OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [tags/] [LINUX_2_4_26_OR32/] [linux/] [linux-2.4/] [include/] [linux/] [mm.h] - Blame information for rev 1275

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1275 phoenix
#ifndef _LINUX_MM_H
2
#define _LINUX_MM_H
3
 
4
#include <linux/sched.h>
5
#include <linux/errno.h>
6
 
7
#ifdef __KERNEL__
8
 
9
#include <linux/config.h>
10
#include <linux/string.h>
11
#include <linux/list.h>
12
#include <linux/mmzone.h>
13
#include <linux/swap.h>
14
#include <linux/rbtree.h>
15
 
16
extern unsigned long max_mapnr;
17
extern unsigned long num_physpages;
18
extern unsigned long num_mappedpages;
19
extern void * high_memory;
20
extern int page_cluster;
21
/* The inactive_clean lists are per zone. */
22
extern struct list_head active_list;
23
extern struct list_head inactive_list;
24
 
25
#include <asm/page.h>
26
#include <asm/pgtable.h>
27
#include <asm/atomic.h>
28
 
29
/*
30
 * Linux kernel virtual memory manager primitives.
31
 * The idea being to have a "virtual" mm in the same way
32
 * we have a virtual fs - giving a cleaner interface to the
33
 * mm details, and allowing different kinds of memory mappings
34
 * (from shared memory to executable loading to arbitrary
35
 * mmap() functions).
36
 */
37
 
38
/*
39
 * This struct defines a memory VMM memory area. There is one of these
40
 * per VM-area/task.  A VM area is any part of the process virtual memory
41
 * space that has a special rule for the page-fault handlers (ie a shared
42
 * library, the executable area etc).
43
 */
44
struct vm_area_struct {
45
        struct mm_struct * vm_mm;       /* The address space we belong to. */
46
        unsigned long vm_start;         /* Our start address within vm_mm. */
47
        unsigned long vm_end;           /* The first byte after our end address
48
                                           within vm_mm. */
49
 
50
        /* linked list of VM areas per task, sorted by address */
51
        struct vm_area_struct *vm_next;
52
 
53
        pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
54
        unsigned long vm_flags;         /* Flags, listed below. */
55
 
56
        rb_node_t vm_rb;
57
 
58
        /*
59
         * For areas with an address space and backing store,
60
         * one of the address_space->i_mmap{,shared} lists,
61
         * for shm areas, the list of attaches, otherwise unused.
62
         */
63
        struct vm_area_struct *vm_next_share;
64
        struct vm_area_struct **vm_pprev_share;
65
 
66
        /* Function pointers to deal with this struct. */
67
        struct vm_operations_struct * vm_ops;
68
 
69
        /* Information about our backing store: */
70
        unsigned long vm_pgoff;         /* Offset (within vm_file) in PAGE_SIZE
71
                                           units, *not* PAGE_CACHE_SIZE */
72
        struct file * vm_file;          /* File we map to (can be NULL). */
73
        unsigned long vm_raend;         /* XXX: put full readahead info here. */
74
        void * vm_private_data;         /* was vm_pte (shared mem) */
75
};
76
 
77
/*
78
 * vm_flags..
79
 */
80
#define VM_READ         0x00000001      /* currently active flags */
81
#define VM_WRITE        0x00000002
82
#define VM_EXEC         0x00000004
83
#define VM_SHARED       0x00000008
84
 
85
#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
86
#define VM_MAYWRITE     0x00000020
87
#define VM_MAYEXEC      0x00000040
88
#define VM_MAYSHARE     0x00000080
89
 
90
#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
91
#define VM_GROWSUP      0x00000200
92
#define VM_SHM          0x00000400      /* shared memory area, don't swap out */
93
#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
94
 
95
#define VM_EXECUTABLE   0x00001000
96
#define VM_LOCKED       0x00002000
97
#define VM_IO           0x00004000      /* Memory mapped I/O or similar */
98
 
99
                                        /* Used by sys_madvise() */
100
#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
101
#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
102
 
103
#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
104
#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
105
#define VM_RESERVED     0x00080000      /* Don't unmap it from swap_out */
106
 
