OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [tags/] [VER_5_3/] [gdb-5.3/] [bfd/] [elf64-hppa.c] - Blame information for rev 1783

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* Support for HPPA 64-bit ELF
2
   Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3
 
4
This file is part of BFD, the Binary File Descriptor library.
5
 
6
This program is free software; you can redistribute it and/or modify
7
it under the terms of the GNU General Public License as published by
8
the Free Software Foundation; either version 2 of the License, or
9
(at your option) any later version.
10
 
11
This program is distributed in the hope that it will be useful,
12
but WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
GNU General Public License for more details.
15
 
16
You should have received a copy of the GNU General Public License
17
along with this program; if not, write to the Free Software
18
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
19
 
20
#include "alloca-conf.h"
21
#include "bfd.h"
22
#include "sysdep.h"
23
#include "libbfd.h"
24
#include "elf-bfd.h"
25
#include "elf/hppa.h"
26
#include "libhppa.h"
27
#include "elf64-hppa.h"
28
#define ARCH_SIZE              64
29
 
30
#define PLT_ENTRY_SIZE 0x10
31
#define DLT_ENTRY_SIZE 0x8
32
#define OPD_ENTRY_SIZE 0x20
33
 
34
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
 
36
/* The stub is supposed to load the target address and target's DP
37
   value out of the PLT, then do an external branch to the target
38
   address.
39
 
40
   LDD PLTOFF(%r27),%r1
41
   BVE (%r1)
42
   LDD PLTOFF+8(%r27),%r27
43
 
44
   Note that we must use the LDD with a 14 bit displacement, not the one
45
   with a 5 bit displacement.  */
46
static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47
                          0x53, 0x7b, 0x00, 0x00 };
48
 
49
struct elf64_hppa_dyn_hash_entry
50
{
51
  struct bfd_hash_entry root;
52
 
53
  /* Offsets for this symbol in various linker sections.  */
54
  bfd_vma dlt_offset;
55
  bfd_vma plt_offset;
56
  bfd_vma opd_offset;
57
  bfd_vma stub_offset;
58
 
59
  /* The symbol table entry, if any, that this was derived from.  */
60
  struct elf_link_hash_entry *h;
61
 
62
  /* The index of the (possibly local) symbol in the input bfd and its
63
     associated BFD.  Needed so that we can have relocs against local
64
     symbols in shared libraries.  */
65
  long sym_indx;
66
  bfd *owner;
67
 
68
  /* Dynamic symbols may need to have two different values.  One for
69
     the dynamic symbol table, one for the normal symbol table.
70
 
71
     In such cases we store the symbol's real value and section
72
     index here so we can restore the real value before we write
73
     the normal symbol table.  */
74
  bfd_vma st_value;
75
  int st_shndx;
76
 
77
  /* Used to count non-got, non-plt relocations for delayed sizing
78
     of relocation sections.  */
79
  struct elf64_hppa_dyn_reloc_entry
80
  {
81
    /* Next relocation in the chain.  */
82
    struct elf64_hppa_dyn_reloc_entry *next;
83
 
84
    /* The type of the relocation.  */
85
    int type;
86
 
87
    /* The input section of the relocation.  */
88
    asection *sec;
89
 
90
    /* The index of the section symbol for the input section of
91
       the relocation.  Only needed when building shared libraries.  */
92
    int sec_symndx;
93
 
94
    /* The offset within the input section of the relocation.  */
95
    bfd_vma offset;
96
 
97
    /* The addend for the relocation.  */
98
    bfd_vma addend;
99
 
100
  } *reloc_entries;
101
 
102
  /* Nonzero if this symbol needs an entry in one of the linker
103
     sections.  */
104
  unsigned want_dlt;
105
  unsigned want_plt;
106
  unsigned want_opd;
107
  unsigned want_stub;
108
};
109
 
110
struct elf64_hppa_dyn_hash_table
111
{
112
  struct bfd_hash_table root;
113
};
114
 
115
struct elf64_hppa_link_hash_table
116
{
117
  struct elf_link_hash_table root;
118
 
119
  /* Shortcuts to get to the various linker defined sections.  */
120
  asection *dlt_sec;
121
  asection *dlt_rel_sec;
122
  asection *plt_sec;
123
  asection *plt_rel_sec;
124
  asection *opd_sec;
125
  asection *opd_rel_sec;
126
  asection *other_rel_sec;
127
 
128
  /* Offset of __gp within .plt section.  When the PLT gets large we want
129
     to slide __gp into the PLT section so that we can continue to use
130
     single DP relative instructions to load values out of the PLT.  */
131
  bfd_vma gp_offset;
132
 
133
  /* Note this is not strictly correct.  We should create a stub section for
134
     each input section with calls.  The stub section should be placed before
135
     the section with the call.  */
136
  asection *stub_sec;
137
 
138
  bfd_vma text_segment_base;
139
  bfd_vma data_segment_base;
140
 
141
  struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
 
143
  /* We build tables to map from an input section back to its
144
     symbol index.  This is the BFD for which we currently have
145
     a map.  */
146
  bfd *section_syms_bfd;
147
 
148
  /* Array of symbol numbers for each input section attached to the
149
     current BFD.  */
150
  int *section_syms;
151
};
152
 
153
#define elf64_hppa_hash_table(p) \
154
  ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
 
156
typedef struct bfd_hash_entry *(*new_hash_entry_func)
157
  PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
 
159
static boolean elf64_hppa_dyn_hash_table_init
160
  PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161
           new_hash_entry_func new));
162
static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163
  PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164
           const char *string));
165
static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166
  PARAMS ((bfd *abfd));
167
static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168
  PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169
           boolean create, boolean copy));
170
static void elf64_hppa_dyn_hash_traverse
171
  PARAMS ((struct elf64_hppa_dyn_hash_table *table,
172
           boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
173
           PTR info));
174
 
175
static const char *get_dyn_name
176
  PARAMS ((asection *, struct elf_link_hash_entry *,
177
           const Elf_Internal_Rela *, char **, size_t *));
178
 
179
/* This must follow the definitions of the various derived linker
180
   hash tables and shared functions.  */
181
#include "elf-hppa.h"
182
 
183
static boolean elf64_hppa_object_p
184
  PARAMS ((bfd *));
185
 
186
static boolean elf64_hppa_section_from_shdr
187
  PARAMS ((bfd *, Elf64_Internal_Shdr *, const char *));
188
 
189
static void elf64_hppa_post_process_headers
190
  PARAMS ((bfd *, struct bfd_link_info *));
191
 
192
static boolean elf64_hppa_create_dynamic_sections
193
  PARAMS ((bfd *, struct bfd_link_info *));
194
 
195
static boolean elf64_hppa_adjust_dynamic_symbol
196
  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
 
198
static boolean elf64_hppa_mark_milli_and_exported_functions
199
  PARAMS ((struct elf_link_hash_entry *, PTR));
200
 
201
static boolean elf64_hppa_size_dynamic_sections
202
  PARAMS ((bfd *, struct bfd_link_info *));
203
 
204
static boolean elf64_hppa_link_output_symbol_hook
205
PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
206
         Elf_Internal_Sym *, asection *input_sec));
207
 
208
static boolean elf64_hppa_finish_dynamic_symbol
209
  PARAMS ((bfd *, struct bfd_link_info *,
210
           struct elf_link_hash_entry *, Elf_Internal_Sym *));
211
 
212
static int elf64_hppa_additional_program_headers PARAMS ((bfd *));
213
 
214
static boolean elf64_hppa_modify_segment_map PARAMS ((bfd *));
215
 
216
static enum elf_reloc_type_class elf64_hppa_reloc_type_class
217
  PARAMS ((const Elf_Internal_Rela *));
218
 
219
static boolean elf64_hppa_finish_dynamic_sections
220
  PARAMS ((bfd *, struct bfd_link_info *));
221
 
222
static boolean elf64_hppa_check_relocs
223
  PARAMS ((bfd *, struct bfd_link_info *,
224
           asection *, const Elf_Internal_Rela *));
225
 
226
static boolean elf64_hppa_dynamic_symbol_p
227
  PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
228
 
229
static boolean elf64_hppa_mark_exported_functions
230
  PARAMS ((struct elf_link_hash_entry *, PTR));
231
 
232
static boolean elf64_hppa_finalize_opd
233
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
 
235
static boolean elf64_hppa_finalize_dlt
236
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
 
238
static boolean allocate_global_data_dlt
239
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
 
241
static boolean allocate_global_data_plt
242
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
 
244
static boolean allocate_global_data_stub
245
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246
 
247
static boolean allocate_global_data_opd
248
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
249
 
