OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [branches/] [oc/] [gdb-5.0/] [gdb/] [target.h] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 104 markom
/* Interface between GDB and target environments, including files and processes
2
   Copyright 1990-1994, 1999, 2000 Free Software Foundation, Inc.
3
   Contributed by Cygnus Support.  Written by John Gilmore.
4
 
5
   This file is part of GDB.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 2 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 59 Temple Place - Suite 330,
20
   Boston, MA 02111-1307, USA.  */
21
 
22
#if !defined (TARGET_H)
23
#define TARGET_H
24
 
25
/* This include file defines the interface between the main part
26
   of the debugger, and the part which is target-specific, or
27
   specific to the communications interface between us and the
28
   target.
29
 
30
   A TARGET is an interface between the debugger and a particular
31
   kind of file or process.  Targets can be STACKED in STRATA,
32
   so that more than one target can potentially respond to a request.
33
   In particular, memory accesses will walk down the stack of targets
34
   until they find a target that is interested in handling that particular
35
   address.  STRATA are artificial boundaries on the stack, within
36
   which particular kinds of targets live.  Strata exist so that
37
   people don't get confused by pushing e.g. a process target and then
38
   a file target, and wondering why they can't see the current values
39
   of variables any more (the file target is handling them and they
40
   never get to the process target).  So when you push a file target,
41
   it goes into the file stratum, which is always below the process
42
   stratum.  */
43
 
44
#include "bfd.h"
45
#include "symtab.h"
46
 
47
enum strata
48
  {
49
    dummy_stratum,              /* The lowest of the low */
50
    file_stratum,               /* Executable files, etc */
51
    core_stratum,               /* Core dump files */
52
    download_stratum,           /* Downloading of remote targets */
53
    process_stratum,            /* Executing processes */
54
    thread_stratum              /* Executing threads */
55
  };
56
 
57
enum thread_control_capabilities
58
  {
59
    tc_none = 0,         /* Default: can't control thread execution.  */
60
    tc_schedlock = 1,           /* Can lock the thread scheduler.  */
61
    tc_switch = 2               /* Can switch the running thread on demand.  */
62
  };
63
 
64
/* Stuff for target_wait.  */
65
 
66
/* Generally, what has the program done?  */
67
enum target_waitkind
68
  {
69
    /* The program has exited.  The exit status is in value.integer.  */
70
    TARGET_WAITKIND_EXITED,
71
 
72
    /* The program has stopped with a signal.  Which signal is in
73
       value.sig.  */
74
    TARGET_WAITKIND_STOPPED,
75
 
76
    /* The program has terminated with a signal.  Which signal is in
77
       value.sig.  */
78
    TARGET_WAITKIND_SIGNALLED,
79
 
80
    /* The program is letting us know that it dynamically loaded something
81
       (e.g. it called load(2) on AIX).  */
82
    TARGET_WAITKIND_LOADED,
83
 
84
    /* The program has forked.  A "related" process' ID is in
85
       value.related_pid.  I.e., if the child forks, value.related_pid
86
       is the parent's ID.  */
87
 
88
    TARGET_WAITKIND_FORKED,
89
 
90
    /* The program has vforked.  A "related" process's ID is in
91
       value.related_pid.  */
92
 
93
    TARGET_WAITKIND_VFORKED,
94
 
95
    /* The program has exec'ed a new executable file.  The new file's
96
       pathname is pointed to by value.execd_pathname.  */
97
 
98
    TARGET_WAITKIND_EXECD,
99
 
100
    /* The program has entered or returned from a system call.  On
101
       HP-UX, this is used in the hardware watchpoint implementation.
102
       The syscall's unique integer ID number is in value.syscall_id */
103
 
104
    TARGET_WAITKIND_SYSCALL_ENTRY,
105
    TARGET_WAITKIND_SYSCALL_RETURN,
106
 
107
    /* Nothing happened, but we stopped anyway.  This perhaps should be handled
108
       within target_wait, but I'm not sure target_wait should be resuming the
109
       inferior.  */
110
    TARGET_WAITKIND_SPURIOUS,
111
 
112
    /* This is used for target async and extended-async
113
       only. Remote_async_wait() returns this when there is an event
114
       on the inferior, but the rest of the world is not interested in
115
       it. The inferior has not stopped, but has just sent some output
116
       to the console, for instance. In this case, we want to go back
117
       to the event loop and wait there for another event from the
118
       inferior, rather than being stuck in the remote_async_wait()
119
       function. This way the event loop is responsive to other events,
120
       like for instance the user typing.  */
121
    TARGET_WAITKIND_IGNORE
122
  };
123
 
124
/* The numbering of these signals is chosen to match traditional unix
125
   signals (insofar as various unices use the same numbers, anyway).
126
   It is also the numbering of the GDB remote protocol.  Other remote
127
   protocols, if they use a different numbering, should make sure to
128
   translate appropriately.
129
 
130
   Since these numbers have actually made it out into other software
131
   (stubs, etc.), you mustn't disturb the assigned numbering.  If you
132
   need to add new signals here, add them to the end of the explicitly
133
   numbered signals.
134
 
135
   This is based strongly on Unix/POSIX signals for several reasons:
136
   (1) This set of signals represents a widely-accepted attempt to
137
   represent events of this sort in a portable fashion, (2) we want a
138
   signal to make it from wait to child_wait to the user intact, (3) many
139
   remote protocols use a similar encoding.  However, it is
140
   recognized that this set of signals has limitations (such as not
141
   distinguishing between various kinds of SIGSEGV, or not
142
   distinguishing hitting a breakpoint from finishing a single step).
143
   So in the future we may get around this either by adding additional
144
   signals for breakpoint, single-step, etc., or by adding signal
145
   codes; the latter seems more in the spirit of what BSD, System V,
146
   etc. are doing to address these issues.  */
147
 
148
/* For an explanation of what each signal means, see
149
   target_signal_to_string.  */
150
 