107
#ifndef VM_STACK_FLAGS
108
#define VM_STACK_FLAGS  0x00000177
109
#endif
110
 
111
#define VM_READHINTMASK                 (VM_SEQ_READ | VM_RAND_READ)
112
#define VM_ClearReadHint(v)             (v)->vm_flags &= ~VM_READHINTMASK
113
#define VM_NormalReadHint(v)            (!((v)->vm_flags & VM_READHINTMASK))
114
#define VM_SequentialReadHint(v)        ((v)->vm_flags & VM_SEQ_READ)
115
#define VM_RandomReadHint(v)            ((v)->vm_flags & VM_RAND_READ)
116
 
117
/* read ahead limits */
118
extern int vm_min_readahead;
119
extern int vm_max_readahead;
120
 
121
/*
122
 * mapping from the currently active vm_flags protection bits (the
123
 * low four bits) to a page protection mask..
124
 */
125
extern pgprot_t protection_map[16];
126
 
127
 
128
/*
129
 * These are the virtual MM functions - opening of an area, closing and
130
 * unmapping it (needed to keep files on disk up-to-date etc), pointer
131
 * to the functions called when a no-page or a wp-page exception occurs.
132
 */
133
struct vm_operations_struct {
134
        void (*open)(struct vm_area_struct * area);
135
        void (*close)(struct vm_area_struct * area);
136
        struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int unused);
137
};
138
 
139
/*
140
 * Each physical page in the system has a struct page associated with
141
 * it to keep track of whatever it is we are using the page for at the
142
 * moment. Note that we have no way to track which tasks are using
143
 * a page.
144
 *
145
 * Try to keep the most commonly accessed fields in single cache lines
146
 * here (16 bytes or greater).  This ordering should be particularly
147
 * beneficial on 32-bit processors.
148
 *
149
 * The first line is data used in page cache lookup, the second line
150
 * is used for linear searches (eg. clock algorithm scans).
151
 *
152
 * TODO: make this structure smaller, it could be as small as 32 bytes.
153
 */
154
typedef struct page {
155
        struct list_head list;          /* ->mapping has some page lists. */
156
        struct address_space *mapping;  /* The inode (or ...) we belong to. */
157
        unsigned long index;            /* Our offset within mapping. */
158
        struct page *next_hash;         /* Next page sharing our hash bucket in
159
                                           the pagecache hash table. */
160
        atomic_t count;                 /* Usage count, see below. */
161
        unsigned long flags;            /* atomic flags, some possibly
162
                                           updated asynchronously */
163
        struct list_head lru;           /* Pageout list, eg. active_list;
164
                                           protected by pagemap_lru_lock !! */
165
        struct page **pprev_hash;       /* Complement to *next_hash. */
166
        struct buffer_head * buffers;   /* Buffer maps us to a disk block. */
167
 
168
        /*
169
         * On machines where all RAM is mapped into kernel address space,
170
         * we can simply calculate the virtual address. On machines with
171
         * highmem some memory is mapped into kernel virtual memory
172
         * dynamically, so we need a place to store that address.
173
         * Note that this field could be 16 bits on x86 ... ;)
174
         *
175
         * Architectures with slow multiplication can define
176
         * WANT_PAGE_VIRTUAL in asm/page.h
177
         */
178
#if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
179
        void *virtual;                  /* Kernel virtual address (NULL if
180
                                           not kmapped, ie. highmem) */
181
#endif /* CONFIG_HIGMEM || WANT_PAGE_VIRTUAL */
182
} mem_map_t;
183
 
184
/*
185
 * Methods to modify the page usage count.
186
 *
187
 * What counts for a page usage:
188
 * - cache mapping   (page->mapping)
189
 * - disk mapping    (page->buffers)
190
 * - page mapped in a task's page tables, each mapping
191
 *   is counted separately
192
 *
193
 * Also, many kernel routines increase the page count before a critical
194
 * routine so they can be sure the page doesn't go away from under them.
195
 */
196
#define get_page(p)             atomic_inc(&(p)->count)
197
#define put_page(p)             __free_page(p)
198
#define put_page_testzero(p)    atomic_dec_and_test(&(p)->count)
199
#define page_count(p)           atomic_read(&(p)->count)
200
#define set_page_count(p,v)     atomic_set(&(p)->count, v)
201
 
