1 |
106 |
markom |
/* Opcode table for the ARC.
|
2 |
|
|
Copyright 1994, 1995, 1997 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Doug Evans (dje@cygnus.com).
|
4 |
|
|
|
5 |
|
|
This file is part of GAS, the GNU Assembler, GDB, the GNU debugger, and
|
6 |
|
|
the GNU Binutils.
|
7 |
|
|
|
8 |
|
|
GAS/GDB is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
11 |
|
|
any later version.
|
12 |
|
|
|
13 |
|
|
GAS/GDB is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GAS or GDB; see the file COPYING. If not, write to
|
20 |
|
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
21 |
|
|
Boston, MA 02111-1307, USA. */
|
22 |
|
|
|
23 |
|
|
/* List of the various cpu types.
|
24 |
|
|
The tables currently use bit masks to say whether the instruction or
|
25 |
|
|
whatever is supported by a particular cpu. This lets us have one entry
|
26 |
|
|
apply to several cpus.
|
27 |
|
|
|
28 |
|
|
This duplicates bfd_mach_arc_xxx. For now I wish to isolate this from bfd
|
29 |
|
|
and bfd from this. Also note that these numbers are bit values as we want
|
30 |
|
|
to allow for things available on more than one ARC (but not necessarily all
|
31 |
|
|
ARCs). */
|
32 |
|
|
|
33 |
|
|
/* The `base' cpu must be 0 (table entries are omitted for the base cpu).
|
34 |
|
|
The cpu type is treated independently of endianness.
|
35 |
|
|
The complete `mach' number includes endianness.
|
36 |
|
|
These values are internal to opcodes/bfd/binutils/gas. */
|
37 |
|
|
#define ARC_MACH_BASE 0
|
38 |
|
|
#define ARC_MACH_UNUSED1 1
|
39 |
|
|
#define ARC_MACH_UNUSED2 2
|
40 |
|
|
#define ARC_MACH_UNUSED4 4
|
41 |
|
|
/* Additional cpu values can be inserted here and ARC_MACH_BIG moved down. */
|
42 |
|
|
#define ARC_MACH_BIG 8
|
43 |
|
|
|
44 |
|
|
/* Mask of number of bits necessary to record cpu type. */
|
45 |
|
|
#define ARC_MACH_CPU_MASK 7
|
46 |
|
|
/* Mask of number of bits necessary to record cpu type + endianness. */
|
47 |
|
|
#define ARC_MACH_MASK 15
|
48 |
|
|
|
49 |
|
|
/* Type to denote an ARC instruction (at least a 32 bit unsigned int). */
|
50 |
|
|
typedef unsigned int arc_insn;
|
51 |
|
|
|
52 |
|
|
struct arc_opcode {
|
53 |
|
|
char *syntax; /* syntax of insn */
|
54 |
|
|
unsigned long mask, value; /* recognize insn if (op&mask)==value */
|
55 |
|
|
int flags; /* various flag bits */
|
56 |
|
|
|
57 |
|
|
/* Values for `flags'. */
|
58 |
|
|
|
59 |
|
|
/* Return CPU number, given flag bits. */
|
60 |
|
|
#define ARC_OPCODE_CPU(bits) ((bits) & ARC_MACH_CPU_MASK)
|
61 |
|
|
/* Return MACH number, given flag bits. */
|
62 |
|
|
#define ARC_OPCODE_MACH(bits) ((bits) & ARC_MACH_MASK)
|
63 |
|
|
/* First opcode flag bit available after machine mask. */
|
64 |
|
|
#define ARC_OPCODE_FLAG_START ((ARC_MACH_MASK + 1) << 0)
|
65 |
|
|
/* This insn is a conditional branch. */
|
66 |
|
|
#define ARC_OPCODE_COND_BRANCH (ARC_OPCODE_FLAG_START)
|
67 |
|
|
|
68 |
|
|
/* These values are used to optimize assembly and disassembly. Each insn is
|
69 |
|
|
on a list of related insns (same first letter for assembly, same insn code
|
70 |
|
|
for disassembly). */
|
71 |
|
|
struct arc_opcode *next_asm; /* Next instruction to try during assembly. */
|