250
static boolean get_reloc_section
251
  PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
252
 
253
static boolean count_dyn_reloc
254
  PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
255
           int, asection *, int, bfd_vma, bfd_vma));
256
 
257
static boolean allocate_dynrel_entries
258
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
259
 
260
static boolean elf64_hppa_finalize_dynreloc
261
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
262
 
263
static boolean get_opd
264
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
 
266
static boolean get_plt
267
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
 
269
static boolean get_dlt
270
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
271
 
272
static boolean get_stub
273
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
274
 
275
static int elf64_hppa_elf_get_symbol_type
276
  PARAMS ((Elf_Internal_Sym *, int));
277
 
278
static boolean
279
elf64_hppa_dyn_hash_table_init (ht, abfd, new)
280
     struct elf64_hppa_dyn_hash_table *ht;
281
     bfd *abfd ATTRIBUTE_UNUSED;
282
     new_hash_entry_func new;
283
{
284
  memset (ht, 0, sizeof (*ht));
285
  return bfd_hash_table_init (&ht->root, new);
286
}
287
 
288
static struct bfd_hash_entry*
289
elf64_hppa_new_dyn_hash_entry (entry, table, string)
290
     struct bfd_hash_entry *entry;
291
     struct bfd_hash_table *table;
292
     const char *string;
293
{
294
  struct elf64_hppa_dyn_hash_entry *ret;
295
  ret = (struct elf64_hppa_dyn_hash_entry *) entry;
296
 
297
  /* Allocate the structure if it has not already been allocated by a
298
     subclass.  */
299
  if (!ret)
300
    ret = bfd_hash_allocate (table, sizeof (*ret));
301
 
302
  if (!ret)
303
    return 0;
304
 
305
  /* Initialize our local data.  All zeros, and definitely easier
306
     than setting 8 bit fields.  */
307
  memset (ret, 0, sizeof (*ret));
308
 
309
  /* Call the allocation method of the superclass.  */
310
  ret = ((struct elf64_hppa_dyn_hash_entry *)
311
         bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
312
 
313
  return &ret->root;
314
}
315
 
316
/* Create the derived linker hash table.  The PA64 ELF port uses this
317
   derived hash table to keep information specific to the PA ElF
318
   linker (without using static variables).  */
319
 
320
static struct bfd_link_hash_table*
321
elf64_hppa_hash_table_create (abfd)
322
     bfd *abfd;
323
{
324
  struct elf64_hppa_link_hash_table *ret;
325
 
326
  ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
327
  if (!ret)
328
    return 0;
329
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
330
                                      _bfd_elf_link_hash_newfunc))
331
    {
332
      bfd_release (abfd, ret);
333
      return 0;
334
    }
335
 
336
  if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
337
                                       elf64_hppa_new_dyn_hash_entry))
338
    return 0;
339
  return &ret->root.root;
340
}
341
 
342
/* Look up an entry in a PA64 ELF linker hash table.  */
343
 
344
static struct elf64_hppa_dyn_hash_entry *
345
elf64_hppa_dyn_hash_lookup(table, string, create, copy)
346
     struct elf64_hppa_dyn_hash_table *table;
347
     const char *string;
348
     boolean create, copy;
349
{
350
  return ((struct elf64_hppa_dyn_hash_entry *)
351
          bfd_hash_lookup (&table->root, string, create, copy));
352
}
353
 
354
/* Traverse a PA64 ELF linker hash table.  */
355
 
356
static void
357
elf64_hppa_dyn_hash_traverse (table, func, info)
358
     struct elf64_hppa_dyn_hash_table *table;
359
     boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
360
     PTR info;
361
{
362
  (bfd_hash_traverse
363
   (&table->root,
364
    (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
365
    info));
366
}
367
 
368
/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
369
 
370
   Additionally we set the default architecture and machine.  */
371
static boolean
372
elf64_hppa_object_p (abfd)
373
     bfd *abfd;
374
{
375
  Elf_Internal_Ehdr * i_ehdrp;
376
  unsigned int flags;
377
 
378
  i_ehdrp = elf_elfheader (abfd);
379
  if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
380
    {
381
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
382
        return false;
383
    }
384
  else
385
    {
386
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
387
        return false;
388
    }
389
 
390
  flags = i_ehdrp->e_flags;
391
  switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
392
    {
393
    case EFA_PARISC_1_0:
394
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
395
    case EFA_PARISC_1_1:
396
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
397
    case EFA_PARISC_2_0:
398
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
399
    case EFA_PARISC_2_0 | EF_PARISC_WIDE:
400
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
401
    }
402
  /* Don't be fussy.  */
403
  return true;
404
}
405
 
406
/* Given section type (hdr->sh_type), return a boolean indicating
407
   whether or not the section is an elf64-hppa specific section.  */
408
static boolean
409
elf64_hppa_section_from_shdr (abfd, hdr, name)
410
     bfd *abfd;
411
     Elf64_Internal_Shdr *hdr;
412
     const char *name;
413
{
414
  asection *newsect;
415
 
416
  switch (hdr->sh_type)
417
    {
418
    case SHT_PARISC_EXT:
419
      if (strcmp (name, ".PARISC.archext") != 0)
420
        return false;
421
      break;
422
    case SHT_PARISC_UNWIND:
423
      if (strcmp (name, ".PARISC.unwind") != 0)
424
        return false;
425
      break;
426
    case SHT_PARISC_DOC:
427
    case SHT_PARISC_ANNOT:
428
    default:
429
      return false;
430
    }
431
 
432
  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
433
    return false;
434
  newsect = hdr->bfd_section;
435
 
436
  return true;
437
}
438
 
439
/* Construct a string for use in the elf64_hppa_dyn_hash_table.  The
440
   name describes what was once potentially anonymous memory.  We
441
   allocate memory as necessary, possibly reusing PBUF/PLEN.  */
442
 
443
static const char *
444
get_dyn_name (sec, h, rel, pbuf, plen)
445
     asection *sec;
446
     struct elf_link_hash_entry *h;
447
     const Elf_Internal_Rela *rel;
448
     char **pbuf;
449
     size_t *plen;
450
{
451
  size_t nlen, tlen;
452
  char *buf;
453
  size_t len;
454
 
455
  if (h && rel->r_addend == 0)
456
    return h->root.root.string;
457
 
458
  if (h)
459
    nlen = strlen (h->root.root.string);
460
  else
461
    nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
462
  tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
463
 
464
  len = *plen;
465
  buf = *pbuf;
466
  if (len < tlen)
467
    {
468
      if (buf)
469
        free (buf);
470
      *pbuf = buf = malloc (tlen);
471
      *plen = len = tlen;
472
      if (!buf)
473
        return NULL;
474
    }
475
 
476
  if (h)
477
    {
478
      memcpy (buf, h->root.root.string, nlen);
479
      buf[nlen++] = '+';
480
      sprintf_vma (buf + nlen, rel->r_addend);
481
    }
482
  else
483
    {
484
      nlen = sprintf (buf, "%x:%lx",
485
                      sec->id & 0xffffffff,
486
                      (long) ELF64_R_SYM (rel->r_info));
487
      if (rel->r_addend)
488
        {
489
          buf[nlen++] = '+';
490
          sprintf_vma (buf + nlen, rel->r_addend);
491
        }
492
    }
493
 
494
  return buf;
495
}
496
 
497
/* SEC is a section containing relocs for an input BFD when linking; return
498
   a suitable section for holding relocs in the output BFD for a link.  */
499
 
500
static boolean
501
get_reloc_section (abfd, hppa_info, sec)
502
     bfd *abfd;
503
     struct elf64_hppa_link_hash_table *hppa_info;
504
     asection *sec;
505
{
506
  const char *srel_name;
507
  asection *srel;
508
  bfd *dynobj;
509
 
510
  srel_name = (bfd_elf_string_from_elf_section
511
               (abfd, elf_elfheader(abfd)->e_shstrndx,
512
                elf_section_data(sec)->rel_hdr.sh_name));
513
  if (srel_name == NULL)
514
    return false;
515
 
516
  BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
517
               && strcmp (bfd_get_section_name (abfd, sec),
518
                          srel_name+5) == 0)
519
              || (strncmp (srel_name, ".rel", 4) == 0
520
                  && strcmp (bfd_get_section_name (abfd, sec),
521
                             srel_name+4) == 0));
522
 
523
  dynobj = hppa_info->root.dynobj;
524
  if (!dynobj)
525
    hppa_info->root.dynobj = dynobj = abfd;
526
 