202
/*
203
 * Various page->flags bits:
204
 *
205
 * PG_reserved is set for special pages, which can never be swapped
206
 * out. Some of them might not even exist (eg empty_bad_page)...
207
 *
208
 * Multiple processes may "see" the same page. E.g. for untouched
209
 * mappings of /dev/null, all processes see the same page full of
210
 * zeroes, and text pages of executables and shared libraries have
211
 * only one copy in memory, at most, normally.
212
 *
213
 * For the non-reserved pages, page->count denotes a reference count.
214
 *   page->count == 0 means the page is free.
215
 *   page->count == 1 means the page is used for exactly one purpose
216
 *   (e.g. a private data page of one process).
217
 *
218
 * A page may be used for kmalloc() or anyone else who does a
219
 * __get_free_page(). In this case the page->count is at least 1, and
220
 * all other fields are unused but should be 0 or NULL. The
221
 * management of this page is the responsibility of the one who uses
222
 * it.
223
 *
224
 * The other pages (we may call them "process pages") are completely
225
 * managed by the Linux memory manager: I/O, buffers, swapping etc.
226
 * The following discussion applies only to them.
227
 *
228
 * A page may belong to an inode's memory mapping. In this case,
229
 * page->mapping is the pointer to the inode, and page->index is the
230
 * file offset of the page, in units of PAGE_CACHE_SIZE.
231
 *
232
 * A page may have buffers allocated to it. In this case,
233
 * page->buffers is a circular list of these buffer heads. Else,
234
 * page->buffers == NULL.
235
 *
236
 * For pages belonging to inodes, the page->count is the number of
237
 * attaches, plus 1 if buffers are allocated to the page, plus one
238
 * for the page cache itself.
239
 *
240
 * All pages belonging to an inode are in these doubly linked lists:
241
 * mapping->clean_pages, mapping->dirty_pages and mapping->locked_pages;
242
 * using the page->list list_head. These fields are also used for
243
 * freelist managemet (when page->count==0).
244
 *
245
 * There is also a hash table mapping (mapping,index) to the page
246
 * in memory if present. The lists for this hash table use the fields
247
 * page->next_hash and page->pprev_hash.
248
 *
249
 * All process pages can do I/O:
250
 * - inode pages may need to be read from disk,
251
 * - inode pages which have been modified and are MAP_SHARED may need
252
 *   to be written to disk,
253
 * - private pages which have been modified may need to be swapped out
254
 *   to swap space and (later) to be read back into memory.
255
 * During disk I/O, PG_locked is used. This bit is set before I/O
256
 * and reset when I/O completes. page_waitqueue(page) is a wait queue of all
257
 * tasks waiting for the I/O on this page to complete.
258
 * PG_uptodate tells whether the page's contents is valid.
259
 * When a read completes, the page becomes uptodate, unless a disk I/O
260
 * error happened.
261
 *
262
 * For choosing which pages to swap out, inode pages carry a
263
 * PG_referenced bit, which is set any time the system accesses
264
 * that page through the (mapping,index) hash table. This referenced
265
 * bit, together with the referenced bit in the page tables, is used
266
 * to manipulate page->age and move the page across the active,
267
 * inactive_dirty and inactive_clean lists.
268
 *
269
 * Note that the referenced bit, the page->lru list_head and the
270
 * active, inactive_dirty and inactive_clean lists are protected by
271
 * the pagemap_lru_lock, and *NOT* by the usual PG_locked bit!
272
 *
273
 * PG_skip is used on sparc/sparc64 architectures to "skip" certain
274
 * parts of the address space.
275
 *
276
 * PG_error is set to indicate that an I/O error occurred on this page.
277
 *
278
 * PG_arch_1 is an architecture specific page state bit.  The generic
279
 * code guarantees that this bit is cleared for a page when it first
280
 * is entered into the page cache.
281
 *
282
 * PG_highmem pages are not permanently mapped into the kernel virtual
283
 * address space, they need to be kmapped separately for doing IO on
284
 * the pages. The struct page (these bits with information) are always
285
 * mapped into kernel address space...
286
 */
287
#define PG_locked                0      /* Page is locked. Don't touch. */
288
#define PG_error                 1
289
#define PG_referenced            2
290
#define PG_uptodate              3
291
#define PG_dirty                 4
292
#define PG_unused                5
293
#define PG_lru                   6
294
#define PG_active                7
295
#define PG_slab                  8
296
#define PG_skip                 10
297
#define PG_highmem              11
298
#define PG_checked              12      /* kill me in 2.5.<early>. */
299
#define PG_arch_1               13
300
#define PG_reserved             14
301
#define PG_launder              15      /* written out by VM pressure.. */
302
#define PG_fs_1                 16      /* Filesystem specific */
303
 