151
enum target_signal
152
  {
153
    /* Used some places (e.g. stop_signal) to record the concept that
154
       there is no signal.  */
155
    TARGET_SIGNAL_0 = 0,
156
    TARGET_SIGNAL_FIRST = 0,
157
    TARGET_SIGNAL_HUP = 1,
158
    TARGET_SIGNAL_INT = 2,
159
    TARGET_SIGNAL_QUIT = 3,
160
    TARGET_SIGNAL_ILL = 4,
161
    TARGET_SIGNAL_TRAP = 5,
162
    TARGET_SIGNAL_ABRT = 6,
163
    TARGET_SIGNAL_EMT = 7,
164
    TARGET_SIGNAL_FPE = 8,
165
    TARGET_SIGNAL_KILL = 9,
166
    TARGET_SIGNAL_BUS = 10,
167
    TARGET_SIGNAL_SEGV = 11,
168
    TARGET_SIGNAL_SYS = 12,
169
    TARGET_SIGNAL_PIPE = 13,
170
    TARGET_SIGNAL_ALRM = 14,
171
    TARGET_SIGNAL_TERM = 15,
172
    TARGET_SIGNAL_URG = 16,
173
    TARGET_SIGNAL_STOP = 17,
174
    TARGET_SIGNAL_TSTP = 18,
175
    TARGET_SIGNAL_CONT = 19,
176
    TARGET_SIGNAL_CHLD = 20,
177
    TARGET_SIGNAL_TTIN = 21,
178
    TARGET_SIGNAL_TTOU = 22,
179
    TARGET_SIGNAL_IO = 23,
180
    TARGET_SIGNAL_XCPU = 24,
181
    TARGET_SIGNAL_XFSZ = 25,
182
    TARGET_SIGNAL_VTALRM = 26,
183
    TARGET_SIGNAL_PROF = 27,
184
    TARGET_SIGNAL_WINCH = 28,
185
    TARGET_SIGNAL_LOST = 29,
186
    TARGET_SIGNAL_USR1 = 30,
187
    TARGET_SIGNAL_USR2 = 31,
188
    TARGET_SIGNAL_PWR = 32,
189
    /* Similar to SIGIO.  Perhaps they should have the same number.  */
190
    TARGET_SIGNAL_POLL = 33,
191
    TARGET_SIGNAL_WIND = 34,
192
    TARGET_SIGNAL_PHONE = 35,
193
    TARGET_SIGNAL_WAITING = 36,
194
    TARGET_SIGNAL_LWP = 37,
195
    TARGET_SIGNAL_DANGER = 38,
196
    TARGET_SIGNAL_GRANT = 39,
197
    TARGET_SIGNAL_RETRACT = 40,
198
    TARGET_SIGNAL_MSG = 41,
199
    TARGET_SIGNAL_SOUND = 42,
200
    TARGET_SIGNAL_SAK = 43,
201
    TARGET_SIGNAL_PRIO = 44,
202
    TARGET_SIGNAL_REALTIME_33 = 45,
203
    TARGET_SIGNAL_REALTIME_34 = 46,
204
    TARGET_SIGNAL_REALTIME_35 = 47,
205
    TARGET_SIGNAL_REALTIME_36 = 48,
206
    TARGET_SIGNAL_REALTIME_37 = 49,
207
    TARGET_SIGNAL_REALTIME_38 = 50,
208
    TARGET_SIGNAL_REALTIME_39 = 51,
209
    TARGET_SIGNAL_REALTIME_40 = 52,
210
    TARGET_SIGNAL_REALTIME_41 = 53,
211
    TARGET_SIGNAL_REALTIME_42 = 54,
212
    TARGET_SIGNAL_REALTIME_43 = 55,
213
    TARGET_SIGNAL_REALTIME_44 = 56,
214
    TARGET_SIGNAL_REALTIME_45 = 57,
215
    TARGET_SIGNAL_REALTIME_46 = 58,
216
    TARGET_SIGNAL_REALTIME_47 = 59,
217
    TARGET_SIGNAL_REALTIME_48 = 60,
218
    TARGET_SIGNAL_REALTIME_49 = 61,
219
    TARGET_SIGNAL_REALTIME_50 = 62,
220
    TARGET_SIGNAL_REALTIME_51 = 63,
221
    TARGET_SIGNAL_REALTIME_52 = 64,
222
    TARGET_SIGNAL_REALTIME_53 = 65,
223
    TARGET_SIGNAL_REALTIME_54 = 66,
224
    TARGET_SIGNAL_REALTIME_55 = 67,
225
    TARGET_SIGNAL_REALTIME_56 = 68,
226
    TARGET_SIGNAL_REALTIME_57 = 69,
227
    TARGET_SIGNAL_REALTIME_58 = 70,
228
    TARGET_SIGNAL_REALTIME_59 = 71,
229
    TARGET_SIGNAL_REALTIME_60 = 72,
230
    TARGET_SIGNAL_REALTIME_61 = 73,
231
    TARGET_SIGNAL_REALTIME_62 = 74,
232
    TARGET_SIGNAL_REALTIME_63 = 75,
233
 
234
    /* Used internally by Solaris threads.  See signal(5) on Solaris.  */
235
    TARGET_SIGNAL_CANCEL = 76,
236
 
237
    /* Yes, this pains me, too.  But LynxOS didn't have SIG32, and now
238
       Linux does, and we can't disturb the numbering, since it's part
239
       of the protocol.  Note that in some GDB's TARGET_SIGNAL_REALTIME_32
240
       is number 76.  */
241
    TARGET_SIGNAL_REALTIME_32,
242
 
243
#if defined(MACH) || defined(__MACH__)
244
    /* Mach exceptions */
245
    TARGET_EXC_BAD_ACCESS,
246
    TARGET_EXC_BAD_INSTRUCTION,
247
    TARGET_EXC_ARITHMETIC,
248
    TARGET_EXC_EMULATION,
249
    TARGET_EXC_SOFTWARE,
250
    TARGET_EXC_BREAKPOINT,
251
#endif
252
    TARGET_SIGNAL_INFO,
253
 
254
    /* Some signal we don't know about.  */
255
    TARGET_SIGNAL_UNKNOWN,
256
 
257
    /* Use whatever signal we use when one is not specifically specified
258
       (for passing to proceed and so on).  */
259
    TARGET_SIGNAL_DEFAULT,
260
 
261
    /* Last and unused enum value, for sizing arrays, etc.  */
262
    TARGET_SIGNAL_LAST
263
  };
264
 
265
struct target_waitstatus
266
  {
267
    enum target_waitkind kind;
268
 
269
    /* Forked child pid, execd pathname, exit status or signal number.  */
270
    union
271
      {
272
        int integer;
273
        enum target_signal sig;
274
        int related_pid;
275
        char *execd_pathname;
276
        int syscall_id;
277
      }
278
    value;
279
  };
280
 
281
/* Possible types of events that the inferior handler will have to
282
   deal with.  */
283
enum inferior_event_type
284
  {
285
    /* There is a request to quit the inferior, abandon it.  */
286
    INF_QUIT_REQ,
287
    /* Process a normal inferior event which will result in target_wait
288
       being called.  */
289
    INF_REG_EVENT,
290
    /* Deal with an error on the inferior.  */
291
    INF_ERROR,
292
    /* We are called because a timer went off.  */
293
    INF_TIMER,
294
    /* We are called to do stuff after the inferior stops.  */
295
    INF_EXEC_COMPLETE,
296
    /* We are called to do some stuff after the inferior stops, but we
297
       are expected to reenter the proceed() and
298
       handle_inferior_event() functions. This is used only in case of
299
       'step n' like commands.  */
300
    INF_EXEC_CONTINUE
301
  };
302
 
303
/* Return the string for a signal.  */
304
extern char *target_signal_to_string PARAMS ((enum target_signal));
305
 
306
/* Return the name (SIGHUP, etc.) for a signal.  */
307
extern char *target_signal_to_name PARAMS ((enum target_signal));
308
 
309
/* Given a name (SIGHUP, etc.), return its signal.  */
310
enum target_signal target_signal_from_name PARAMS ((char *));
311
 
312
 
313
/* If certain kinds of activity happen, target_wait should perform
314
   callbacks.  */
315
/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
316
   on TARGET_ACTIVITY_FD.  */
317
extern int target_activity_fd;
318
/* Returns zero to leave the inferior alone, one to interrupt it.  */
319
extern int (*target_activity_function) PARAMS ((void));
320
 