527
  srel = bfd_get_section_by_name (dynobj, srel_name);
528
  if (srel == NULL)
529
    {
530
      srel = bfd_make_section (dynobj, srel_name);
531
      if (srel == NULL
532
          || !bfd_set_section_flags (dynobj, srel,
533
                                     (SEC_ALLOC
534
                                      | SEC_LOAD
535
                                      | SEC_HAS_CONTENTS
536
                                      | SEC_IN_MEMORY
537
                                      | SEC_LINKER_CREATED
538
                                      | SEC_READONLY))
539
          || !bfd_set_section_alignment (dynobj, srel, 3))
540
        return false;
541
    }
542
 
543
  hppa_info->other_rel_sec = srel;
544
  return true;
545
}
546
 
547
/* Add a new entry to the list of dynamic relocations against DYN_H.
548
 
549
   We use this to keep a record of all the FPTR relocations against a
550
   particular symbol so that we can create FPTR relocations in the
551
   output file.  */
552
 
553
static boolean
554
count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
555
     bfd *abfd;
556
     struct elf64_hppa_dyn_hash_entry *dyn_h;
557
     int type;
558
     asection *sec;
559
     int sec_symndx;
560
     bfd_vma offset;
561
     bfd_vma addend;
562
{
563
  struct elf64_hppa_dyn_reloc_entry *rent;
564
 
565
  rent = (struct elf64_hppa_dyn_reloc_entry *)
566
  bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
567
  if (!rent)
568
    return false;
569
 
570
  rent->next = dyn_h->reloc_entries;
571
  rent->type = type;
572
  rent->sec = sec;
573
  rent->sec_symndx = sec_symndx;
574
  rent->offset = offset;
575
  rent->addend = addend;
576
  dyn_h->reloc_entries = rent;
577
 
578
  return true;
579
}
580
 
581
/* Scan the RELOCS and record the type of dynamic entries that each
582
   referenced symbol needs.  */
583
 
584
static boolean
585
elf64_hppa_check_relocs (abfd, info, sec, relocs)
586
     bfd *abfd;
587
     struct bfd_link_info *info;
588
     asection *sec;
589
     const Elf_Internal_Rela *relocs;
590
{
591
  struct elf64_hppa_link_hash_table *hppa_info;
592
  const Elf_Internal_Rela *relend;
593
  Elf_Internal_Shdr *symtab_hdr;
594
  const Elf_Internal_Rela *rel;
595
  asection *dlt, *plt, *stubs;
596
  char *buf;
597
  size_t buf_len;
598
  int sec_symndx;
599
 
600
  if (info->relocateable)
601
    return true;
602
 
603
  /* If this is the first dynamic object found in the link, create
604
     the special sections required for dynamic linking.  */
605
  if (! elf_hash_table (info)->dynamic_sections_created)
606
    {
607
      if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
608
        return false;
609
    }
610
 
611
  hppa_info = elf64_hppa_hash_table (info);
612
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
613
 
614
  /* If necessary, build a new table holding section symbols indices
615
     for this BFD.  */
616
 
617
  if (info->shared && hppa_info->section_syms_bfd != abfd)
618
    {
619
      unsigned long i;
620
      unsigned int highest_shndx;
621
      Elf_Internal_Sym *local_syms = NULL;
622
      Elf_Internal_Sym *isym, *isymend;
623
      bfd_size_type amt;
624
 
625
      /* We're done with the old cache of section index to section symbol
626
         index information.  Free it.
627
 
628
         ?!? Note we leak the last section_syms array.  Presumably we
629
         could free it in one of the later routines in this file.  */
630
      if (hppa_info->section_syms)
631
        free (hppa_info->section_syms);
632
 
633
      /* Read this BFD's local symbols.  */
634
      if (symtab_hdr->sh_info != 0)
635
        {
636
          local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
637
          if (local_syms == NULL)
638
            local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
639
                                               symtab_hdr->sh_info, 0,
640
                                               NULL, NULL, NULL);
641
          if (local_syms == NULL)
642
            return false;
643
        }
644
 
645
      /* Record the highest section index referenced by the local symbols.  */
646
      highest_shndx = 0;
647
      isymend = local_syms + symtab_hdr->sh_info;
648
      for (isym = local_syms; isym < isymend; isym++)
649
        {
650
          if (isym->st_shndx > highest_shndx)
651
            highest_shndx = isym->st_shndx;
652
        }
653
 
654
      /* Allocate an array to hold the section index to section symbol index
655
         mapping.  Bump by one since we start counting at zero.  */
656
      highest_shndx++;
657
      amt = highest_shndx;
658
      amt *= sizeof (int);
659
      hppa_info->section_syms = (int *) bfd_malloc (amt);
660
 
661
      /* Now walk the local symbols again.  If we find a section symbol,
662
         record the index of the symbol into the section_syms array.  */
663
      for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
664
        {
665
          if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
666
            hppa_info->section_syms[isym->st_shndx] = i;
667
        }
668
 
669
      /* We are finished with the local symbols.  */
670
      if (local_syms != NULL
671
          && symtab_hdr->contents != (unsigned char *) local_syms)
672
        {
673
          if (! info->keep_memory)
674
            free (local_syms);
675
          else
676
            {
677
              /* Cache the symbols for elf_link_input_bfd.  */
678
              symtab_hdr->contents = (unsigned char *) local_syms;
679
            }
680
        }
681
 
682
      /* Record which BFD we built the section_syms mapping for.  */
683
      hppa_info->section_syms_bfd = abfd;
684
    }
685
 
686
  /* Record the symbol index for this input section.  We may need it for
687
     relocations when building shared libraries.  When not building shared
688
     libraries this value is never really used, but assign it to zero to
689
     prevent out of bounds memory accesses in other routines.  */
690
  if (info->shared)
691
    {
692
      sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
693
 
694
      /* If we did not find a section symbol for this section, then
695
         something went terribly wrong above.  */
696
      if (sec_symndx == -1)
697
        return false;
698
 
699
      sec_symndx = hppa_info->section_syms[sec_symndx];
700
    }
701
  else
702
    sec_symndx = 0;
703
 
704
  dlt = plt = stubs = NULL;
705
  buf = NULL;
706
  buf_len = 0;
707
 
708
  relend = relocs + sec->reloc_count;
709
  for (rel = relocs; rel < relend; ++rel)
710
    {
711
      enum {
712
        NEED_DLT = 1,
713
        NEED_PLT = 2,
714
        NEED_STUB = 4,
715
        NEED_OPD = 8,
716
        NEED_DYNREL = 16,
717
      };
718
 
719
      struct elf_link_hash_entry *h = NULL;
720
      unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
721
      struct elf64_hppa_dyn_hash_entry *dyn_h;
722
      int need_entry;
723
      const char *addr_name;
724
      boolean maybe_dynamic;
725
      int dynrel_type = R_PARISC_NONE;
726
      static reloc_howto_type *howto;
727
 
728
      if (r_symndx >= symtab_hdr->sh_info)
729
        {
730
          /* We're dealing with a global symbol -- find its hash entry
731
             and mark it as being referenced.  */
732
          long indx = r_symndx - symtab_hdr->sh_info;
733
          h = elf_sym_hashes (abfd)[indx];
734
          while (h->root.type == bfd_link_hash_indirect
735
                 || h->root.type == bfd_link_hash_warning)
736
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
737
 
738
          h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
739
        }
740
 
741
      /* We can only get preliminary data on whether a symbol is
742
         locally or externally defined, as not all of the input files
743
         have yet been processed.  Do something with what we know, as
744
         this may help reduce memory usage and processing time later.  */
745
      maybe_dynamic = false;
746
      if (h && ((info->shared
747
                    && (!info->symbolic || info->allow_shlib_undefined) )
748
                || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
749
                || h->root.type == bfd_link_hash_defweak))
750
        maybe_dynamic = true;
751
 
752
      howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
753
      need_entry = 0;
754
      switch (howto->type)
755
        {
756
        /* These are simple indirect references to symbols through the
757
           DLT.  We need to create a DLT entry for any symbols which
758
           appears in a DLTIND relocation.  */
759
        case R_PARISC_DLTIND21L:
760
        case R_PARISC_DLTIND14R:
761
        case R_PARISC_DLTIND14F:
762
        case R_PARISC_DLTIND14WR:
763
        case R_PARISC_DLTIND14DR:
764
          need_entry = NEED_DLT;
765
          break;
766
 