304
#ifndef arch_set_page_uptodate
305
#define arch_set_page_uptodate(page)
306
#endif
307
 
308
/* Make it prettier to test the above... */
309
#define UnlockPage(page)        unlock_page(page)
310
#define Page_Uptodate(page)     test_bit(PG_uptodate, &(page)->flags)
311
#define SetPageUptodate(page) \
312
        do {                                                            \
313
                arch_set_page_uptodate(page);                           \
314
                set_bit(PG_uptodate, &(page)->flags);                   \
315
        } while (0)
316
#define ClearPageUptodate(page) clear_bit(PG_uptodate, &(page)->flags)
317
#define PageDirty(page)         test_bit(PG_dirty, &(page)->flags)
318
#define SetPageDirty(page)      set_bit(PG_dirty, &(page)->flags)
319
#define ClearPageDirty(page)    clear_bit(PG_dirty, &(page)->flags)
320
#define PageLocked(page)        test_bit(PG_locked, &(page)->flags)
321
#define LockPage(page)          set_bit(PG_locked, &(page)->flags)
322
#define TryLockPage(page)       test_and_set_bit(PG_locked, &(page)->flags)
323
#define PageChecked(page)       test_bit(PG_checked, &(page)->flags)
324
#define SetPageChecked(page)    set_bit(PG_checked, &(page)->flags)
325
#define ClearPageChecked(page)  clear_bit(PG_checked, &(page)->flags)
326
#define PageLaunder(page)       test_bit(PG_launder, &(page)->flags)
327
#define SetPageLaunder(page)    set_bit(PG_launder, &(page)->flags)
328
#define ClearPageLaunder(page)  clear_bit(PG_launder, &(page)->flags)
329
#define ClearPageArch1(page)    clear_bit(PG_arch_1, &(page)->flags)
330
 
331
/*
332
 * The zone field is never updated after free_area_init_core()
333
 * sets it, so none of the operations on it need to be atomic.
334
 */
335
#define NODE_SHIFT 4
336
#define ZONE_SHIFT (BITS_PER_LONG - 8)
337
 
338
struct zone_struct;
339
extern struct zone_struct *zone_table[];
340
 
341
static inline zone_t *page_zone(struct page *page)
342
{
343
        return zone_table[page->flags >> ZONE_SHIFT];
344
}
345
 
346
static inline void set_page_zone(struct page *page, unsigned long zone_num)
347
{
348
        page->flags &= ~(~0UL << ZONE_SHIFT);
349
        page->flags |= zone_num << ZONE_SHIFT;
350
}
351
 
352
/*
353
 * In order to avoid #ifdefs within C code itself, we define
354
 * set_page_address to a noop for non-highmem machines, where
355
 * the field isn't useful.
356
 * The same is true for page_address() in arch-dependent code.
357
 */
358
#if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
359
 
360
#define set_page_address(page, address)                 \
361
        do {                                            \
362
                (page)->virtual = (address);            \
363
        } while(0)
364
 
365
#else /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
366
#define set_page_address(page, address)  do { } while(0)
367
#endif /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
368
 
369
/*
370
 * Permanent address of a page. Obviously must never be
371
 * called on a highmem page.
372
 */
373
#if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
374
 
375
#define page_address(page) ((page)->virtual)
376
 
377
#else /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
378
 
379
#define page_address(page)                                              \
380
        __va( (((page) - page_zone(page)->zone_mem_map) << PAGE_SHIFT)  \
381
                        + page_zone(page)->zone_start_paddr)
382
 
383
#endif /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
384
 
385
extern void FASTCALL(set_page_dirty(struct page *));
386
 
387
/*
388
 * The first mb is necessary to safely close the critical section opened by the
389
 * TryLockPage(), the second mb is necessary to enforce ordering between
390
 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
391
 * parallel wait_on_page).
392
 */
393
#define PageError(page)         test_bit(PG_error, &(page)->flags)
394
#define SetPageError(page)      set_bit(PG_error, &(page)->flags)
395
#define ClearPageError(page)    clear_bit(PG_error, &(page)->flags)
396
#define PageReferenced(page)    test_bit(PG_referenced, &(page)->flags)
397
#define SetPageReferenced(page) set_bit(PG_referenced, &(page)->flags)
398
#define ClearPageReferenced(page)       clear_bit(PG_referenced, &(page)->flags)
399
#define PageTestandClearReferenced(page)        test_and_clear_bit(PG_referenced, &(page)->flags)
400
#define PageSlab(page)          test_bit(PG_slab, &(page)->flags)
401
#define PageSetSlab(page)       set_bit(PG_slab, &(page)->flags)
402
#define PageClearSlab(page)     clear_bit(PG_slab, &(page)->flags)
403
#define PageReserved(page)      test_bit(PG_reserved, &(page)->flags)
404
 