321
struct thread_info;             /* fwd decl for parameter list below: */
322
 
323
struct target_ops
324
  {
325
    char *to_shortname;         /* Name this target type */
326
    char *to_longname;          /* Name for printing */
327
    char *to_doc;               /* Documentation.  Does not include trailing
328
                                   newline, and starts with a one-line descrip-
329
                                   tion (probably similar to to_longname).  */
330
    void (*to_open) PARAMS ((char *, int));
331
    void (*to_close) PARAMS ((int));
332
    void (*to_attach) PARAMS ((char *, int));
333
    void (*to_post_attach) PARAMS ((int));
334
    void (*to_require_attach) PARAMS ((char *, int));
335
    void (*to_detach) PARAMS ((char *, int));
336
    void (*to_require_detach) PARAMS ((int, char *, int));
337
    void (*to_resume) PARAMS ((int, int, enum target_signal));
338
    int (*to_wait) PARAMS ((int, struct target_waitstatus *));
339
    void (*to_post_wait) PARAMS ((int, int));
340
    void (*to_fetch_registers) PARAMS ((int));
341
    void (*to_store_registers) PARAMS ((int));
342
    void (*to_prepare_to_store) PARAMS ((void));
343
 
344
    /* Transfer LEN bytes of memory between GDB address MYADDR and
345
       target address MEMADDR.  If WRITE, transfer them to the target, else
346
       transfer them from the target.  TARGET is the target from which we
347
       get this function.
348
 
349
       Return value, N, is one of the following:
350
 
351
 
352
       error which prevented us from doing it (FIXME: What about bfd_error?).
353
 
354
       positive (call it N) means that we have transferred N bytes
355
       starting at MEMADDR.  We might be able to handle more bytes
356
       beyond this length, but no promises.
357
 
358
       negative (call its absolute value N) means that we cannot
359
       transfer right at MEMADDR, but we could transfer at least
360
       something at MEMADDR + N.  */
361
 
362
    int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
363
                                   int len, int write,
364
                                   struct target_ops * target));
365
 
366
#if 0
367
    /* Enable this after 4.12.  */
368
 
369
    /* Search target memory.  Start at STARTADDR and take LEN bytes of
370
       target memory, and them with MASK, and compare to DATA.  If they
371
       match, set *ADDR_FOUND to the address we found it at, store the data
372
       we found at LEN bytes starting at DATA_FOUND, and return.  If
373
       not, add INCREMENT to the search address and keep trying until
374
       the search address is outside of the range [LORANGE,HIRANGE).
375
 
376
       If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
377
       return.  */
378
 
379
    void (*to_search) PARAMS ((int len, char *data, char *mask,
380
                               CORE_ADDR startaddr, int increment,
381
                               CORE_ADDR lorange, CORE_ADDR hirange,
382
                               CORE_ADDR * addr_found, char *data_found));
383
 
384
#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found)  \
385
    (*current_target.to_search) (len, data, mask, startaddr, increment, \
386
                                 lorange, hirange, addr_found, data_found)
387
#endif                          /* 0 */
388
 
389
    void (*to_files_info) PARAMS ((struct target_ops *));
390
    int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
391
    int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
392
    void (*to_terminal_init) PARAMS ((void));
393
    void (*to_terminal_inferior) PARAMS ((void));
394
    void (*to_terminal_ours_for_output) PARAMS ((void));
395
    void (*to_terminal_ours) PARAMS ((void));
396
    void (*to_terminal_info) PARAMS ((char *, int));
397
    void (*to_kill) PARAMS ((void));
398
    void (*to_load) PARAMS ((char *, int));
399
    int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
400
    void (*to_create_inferior) PARAMS ((char *, char *, char **));
401
    void (*to_post_startup_inferior) PARAMS ((int));
402
    void (*to_acknowledge_created_inferior) PARAMS ((int));
403
    void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
404
    void (*to_post_follow_inferior_by_clone) PARAMS ((void));
405
    int (*to_insert_fork_catchpoint) PARAMS ((int));
406
    int (*to_remove_fork_catchpoint) PARAMS ((int));
407
    int (*to_insert_vfork_catchpoint) PARAMS ((int));
408
    int (*to_remove_vfork_catchpoint) PARAMS ((int));
409
    int (*to_has_forked) PARAMS ((int, int *));
410
    int (*to_has_vforked) PARAMS ((int, int *));
411
    int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
412
    void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
413
    int (*to_insert_exec_catchpoint) PARAMS ((int));
414
    int (*to_remove_exec_catchpoint) PARAMS ((int));
415
    int (*to_has_execd) PARAMS ((int, char **));
416
    int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
417
    int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
418
    int (*to_has_exited) PARAMS ((int, int, int *));
419
    void (*to_mourn_inferior) PARAMS ((void));
420
    int (*to_can_run) PARAMS ((void));
421
    void (*to_notice_signals) PARAMS ((int pid));
422
    int (*to_thread_alive) PARAMS ((int pid));
423
    void (*to_find_new_threads) PARAMS ((void));
424
    char *(*to_pid_to_str) PARAMS ((int));
425
    char *(*to_extra_thread_info) PARAMS ((struct thread_info *));
426
    void (*to_stop) PARAMS ((void));
427
    int (*to_query) PARAMS ((int /*char */ , char *, char *, int *));
428
    void (*to_rcmd) (char *command, struct ui_file *output);
429
    struct symtab_and_line *(*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
430
    struct exception_event_record *(*to_get_current_exception_event) PARAMS ((void));
431
    char *(*to_pid_to_exec_file) PARAMS ((int pid));
432
    char *(*to_core_file_to_sym_file) PARAMS ((char *));
433
    enum strata to_stratum;
434
    struct target_ops
435
     *DONT_USE;                 /* formerly to_next */
436
    int to_has_all_memory;
437
    int to_has_memory;
438
    int to_has_stack;
439
    int to_has_registers;
440
    int to_has_execution;
441
    int to_has_thread_control;  /* control thread execution */
442
    struct section_table
443
     *to_sections;
444
    struct section_table
445
     *to_sections_end;
446
    /* ASYNC target controls */
447
    int (*to_can_async_p) (void);
448
    int (*to_is_async_p) (void);
449
    void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
450
                      void *context);
451
    int to_async_mask_value;
452
    int to_magic;
453
    /* Need sub-structure for target machine related rather than comm related?
454
     */
455
  };
456
 
457
/* Magic number for checking ops size.  If a struct doesn't end with this
458
   number, somebody changed the declaration but didn't change all the
459
   places that initialize one.  */
460
 
461
#define OPS_MAGIC       3840
462
 
463
/* The ops structure for our "current" target process.  This should
464
   never be NULL.  If there is no target, it points to the dummy_target.  */
465
 
466
extern struct target_ops current_target;
467
 
468
/* An item on the target stack.  */
469
 
470
struct target_stack_item
471
  {
472
    struct target_stack_item *next;
473
    struct target_ops *target_ops;
474
  };
475
 
476
/* The target stack.  */
477
 
478
extern struct target_stack_item *target_stack;
479
 
480
/* Define easy words for doing these operations on our current target.  */
481
 
482
#define target_shortname        (current_target.to_shortname)
483
#define target_longname         (current_target.to_longname)
484
 
485
/* The open routine takes the rest of the parameters from the command,
486
   and (if successful) pushes a new target onto the stack.
487
   Targets should supply this routine, if only to provide an error message.  */
488
 