767
        /* ?!?  These need a DLT entry.  But I have no idea what to do with
768
           the "link time TP value.  */
769
        case R_PARISC_LTOFF_TP21L:
770
        case R_PARISC_LTOFF_TP14R:
771
        case R_PARISC_LTOFF_TP14F:
772
        case R_PARISC_LTOFF_TP64:
773
        case R_PARISC_LTOFF_TP14WR:
774
        case R_PARISC_LTOFF_TP14DR:
775
        case R_PARISC_LTOFF_TP16F:
776
        case R_PARISC_LTOFF_TP16WF:
777
        case R_PARISC_LTOFF_TP16DF:
778
          need_entry = NEED_DLT;
779
          break;
780
 
781
        /* These are function calls.  Depending on their precise target we
782
           may need to make a stub for them.  The stub uses the PLT, so we
783
           need to create PLT entries for these symbols too.  */
784
        case R_PARISC_PCREL12F:
785
        case R_PARISC_PCREL17F:
786
        case R_PARISC_PCREL22F:
787
        case R_PARISC_PCREL32:
788
        case R_PARISC_PCREL64:
789
        case R_PARISC_PCREL21L:
790
        case R_PARISC_PCREL17R:
791
        case R_PARISC_PCREL17C:
792
        case R_PARISC_PCREL14R:
793
        case R_PARISC_PCREL14F:
794
        case R_PARISC_PCREL22C:
795
        case R_PARISC_PCREL14WR:
796
        case R_PARISC_PCREL14DR:
797
        case R_PARISC_PCREL16F:
798
        case R_PARISC_PCREL16WF:
799
        case R_PARISC_PCREL16DF:
800
          need_entry = (NEED_PLT | NEED_STUB);
801
          break;
802
 
803
        case R_PARISC_PLTOFF21L:
804
        case R_PARISC_PLTOFF14R:
805
        case R_PARISC_PLTOFF14F:
806
        case R_PARISC_PLTOFF14WR:
807
        case R_PARISC_PLTOFF14DR:
808
        case R_PARISC_PLTOFF16F:
809
        case R_PARISC_PLTOFF16WF:
810
        case R_PARISC_PLTOFF16DF:
811
          need_entry = (NEED_PLT);
812
          break;
813
 
814
        case R_PARISC_DIR64:
815
          if (info->shared || maybe_dynamic)
816
            need_entry = (NEED_DYNREL);
817
          dynrel_type = R_PARISC_DIR64;
818
          break;
819
 
820
        /* This is an indirect reference through the DLT to get the address
821
           of a OPD descriptor.  Thus we need to make a DLT entry that points
822
           to an OPD entry.  */
823
        case R_PARISC_LTOFF_FPTR21L:
824
        case R_PARISC_LTOFF_FPTR14R:
825
        case R_PARISC_LTOFF_FPTR14WR:
826
        case R_PARISC_LTOFF_FPTR14DR:
827
        case R_PARISC_LTOFF_FPTR32:
828
        case R_PARISC_LTOFF_FPTR64:
829
        case R_PARISC_LTOFF_FPTR16F:
830
        case R_PARISC_LTOFF_FPTR16WF:
831
        case R_PARISC_LTOFF_FPTR16DF:
832
          if (info->shared || maybe_dynamic)
833
            need_entry = (NEED_DLT | NEED_OPD);
834
          else
835
            need_entry = (NEED_DLT | NEED_OPD);
836
          dynrel_type = R_PARISC_FPTR64;
837
          break;
838
 
839
        /* This is a simple OPD entry.  */
840
        case R_PARISC_FPTR64:
841
          if (info->shared || maybe_dynamic)
842
            need_entry = (NEED_OPD | NEED_DYNREL);
843
          else
844
            need_entry = (NEED_OPD);
845
          dynrel_type = R_PARISC_FPTR64;
846
          break;
847
 
848
        /* Add more cases as needed.  */
849
        }
850
 
851
      if (!need_entry)
852
        continue;
853
 
854
      /* Collect a canonical name for this address.  */
855
      addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
856
 
857
      /* Collect the canonical entry data for this address.  */
858
      dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
859
                                          addr_name, true, true);
860
      BFD_ASSERT (dyn_h);
861
 
862
      /* Stash away enough information to be able to find this symbol
863
         regardless of whether or not it is local or global.  */
864
      dyn_h->h = h;
865
      dyn_h->owner = abfd;
866
      dyn_h->sym_indx = r_symndx;
867
 
868
      /* ?!? We may need to do some error checking in here.  */
869
      /* Create what's needed.  */
870
      if (need_entry & NEED_DLT)
871
        {
872
          if (! hppa_info->dlt_sec
873
              && ! get_dlt (abfd, info, hppa_info))
874
            goto err_out;
875
          dyn_h->want_dlt = 1;
876
        }
877
 
878
      if (need_entry & NEED_PLT)
879
        {
880
          if (! hppa_info->plt_sec
881
              && ! get_plt (abfd, info, hppa_info))
882
            goto err_out;
883
          dyn_h->want_plt = 1;
884
        }
885
 
886
      if (need_entry & NEED_STUB)
887
        {
888
          if (! hppa_info->stub_sec
889
              && ! get_stub (abfd, info, hppa_info))
890
            goto err_out;
891
          dyn_h->want_stub = 1;
892
        }
893
 
894
      if (need_entry & NEED_OPD)
895
        {
896
          if (! hppa_info->opd_sec
897
              && ! get_opd (abfd, info, hppa_info))
898
            goto err_out;
899
 
900
          dyn_h->want_opd = 1;
901
 
902
          /* FPTRs are not allocated by the dynamic linker for PA64, though
903
             it is possible that will change in the future.  */
904
 
905
          /* This could be a local function that had its address taken, in
906
             which case H will be NULL.  */
907
          if (h)
908
            h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
909
        }
910
 
911
      /* Add a new dynamic relocation to the chain of dynamic
912
         relocations for this symbol.  */
913
      if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
914
        {
915
          if (! hppa_info->other_rel_sec
916
              && ! get_reloc_section (abfd, hppa_info, sec))
917
            goto err_out;
918
 
919
          if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
920
                                sec_symndx, rel->r_offset, rel->r_addend))
921
            goto err_out;
922
 
923
          /* If we are building a shared library and we just recorded
924
             a dynamic R_PARISC_FPTR64 relocation, then make sure the
925
             section symbol for this section ends up in the dynamic
926
             symbol table.  */
927
          if (info->shared && dynrel_type == R_PARISC_FPTR64
928
              && ! (_bfd_elf64_link_record_local_dynamic_symbol
929
                    (info, abfd, sec_symndx)))
930
            return false;
931
        }
932
    }
933
 
934
  if (buf)
935
    free (buf);
936
  return true;
937
 
938
 err_out:
939
  if (buf)
940
    free (buf);
941
  return false;
942
}
943
 
944
struct elf64_hppa_allocate_data
945
{
946
  struct bfd_link_info *info;
947
  bfd_size_type ofs;
948
};
949
 
950
/* Should we do dynamic things to this symbol?  */
951
 
952
static boolean
953
elf64_hppa_dynamic_symbol_p (h, info)
954
     struct elf_link_hash_entry *h;
955
     struct bfd_link_info *info;
956
{
957
  if (h == NULL)
958
    return false;
959
 
960
  while (h->root.type == bfd_link_hash_indirect
961
         || h->root.type == bfd_link_hash_warning)
962
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
963
 
964
  if (h->dynindx == -1)
965
    return false;
966
 
967
  if (h->root.type == bfd_link_hash_undefweak
968
      || h->root.type == bfd_link_hash_defweak)
969
    return true;
970
 
971
  if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
972
    return false;
973
 
974
  if ((info->shared && (!info->symbolic || info->allow_shlib_undefined))
975
      || ((h->elf_link_hash_flags
976
           & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
977
          == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
978
    return true;
979
 
980
  return false;
981
}
982
 
983
/* Mark all funtions exported by this file so that we can later allocate
984
   entries in .opd for them.  */
985
 
986
static boolean
987
elf64_hppa_mark_exported_functions (h, data)
988
     struct elf_link_hash_entry *h;
989
     PTR data;
990
{
991
  struct bfd_link_info *info = (struct bfd_link_info *)data;
992
  struct elf64_hppa_link_hash_table *hppa_info;
993
 
994
  hppa_info = elf64_hppa_hash_table (info);
995
 
996
  if (h->root.type == bfd_link_hash_warning)
997
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
998
 
999
  if (h
1000
      && (h->root.type == bfd_link_hash_defined
1001
          || h->root.type == bfd_link_hash_defweak)
1002
      && h->root.u.def.section->output_section != NULL
1003
      && h->type == STT_FUNC)
1004
    {
1005
       struct elf64_hppa_dyn_hash_entry *dyn_h;
1006
 
