1 |
104 |
markom |
/* Functions specific to running gdb native on a SPARC running SunOS4.
|
2 |
|
|
Copyright 1989, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of GDB.
|
5 |
|
|
|
6 |
|
|
This program is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
9 |
|
|
(at your option) any later version.
|
10 |
|
|
|
11 |
|
|
This program is distributed in the hope that it will be useful,
|
12 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
|
|
GNU General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with this program; if not, write to the Free Software
|
18 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
19 |
|
|
Boston, MA 02111-1307, USA. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "inferior.h"
|
23 |
|
|
#include "target.h"
|
24 |
|
|
#include "gdbcore.h"
|
25 |
|
|
|
26 |
|
|
#include <signal.h>
|
27 |
|
|
#include <sys/ptrace.h>
|
28 |
|
|
#include <sys/wait.h>
|
29 |
|
|
#ifdef __linux__
|
30 |
|
|
#include <asm/reg.h>
|
31 |
|
|
#else
|
32 |
|
|
#include <machine/reg.h>
|
33 |
|
|
#endif
|
34 |
|
|
#include <sys/user.h>
|
35 |
|
|
|
36 |
|
|
/* We don't store all registers immediately when requested, since they
|
37 |
|
|
get sent over in large chunks anyway. Instead, we accumulate most
|
38 |
|
|
of the changes and send them over once. "deferred_stores" keeps
|
39 |
|
|
track of which sets of registers we have locally-changed copies of,
|
40 |
|
|
so we only need send the groups that have changed. */
|
41 |
|
|
|
42 |
|
|
#define INT_REGS 1
|
43 |
|
|
#define STACK_REGS 2
|
44 |
|
|
#define FP_REGS 4
|
45 |
|
|
|
46 |
|
|
static void
|
47 |
|
|
fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
|
48 |
|
|
|
49 |
|
|
/* Fetch one or more registers from the inferior. REGNO == -1 to get
|
50 |
|
|
them all. We actually fetch more than requested, when convenient,
|
51 |
|
|
marking them as valid so we won't fetch them again. */
|
52 |
|
|
|
53 |
|
|
void
|
54 |
|
|
fetch_inferior_registers (regno)
|
55 |
|
|
int regno;
|
56 |
|
|
{
|
57 |
|
|
struct regs inferior_registers;
|
58 |
|
|
struct fp_status inferior_fp_registers;
|
59 |
|
|
int i;
|
60 |
|
|
|
61 |
|
|
/* We should never be called with deferred stores, because a prerequisite
|
62 |
|
|
for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */
|
63 |
|
|
if (deferred_stores)
|
64 |
|
|
abort ();
|
65 |
|
|
|
66 |
|
|
DO_DEFERRED_STORES;
|
67 |
|
|
|
68 |
|
|
/* Global and Out regs are fetched directly, as well as the control
|
69 |
|
|
registers. If we're getting one of the in or local regs,
|
70 |
|
|
and the stack pointer has not yet been fetched,
|
71 |
|
|
we have to do that first, since they're found in memory relative
|
72 |
|
|
to the stack pointer. */
|
73 |
|
|
if (regno < O7_REGNUM /* including -1 */
|
74 |
|
|
|| regno >= Y_REGNUM
|
75 |
|
|
|| (!register_valid[SP_REGNUM] && regno < I7_REGNUM))
|
76 |
|
|
{
|
77 |
|
|
if (0 != ptrace (PTRACE_GETREGS, inferior_pid,
|
78 |
|
|
(PTRACE_ARG3_TYPE) & inferior_registers, 0))
|
79 |
|
|
perror ("ptrace_getregs");
|
80 |
|
|
|
81 |
|
|
registers[REGISTER_BYTE (0)] = 0;
|
82 |
|
|
memcpy (®isters[REGISTER_BYTE (1)], &inferior_registers.r_g1,
|
83 |
|
|
15 * REGISTER_RAW_SIZE (G0_REGNUM));
|
84 |
|
|
*(int *) ®isters[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