489
#define target_open(name, from_tty)     \
490
     (*current_target.to_open) (name, from_tty)
491
 
492
/* Does whatever cleanup is required for a target that we are no longer
493
   going to be calling.  Argument says whether we are quitting gdb and
494
   should not get hung in case of errors, or whether we want a clean
495
   termination even if it takes a while.  This routine is automatically
496
   always called just before a routine is popped off the target stack.
497
   Closing file descriptors and freeing memory are typical things it should
498
   do.  */
499
 
500
#define target_close(quitting)  \
501
     (*current_target.to_close) (quitting)
502
 
503
/* Attaches to a process on the target side.  Arguments are as passed
504
   to the `attach' command by the user.  This routine can be called
505
   when the target is not on the target-stack, if the target_can_run
506
   routine returns 1; in that case, it must push itself onto the stack.
507
   Upon exit, the target should be ready for normal operations, and
508
   should be ready to deliver the status of the process immediately
509
   (without waiting) to an upcoming target_wait call.  */
510
 
511
#define target_attach(args, from_tty)   \
512
     (*current_target.to_attach) (args, from_tty)
513
 
514
/* The target_attach operation places a process under debugger control,
515
   and stops the process.
516
 
517
   This operation provides a target-specific hook that allows the
518
   necessary bookkeeping to be performed after an attach completes.  */
519
#define target_post_attach(pid) \
520
     (*current_target.to_post_attach) (pid)
521
 
522
/* Attaches to a process on the target side, if not already attached.
523
   (If already attached, takes no action.)
524
 
525
   This operation can be used to follow the child process of a fork.
526
   On some targets, such child processes of an original inferior process
527
   are automatically under debugger control, and thus do not require an
528
   actual attach operation.  */
529
 
530
#define target_require_attach(args, from_tty)   \
531
     (*current_target.to_require_attach) (args, from_tty)
532
 
533
/* Takes a program previously attached to and detaches it.
534
   The program may resume execution (some targets do, some don't) and will
535
   no longer stop on signals, etc.  We better not have left any breakpoints
536
   in the program or it'll die when it hits one.  ARGS is arguments
537
   typed by the user (e.g. a signal to send the process).  FROM_TTY
538
   says whether to be verbose or not.  */
539
 
540
extern void
541
target_detach PARAMS ((char *, int));
542
 
543
/* Detaches from a process on the target side, if not already dettached.
544
   (If already detached, takes no action.)
545
 
546
   This operation can be used to follow the parent process of a fork.
547
   On some targets, such child processes of an original inferior process
548
   are automatically under debugger control, and thus do require an actual
549
   detach operation.
550
 
551
   PID is the process id of the child to detach from.
552
   ARGS is arguments typed by the user (e.g. a signal to send the process).
553
   FROM_TTY says whether to be verbose or not.  */
554
 
555
#define target_require_detach(pid, args, from_tty)      \
556
     (*current_target.to_require_detach) (pid, args, from_tty)
557
 
558
/* Resume execution of the target process PID.  STEP says whether to
559
   single-step or to run free; SIGGNAL is the signal to be given to
560
   the target, or TARGET_SIGNAL_0 for no signal.  The caller may not
561
   pass TARGET_SIGNAL_DEFAULT.  */
562
 
563
#define target_resume(pid, step, siggnal)       \
564
     (*current_target.to_resume) (pid, step, siggnal)
565
 
566
/* Wait for process pid to do something.  Pid = -1 to wait for any pid
567
   to do something.  Return pid of child, or -1 in case of error;
568
   store status through argument pointer STATUS.  Note that it is
569
   *not* OK to return_to_top_level out of target_wait without popping
570
   the debugging target from the stack; GDB isn't prepared to get back
571
   to the prompt with a debugging target but without the frame cache,
572
   stop_pc, etc., set up.  */
573
 
574
#define target_wait(pid, status)                \
575
     (*current_target.to_wait) (pid, status)
576
 
577
/* The target_wait operation waits for a process event to occur, and
578
   thereby stop the process.
579
 
580
   On some targets, certain events may happen in sequences.  gdb's
581
   correct response to any single event of such a sequence may require
582
   knowledge of what earlier events in the sequence have been seen.
583
 
584
   This operation provides a target-specific hook that allows the
585
   necessary bookkeeping to be performed to track such sequences.  */
586
 
587
#define target_post_wait(pid, status) \
588
     (*current_target.to_post_wait) (pid, status)
589
 
590
/* Fetch register REGNO, or all regs if regno == -1.  No result.  */
591
 
592
#define target_fetch_registers(regno)   \
593
     (*current_target.to_fetch_registers) (regno)
594
 
595
/* Store at least register REGNO, or all regs if REGNO == -1.
596
   It can store as many registers as it wants to, so target_prepare_to_store
597
   must have been previously called.  Calls error() if there are problems.  */
598
 
599
#define target_store_registers(regs)    \
600
     (*current_target.to_store_registers) (regs)
601
 
602
/* Get ready to modify the registers array.  On machines which store
603
   individual registers, this doesn't need to do anything.  On machines
604
   which store all the registers in one fell swoop, this makes sure
605
   that REGISTERS contains all the registers from the program being
606
   debugged.  */
607
 
608
#define target_prepare_to_store()       \
609
     (*current_target.to_prepare_to_store) ()
610
 
611
extern int
612
target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
613
 
614
extern int
615
target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
616
 
617
extern int
618
target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
619
                                    asection * bfd_section));
620
 
621
extern int
622
target_write_memory PARAMS ((CORE_ADDR, char *, int));
623
 
624
extern int
625
xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
626
 
627
extern int
628
child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
629
 
630
/* Make a single attempt at transfering LEN bytes.  On a successful
631
   transfer, the number of bytes actually transfered is returned and
632
   ERR is set to 0.  When a transfer fails, -1 is returned (the number
633
   of bytes actually transfered is not defined) and ERR is set to a
634
   non-zero error indication.  */
635
 
636
extern int
637
target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
638
 
639
extern int
640
target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
641
 
642
extern char *
643
child_pid_to_exec_file PARAMS ((int));
644
 
645
extern char *
646
child_core_file_to_sym_file PARAMS ((char *));
647
 
648
#if defined(CHILD_POST_ATTACH)
649
extern void
650
child_post_attach PARAMS ((int));
651
#endif
652
 
653
extern void
654
child_post_wait PARAMS ((int, int));
655
 
656
extern void
657
child_post_startup_inferior PARAMS ((int));
658
 
659
extern void
660
child_acknowledge_created_inferior PARAMS ((int));
661
 
662
extern void
663
child_clone_and_follow_inferior PARAMS ((int, int *));
664
 
665
extern void
666
child_post_follow_inferior_by_clone PARAMS ((void));
667
 
668
extern int
669
child_insert_fork_catchpoint PARAMS ((int));
670
 
671
extern int
672
child_remove_fork_catchpoint PARAMS ((int));
673
 
674
extern int
675
child_insert_vfork_catchpoint PARAMS ((int));
676
 
677
extern int
678
child_remove_vfork_catchpoint PARAMS ((int));
679
 
680
extern int
681
child_has_forked PARAMS ((int, int *));
682
 
683
extern int
684
child_has_vforked PARAMS ((int, int *));
685
 
686
extern void
687
child_acknowledge_created_inferior PARAMS ((int));
688
 
689
extern int
690
child_can_follow_vfork_prior_to_exec PARAMS ((void));
691
 
692
extern void
693
child_post_follow_vfork PARAMS ((int, int, int, int));
694
 
695
extern int
696
child_insert_exec_catchpoint PARAMS ((int));
697
 
698
extern int
699
child_remove_exec_catchpoint PARAMS ((int));
700
 
701
extern int
702
child_has_execd PARAMS ((int, char **));
703
 
704
extern int
705
child_reported_exec_events_per_exec_call PARAMS ((void));
706
 
707
extern int
708
child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
709
 