1007
      /* Add this symbol to the PA64 linker hash table.  */
1008
      dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1009
                                          h->root.root.string, true, true);
1010
      BFD_ASSERT (dyn_h);
1011
      dyn_h->h = h;
1012
 
1013
      if (! hppa_info->opd_sec
1014
          && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1015
        return false;
1016
 
1017
      dyn_h->want_opd = 1;
1018
      /* Put a flag here for output_symbol_hook.  */
1019
      dyn_h->st_shndx = -1;
1020
      h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1021
    }
1022
 
1023
  return true;
1024
}
1025
 
1026
/* Allocate space for a DLT entry.  */
1027
 
1028
static boolean
1029
allocate_global_data_dlt (dyn_h, data)
1030
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1031
     PTR data;
1032
{
1033
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1034
 
1035
  if (dyn_h->want_dlt)
1036
    {
1037
      struct elf_link_hash_entry *h = dyn_h->h;
1038
 
1039
      if (x->info->shared)
1040
        {
1041
          /* Possibly add the symbol to the local dynamic symbol
1042
             table since we might need to create a dynamic relocation
1043
             against it.  */
1044
          if (! h
1045
              || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1046
            {
1047
              bfd *owner;
1048
              owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1049
 
1050
              if (! (_bfd_elf64_link_record_local_dynamic_symbol
1051
                     (x->info, owner, dyn_h->sym_indx)))
1052
                return false;
1053
            }
1054
        }
1055
 
1056
      dyn_h->dlt_offset = x->ofs;
1057
      x->ofs += DLT_ENTRY_SIZE;
1058
    }
1059
  return true;
1060
}
1061
 
1062
/* Allocate space for a DLT.PLT entry.  */
1063
 
1064
static boolean
1065
allocate_global_data_plt (dyn_h, data)
1066
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1067
     PTR data;
1068
{
1069
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1070
 
1071
  if (dyn_h->want_plt
1072
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1073
      && !((dyn_h->h->root.type == bfd_link_hash_defined
1074
            || dyn_h->h->root.type == bfd_link_hash_defweak)
1075
           && dyn_h->h->root.u.def.section->output_section != NULL))
1076
    {
1077
      dyn_h->plt_offset = x->ofs;
1078
      x->ofs += PLT_ENTRY_SIZE;
1079
      if (dyn_h->plt_offset < 0x2000)
1080
        elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1081
    }
1082
  else
1083
    dyn_h->want_plt = 0;
1084
 
1085
  return true;
1086
}
1087
 
1088
/* Allocate space for a STUB entry.  */
1089
 
1090
static boolean
1091
allocate_global_data_stub (dyn_h, data)
1092
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1093
     PTR data;
1094
{
1095
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1096
 
1097
  if (dyn_h->want_stub
1098
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1099
      && !((dyn_h->h->root.type == bfd_link_hash_defined
1100
            || dyn_h->h->root.type == bfd_link_hash_defweak)
1101
           && dyn_h->h->root.u.def.section->output_section != NULL))
1102
    {
1103
      dyn_h->stub_offset = x->ofs;
1104
      x->ofs += sizeof (plt_stub);
1105
    }
1106
  else
1107
    dyn_h->want_stub = 0;
1108
  return true;
1109
}
1110
 
1111
/* Allocate space for a FPTR entry.  */
1112
 
1113
static boolean
1114
allocate_global_data_opd (dyn_h, data)
1115
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1116
     PTR data;
1117
{
1118
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1119
 
1120
  if (dyn_h->want_opd)
1121
    {
1122
      struct elf_link_hash_entry *h = dyn_h->h;
1123
 
1124
      if (h)
1125
        while (h->root.type == bfd_link_hash_indirect
1126
               || h->root.type == bfd_link_hash_warning)
1127
          h = (struct elf_link_hash_entry *) h->root.u.i.link;
1128
 
1129
      /* We never need an opd entry for a symbol which is not
1130
         defined by this output file.  */
1131
      if (h && (h->root.type == bfd_link_hash_undefined
1132
                || h->root.u.def.section->output_section == NULL))
1133
        dyn_h->want_opd = 0;
1134
 
1135
      /* If we are creating a shared library, took the address of a local
1136
         function or might export this function from this object file, then
1137
         we have to create an opd descriptor.  */
1138
      else if (x->info->shared
1139
               || h == NULL
1140
               || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1141
               || (h->root.type == bfd_link_hash_defined
1142
                   || h->root.type == bfd_link_hash_defweak))
1143
        {
1144
          /* If we are creating a shared library, then we will have to
1145
             create a runtime relocation for the symbol to properly
1146
             initialize the .opd entry.  Make sure the symbol gets
1147
             added to the dynamic symbol table.  */
1148
          if (x->info->shared
1149
              && (h == NULL || (h->dynindx == -1)))
1150
            {
1151
              bfd *owner;
1152
              owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1153
 
1154
              if (!_bfd_elf64_link_record_local_dynamic_symbol
1155
                    (x->info, owner, dyn_h->sym_indx))
1156
                return false;
1157
            }
1158
 
1159
          /* This may not be necessary or desirable anymore now that
1160
             we have some support for dealing with section symbols
1161
             in dynamic relocs.  But name munging does make the result
1162
             much easier to debug.  ie, the EPLT reloc will reference
1163
             a symbol like .foobar, instead of .text + offset.  */
1164
          if (x->info->shared && h)
1165
            {
1166
              char *new_name;
1167
              struct elf_link_hash_entry *nh;
1168
 
1169
              new_name = alloca (strlen (h->root.root.string) + 2);
1170
              new_name[0] = '.';
1171
              strcpy (new_name + 1, h->root.root.string);
1172
 
1173
              nh = elf_link_hash_lookup (elf_hash_table (x->info),
1174
                                         new_name, true, true, true);
1175
 
1176
              nh->root.type = h->root.type;
1177
              nh->root.u.def.value = h->root.u.def.value;
1178
              nh->root.u.def.section = h->root.u.def.section;
1179
 
1180
              if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1181
                return false;
1182
 
1183
             }
1184
          dyn_h->opd_offset = x->ofs;
1185
          x->ofs += OPD_ENTRY_SIZE;
1186
        }
1187
 
1188
      /* Otherwise we do not need an opd entry.  */
1189
      else
1190
        dyn_h->want_opd = 0;
1191
    }
1192
  return true;
1193
}
1194
 
1195
/* HP requires the EI_OSABI field to be filled in.  The assignment to
1196
   EI_ABIVERSION may not be strictly necessary.  */
1197
 
1198
static void
1199
elf64_hppa_post_process_headers (abfd, link_info)
1200
     bfd * abfd;
1201
     struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1202
{
1203
  Elf_Internal_Ehdr * i_ehdrp;
1204
 
1205
  i_ehdrp = elf_elfheader (abfd);
1206
 
1207
  if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1208
    {
1209
      i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1210
    }
1211
  else
1212
    {
1213
      i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1214
      i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1215
    }
1216
}
1217
 
1218
/* Create function descriptor section (.opd).  This section is called .opd
1219
   because it contains "official prodecure descriptors".  The "official"
1220
   refers to the fact that these descriptors are used when taking the address
1221
   of a procedure, thus ensuring a unique address for each procedure.  */
1222
 
1223
static boolean
1224
get_opd (abfd, info, hppa_info)
1225
     bfd *abfd;
1226
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1227
     struct elf64_hppa_link_hash_table *hppa_info;
1228
{
1229
  asection *opd;
1230
  bfd *dynobj;
1231
 
1232
  opd = hppa_info->opd_sec;
1233
  if (!opd)
1234
    {
1235
      dynobj = hppa_info->root.dynobj;
1236
      if (!dynobj)
1237
        hppa_info->root.dynobj = dynobj = abfd;
1238
 
1239
      opd = bfd_make_section (dynobj, ".opd");
1240
      if (!opd
1241
          || !bfd_set_section_flags (dynobj, opd,
1242
                                     (SEC_ALLOC
1243
                                      | SEC_LOAD
1244
                                      | SEC_HAS_CONTENTS
1245
                                      | SEC_IN_MEMORY
1246
                                      | SEC_LINKER_CREATED))
1247
          || !bfd_set_section_alignment (abfd, opd, 3))
1248
        {
1249
          BFD_ASSERT (0);
1250
          return false;
1251
        }
1252
 
1253
      hppa_info->opd_sec = opd;
1254
    }
1255
 
1256
  return true;
1257
}
1258
 
1259
/* Create the PLT section.  */
1260
 
1261
static boolean
1262
get_plt (abfd, info, hppa_info)
1263
     bfd *abfd;
1264
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1265
     struct elf64_hppa_link_hash_table *hppa_info;
1266
{
1267
  asection *plt;
1268
  bfd *dynobj;
1269
 
