linker (for dynamically linked
|
1927 |
|
|
executables) or the instruction at "start" for statically linked
|
1928 |
|
|
executables. For dynamically linked executables, the system
|
1929 |
|
|
first exec's /lib/libc.so.N, which contains the dynamic linker,
|
1930 |
|
|
and starts it running. The dynamic linker maps in any needed
|
1931 |
|
|
shared libraries, maps in the actual user executable, and then
|
1932 |
|
|
jumps to "start" in the user executable.
|
1933 |
|
|
|
1934 |
|
|
For both SunOS shared libraries, and SVR4 shared libraries, we
|
1935 |
|
|
can arrange to cooperate with the dynamic linker to discover the
|
1936 |
|
|
names of shared libraries that are dynamically linked, and the
|
1937 |
|
|
base addresses to which they are linked.
|
1938 |
|
|
|
1939 |
|
|
This function is responsible for discovering those names and
|
1940 |
|
|
addresses, and saving sufficient information about them to allow
|
1941 |
|
|
their symbols to be read at a later time.
|
1942 |
|
|
|
1943 |
|
|
FIXME
|
1944 |
|
|
|
1945 |
|
|
Between enable_break() and disable_break(), this code does not
|
1946 |
|
|
properly handle hitting breakpoints which the user might have
|
1947 |
|
|
set in the startup code or in the dynamic linker itself. Proper
|
1948 |
|
|
handling will probably have to wait until the implementation is
|
1949 |
|
|
changed to use the "breakpoint handler function" method.
|
1950 |
|
|
|
1951 |
|
|
Also, what if child has exit()ed? Must exit loop somehow.
|
1952 |
|
|
*/
|
1953 |
|
|
|
1954 |
|
|
void
|
1955 |
|
|
solib_create_inferior_hook ()
|
1956 |
|
|
{
|
1957 |
|
|
/* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
|
1958 |
|
|
yet. In fact, in the case of a SunOS4 executable being run on
|
1959 |
|
|
Solaris, we can't get it yet. current_sos will get it when it needs
|
1960 |
|
|
it. */
|
1961 |
|
|
#if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
|
1962 |
|
|
if ((debug_base = locate_base ()) == 0)
|
1963 |
|
|
{
|
1964 |
|
|
/* Can't find the symbol or the executable is statically linked. */
|
1965 |
|
|
return;
|
1966 |
|
|
}
|
1967 |
|
|
#endif
|
1968 |
|
|
|
1969 |
|
|
if (!enable_break ())
|
1970 |
|
|
{
|
1971 |
|
|
warning ("shared library handler failed to enable breakpoint");
|
1972 |
|
|
return;
|
1973 |
|
|
}
|
1974 |
|
|
|
1975 |
|
|
#if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
|
1976 |
|
|
/* SCO and SunOS need the loop below, other systems should be using the
|
1977 |
|
|
special shared library breakpoints and the shared library breakpoint
|
1978 |
|
|
service routine.