710
extern int
711
child_has_exited PARAMS ((int, int, int *));
712
 
713
extern int
714
child_thread_alive PARAMS ((int));
715
 
716
/* From exec.c */
717
 
718
extern void
719
print_section_info PARAMS ((struct target_ops *, bfd *));
720
 
721
/* Print a line about the current target.  */
722
 
723
#define target_files_info()     \
724
     (*current_target.to_files_info) (&current_target)
725
 
726
/* Insert a breakpoint at address ADDR in the target machine.
727
   SAVE is a pointer to memory allocated for saving the
728
   target contents.  It is guaranteed by the caller to be long enough
729
   to save "sizeof BREAKPOINT" bytes.  Result is 0 for success, or
730
   an errno value.  */
731
 
732
#define target_insert_breakpoint(addr, save)    \
733
     (*current_target.to_insert_breakpoint) (addr, save)
734
 
735
/* Remove a breakpoint at address ADDR in the target machine.
736
   SAVE is a pointer to the same save area
737
   that was previously passed to target_insert_breakpoint.
738
   Result is 0 for success, or an errno value.  */
739
 
740
#define target_remove_breakpoint(addr, save)    \
741
     (*current_target.to_remove_breakpoint) (addr, save)
742
 
743
/* Initialize the terminal settings we record for the inferior,
744
   before we actually run the inferior.  */
745
 
746
#define target_terminal_init() \
747
     (*current_target.to_terminal_init) ()
748
 
749
/* Put the inferior's terminal settings into effect.
750
   This is preparation for starting or resuming the inferior.  */
751
 
752
#define target_terminal_inferior() \
753
     (*current_target.to_terminal_inferior) ()
754
 
755
/* Put some of our terminal settings into effect,
756
   enough to get proper results from our output,
757
   but do not change into or out of RAW mode
758
   so that no input is discarded.
759
 
760
   After doing this, either terminal_ours or terminal_inferior
761
   should be called to get back to a normal state of affairs.  */
762
 
763
#define target_terminal_ours_for_output() \
764
     (*current_target.to_terminal_ours_for_output) ()
765
 
766
/* Put our terminal settings into effect.
767
   First record the inferior's terminal settings
768
   so they can be restored properly later.  */
769
 
770
#define target_terminal_ours() \
771
     (*current_target.to_terminal_ours) ()
772
 
773
/* Print useful information about our terminal status, if such a thing
774
   exists.  */
775
 
776
#define target_terminal_info(arg, from_tty) \
777
     (*current_target.to_terminal_info) (arg, from_tty)
778
 
779
/* Kill the inferior process.   Make it go away.  */
780
 
781
#define target_kill() \
782
     (*current_target.to_kill) ()
783
 
784
/* Load an executable file into the target process.  This is expected
785
   to not only bring new code into the target process, but also to
786
   update GDB's symbol tables to match.  */
787
 
788
extern void target_load (char *arg, int from_tty);
789
 
790
/* Look up a symbol in the target's symbol table.  NAME is the symbol
791
   name.  ADDRP is a CORE_ADDR * pointing to where the value of the
792
   symbol should be returned.  The result is 0 if successful, nonzero
793
   if the symbol does not exist in the target environment.  This
794
   function should not call error() if communication with the target
795
   is interrupted, since it is called from symbol reading, but should
796
   return nonzero, possibly doing a complain().  */
797
 
798
#define target_lookup_symbol(name, addrp) \
799
     (*current_target.to_lookup_symbol) (name, addrp)
800
 
801
/* Start an inferior process and set inferior_pid to its pid.
802
   EXEC_FILE is the file to run.
803
   ALLARGS is a string containing the arguments to the program.
804
   ENV is the environment vector to pass.  Errors reported with error().
805
   On VxWorks and various standalone systems, we ignore exec_file.  */
806
 
807
#define target_create_inferior(exec_file, args, env)    \
808
     (*current_target.to_create_inferior) (exec_file, args, env)
809
 
810
 
811
/* Some targets (such as ttrace-based HPUX) don't allow us to request
812
   notification of inferior events such as fork and vork immediately
813
   after the inferior is created.  (This because of how gdb gets an
814
   inferior created via invoking a shell to do it.  In such a scenario,
815
   if the shell init file has commands in it, the shell will fork and
816
   exec for each of those commands, and we will see each such fork
817
   event.  Very bad.)
818
 
819
   Such targets will supply an appropriate definition for this function.  */
820
 
821
#define target_post_startup_inferior(pid) \
822
     (*current_target.to_post_startup_inferior) (pid)
823
 
824
/* On some targets, the sequence of starting up an inferior requires
825
   some synchronization between gdb and the new inferior process, PID.  */
826
 
827
#define target_acknowledge_created_inferior(pid) \
828
     (*current_target.to_acknowledge_created_inferior) (pid)
829
 
830
/* An inferior process has been created via a fork() or similar
831
   system call.  This function will clone the debugger, then ensure
832
   that CHILD_PID is attached to by that debugger.
833
 
834
   FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
835
   and FALSE otherwise.  (The original and clone debuggers can use this
836
   to determine which they are, if need be.)
837
 
838
   (This is not a terribly useful feature without a GUI to prevent
839
   the two debuggers from competing for shell input.)  */
840
 
841
#define target_clone_and_follow_inferior(child_pid,followed_child) \
842
     (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
843
 
844
/* This operation is intended to be used as the last in a sequence of
845
   steps taken when following both parent and child of a fork.  This
846
   is used by a clone of the debugger, which will follow the child.
847
 
848
   The original debugger has detached from this process, and the
849
   clone has attached to it.
850
 
851
   On some targets, this requires a bit of cleanup to make it work
852
   correctly.  */
853
 
854
#define target_post_follow_inferior_by_clone() \
855
     (*current_target.to_post_follow_inferior_by_clone) ()
856
 
857
/* On some targets, we can catch an inferior fork or vfork event when
858
   it occurs.  These functions insert/remove an already-created
859
   catchpoint for such events.  */
860
 
861
#define target_insert_fork_catchpoint(pid) \
862
     (*current_target.to_insert_fork_catchpoint) (pid)
863
 
864
#define target_remove_fork_catchpoint(pid) \
865
     (*current_target.to_remove_fork_catchpoint) (pid)
866
 
867
#define target_insert_vfork_catchpoint(pid) \
868
     (*current_target.to_insert_vfork_catchpoint) (pid)
869
 
870
#define target_remove_vfork_catchpoint(pid) \
871
     (*current_target.to_remove_vfork_catchpoint) (pid)
872
 