|
85 |
|
|
*(int *) ®isters[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
|
86 |
|
|
*(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
|
87 |
|
|
*(int *) ®isters[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
|
88 |
|
|
|
89 |
|
|
for (i = G0_REGNUM; i <= O7_REGNUM; i++)
|
90 |
|
|
register_valid[i] = 1;
|
91 |
|
|
register_valid[Y_REGNUM] = 1;
|
92 |
|
|
register_valid[PS_REGNUM] = 1;
|
93 |
|
|
register_valid[PC_REGNUM] = 1;
|
94 |
|
|
register_valid[NPC_REGNUM] = 1;
|
95 |
|
|
/* If we don't set these valid, read_register_bytes() rereads
|
96 |
|
|
all the regs every time it is called! FIXME. */
|
97 |
|
|
register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */
|
98 |
|
|
register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */
|
99 |
|
|
register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */
|
100 |
|
|
}
|
101 |
|
|
|
102 |
|
|
/* Floating point registers */
|
103 |
|
|
if (regno == -1 ||
|
104 |
|
|
regno == FPS_REGNUM ||
|
105 |
|
|
(regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
|
106 |
|
|
{
|
107 |
|
|
if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid,
|
108 |
|
|
(PTRACE_ARG3_TYPE) & inferior_fp_registers,
|
109 |
|
|
0))
|
110 |
|
|
perror ("ptrace_getfpregs");
|
111 |
|
|
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
|
112 |
|
|
sizeof inferior_fp_registers.fpu_fr);
|
113 |
|
|
memcpy (®isters[REGISTER_BYTE (FPS_REGNUM)],
|
114 |
|
|
&inferior_fp_registers.Fpu_fsr,
|
115 |
|
|
sizeof (FPU_FSR_TYPE));
|
116 |
|
|
for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
|
117 |
|
|
register_valid[i] = 1;
|
118 |
|
|
register_valid[FPS_REGNUM] = 1;
|
119 |
|
|
}
|
120 |
|
|
|
121 |
|
|
/* These regs are saved on the stack by the kernel. Only read them
|
122 |
|
|
all (16 ptrace calls!) if we really need them. */
|
123 |
|
|
if (regno == -1)
|
124 |
|
|
{
|
125 |
|
|
target_read_memory (*(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)],
|
126 |
|
|
®isters[REGISTER_BYTE (L0_REGNUM)],
|
127 |
|
|
16 * REGISTER_RAW_SIZE (L0_REGNUM));
|
128 |
|
|
for (i = L0_REGNUM; i <= I7_REGNUM; i++)
|
129 |
|
|
register_valid[i] = 1;
|
130 |
|
|
}
|
131 |
|
|
else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
|
132 |
|
|
{
|
133 |
|
|
CORE_ADDR sp = *(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)];
|
134 |
|
|
i = REGISTER_BYTE (regno);
|
135 |
|
|
if (register_valid[regno])
|
136 |
|
|
printf_unfiltered ("register %d valid and read\n", regno);
|
137 |
|
|
target_read_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
|
138 |
|
|
®isters[i], REGISTER_RAW_SIZE (regno));
|
139 |
|
|
register_valid[regno] = 1;
|
140 |
|
|
}
|
141 |
|
|
}
|
142 |
|
|
|
143 |
|
|
/* Store our register values back into the inferior.
|
144 |
|
|
If REGNO is -1, do this for all registers.
|
145 |
|
|
Otherwise, REGNO specifies which register (so we can save time). */
|
146 |
|
|
|
147 |
|
|
void
|
148 |
|
|
store_inferior_registers (regno)
|
149 |
|
|
int regno;
|
150 |
|
|
{
|
151 |
|
|
struct regs inferior_registers;
|
152 |
|
|
struct fp_status inferior_fp_registers;
|
153 |
|
|
int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
|
154 |
|
|
|
155 |
|
|
/* First decide which pieces of machine-state we need to modify.