|
1979 |
|
|
|
1980 |
|
|
Now run the target. It will eventually hit the breakpoint, at
|
1981 |
|
|
which point all of the libraries will have been mapped in and we
|
1982 |
|
|
can go groveling around in the dynamic linker structures to find
|
1983 |
|
|
out what we need to know about them. */
|
1984 |
|
|
|
1985 |
|
|
clear_proceed_status ();
|
1986 |
|
|
stop_soon_quietly = 1;
|
1987 |
|
|
stop_signal = TARGET_SIGNAL_0;
|
1988 |
|
|
do
|
1989 |
|
|
{
|
1990 |
|
|
target_resume (-1, 0, stop_signal);
|
1991 |
|
|
wait_for_inferior ();
|
1992 |
|
|
}
|
1993 |
|
|
while (stop_signal != TARGET_SIGNAL_TRAP);
|
1994 |
|
|
stop_soon_quietly = 0;
|
1995 |
|
|
|
1996 |
|
|
#if !defined(_SCO_DS)
|
1997 |
|
|
/* We are now either at the "mapping complete" breakpoint (or somewhere
|
1998 |
|
|
else, a condition we aren't prepared to deal with anyway), so adjust
|
1999 |
|
|
the PC as necessary after a breakpoint, disable the breakpoint, and
|
2000 |
|
|
add any shared libraries that were mapped in. */
|
2001 |
|
|
|
2002 |
|
|
if (DECR_PC_AFTER_BREAK)
|
2003 |
|
|
{
|
2004 |
|
|
stop_pc -= DECR_PC_AFTER_BREAK;
|
2005 |
|
|
write_register (PC_REGNUM, stop_pc);
|
2006 |
|
|
}
|
2007 |
|
|
|
2008 |
|
|
if (!disable_break ())
|
2009 |
|
|
{
|
2010 |
|
|
warning ("shared library handler failed to disable breakpoint");
|
2011 |
|
|
}
|
2012 |
|
|
|
2013 |
|
|
if (auto_solib_add)
|
2014 |
|
|
solib_add ((char *) 0, 0, (struct target_ops *) 0);
|
2015 |
|
|
#endif /* ! _SCO_DS */
|
2016 |
|
|
#endif
|
2017 |
|
|
}
|
2018 |
|
|
|
2019 |
|
|
/*
|
2020 |
|
|
|
2021 |
|
|
LOCAL FUNCTION
|
2022 |
|
|
|
2023 |
|
|
special_symbol_handling -- additional shared library symbol handling
|
2024 |
|
|
|
2025 |
|
|
SYNOPSIS
|
2026 |
|
|
|
2027 |
|
|
void special_symbol_handling ()
|
2028 |
|
|
|
2029 |
|
|
DESCRIPTION
|
2030 |
|
|
|
2031 |
|
|
Once the symbols from a shared object have been loaded in the usual
|
2032 |
|
|
way, we are called to do any system specific symbol handling that
|
2033 |
|
|
is needed.
|
2034 |
|
|
|
2035 |
|
|
For SunOS4, this consists of grunging around in the dynamic
|
2036 |
|
|
linkers structures to find symbol definitions for "common" symbols
|
2037 |
|
|
and adding them to the minimal symbol table for the runtime common
|
2038 |
|
|
objfile.
|
2039 |
|
|
|
2040 |
|
|
*/
|
2041 |
|
|
|
2042 |
|
|
static void
|
2043 |
|
|
special_symbol_handling ()
|
2044 |
|
|
{
|
2045 |
|
|
#ifndef SVR4_SHARED_LIBS
|
2046 |
|
|
int j;
|
2047 |
|
|
|
2048 |
|
|
if (debug_addr == 0)
|
2049 |
|
|
{
|
2050 |
|
|
/* Get link_dynamic structure */
|
2051 |
|
|
|
2052 |
|
|
j = target_read_memory (debug_base, (char *) &dynamic_copy,
|
2053 |
|
|
sizeof (dynamic_copy));
|
2054 |
|
|
if (j)
|
2055 |
|
|
{
|
2056 |
|
|
/* unreadable */
|
2057 |
|
|
return;
|
2058 |
|
|
}
|
2059 |
|
|
|
2060 |
|
|
/* Calc address of debugger interface structure */
|
2061 |
|
|
/* FIXME, this needs work for cross-debugging of core files
|
2062 |
|
|
(byteorder, size, alignment, etc). */
|
2063 |
|
|
|
2064 |
|
|
debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
|
2065 |
|
|
}
|