873
/* Returns TRUE if PID has invoked the fork() system call.  And,
874
   also sets CHILD_PID to the process id of the other ("child")
875
   inferior process that was created by that call.  */
876
 
877
#define target_has_forked(pid,child_pid) \
878
     (*current_target.to_has_forked) (pid,child_pid)
879
 
880
/* Returns TRUE if PID has invoked the vfork() system call.  And,
881
   also sets CHILD_PID to the process id of the other ("child")
882
   inferior process that was created by that call.  */
883
 
884
#define target_has_vforked(pid,child_pid) \
885
     (*current_target.to_has_vforked) (pid,child_pid)
886
 
887
/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
888
   anything to a vforked child before it subsequently calls exec().
889
   On such platforms, we say that the debugger cannot "follow" the
890
   child until it has vforked.
891
 
892
   This function should be defined to return 1 by those targets
893
   which can allow the debugger to immediately follow a vforked
894
   child, and 0 if they cannot.  */
895
 
896
#define target_can_follow_vfork_prior_to_exec() \
897
     (*current_target.to_can_follow_vfork_prior_to_exec) ()
898
 
899
/* An inferior process has been created via a vfork() system call.
900
   The debugger has followed the parent, the child, or both.  The
901
   process of setting up for that follow may have required some
902
   target-specific trickery to track the sequence of reported events.
903
   If so, this function should be defined by those targets that
904
   require the debugger to perform cleanup or initialization after
905
   the vfork follow.  */
906
 
907
#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
908
     (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
909
 
910
/* On some targets, we can catch an inferior exec event when it
911
   occurs.  These functions insert/remove an already-created
912
   catchpoint for such events.  */
913
 
914
#define target_insert_exec_catchpoint(pid) \
915
     (*current_target.to_insert_exec_catchpoint) (pid)
916
 
917
#define target_remove_exec_catchpoint(pid) \
918
     (*current_target.to_remove_exec_catchpoint) (pid)
919
 
920
/* Returns TRUE if PID has invoked a flavor of the exec() system call.
921
   And, also sets EXECD_PATHNAME to the pathname of the executable
922
   file that was passed to exec(), and is now being executed.  */
923
 
924
#define target_has_execd(pid,execd_pathname) \
925
     (*current_target.to_has_execd) (pid,execd_pathname)
926
 
927
/* Returns the number of exec events that are reported when a process
928
   invokes a flavor of the exec() system call on this target, if exec
929
   events are being reported.  */
930
 
931
#define target_reported_exec_events_per_exec_call() \
932
     (*current_target.to_reported_exec_events_per_exec_call) ()
933
 
934
/* Returns TRUE if PID has reported a syscall event.  And, also sets
935
   KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
936
   the unique integer ID of the syscall.  */
937
 
938
#define target_has_syscall_event(pid,kind,syscall_id) \
939
     (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
940
 
941
/* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
942
   exit code of PID, if any.  */
943
 
944
#define target_has_exited(pid,wait_status,exit_status) \
945
     (*current_target.to_has_exited) (pid,wait_status,exit_status)
946
 
947
/* The debugger has completed a blocking wait() call.  There is now
948
   some process event that must be processed.  This function should
949
   be defined by those targets that require the debugger to perform
950
   cleanup or internal state changes in response to the process event.  */
951
 
952
/* The inferior process has died.  Do what is right.  */
953
 
954
#define target_mourn_inferior() \
955
     (*current_target.to_mourn_inferior) ()
956
 
957
/* Does target have enough data to do a run or attach command? */
958
 
959
#define target_can_run(t) \
960
     ((t)->to_can_run) ()
961
 
962
/* post process changes to signal handling in the inferior.  */
963
 
964
#define target_notice_signals(pid) \
965
     (*current_target.to_notice_signals) (pid)
966
 
967
/* Check to see if a thread is still alive.  */
968
 
969
#define target_thread_alive(pid) \
970
     (*current_target.to_thread_alive) (pid)
971
 
972
/* Query for new threads and add them to the thread list.  */
973
 
974
#define target_find_new_threads() \
975
     (*current_target.to_find_new_threads) (); \
976
 
977
/* Make target stop in a continuable fashion.  (For instance, under
978
   Unix, this should act like SIGSTOP).  This function is normally
979
   used by GUIs to implement a stop button.  */
980
 
981
#define target_stop current_target.to_stop
982
 
983
/* Queries the target side for some information.  The first argument is a
984
   letter specifying the type of the query, which is used to determine who
985
   should process it.  The second argument is a string that specifies which
986
   information is desired and the third is a buffer that carries back the
987
   response from the target side. The fourth parameter is the size of the
988
   output buffer supplied.  */
989
 
990
#define target_query(query_type, query, resp_buffer, bufffer_size)      \
991
     (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
992
 
993
/* Send the specified COMMAND to the target's monitor
994
   (shell,interpreter) for execution.  The result of the query is
995
   placed in OUTBUF.  */
996
 
997
#define target_rcmd(command, outbuf) \
998
     (*current_target.to_rcmd) (command, outbuf)
999
 
1000
 
1001
/* Get the symbol information for a breakpointable routine called when
1002
   an exception event occurs.
1003
   Intended mainly for C++, and for those
1004
   platforms/implementations where such a callback mechanism is available,
1005
   e.g. HP-UX with ANSI C++ (aCC).  Some compilers (e.g. g++) support
1006
   different mechanisms for debugging exceptions.  */
1007
 
1008
#define target_enable_exception_callback(kind, enable) \
1009
     (*current_target.to_enable_exception_callback) (kind, enable)
1010
 
1011
/* Get the current exception event kind -- throw or catch, etc.  */
1012
 
1013
#define target_get_current_exception_event() \
1014
     (*current_target.to_get_current_exception_event) ()
1015
 
1016
/* Pointer to next target in the chain, e.g. a core file and an exec file.  */
1017
 
1018
#define target_next \
1019
     (current_target.to_next)
1020
 
1021
/* Does the target include all of memory, or only part of it?  This
1022
   determines whether we look up the target chain for other parts of
1023
   memory if this target can't satisfy a request.  */
1024
 
1025
#define target_has_all_memory   \
1026
     (current_target.to_has_all_memory)
1027
 
1028
/* Does the target include memory?  (Dummy targets don't.)  */
1029
 
1030
#define target_has_memory       \
1031
     (current_target.to_has_memory)
1032
 
1033
/* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
1034
   we start a process.)  */
1035
 
1036
#define target_has_stack        \
1037
     (current_target.to_has_stack)
1038
 
1039
/* Does the target have registers?  (Exec files don't.)  */
1040
 
1041
#define target_has_registers    \
1042
     (current_target.to_has_registers)
1043
 
1044
/* Does the target have execution?  Can we make it jump (through
1045
   hoops), or pop its stack a few times?  FIXME: If this is to work that
1046
   way, it needs to check whether an inferior actually exists.
1047
   remote-udi.c and probably other targets can be the current target
1048
   when the inferior doesn't actually exist at the moment.  Right now
1049
   this just tells us whether this target is *capable* of execution.  */
1050
 
1051
#define target_has_execution    \
1052
     (current_target.to_has_execution)
1053
 
1054
/* Can the target support the debugger control of thread execution?
1055
   a) Can it lock the thread scheduler?
1056
   b) Can it switch the currently running thread?  */
1057
 