405
#define PageActive(page)        test_bit(PG_active, &(page)->flags)
406
#define SetPageActive(page)     set_bit(PG_active, &(page)->flags)
407
#define ClearPageActive(page)   clear_bit(PG_active, &(page)->flags)
408
 
409
#define PageLRU(page)           test_bit(PG_lru, &(page)->flags)
410
#define TestSetPageLRU(page)    test_and_set_bit(PG_lru, &(page)->flags)
411
#define TestClearPageLRU(page)  test_and_clear_bit(PG_lru, &(page)->flags)
412
 
413
#ifdef CONFIG_HIGHMEM
414
#define PageHighMem(page)               test_bit(PG_highmem, &(page)->flags)
415
#else
416
#define PageHighMem(page)               0 /* needed to optimize away at compile time */
417
#endif
418
 
419
#define SetPageReserved(page)           set_bit(PG_reserved, &(page)->flags)
420
#define ClearPageReserved(page)         clear_bit(PG_reserved, &(page)->flags)
421
 
422
/*
423
 * Error return values for the *_nopage functions
424
 */
425
#define NOPAGE_SIGBUS   (NULL)
426
#define NOPAGE_OOM      ((struct page *) (-1))
427
 
428
/* The array of struct pages */
429
extern mem_map_t * mem_map;
430
 
431
/*
432
 * There is only one page-allocator function, and two main namespaces to
433
 * it. The alloc_page*() variants return 'struct page *' and as such
434
 * can allocate highmem pages, the *get*page*() variants return
435
 * virtual kernel addresses to the allocated page(s).
436
 */
437
extern struct page * FASTCALL(_alloc_pages(unsigned int gfp_mask, unsigned int order));
438
extern struct page * FASTCALL(__alloc_pages(unsigned int gfp_mask, unsigned int order, zonelist_t *zonelist));
439
extern struct page * alloc_pages_node(int nid, unsigned int gfp_mask, unsigned int order);
440
 
441
static inline struct page * alloc_pages(unsigned int gfp_mask, unsigned int order)
442
{
443
        /*
444
         * Gets optimized away by the compiler.
445
         */
446
        if (order >= MAX_ORDER)
447
                return NULL;
448
        return _alloc_pages(gfp_mask, order);
449
}
450
 
451
#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
452
 
453
extern unsigned long FASTCALL(__get_free_pages(unsigned int gfp_mask, unsigned int order));
454
extern unsigned long FASTCALL(get_zeroed_page(unsigned int gfp_mask));
455
 
456
#define __get_free_page(gfp_mask) \
457
                __get_free_pages((gfp_mask),0)
458
 
459
#define __get_dma_pages(gfp_mask, order) \
460
                __get_free_pages((gfp_mask) | GFP_DMA,(order))
461
 
462
/*
463
 * The old interface name will be removed in 2.5:
464
 */
465
#define get_free_page get_zeroed_page
466
 
467
/*
468
 * There is only one 'core' page-freeing function.
469
 */
470
extern void FASTCALL(__free_pages(struct page *page, unsigned int order));
471
extern void FASTCALL(free_pages(unsigned long addr, unsigned int order));
472
 
473
#define __free_page(page) __free_pages((page), 0)
474
#define free_page(addr) free_pages((addr),0)
475
 
476
extern void show_free_areas(void);
477
extern void show_free_areas_node(pg_data_t *pgdat);
478
 
479
extern void clear_page_tables(struct mm_struct *, unsigned long, int);
480
 
481
extern int fail_writepage(struct page *);
482
struct page * shmem_nopage(struct vm_area_struct * vma, unsigned long address, int unused);
483
struct file *shmem_file_setup(char * name, loff_t size);
484
extern void shmem_lock(struct file * file, int lock);
485
extern int shmem_zero_setup(struct vm_area_struct *);
486
 