1270
  plt = hppa_info->plt_sec;
1271
  if (!plt)
1272
    {
1273
      dynobj = hppa_info->root.dynobj;
1274
      if (!dynobj)
1275
        hppa_info->root.dynobj = dynobj = abfd;
1276
 
1277
      plt = bfd_make_section (dynobj, ".plt");
1278
      if (!plt
1279
          || !bfd_set_section_flags (dynobj, plt,
1280
                                     (SEC_ALLOC
1281
                                      | SEC_LOAD
1282
                                      | SEC_HAS_CONTENTS
1283
                                      | SEC_IN_MEMORY
1284
                                      | SEC_LINKER_CREATED))
1285
          || !bfd_set_section_alignment (abfd, plt, 3))
1286
        {
1287
          BFD_ASSERT (0);
1288
          return false;
1289
        }
1290
 
1291
      hppa_info->plt_sec = plt;
1292
    }
1293
 
1294
  return true;
1295
}
1296
 
1297
/* Create the DLT section.  */
1298
 
1299
static boolean
1300
get_dlt (abfd, info, hppa_info)
1301
     bfd *abfd;
1302
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1303
     struct elf64_hppa_link_hash_table *hppa_info;
1304
{
1305
  asection *dlt;
1306
  bfd *dynobj;
1307
 
1308
  dlt = hppa_info->dlt_sec;
1309
  if (!dlt)
1310
    {
1311
      dynobj = hppa_info->root.dynobj;
1312
      if (!dynobj)
1313
        hppa_info->root.dynobj = dynobj = abfd;
1314
 
1315
      dlt = bfd_make_section (dynobj, ".dlt");
1316
      if (!dlt
1317
          || !bfd_set_section_flags (dynobj, dlt,
1318
                                     (SEC_ALLOC
1319
                                      | SEC_LOAD
1320
                                      | SEC_HAS_CONTENTS
1321
                                      | SEC_IN_MEMORY
1322
                                      | SEC_LINKER_CREATED))
1323
          || !bfd_set_section_alignment (abfd, dlt, 3))
1324
        {
1325
          BFD_ASSERT (0);
1326
          return false;
1327
        }
1328
 
1329
      hppa_info->dlt_sec = dlt;
1330
    }
1331
 
1332
  return true;
1333
}
1334
 
1335
/* Create the stubs section.  */
1336
 
1337
static boolean
1338
get_stub (abfd, info, hppa_info)
1339
     bfd *abfd;
1340
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1341
     struct elf64_hppa_link_hash_table *hppa_info;
1342
{
1343
  asection *stub;
1344
  bfd *dynobj;
1345
 
1346
  stub = hppa_info->stub_sec;
1347
  if (!stub)
1348
    {
1349
      dynobj = hppa_info->root.dynobj;
1350
      if (!dynobj)
1351
        hppa_info->root.dynobj = dynobj = abfd;
1352
 
1353
      stub = bfd_make_section (dynobj, ".stub");
1354
      if (!stub
1355
          || !bfd_set_section_flags (dynobj, stub,
1356
                                     (SEC_ALLOC
1357
                                      | SEC_LOAD
1358
                                      | SEC_HAS_CONTENTS
1359
                                      | SEC_IN_MEMORY
1360
                                      | SEC_READONLY
1361
                                      | SEC_LINKER_CREATED))
1362
          || !bfd_set_section_alignment (abfd, stub, 3))
1363
        {
1364
          BFD_ASSERT (0);
1365
          return false;
1366
        }
1367
 
1368
      hppa_info->stub_sec = stub;
1369
    }
1370
 
1371
  return true;
1372
}
1373
 
1374
/* Create sections necessary for dynamic linking.  This is only a rough
1375
   cut and will likely change as we learn more about the somewhat
1376
   unusual dynamic linking scheme HP uses.
1377
 
1378
   .stub:
1379
        Contains code to implement cross-space calls.  The first time one
1380
        of the stubs is used it will call into the dynamic linker, later
1381
        calls will go straight to the target.
1382
 
1383
        The only stub we support right now looks like
1384
 
1385
        ldd OFFSET(%dp),%r1
1386
        bve %r0(%r1)
1387
        ldd OFFSET+8(%dp),%dp
1388
 
1389
        Other stubs may be needed in the future.  We may want the remove
1390
        the break/nop instruction.  It is only used right now to keep the
1391
        offset of a .plt entry and a .stub entry in sync.
1392
 
1393
   .dlt:
1394
        This is what most people call the .got.  HP used a different name.
1395
        Losers.
1396
 
1397
   .rela.dlt:
1398
        Relocations for the DLT.
1399
 
1400
   .plt:
1401
        Function pointers as address,gp pairs.
1402
 
1403
   .rela.plt:
1404
        Should contain dynamic IPLT (and EPLT?) relocations.
1405
 
1406
   .opd:
1407
        FPTRS
1408
 
1409
   .rela.opd:
1410
        EPLT relocations for symbols exported from shared libraries.  */
1411
 
1412
static boolean
1413
elf64_hppa_create_dynamic_sections (abfd, info)
1414
     bfd *abfd;
1415
     struct bfd_link_info *info;
1416
{
1417
  asection *s;
1418
 
1419
  if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1420
    return false;
1421
 
1422
  if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1423
    return false;
1424
 
1425
  if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1426
    return false;
1427
 
1428
  if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1429
    return false;
1430
 
1431
  s = bfd_make_section(abfd, ".rela.dlt");
1432
  if (s == NULL
1433
      || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1434
                                           | SEC_HAS_CONTENTS
1435
                                           | SEC_IN_MEMORY
1436
                                           | SEC_READONLY
1437
                                           | SEC_LINKER_CREATED))
1438
      || !bfd_set_section_alignment (abfd, s, 3))
1439
    return false;
1440
  elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1441
 
1442
  s = bfd_make_section(abfd, ".rela.plt");
1443
  if (s == NULL
1444
      || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1445
                                           | SEC_HAS_CONTENTS
1446
                                           | SEC_IN_MEMORY
1447
                                           | SEC_READONLY
1448
                                           | SEC_LINKER_CREATED))
1449
      || !bfd_set_section_alignment (abfd, s, 3))
1450
    return false;
1451
  elf64_hppa_hash_table (info)->plt_rel_sec = s;
1452
 
1453
  s = bfd_make_section(abfd, ".rela.data");
1454
  if (s == NULL
1455
      || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1456
                                           | SEC_HAS_CONTENTS
1457
                                           | SEC_IN_MEMORY
1458
                                           | SEC_READONLY
1459
                                           | SEC_LINKER_CREATED))
1460
      || !bfd_set_section_alignment (abfd, s, 3))
1461
    return false;
1462
  elf64_hppa_hash_table (info)->other_rel_sec = s;
1463
 
1464
  s = bfd_make_section(abfd, ".rela.opd");
1465
  if (s == NULL
1466
      || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1467
                                           | SEC_HAS_CONTENTS
1468
                                           | SEC_IN_MEMORY
1469
                                           | SEC_READONLY
1470
                                           | SEC_LINKER_CREATED))
1471
      || !bfd_set_section_alignment (abfd, s, 3))
1472
    return false;
1473
  elf64_hppa_hash_table (info)->opd_rel_sec = s;
1474
 
1475
  return true;
1476
}
1477
 
1478
/* Allocate dynamic relocations for those symbols that turned out
1479
   to be dynamic.  */
1480
 
1481
static boolean
1482
allocate_dynrel_entries (dyn_h, data)
1483
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1484
     PTR data;
1485
{
1486
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1487
  struct elf64_hppa_link_hash_table *hppa_info;
1488
  struct elf64_hppa_dyn_reloc_entry *rent;
1489
  boolean dynamic_symbol, shared;
1490
 
1491
  hppa_info = elf64_hppa_hash_table (x->info);
1492
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1493
  shared = x->info->shared;
1494
 
1495
  /* We may need to allocate relocations for a non-dynamic symbol
1496
     when creating a shared library.  */
1497
  if (!dynamic_symbol && !shared)
1498
    return true;
1499
 
1500
  /* Take care of the normal data relocations.  */
1501
 
1502
  for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1503
    {
1504
      /* Allocate one iff we are building a shared library, the relocation
1505
         isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
1506
      if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1507
        continue;
1508
 