72 |
|
|
struct arc_opcode *next_dis; /* Next instruction to try during disassembly. */
|
73 |
|
|
|
74 |
|
|
/* Macros to create the hash values for the lists. */
|
75 |
|
|
#define ARC_HASH_OPCODE(string) \
|
76 |
|
|
((string)[0] >= 'a' && (string)[0] <= 'z' ? (string)[0] - 'a' : 26)
|
77 |
|
|
#define ARC_HASH_ICODE(insn) \
|
78 |
|
|
((unsigned int) (insn) >> 27)
|
79 |
|
|
|
80 |
|
|
/* Macros to access `next_asm', `next_dis' so users needn't care about the
|
81 |
|
|
underlying mechanism. */
|
82 |
|
|
#define ARC_OPCODE_NEXT_ASM(op) ((op)->next_asm)
|
83 |
|
|
#define ARC_OPCODE_NEXT_DIS(op) ((op)->next_dis)
|
84 |
|
|
};
|
85 |
|
|
|
86 |
|
|
struct arc_operand_value {
|
87 |
|
|
char *name; /* eg: "eq" */
|
88 |
|
|
short value; /* eg: 1 */
|
89 |
|
|
unsigned char type; /* index into `arc_operands' */
|
90 |
|
|
unsigned char flags; /* various flag bits */
|
91 |
|
|
|
92 |
|
|
/* Values for `flags'. */
|
93 |
|
|
|
94 |
|
|
/* Return CPU number, given flag bits. */
|
95 |
|
|
#define ARC_OPVAL_CPU(bits) ((bits) & ARC_MACH_CPU_MASK)
|
96 |
|
|
/* Return MACH number, given flag bits. */
|
97 |
|
|
#define ARC_OPVAL_MACH(bits) ((bits) & ARC_MACH_MASK)
|
98 |
|
|
};
|
99 |
|
|
|
100 |
|
|
struct arc_operand {
|
101 |
|
|
/* One of the insn format chars. */
|
102 |
|
|
unsigned char fmt;
|
103 |
|
|
|
104 |
|
|
/* The number of bits in the operand (may be unused for a modifier). */
|
105 |
|
|
unsigned char bits;
|
106 |
|
|
|
107 |
|
|
/* How far the operand is left shifted in the instruction, or
|
108 |
|
|
the modifier's flag bit (may be unused for a modifier. */
|
109 |
|
|
unsigned char shift;
|
110 |
|
|
|
111 |
|
|
/* Various flag bits. */
|
112 |
|
|
int flags;
|
113 |
|
|
|
114 |
|
|
/* Values for `flags'. */
|
115 |
|
|
|
116 |
|
|
/* This operand is a suffix to the opcode. */
|
117 |
|
|
#define ARC_OPERAND_SUFFIX 1
|
118 |
|
|
|
119 |
|
|
/* This operand is a relative branch displacement. The disassembler
|
120 |
|
|
prints these symbolically if possible. */
|
121 |
|
|
#define ARC_OPERAND_RELATIVE_BRANCH 2
|
122 |
|
|
|
123 |
|
|
/* This operand is an absolute branch address. The disassembler
|
124 |
|
|
prints these symbolically if possible. */
|
125 |
|
|
#define ARC_OPERAND_ABSOLUTE_BRANCH 4
|
126 |
|
|
|
127 |
|
|
/* This operand is an address. The disassembler
|
128 |
|
|
prints these symbolically if possible. */
|
129 |
|
|
#define ARC_OPERAND_ADDRESS 8
|
130 |
|
|
|
131 |
|
|
/* This operand is a long immediate value. */
|
132 |
|
|
#define ARC_OPERAND_LIMM 0x10
|
133 |
|
|
|
134 |
|
|
/* This operand takes signed values. */
|
135 |
|
|
#define ARC_OPERAND_SIGNED 0x20
|
136 |
|
|
|
137 |
|
|
/* This operand takes signed values, but also accepts a full positive
|
138 |
|
|
range of values. That is, if bits is 16, it takes any value from
|
139 |
|
|
-0x8000 to 0xffff. */
|
140 |
|
|
#define ARC_OPERAND_SIGNOPT 0x40
|
141 |
|
|
|
142 |
|
|
/* This operand should be regarded as a negative number for the
|
143 |
|
|
purposes of overflow checking (i.e., the normal most negative
|
144 |
|
|
number is disallowed and one more than the normal most positive
|
145 |
|
|
number is allowed). This flag will only be set for a signed