487
extern void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size);
488
extern int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma);
489
extern int remap_page_range(unsigned long from, unsigned long to, unsigned long size, pgprot_t prot);
490
extern int zeromap_page_range(unsigned long from, unsigned long size, pgprot_t prot);
491
 
492
extern int vmtruncate(struct inode * inode, loff_t offset);
493
extern pmd_t *FASTCALL(__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address));
494
extern pte_t *FASTCALL(pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address));
495
extern int handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access);
496
extern int make_pages_present(unsigned long addr, unsigned long end);
497
extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
498
extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char *dst, int len);
499
extern int ptrace_writedata(struct task_struct *tsk, char * src, unsigned long dst, int len);
500
extern int ptrace_attach(struct task_struct *tsk);
501
extern int ptrace_detach(struct task_struct *, unsigned int);
502
extern void ptrace_disable(struct task_struct *);
503
extern int ptrace_check_attach(struct task_struct *task, int kill);
504
 
505
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
506
                int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
507
 
508
/*
509
 * On a two-level page table, this ends up being trivial. Thus the
510
 * inlining and the symmetry break with pte_alloc() that does all
511
 * of this out-of-line.
512
 */
513
static inline pmd_t *pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
514
{
515
        if (pgd_none(*pgd))
516
                return __pmd_alloc(mm, pgd, address);
517
        return pmd_offset(pgd, address);
518
}
519
 
520
extern int pgt_cache_water[2];
521
extern int check_pgt_cache(void);
522
 
523
extern void free_area_init(unsigned long * zones_size);
524
extern void free_area_init_node(int nid, pg_data_t *pgdat, struct page *pmap,
525
        unsigned long * zones_size, unsigned long zone_start_paddr,
526
        unsigned long *zholes_size);
527
extern void mem_init(void);
528
extern void show_mem(void);
529
extern void si_meminfo(struct sysinfo * val);
530
extern void swapin_readahead(swp_entry_t);
531
 
532
extern struct address_space swapper_space;
533
#define PageSwapCache(page) ((page)->mapping == &swapper_space)
534
 
535
static inline int is_page_cache_freeable(struct page * page)
536
{
537
        return page_count(page) - !!page->buffers == 1;
538
}
539
 
540
extern int FASTCALL(can_share_swap_page(struct page *));
541
extern int FASTCALL(remove_exclusive_swap_page(struct page *));
542
 
543
extern void __free_pte(pte_t);
544
 
545
/* mmap.c */
546
extern void lock_vma_mappings(struct vm_area_struct *);
547
extern void unlock_vma_mappings(struct vm_area_struct *);
548
extern void insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
549
extern void __insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
550
extern void build_mmap_rb(struct mm_struct *);
551
extern void exit_mmap(struct mm_struct *);
552
 
553
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
554
 
555
extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
556
        unsigned long len, unsigned long prot,
557
        unsigned long flag, unsigned long pgoff);
558
 
559
static inline unsigned long do_mmap(struct file *file, unsigned long addr,
560
        unsigned long len, unsigned long prot,
561
        unsigned long flag, unsigned long offset)
562
{
563
        unsigned long ret = -EINVAL;
564
        if ((offset + PAGE_ALIGN(len)) < offset)
565
                goto out;
566
        if (!(offset & ~PAGE_MASK))
567
                ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
568
out:
569
        return ret;
570
}
571
 
572
extern int do_munmap(struct mm_struct *, unsigned long, size_t);
573
 
574
extern unsigned long do_brk(unsigned long, unsigned long);
575
 
576
static inline void __vma_unlink(struct mm_struct * mm, struct vm_area_struct * vma, struct vm_area_struct * prev)
577
{
578
        prev->vm_next = vma->vm_next;
579
        rb_erase(&vma->vm_rb, &mm->mm_rb);
580
        if (mm->mmap_cache == vma)
581
                mm->mmap_cache = prev;
582
}
583
 
584
static inline int can_vma_merge(struct vm_area_struct * vma, unsigned long vm_flags)
585
{
586
        if (!vma->vm_file && vma->vm_flags == vm_flags)
587
                return 1;
588
        else
589
                return 0;
590
}
591
 