1509
      hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1510
 
1511
      /* Make sure this symbol gets into the dynamic symbol table if it is
1512
         not already recorded.  ?!? This should not be in the loop since
1513
         the symbol need only be added once.  */
1514
      if (dyn_h->h == 0
1515
          || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1516
        if (!_bfd_elf64_link_record_local_dynamic_symbol
1517
            (x->info, rent->sec->owner, dyn_h->sym_indx))
1518
          return false;
1519
    }
1520
 
1521
  /* Take care of the GOT and PLT relocations.  */
1522
 
1523
  if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1524
    hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1525
 
1526
  /* If we are building a shared library, then every symbol that has an
1527
     opd entry will need an EPLT relocation to relocate the symbol's address
1528
     and __gp value based on the runtime load address.  */
1529
  if (shared && dyn_h->want_opd)
1530
    hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1531
 
1532
  if (dyn_h->want_plt && dynamic_symbol)
1533
    {
1534
      bfd_size_type t = 0;
1535
 
1536
      /* Dynamic symbols get one IPLT relocation.  Local symbols in
1537
         shared libraries get two REL relocations.  Local symbols in
1538
         main applications get nothing.  */
1539
      if (dynamic_symbol)
1540
        t = sizeof (Elf64_External_Rela);
1541
      else if (shared)
1542
        t = 2 * sizeof (Elf64_External_Rela);
1543
 
1544
      hppa_info->plt_rel_sec->_raw_size += t;
1545
    }
1546
 
1547
  return true;
1548
}
1549
 
1550
/* Adjust a symbol defined by a dynamic object and referenced by a
1551
   regular object.  */
1552
 
1553
static boolean
1554
elf64_hppa_adjust_dynamic_symbol (info, h)
1555
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1556
     struct elf_link_hash_entry *h;
1557
{
1558
  /* ??? Undefined symbols with PLT entries should be re-defined
1559
     to be the PLT entry.  */
1560
 
1561
  /* If this is a weak symbol, and there is a real definition, the
1562
     processor independent code will have arranged for us to see the
1563
     real definition first, and we can just use the same value.  */
1564
  if (h->weakdef != NULL)
1565
    {
1566
      BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1567
                  || h->weakdef->root.type == bfd_link_hash_defweak);
1568
      h->root.u.def.section = h->weakdef->root.u.def.section;
1569
      h->root.u.def.value = h->weakdef->root.u.def.value;
1570
      return true;
1571
    }
1572
 
1573
  /* If this is a reference to a symbol defined by a dynamic object which
1574
     is not a function, we might allocate the symbol in our .dynbss section
1575
     and allocate a COPY dynamic relocation.
1576
 
1577
     But PA64 code is canonically PIC, so as a rule we can avoid this sort
1578
     of hackery.  */
1579
 
1580
  return true;
1581
}
1582
 
1583
/* This function is called via elf_link_hash_traverse to mark millicode
1584
   symbols with a dynindx of -1 and to remove the string table reference
1585
   from the dynamic symbol table.  If the symbol is not a millicode symbol,
1586
   elf64_hppa_mark_exported_functions is called.  */
1587
 
1588
static boolean
1589
elf64_hppa_mark_milli_and_exported_functions (h, data)
1590
     struct elf_link_hash_entry *h;
1591
     PTR data;
1592
{
1593
  struct bfd_link_info *info = (struct bfd_link_info *)data;
1594
  struct elf_link_hash_entry *elf = h;
1595
 
1596
  if (elf->root.type == bfd_link_hash_warning)
1597
    elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1598
 
1599
  if (elf->type == STT_PARISC_MILLI)
1600
    {
1601
      if (elf->dynindx != -1)
1602
        {
1603
          elf->dynindx = -1;
1604
          _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1605
                                  elf->dynstr_index);
1606
        }
1607
      return true;
1608
    }
1609
 
1610
  return elf64_hppa_mark_exported_functions (h, data);
1611
}
1612
 
1613
/* Set the final sizes of the dynamic sections and allocate memory for
1614
   the contents of our special sections.  */
1615
 
1616
static boolean
1617
elf64_hppa_size_dynamic_sections (output_bfd, info)
1618
     bfd *output_bfd;
1619
     struct bfd_link_info *info;
1620
{
1621
  bfd *dynobj;
1622
  asection *s;
1623
  boolean plt;
1624
  boolean relocs;
1625
  boolean reltext;
1626
  struct elf64_hppa_allocate_data data;
1627
  struct elf64_hppa_link_hash_table *hppa_info;
1628
 
1629
  hppa_info = elf64_hppa_hash_table (info);
1630
 
1631
  dynobj = elf_hash_table (info)->dynobj;
1632
  BFD_ASSERT (dynobj != NULL);
1633
 
1634
  /* Mark each function this program exports so that we will allocate
1635
     space in the .opd section for each function's FPTR.  If we are
1636
     creating dynamic sections, change the dynamic index of millicode
1637
     symbols to -1 and remove them from the string table for .dynstr.
1638
 
1639
     We have to traverse the main linker hash table since we have to
1640
     find functions which may not have been mentioned in any relocs.  */
1641
  elf_link_hash_traverse (elf_hash_table (info),
1642
                          (elf_hash_table (info)->dynamic_sections_created
1643
                           ? elf64_hppa_mark_milli_and_exported_functions
1644
                           : elf64_hppa_mark_exported_functions),
1645
                          info);
1646
 
1647
  if (elf_hash_table (info)->dynamic_sections_created)
1648
    {
1649
      /* Set the contents of the .interp section to the interpreter.  */
1650
      if (! info->shared)
1651
        {
1652
          s = bfd_get_section_by_name (dynobj, ".interp");
1653
          BFD_ASSERT (s != NULL);
1654
          s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1655
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1656
        }
1657
    }
1658
  else
1659
    {
1660
      /* We may have created entries in the .rela.got section.
1661
         However, if we are not creating the dynamic sections, we will
1662
         not actually use these entries.  Reset the size of .rela.dlt,
1663
         which will cause it to get stripped from the output file
1664
         below.  */
1665
      s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1666
      if (s != NULL)
1667
        s->_raw_size = 0;
1668
    }
1669
 
1670
  /* Allocate the GOT entries.  */
1671
 
1672
  data.info = info;
1673
  if (elf64_hppa_hash_table (info)->dlt_sec)
1674
    {
1675
      data.ofs = 0x0;
1676
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1677
                                    allocate_global_data_dlt, &data);
1678
      hppa_info->dlt_sec->_raw_size = data.ofs;
1679
 
1680
      data.ofs = 0x0;
1681
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1682
                                    allocate_global_data_plt, &data);
1683
      hppa_info->plt_sec->_raw_size = data.ofs;
1684
 
1685
      data.ofs = 0x0;
1686
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1687
                                    allocate_global_data_stub, &data);
1688
      hppa_info->stub_sec->_raw_size = data.ofs;
1689
    }
1690
 
1691
  /* Allocate space for entries in the .opd section.  */
1692
  if (elf64_hppa_hash_table (info)->opd_sec)
1693
    {
1694
      data.ofs = 0;
1695
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1696
                                    allocate_global_data_opd, &data);
1697
      hppa_info->opd_sec->_raw_size = data.ofs;
1698
    }
1699
 
1700
  /* Now allocate space for dynamic relocations, if necessary.  */
1701
  if (hppa_info->root.dynamic_sections_created)
1702
    elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1703
                                  allocate_dynrel_entries, &data);
1704
 
1705
  /* The sizes of all the sections are set.  Allocate memory for them.  */
1706
  plt = false;
1707
  relocs = false;
1708
  reltext = false;
1709
  for (s = dynobj->sections; s != NULL; s = s->next)
1710
    {
1711
      const char *name;
1712
      boolean strip;
1713
 
1714
      if ((s->flags & SEC_LINKER_CREATED) == 0)
1715
        continue;
1716
 
1717
      /* It's OK to base decisions on the section name, because none
1718
         of the dynobj section names depend upon the input files.  */
1719
      name = bfd_get_section_name (dynobj, s);
1720
 