|
146 |
|
|
operand. */
|
147 |
|
|
#define ARC_OPERAND_NEGATIVE 0x80
|
148 |
|
|
|
149 |
|
|
/* This operand doesn't really exist. The program uses these operands
|
150 |
|
|
in special ways. */
|
151 |
|
|
#define ARC_OPERAND_FAKE 0x100
|
152 |
|
|
|
153 |
|
|
/* Modifier values. */
|
154 |
|
|
/* A dot is required before a suffix. Eg: .le */
|
155 |
|
|
#define ARC_MOD_DOT 0x1000
|
156 |
|
|
|
157 |
|
|
/* A normal register is allowed (not used, but here for completeness). */
|
158 |
|
|
#define ARC_MOD_REG 0x2000
|
159 |
|
|
|
160 |
|
|
/* An auxiliary register name is expected. */
|
161 |
|
|
#define ARC_MOD_AUXREG 0x4000
|
162 |
|
|
|
163 |
|
|
/* Sum of all ARC_MOD_XXX bits. */
|
164 |
|
|
#define ARC_MOD_BITS 0x7000
|
165 |
|
|
|
166 |
|
|
/* Non-zero if the operand type is really a modifier. */
|
167 |
|
|
#define ARC_MOD_P(X) ((X) & ARC_MOD_BITS)
|
168 |
|
|
|
169 |
|
|
/* Insertion function. This is used by the assembler. To insert an
|
170 |
|
|
operand value into an instruction, check this field.
|
171 |
|
|
|
172 |
|
|
If it is NULL, execute
|
173 |
|
|
i |= (p & ((1 << o->bits) - 1)) << o->shift;
|
174 |
|
|
(I is the instruction which we are filling in, O is a pointer to
|
175 |
|
|
this structure, and OP is the opcode value; this assumes twos
|
176 |
|
|
complement arithmetic).
|
177 |
|
|
|
178 |
|
|
If this field is not NULL, then simply call it with the
|
179 |
|
|
instruction and the operand value. It will return the new value
|
180 |
|
|
of the instruction. If the ERRMSG argument is not NULL, then if
|
181 |
|
|
the operand value is illegal, *ERRMSG will be set to a warning
|
182 |
|
|
string (the operand will be inserted in any case). If the
|
183 |
|
|
operand value is legal, *ERRMSG will be unchanged.
|
184 |
|
|
|
185 |
|
|
REG is non-NULL when inserting a register value. */
|
186 |
|
|
|
187 |
|
|
arc_insn (*insert) PARAMS ((arc_insn insn,
|
188 |
|
|
const struct arc_operand *operand, int mods,
|
189 |
|
|
const struct arc_operand_value *reg, long value,
|
190 |
|
|
const char **errmsg));
|
191 |
|
|
|
192 |
|
|
/* Extraction function. This is used by the disassembler. To
|
193 |
|
|
extract this operand type from an instruction, check this field.
|
194 |
|
|
|
195 |
|
|
If it is NULL, compute
|
196 |
|
|
op = ((i) >> o->shift) & ((1 << o->bits) - 1);
|
197 |
|
|
if ((o->flags & ARC_OPERAND_SIGNED) != 0
|
198 |
|
|
&& (op & (1 << (o->bits - 1))) != 0)
|
199 |
|
|
op -= 1 << o->bits;
|
200 |
|
|
(I is the instruction, O is a pointer to this structure, and OP
|
201 |
|
|
is the result; this assumes twos complement arithmetic).
|
202 |
|
|
|
203 |
|
|
If this field is not NULL, then simply call it with the
|
204 |
|
|
instruction value. It will return the value of the operand. If
|
205 |
|
|
the INVALID argument is not NULL, *INVALID will be set to
|
206 |
|
|
non-zero if this operand type can not actually be extracted from
|
207 |
|
|
this operand (i.e., the instruction does not match). If the
|
208 |
|
|
operand is valid, *INVALID will not be changed.
|
209 |
|
|
|
210 |
|
|
INSN is a pointer to an array of two `arc_insn's. The first element is
|
211 |
|
|
the insn, the second is the limm if present.