1058
#define target_can_lock_scheduler \
1059
     (current_target.to_has_thread_control & tc_schedlock)
1060
 
1061
#define target_can_switch_threads \
1062
     (current_target.to_has_thread_control & tc_switch)
1063
 
1064
/* Can the target support asynchronous execution? */
1065
#define target_can_async_p() (current_target.to_can_async_p ())
1066
 
1067
/* Is the target in asynchronous execution mode? */
1068
#define target_is_async_p() (current_target.to_is_async_p())
1069
 
1070
/* Put the target in async mode with the specified callback function. */
1071
#define target_async(CALLBACK,CONTEXT) \
1072
     (current_target.to_async((CALLBACK), (CONTEXT)))
1073
 
1074
/* This is to be used ONLY within run_stack_dummy(). It
1075
   provides a workaround, to have inferior function calls done in
1076
   sychronous mode, even though the target is asynchronous. After
1077
   target_async_mask(0) is called, calls to target_can_async_p() will
1078
   return FALSE , so that target_resume() will not try to start the
1079
   target asynchronously. After the inferior stops, we IMMEDIATELY
1080
   restore the previous nature of the target, by calling
1081
   target_async_mask(1). After that, target_can_async_p() will return
1082
   TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1083
 
1084
   FIXME ezannoni 1999-12-13: we won't need this once we move
1085
   the turning async on and off to the single execution commands,
1086
   from where it is done currently, in remote_resume().  */
1087
 
1088
#define target_async_mask_value \
1089
     (current_target.to_async_mask_value)
1090
 
1091
extern int target_async_mask (int mask);
1092
 
1093
extern void target_link PARAMS ((char *, CORE_ADDR *));
1094
 
1095
/* Converts a process id to a string.  Usually, the string just contains
1096
   `process xyz', but on some systems it may contain
1097
   `process xyz thread abc'.  */
1098
 
1099
#undef target_pid_to_str
1100
#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
1101
 
1102
#ifndef target_tid_to_str
1103
#define target_tid_to_str(PID) \
1104
     target_pid_to_str (PID)
1105
extern char *normal_pid_to_str PARAMS ((int pid));
1106
#endif
1107
 
1108
/* Return a short string describing extra information about PID,
1109
   e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
1110
   is okay.  */
1111
 
1112
#define target_extra_thread_info(TP) \
1113
     (current_target.to_extra_thread_info (TP))
1114
 
1115
/*
1116
 * New Objfile Event Hook:
1117
 *
1118
 * Sometimes a GDB component wants to get notified whenever a new
1119
 * objfile is loaded.  Mainly this is used by thread-debugging
1120
 * implementations that need to know when symbols for the target
1121
 * thread implemenation are available.
1122
 *
1123
 * The old way of doing this is to define a macro 'target_new_objfile'
1124
 * that points to the function that you want to be called on every
1125
 * objfile/shlib load.
1126
 *
1127
 * The new way is to grab the function pointer, 'target_new_objfile_hook',
1128
 * and point it to the function that you want to be called on every
1129
 * objfile/shlib load.
1130
 *
1131
 * If multiple clients are willing to be cooperative, they can each
1132
 * save a pointer to the previous value of target_new_objfile_hook
1133
 * before modifying it, and arrange for their function to call the
1134
 * previous function in the chain.  In that way, multiple clients
1135
 * can receive this notification (something like with signal handlers).
1136
 */
1137
 
1138
extern void (*target_new_objfile_hook) PARAMS ((struct objfile *));
1139
 
1140
#ifndef target_pid_or_tid_to_str
1141
#define target_pid_or_tid_to_str(ID) \
1142
     target_pid_to_str (ID)
1143
#endif
1144
 
1145
/* Attempts to find the pathname of the executable file
1146
   that was run to create a specified process.
1147
 
1148
   The process PID must be stopped when this operation is used.
1149
 
1150
   If the executable file cannot be determined, NULL is returned.
1151
 
1152
   Else, a pointer to a character string containing the pathname
1153
   is returned.  This string should be copied into a buffer by
1154
   the client if the string will not be immediately used, or if
1155
   it must persist.  */
1156
 
1157
#define target_pid_to_exec_file(pid) \
1158
     (current_target.to_pid_to_exec_file) (pid)
1159
 
1160
/* Hook to call target-dependant code after reading in a new symbol table.  */
1161
 
1162
#ifndef TARGET_SYMFILE_POSTREAD
1163
#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1164
#endif
1165
 
1166
/* Hook to call target dependant code just after inferior target process has
1167
   started.  */
1168
 
1169
#ifndef TARGET_CREATE_INFERIOR_HOOK
1170
#define TARGET_CREATE_INFERIOR_HOOK(PID)
1171
#endif
1172
 
1173
/* Hardware watchpoint interfaces.  */
1174
 
1175
/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1176
   write).  */
1177
 
1178
#ifndef STOPPED_BY_WATCHPOINT
1179
#define STOPPED_BY_WATCHPOINT(w) 0
1180
#endif
1181
 
1182
/* HP-UX supplies these operations, which respectively disable and enable
1183
   the memory page-protections that are used to implement hardware watchpoints
1184
   on that platform.  See wait_for_inferior's use of these.  */
1185
 
1186
#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1187
#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1188
#endif
1189
 
1190
#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1191
#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1192
#endif
1193
 
1194
/* Provide defaults for systems that don't support hardware watchpoints.  */
1195
 
1196
#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1197
 
1198
/* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
1199
   one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1200
   bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
1201
   (including this one?).  OTHERTYPE is who knows what...  */
1202
 
1203
#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1204
 
1205
#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1206
#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1207
     (LONGEST)(byte_count) <= REGISTER_SIZE
1208
#endif
1209
 
1210
/* However, some addresses may not be profitable to use hardware to watch,
1211
   or may be difficult to understand when the addressed object is out of
1212
   scope, and hence should be unwatched.  On some targets, this may have
1213
   severe performance penalties, such that we might as well use regular
1214
   watchpoints, and save (possibly precious) hardware watchpoints for other
1215
   locations.  */
1216
 
1217
#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1218
#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1219
#endif
1220
 
1221
 
1222
/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.  TYPE is 0
1223
   for write, 1 for read, and 2 for read/write accesses.  Returns 0 for
1224
   success, non-zero for failure.  */
1225
 
1226
#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1227
#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1228
 
1229
#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1230
 
1231
#ifndef target_insert_hw_breakpoint
1232
#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1233
#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1234
#endif
1235
 
1236
#ifndef target_stopped_data_address
1237
#define target_stopped_data_address() 0
1238
#endif
1239
 
1240
/* If defined, then we need to decr pc by this much after a hardware break-
1241
   point.  Presumably this overrides DECR_PC_AFTER_BREAK...  */
1242
 
1243
#ifndef DECR_PC_AFTER_HW_BREAK
1244
#define DECR_PC_AFTER_HW_BREAK 0
1245
#endif
1246
 
1247
/* Sometimes gdb may pick up what appears to be a valid target address
1248
   from a minimal symbol, but the value really means, essentially,
1249
   "This is an index into a table which is populated when the inferior
1250
   is run.  Therefore, do not attempt to use this as a PC."  */
1251
 