2066 |
|
|
|
2067 |
|
|
/* Read the debugger structure from the inferior, just to make sure
|
2068 |
|
|
we have a current copy. */
|
2069 |
|
|
|
2070 |
|
|
j = target_read_memory (debug_addr, (char *) &debug_copy,
|
2071 |
|
|
sizeof (debug_copy));
|
2072 |
|
|
if (j)
|
2073 |
|
|
return; /* unreadable */
|
2074 |
|
|
|
2075 |
|
|
/* Get common symbol definitions for the loaded object. */
|
2076 |
|
|
|
2077 |
|
|
if (debug_copy.ldd_cp)
|
2078 |
|
|
{
|
2079 |
|
|
solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
|
2080 |
|
|
}
|
2081 |
|
|
|
2082 |
|
|
#endif /* !SVR4_SHARED_LIBS */
|
2083 |
|
|
}
|
2084 |
|
|
|
2085 |
|
|
|
2086 |
|
|
/*
|
2087 |
|
|
|
2088 |
|
|
LOCAL FUNCTION
|
2089 |
|
|
|
2090 |
|
|
sharedlibrary_command -- handle command to explicitly add library
|
2091 |
|
|
|
2092 |
|
|
SYNOPSIS
|
2093 |
|
|
|
2094 |
|
|
static void sharedlibrary_command (char *args, int from_tty)
|
2095 |
|
|
|
2096 |
|
|
DESCRIPTION
|
2097 |
|
|
|
2098 |
|
|
*/
|
2099 |
|
|
|
2100 |
|
|
static void
|
2101 |
|
|
sharedlibrary_command (args, from_tty)
|
2102 |
|
|
char *args;
|
2103 |
|
|
int from_tty;
|
2104 |
|
|
{
|
2105 |
|
|
dont_repeat ();
|
2106 |
|
|
solib_add (args, from_tty, (struct target_ops *) 0);
|
2107 |
|
|
}
|
2108 |
|
|
|
2109 |
|
|
#endif /* HAVE_LINK_H */
|
2110 |
|
|
|
2111 |
|
|
void
|
2112 |
|
|
_initialize_solib ()
|
2113 |
|
|
{
|
2114 |
|
|
#ifdef HAVE_LINK_H
|
2115 |
|
|
|
2116 |
|
|
add_com ("sharedlibrary", class_files, sharedlibrary_command,
|
2117 |
|
|
"Load shared object library symbols for files matching REGEXP.");
|
2118 |
|
|
add_info ("sharedlibrary", info_sharedlibrary_command,
|
2119 |
|
|
"Status of loaded shared object libraries.");
|
2120 |
|
|
|
2121 |
|
|
add_show_from_set
|
2122 |
|
|
(add_set_cmd ("auto-solib-add", class_support, var_zinteger,
|
2123 |
|
|
(char *) &auto_solib_add,
|
2124 |
|
|
"Set autoloading of shared library symbols.\n\
|
2125 |
|
|
If nonzero, symbols from all shared object libraries will be loaded\n\
|
2126 |
|
|
automatically when the inferior begins execution or when the dynamic linker\n\
|
2127 |
|
|
informs gdb that a new library has been loaded. Otherwise, symbols\n\
|
2128 |
|
|
must be loaded manually, using `sharedlibrary'.",
|
2129 |
|
|
&setlist),
|
2130 |
|
|
&showlist);
|
2131 |
|
|
|
2132 |
|
|
add_show_from_set
|
2133 |
|
|
(add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
|
2134 |
|
|
(char *) &solib_absolute_prefix,
|
2135 |
|
|
"Set prefix for loading absolute shared library symbol files.\n\
|
2136 |
|
|
For other (relative) files, you can add values using `set solib-search-path'.",
|
2137 |
|
|
&setlist),
|
2138 |
|
|
&showlist);
|
2139 |
|
|
add_show_from_set
|
2140 |
|
|
(add_set_cmd ("solib-search-path", class_support, var_string,
|
2141 |
|
|
(char *) &solib_search_path,
|
2142 |
|
|
"Set the search path for loading non-absolute shared library symbol files.\n\
|
2143 |
|
|
This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
|
2144 |
|
|
&setlist),
|
2145 |
|
|
&showlist);
|
2146 |
|
|
|
2147 |
|
|
#endif /* HAVE_LINK_H */
|
2148 |
|
|
}
|