|
156 |
|
|
Default for regno == -1 case is all pieces. */
|
157 |
|
|
if (regno >= 0)
|
158 |
|
|
if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
|
159 |
|
|
{
|
160 |
|
|
wanna_store = FP_REGS;
|
161 |
|
|
}
|
162 |
|
|
else
|
163 |
|
|
{
|
164 |
|
|
if (regno == SP_REGNUM)
|
165 |
|
|
wanna_store = INT_REGS + STACK_REGS;
|
166 |
|
|
else if (regno < L0_REGNUM || regno > I7_REGNUM)
|
167 |
|
|
wanna_store = INT_REGS;
|
168 |
|
|
else if (regno == FPS_REGNUM)
|
169 |
|
|
wanna_store = FP_REGS;
|
170 |
|
|
else
|
171 |
|
|
wanna_store = STACK_REGS;
|
172 |
|
|
}
|
173 |
|
|
|
174 |
|
|
/* See if we're forcing the stores to happen now, or deferring. */
|
175 |
|
|
if (regno == -2)
|
176 |
|
|
{
|
177 |
|
|
wanna_store = deferred_stores;
|
178 |
|
|
deferred_stores = 0;
|
179 |
|
|
}
|
180 |
|
|
else
|
181 |
|
|
{
|
182 |
|
|
if (wanna_store == STACK_REGS)
|
183 |
|
|
{
|
184 |
|
|
/* Fall through and just store one stack reg. If we deferred
|
185 |
|
|
it, we'd have to store them all, or remember more info. */
|
186 |
|
|
}
|
187 |
|
|
else
|
188 |
|
|
{
|
189 |
|
|
deferred_stores |= wanna_store;
|
190 |
|
|
return;
|
191 |
|
|
}
|
192 |
|
|
}
|
193 |
|
|
|
194 |
|
|
if (wanna_store & STACK_REGS)
|
195 |
|
|
{
|
196 |
|
|
CORE_ADDR sp = *(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)];
|
197 |
|
|
|
198 |
|
|
if (regno < 0 || regno == SP_REGNUM)
|
199 |
|
|
{
|
200 |
|
|
if (!register_valid[L0_REGNUM + 5])
|
201 |
|
|
abort ();
|
202 |
|
|
target_write_memory (sp,
|
203 |
|
|
®isters[REGISTER_BYTE (L0_REGNUM)],
|
204 |
|
|
16 * REGISTER_RAW_SIZE (L0_REGNUM));
|
205 |
|
|
}
|
206 |
|
|
else
|
207 |
|
|
{
|
208 |
|
|
if (!register_valid[regno])
|
209 |
|
|
abort ();
|
210 |
|
|
target_write_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM),
|
211 |
|
|
®isters[REGISTER_BYTE (regno)],
|
212 |
|
|
REGISTER_RAW_SIZE (regno));
|
213 |
|
|
}
|
214 |
|
|
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
if (wanna_store & INT_REGS)
|
218 |
|
|
{
|
219 |
|
|
if (!register_valid[G1_REGNUM])
|
220 |
|
|
abort ();
|
221 |
|
|
|
222 |
|
|
memcpy (&inferior_registers.r_g1, ®isters[REGISTER_BYTE (G1_REGNUM)],
|
223 |
|
|
15 * REGISTER_RAW_SIZE (G1_REGNUM));
|
224 |
|
|
|
225 |
|
|
inferior_registers.r_ps =
|
226 |
|
|
*(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
|
227 |
|
|
inferior_registers.r_pc =
|
228 |
|
|
*(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
|
229 |
|
|
inferior_registers.r_npc =
|
230 |
|
|
*(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)];
|
231 |
|
|
inferior_registers.r_y =
|
232 |
|
|
*(int *) ®isters[REGISTER_BYTE (Y_REGNUM)];
|
233 |
|
|
|
234 |
|
|
if (0 != ptrace (PTRACE_SETREGS, inferior_pid,
|
235 |
|
|
(PTRACE_ARG3_TYPE) & inferior_registers, 0))
|
236 |
|
|
perror ("ptrace_setregs");
|
237 |
|
|
}
|
238 |
|
|
|
239 |
|
|
if (wanna_store & FP_REGS)
|
240 |
|
|
{
|
241 |
|
|
if (!register_valid[FP0_REGNUM + 9])
|
242 |
|
|
abort ();
|
243 |
|
|
memcpy (&inferior_fp_registers, ®isters[REGISTER_BYTE (FP0_REGNUM)],
|
244 |
|
|
sizeof inferior_fp_registers.fpu_fr);
|
245 |
|
|
memcpy (&inferior_fp_registers.Fpu_fsr,
|
246 |
|
|
®isters[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE));
|
247 |
|
|
if (0 !=
|
248 |
|
|
ptrace (PTRACE_SETFPREGS, inferior_pid,
|
249 |
|
|
(PTRACE_ARG3_TYPE) & inferior_fp_registers, 0))
|
250 |
|
|