592
struct zone_t;
593
/* filemap.c */
594
extern void remove_inode_page(struct page *);
595
extern unsigned long page_unuse(struct page *);
596
extern void truncate_inode_pages(struct address_space *, loff_t);
597
 
598
/* generic vm_area_ops exported for stackable file systems */
599
extern int filemap_sync(struct vm_area_struct *, unsigned long, size_t, unsigned int);
600
extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int);
601
 
602
/*
603
 * GFP bitmasks..
604
 */
605
/* Zone modifiers in GFP_ZONEMASK (see linux/mmzone.h - low four bits) */
606
#define __GFP_DMA       0x01
607
#define __GFP_HIGHMEM   0x02
608
 
609
/* Action modifiers - doesn't change the zoning */
610
#define __GFP_WAIT      0x10    /* Can wait and reschedule? */
611
#define __GFP_HIGH      0x20    /* Should access emergency pools? */
612
#define __GFP_IO        0x40    /* Can start low memory physical IO? */
613
#define __GFP_HIGHIO    0x80    /* Can start high mem physical IO? */
614
#define __GFP_FS        0x100   /* Can call down to low-level FS? */
615
 
616
#define GFP_NOHIGHIO    (__GFP_HIGH | __GFP_WAIT | __GFP_IO)
617
#define GFP_NOIO        (__GFP_HIGH | __GFP_WAIT)
618
#define GFP_NOFS        (__GFP_HIGH | __GFP_WAIT | __GFP_IO | __GFP_HIGHIO)
619
#define GFP_ATOMIC      (__GFP_HIGH)
620
#define GFP_USER        (             __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
621
#define GFP_HIGHUSER    (             __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS | __GFP_HIGHMEM)
622
#define GFP_KERNEL      (__GFP_HIGH | __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
623
#define GFP_NFS         (__GFP_HIGH | __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
624
#define GFP_KSWAPD      (             __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
625
 
626
/* Flag - indicates that the buffer will be suitable for DMA.  Ignored on some
627
   platforms, used as appropriate on others */
628
 
629
#define GFP_DMA         __GFP_DMA
630
 
631
static inline unsigned int pf_gfp_mask(unsigned int gfp_mask)
632
{
633
        /* avoid all memory balancing I/O methods if this task cannot block on I/O */
634
        if (current->flags & PF_NOIO)
635
                gfp_mask &= ~(__GFP_IO | __GFP_HIGHIO | __GFP_FS);
636
 
637
        return gfp_mask;
638
}
639
 
640
/* vma is the first one with  address < vma->vm_end,
641
 * and even  address < vma->vm_start. Have to extend vma. */
642
static inline int expand_stack(struct vm_area_struct * vma, unsigned long address)
643
{
644
        unsigned long grow;
645
 
646
        /*
647
         * vma->vm_start/vm_end cannot change under us because the caller is required
648
         * to hold the mmap_sem in write mode. We need to get the spinlock only
649
         * before relocating the vma range ourself.
650
         */
651
        address &= PAGE_MASK;
652
        spin_lock(&vma->vm_mm->page_table_lock);
653
        grow = (vma->vm_start - address) >> PAGE_SHIFT;
654
        if (vma->vm_end - address > current->rlim[RLIMIT_STACK].rlim_cur ||
655
            ((vma->vm_mm->total_vm + grow) << PAGE_SHIFT) > current->rlim[RLIMIT_AS].rlim_cur) {
656
                spin_unlock(&vma->vm_mm->page_table_lock);
657
                return -ENOMEM;
658
        }
659
        vma->vm_start = address;
660
        vma->vm_pgoff -= grow;
661
        vma->vm_mm->total_vm += grow;
662
        if (vma->vm_flags & VM_LOCKED)
663
                vma->vm_mm->locked_vm += grow;
664
        spin_unlock(&vma->vm_mm->page_table_lock);
665
        return 0;
666
}
667
 
668
/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
669
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
670
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
671
                                             struct vm_area_struct **pprev);
672
 
673
/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
674
   NULL if none.  Assume start_addr < end_addr. */
675
static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
676
{
677
        struct vm_area_struct * vma = find_vma(mm,start_addr);
678
 
679
        if (vma && end_addr <= vma->vm_start)
680
                vma = NULL;
681
        return vma;
682
}
683
 
684
extern struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr);
685
 
686
extern struct page * vmalloc_to_page(void *addr);
687
 
688
#endif /* __KERNEL__ */
689
 
690
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.