1252
#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1253
#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1254
#endif
1255
 
1256
/* This will only be defined by a target that supports catching vfork events,
1257
   such as HP-UX.
1258
 
1259
   On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1260
   child process after it has exec'd, causes the parent process to resume as
1261
   well.  To prevent the parent from running spontaneously, such targets should
1262
   define this to a function that prevents that from happening.  */
1263
#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1264
#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1265
#endif
1266
 
1267
/* This will only be defined by a target that supports catching vfork events,
1268
   such as HP-UX.
1269
 
1270
   On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1271
   process must be resumed when it delivers its exec event, before the parent
1272
   vfork event will be delivered to us.  */
1273
 
1274
#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1275
#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1276
#endif
1277
 
1278
/* Routines for maintenance of the target structures...
1279
 
1280
   add_target:   Add a target to the list of all possible targets.
1281
 
1282
   push_target:  Make this target the top of the stack of currently used
1283
   targets, within its particular stratum of the stack.  Result
1284
   is 0 if now atop the stack, nonzero if not on top (maybe
1285
   should warn user).
1286
 
1287
   unpush_target: Remove this from the stack of currently used targets,
1288
   no matter where it is on the list.  Returns 0 if no
1289
   change, 1 if removed from stack.
1290
 
1291
   pop_target:   Remove the top thing on the stack of current targets.  */
1292
 
1293
extern void
1294
add_target PARAMS ((struct target_ops *));
1295
 
1296
extern int
1297
push_target PARAMS ((struct target_ops *));
1298
 
1299
extern int
1300
unpush_target PARAMS ((struct target_ops *));
1301
 
1302
extern void
1303
target_preopen PARAMS ((int));
1304
 
1305
extern void
1306
pop_target PARAMS ((void));
1307
 
1308
/* Struct section_table maps address ranges to file sections.  It is
1309
   mostly used with BFD files, but can be used without (e.g. for handling
1310
   raw disks, or files not in formats handled by BFD).  */
1311
 
1312
struct section_table
1313
  {
1314
    CORE_ADDR addr;             /* Lowest address in section */
1315
    CORE_ADDR endaddr;          /* 1+highest address in section */
1316
 
1317
    sec_ptr the_bfd_section;
1318
 
1319
    bfd *bfd;                   /* BFD file pointer */
1320
  };
1321
 
1322
/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1323
   Returns 0 if OK, 1 on error.  */
1324
 
1325
extern int
1326
build_section_table PARAMS ((bfd *, struct section_table **,
1327
                             struct section_table **));
1328
 
1329
/* From mem-break.c */
1330
 
1331
extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1332
 
1333
extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1334
 
1335
extern int default_memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1336
 
1337
extern int default_memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1338
 
1339
extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1340
#ifndef BREAKPOINT_FROM_PC
1341
#define BREAKPOINT_FROM_PC(pcptr, lenptr) \
1342
     memory_breakpoint_from_pc (pcptr, lenptr)
1343
#endif
1344
 
1345
 
1346
/* From target.c */
1347
 
1348
extern void
1349
initialize_targets PARAMS ((void));
1350
 
1351
extern void
1352
noprocess PARAMS ((void));
1353
 
1354
extern void
1355
find_default_attach PARAMS ((char *, int));
1356
 
1357
extern void
1358
find_default_require_attach PARAMS ((char *, int));
1359
 
1360
extern void
1361
find_default_require_detach PARAMS ((int, char *, int));
1362
 
1363
extern void
1364
find_default_create_inferior PARAMS ((char *, char *, char **));
1365
 
1366
extern void
1367
find_default_clone_and_follow_inferior PARAMS ((int, int *));
1368
 
1369
extern struct target_ops *
1370
find_run_target PARAMS ((void));
1371
 
1372
extern struct target_ops *
1373
find_core_target PARAMS ((void));
1374
 
1375
extern struct target_ops *
1376
find_target_beneath PARAMS ((struct target_ops *));
1377
 
1378
extern int
1379
target_resize_to_sections PARAMS ((struct target_ops *target, int num_added));
1380
 
1381
extern void remove_target_sections (bfd *abfd);
1382
 
1383
 
1384
/* Stuff that should be shared among the various remote targets.  */
1385
 
1386
/* Debugging level.  0 is off, and non-zero values mean to print some debug
1387
   information (higher values, more information).  */
1388
extern int remote_debug;
1389
 
1390
/* Speed in bits per second, or -1 which means don't mess with the speed.  */
1391
extern int baud_rate;
1392
/* Timeout limit for response from target. */
1393
extern int remote_timeout;
1394
 
1395
extern asection *target_memory_bfd_section;
1396
 
1397
/* Functions for helping to write a native target.  */
1398
 
1399
/* This is for native targets which use a unix/POSIX-style waitstatus.  */
1400
extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1401
 
1402
/* Predicate to target_signal_to_host(). Return non-zero if the enum
1403
   targ_signal SIGNO has an equivalent ``host'' representation.  */
1404
/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1405
   to the shorter target_signal_p() because it is far less ambigious.
1406
   In this context ``target_signal'' refers to GDB's internal
1407
   representation of the target's set of signals while ``host signal''
1408
   refers to the target operating system's signal.  Confused?  */
1409
 
1410
extern int target_signal_to_host_p (enum target_signal signo);
1411
 
1412
/* Convert between host signal numbers and enum target_signal's.
1413
   target_signal_to_host() returns 0 and prints a warning() on GDB's
1414
   console if SIGNO has no equivalent host representation.  */
1415
/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1416
   refering to the target operating system's signal numbering.
1417
   Similarly, ``enum target_signal'' is named incorrectly, ``enum
1418
   gdb_signal'' would probably be better as it is refering to GDB's
1419
   internal representation of a target operating system's signal.  */
1420
 
1421
extern enum target_signal target_signal_from_host PARAMS ((int));
1422
extern int target_signal_to_host PARAMS ((enum target_signal));
1423
 
1424
/* Convert from a number used in a GDB command to an enum target_signal.  */
1425
extern enum target_signal target_signal_from_command PARAMS ((int));
1426
 
1427
/* Any target can call this to switch to remote protocol (in remote.c). */
1428
extern void push_remote_target PARAMS ((char *name, int from_tty));
1429
 
1430
/* Imported from machine dependent code */
1431
 
1432
#ifndef SOFTWARE_SINGLE_STEP_P
1433
#define SOFTWARE_SINGLE_STEP_P 0
1434
#define SOFTWARE_SINGLE_STEP(sig,bp_p)  \
1435
     (internal_error ("SOFTWARE_SINGLE_STEP"), 0)
1436
#endif /* SOFTWARE_SINGLE_STEP_P */
1437
 
1438
/* Blank target vector entries are initialized to target_ignore. */
1439
void target_ignore PARAMS ((void));
1440
 
1441
/* Macro for getting target's idea of a frame pointer.
1442
   FIXME: GDB's whole scheme for dealing with "frames" and
1443
   "frame pointers" needs a serious shakedown.  */
1444
#ifndef TARGET_VIRTUAL_FRAME_POINTER
1445
#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1446
   do { *(REGP) = FP_REGNUM; *(OFFP) =  0; } while (0)
1447
#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1448
 
1449
#endif /* !defined (TARGET_H) */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.