perror ("ptrace_setfpregs");
|
251 |
|
|
}
|
252 |
|
|
}
|
253 |
|
|
|
254 |
|
|
|
255 |
|
|
static void
|
256 |
|
|
fetch_core_registers (core_reg_sect, core_reg_size, which, ignore)
|
257 |
|
|
char *core_reg_sect;
|
258 |
|
|
unsigned core_reg_size;
|
259 |
|
|
int which;
|
260 |
|
|
CORE_ADDR ignore; /* reg addr, unused in this version */
|
261 |
|
|
{
|
262 |
|
|
|
263 |
|
|
if (which == 0)
|
264 |
|
|
{
|
265 |
|
|
|
266 |
|
|
/* Integer registers */
|
267 |
|
|
|
268 |
|
|
#define gregs ((struct regs *)core_reg_sect)
|
269 |
|
|
/* G0 *always* holds 0. */
|
270 |
|
|
*(int *) ®isters[REGISTER_BYTE (0)] = 0;
|
271 |
|
|
|
272 |
|
|
/* The globals and output registers. */
|
273 |
|
|
memcpy (®isters[REGISTER_BYTE (G1_REGNUM)], &gregs->r_g1,
|
274 |
|
|
15 * REGISTER_RAW_SIZE (G1_REGNUM));
|
275 |
|
|
*(int *) ®isters[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps;
|
276 |
|
|
*(int *) ®isters[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc;
|
277 |
|
|
*(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc;
|
278 |
|
|
*(int *) ®isters[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y;
|
279 |
|
|
|
280 |
|
|
/* My best guess at where to get the locals and input
|
281 |
|
|
registers is exactly where they usually are, right above
|
282 |
|
|
the stack pointer. If the core dump was caused by a bus error
|
283 |
|
|
from blowing away the stack pointer (as is possible) then this
|
284 |
|
|
won't work, but it's worth the try. */
|
285 |
|
|
{
|
286 |
|
|
int sp;
|
287 |
|
|
|
288 |
|
|
sp = *(int *) ®isters[REGISTER_BYTE (SP_REGNUM)];
|
289 |
|
|
if (0 != target_read_memory (sp, ®isters[REGISTER_BYTE (L0_REGNUM)],
|
290 |
|
|
16 * REGISTER_RAW_SIZE (L0_REGNUM)))
|
291 |
|
|
{
|
292 |
|
|
/* fprintf_unfiltered so user can still use gdb */
|
293 |
|
|
fprintf_unfiltered (gdb_stderr,
|
294 |
|
|
"Couldn't read input and local registers from core file\n");
|
295 |
|
|
}
|
296 |
|
|
}
|
297 |
|
|
}
|
298 |
|
|
else if (which == 2)
|
299 |
|
|
{
|
300 |
|
|
|
301 |
|
|
/* Floating point registers */
|
302 |
|
|
|
303 |
|
|
#define fpuregs ((struct fpu *) core_reg_sect)
|
304 |
|
|
if (core_reg_size >= sizeof (struct fpu))
|
305 |
|
|
{
|
306 |
|
|
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], fpuregs->fpu_regs,
|
307 |
|
|
sizeof (fpuregs->fpu_regs));
|
308 |
|
|
memcpy (®isters[REGISTER_BYTE (FPS_REGNUM)], &fpuregs->fpu_fsr,
|
309 |
|
|
sizeof (FPU_FSR_TYPE));
|
310 |
|
|
}
|
311 |
|
|
else
|
312 |
|
|
fprintf_unfiltered (gdb_stderr, "Couldn't read float regs from core file\n");
|
313 |
|
|
}
|
314 |
|
|
}
|
315 |
|
|
|
316 |
|
|
int
|
317 |
|
|
kernel_u_size ()
|
318 |
|
|
{
|
319 |
|
|
return (sizeof (struct user));
|
320 |
|
|
}
|
321 |
|
|
|
322 |
|
|
|
323 |
|
|
/* Register that we are able to handle sparc core file formats.
|
324 |
|
|
FIXME: is this really bfd_target_unknown_flavour? */
|
325 |
|
|
|
326 |
|
|
static struct core_fns sparc_core_fns =
|
327 |
|
|
{
|
328 |
|
|
bfd_target_unknown_flavour, /* core_flavour */
|
329 |
|
|
default_check_format, /* check_format */
|
330 |
|
|
default_core_sniffer, /* core_sniffer */
|
331 |
|
|
fetch_core_registers, /* core_read_registers */
|
332 |
|
|
NULL /* next */
|
333 |
|
|
};
|
334 |
|
|
|
335 |
|
|
void
|
336 |
|
|
_initialize_core_sparc ()
|
337 |
|
|
{
|
338 |
|
|
add_core_fns (&sparc_core_fns);
|
339 |
|
|
}
|