|
212 |
|
|
|
213 |
|
|
Operands that have a printable form like registers and suffixes have
|
214 |
|
|
their struct arc_operand_value pointer stored in OPVAL. */
|
215 |
|
|
|
216 |
|
|
long (*extract) PARAMS ((arc_insn *insn,
|
217 |
|
|
const struct arc_operand *operand,
|
218 |
|
|
int mods, const struct arc_operand_value **opval,
|
219 |
|
|
int *invalid));
|
220 |
|
|
};
|
221 |
|
|
|
222 |
|
|
/* Bits that say what version of cpu we have.
|
223 |
|
|
These should be passed to arc_init_opcode_tables.
|
224 |
|
|
At present, all there is is the cpu type. */
|
225 |
|
|
|
226 |
|
|
/* CPU number, given value passed to `arc_init_opcode_tables'. */
|
227 |
|
|
#define ARC_HAVE_CPU(bits) ((bits) & ARC_MACH_CPU_MASK)
|
228 |
|
|
/* MACH number, given value passed to `arc_init_opcode_tables'. */
|
229 |
|
|
#define ARC_HAVE_MACH(bits) ((bits) & ARC_MACH_MASK)
|
230 |
|
|
|
231 |
|
|
/* Special register values: */
|
232 |
|
|
#define ARC_REG_SHIMM_UPDATE 61
|
233 |
|
|
#define ARC_REG_SHIMM 63
|
234 |
|
|
#define ARC_REG_LIMM 62
|
235 |
|
|
|
236 |
|
|
/* Non-zero if REG is a constant marker. */
|
237 |
|
|
#define ARC_REG_CONSTANT_P(REG) ((REG) >= 61)
|
238 |
|
|
|
239 |
|
|
/* Positions and masks of various fields: */
|
240 |
|
|
#define ARC_SHIFT_REGA 21
|
241 |
|
|
#define ARC_SHIFT_REGB 15
|
242 |
|
|
#define ARC_SHIFT_REGC 9
|
243 |
|
|
#define ARC_MASK_REG 63
|
244 |
|
|
|
245 |
|
|
/* Delay slot types. */
|
246 |
|
|
#define ARC_DELAY_NONE 0 /* no delay slot */
|
247 |
|
|
#define ARC_DELAY_NORMAL 1 /* delay slot in both cases */
|
248 |
|
|
#define ARC_DELAY_JUMP 2 /* delay slot only if branch taken */
|
249 |
|
|
|
250 |
|
|
/* Non-zero if X will fit in a signed 9 bit field. */
|
251 |
|
|
#define ARC_SHIMM_CONST_P(x) ((long) (x) >= -256 && (long) (x) <= 255)
|
252 |
|
|
|
253 |
|
|
extern const struct arc_operand arc_operands[];
|
254 |
|
|
extern const int arc_operand_count;
|
255 |
|
|
extern /*const*/ struct arc_opcode arc_opcodes[];
|
256 |
|
|
extern const int arc_opcodes_count;
|
257 |
|
|
extern const struct arc_operand_value arc_suffixes[];
|
258 |
|
|
extern const int arc_suffixes_count;
|
259 |
|
|
extern const struct arc_operand_value arc_reg_names[];
|
260 |
|
|
extern const int arc_reg_names_count;
|
261 |
|
|
extern unsigned char arc_operand_map[];
|
262 |
|
|
|
263 |
|
|
/* Utility fns in arc-opc.c. */
|
264 |
|
|
int arc_get_opcode_mach PARAMS ((int, int));
|
265 |
|
|
/* `arc_opcode_init_tables' must be called before `arc_xxx_supported'. */
|
266 |
|
|
void arc_opcode_init_tables PARAMS ((int));
|
267 |
|
|
void arc_opcode_init_insert PARAMS ((void));
|
268 |
|
|
void arc_opcode_init_extract PARAMS ((void));
|
269 |
|
|
const struct arc_opcode *arc_opcode_lookup_asm PARAMS ((const char *));
|
270 |
|
|
const struct arc_opcode *arc_opcode_lookup_dis PARAMS ((unsigned int));
|
271 |
|
|
int arc_opcode_limm_p PARAMS ((long *));
|
272 |
|
|
const struct arc_operand_value *arc_opcode_lookup_suffix PARAMS ((const struct arc_operand *type, int value));
|
273 |
|
|
int arc_opcode_supported PARAMS ((const struct arc_opcode *));
|
274 |
|
|
int arc_opval_supported PARAMS ((const struct arc_operand_value *));
|