1721
      strip = 0;
1722
 
1723
      if (strcmp (name, ".plt") == 0)
1724
        {
1725
          /* Strip this section if we don't need it; see the comment below.  */
1726
          if (s->_raw_size == 0)
1727
            {
1728
              strip = true;
1729
            }
1730
          else
1731
            {
1732
              /* Remember whether there is a PLT.  */
1733
              plt = true;
1734
            }
1735
        }
1736
      else if (strcmp (name, ".dlt") == 0)
1737
        {
1738
          /* Strip this section if we don't need it; see the comment below.  */
1739
          if (s->_raw_size == 0)
1740
            {
1741
              strip = true;
1742
            }
1743
        }
1744
      else if (strcmp (name, ".opd") == 0)
1745
        {
1746
          /* Strip this section if we don't need it; see the comment below.  */
1747
          if (s->_raw_size == 0)
1748
            {
1749
              strip = true;
1750
            }
1751
        }
1752
      else if (strncmp (name, ".rela", 5) == 0)
1753
        {
1754
          /* If we don't need this section, strip it from the output file.
1755
             This is mostly to handle .rela.bss and .rela.plt.  We must
1756
             create both sections in create_dynamic_sections, because they
1757
             must be created before the linker maps input sections to output
1758
             sections.  The linker does that before adjust_dynamic_symbol
1759
             is called, and it is that function which decides whether
1760
             anything needs to go into these sections.  */
1761
          if (s->_raw_size == 0)
1762
            {
1763
              /* If we don't need this section, strip it from the
1764
                 output file.  This is mostly to handle .rela.bss and
1765
                 .rela.plt.  We must create both sections in
1766
                 create_dynamic_sections, because they must be created
1767
                 before the linker maps input sections to output
1768
                 sections.  The linker does that before
1769
                 adjust_dynamic_symbol is called, and it is that
1770
                 function which decides whether anything needs to go
1771
                 into these sections.  */
1772
              strip = true;
1773
            }
1774
          else
1775
            {
1776
              asection *target;
1777
 
1778
              /* Remember whether there are any reloc sections other
1779
                 than .rela.plt.  */
1780
              if (strcmp (name, ".rela.plt") != 0)
1781
                {
1782
                  const char *outname;
1783
 
1784
                  relocs = true;
1785
 
1786
                  /* If this relocation section applies to a read only
1787
                     section, then we probably need a DT_TEXTREL
1788
                     entry.  The entries in the .rela.plt section
1789
                     really apply to the .got section, which we
1790
                     created ourselves and so know is not readonly.  */
1791
                  outname = bfd_get_section_name (output_bfd,
1792
                                                  s->output_section);
1793
                  target = bfd_get_section_by_name (output_bfd, outname + 4);
1794
                  if (target != NULL
1795
                      && (target->flags & SEC_READONLY) != 0
1796
                      && (target->flags & SEC_ALLOC) != 0)
1797
                    reltext = true;
1798
                }
1799
 
1800
              /* We use the reloc_count field as a counter if we need
1801
                 to copy relocs into the output file.  */
1802
              s->reloc_count = 0;
1803
            }
1804
        }
1805
      else if (strncmp (name, ".dlt", 4) != 0
1806
               && strcmp (name, ".stub") != 0
1807
               && strcmp (name, ".got") != 0)
1808
        {
1809
          /* It's not one of our sections, so don't allocate space.  */
1810
          continue;
1811
        }
1812
 
1813
      if (strip)
1814
        {
1815
          _bfd_strip_section_from_output (info, s);
1816
          continue;
1817
        }
1818
 
1819
      /* Allocate memory for the section contents if it has not
1820
         been allocated already.  We use bfd_zalloc here in case
1821
         unused entries are not reclaimed before the section's
1822
         contents are written out.  This should not happen, but this
1823
         way if it does, we get a R_PARISC_NONE reloc instead of
1824
         garbage.  */
1825
      if (s->contents == NULL)
1826
        {
1827
          s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1828
          if (s->contents == NULL && s->_raw_size != 0)
1829
            return false;
1830
        }
1831
    }
1832
 
1833
  if (elf_hash_table (info)->dynamic_sections_created)
1834
    {
1835
      /* Always create a DT_PLTGOT.  It actually has nothing to do with
1836
         the PLT, it is how we communicate the __gp value of a load
1837
         module to the dynamic linker.  */
1838
#define add_dynamic_entry(TAG, VAL) \
1839
  bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1840
 
1841
      if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1842
          || !add_dynamic_entry (DT_PLTGOT, 0))
1843
        return false;
1844
 
1845
      /* Add some entries to the .dynamic section.  We fill in the
1846
         values later, in elf64_hppa_finish_dynamic_sections, but we
1847
         must add the entries now so that we get the correct size for
1848
         the .dynamic section.  The DT_DEBUG entry is filled in by the
1849
         dynamic linker and used by the debugger.  */
1850
      if (! info->shared)
1851
        {
1852
          if (!add_dynamic_entry (DT_DEBUG, 0)
1853
              || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1854
              || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1855
            return false;
1856
        }
1857
 
1858
      if (plt)
1859
        {
1860
          if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1861
              || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1862
              || !add_dynamic_entry (DT_JMPREL, 0))
1863
            return false;
1864
        }
1865
 
1866
      if (relocs)
1867
        {
1868
          if (!add_dynamic_entry (DT_RELA, 0)
1869
              || !add_dynamic_entry (DT_RELASZ, 0)
1870
              || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1871
            return false;
1872
        }
1873
 
1874
      if (reltext)
1875
        {
1876
          if (!add_dynamic_entry (DT_TEXTREL, 0))
1877
            return false;
1878
          info->flags |= DF_TEXTREL;
1879
        }
1880
    }
1881
#undef add_dynamic_entry
1882
 
1883
  return true;
1884
}
1885
 
1886
/* Called after we have output the symbol into the dynamic symbol
1887
   table, but before we output the symbol into the normal symbol
1888
   table.
1889
 
1890
   For some symbols we had to change their address when outputting
1891
   the dynamic symbol table.  We undo that change here so that
1892
   the symbols have their expected value in the normal symbol
1893
   table.  Ick.  */
1894
 
1895
static boolean
1896
elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
1897
     bfd *abfd ATTRIBUTE_UNUSED;
1898
     struct bfd_link_info *info;
1899
     const char *name;
1900
     Elf_Internal_Sym *sym;
1901
     asection *input_sec ATTRIBUTE_UNUSED;
1902
{
1903
  struct elf64_hppa_link_hash_table *hppa_info;
1904
  struct elf64_hppa_dyn_hash_entry *dyn_h;
1905
 
1906
  /* We may be called with the file symbol or section symbols.
1907
     They never need munging, so it is safe to ignore them.  */
1908
  if (!name)
1909
    return true;
1910
 
1911
  /* Get the PA dyn_symbol (if any) associated with NAME.  */
1912
  hppa_info = elf64_hppa_hash_table (info);
1913
  dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1914
                                      name, false, false);
1915
 
1916
  /* Function symbols for which we created .opd entries *may* have been
1917
     munged by finish_dynamic_symbol and have to be un-munged here.
1918
 
1919
     Note that finish_dynamic_symbol sometimes turns dynamic symbols
1920
     into non-dynamic ones, so we initialize st_shndx to -1 in
1921
     mark_exported_functions and check to see if it was overwritten
1922
     here instead of just checking dyn_h->h->dynindx.  */
1923
  if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
1924
    {
1925
      /* Restore the saved value and section index.  */
1926
      sym->st_value = dyn_h->st_value;
1927
      sym->st_shndx = dyn_h->st_shndx;
1928
    }
1929
 
1930
  return true;
1931
}
1932
 
1933
/* Finish up dynamic symbol handling.  We set the contents of various
1934
   dynamic sections here.  */
1935
 
1936
static boolean
1937
elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1938
     bfd *output_bfd;
1939
     struct bfd_link_info *info;
1940
     struct elf_link_hash_entry *h;
1941
     Elf_Internal_Sym *sym;
1942
{
1943
  asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1944
  struct elf64_hppa_link_hash_table *hppa_info;
1945
  struct elf64_hppa_dyn_hash_entry *dyn_h;
1946
 
1947
  hppa_info = elf64_hppa_hash_table (info);
1948
  dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1949
                                      h->root.root.string, false, false);
1950
 
1951
  stub = hppa_info->stub_sec;
1952
  splt = hppa_info->plt_sec;
1953
  sdlt = hppa_info->dlt_sec;
1954
  sopd = hppa_info->opd_sec;
1955
  spltrel = hppa_info->plt_rel_sec;
1956
  sdltrel = hppa_info->dlt_rel_sec;
1957
 
1958
  /* Incredible.  It is actually necessary to NOT use the symbol's real
1959
     value when building the dynamic symbol table for a shared library.
1960
     At least for symbols that refer to functions.
1961
 
1962
     We will store a new value and section index into the symbol long
1963
     enough to output it into the dynamic symbol table, then we restore
1964
     the original values (in elf64_hppa_link_output_symbol_hook).  */
1965
  if (dyn_h && dyn_h->want_opd)
1966
    {
1967
      BFD_ASSERT (sopd != NULL)
1968
 
1969
      /* Save away the original value and section index so that we
1970
         can restore them later.  */
1971
      dyn_h->st_value = sym->st_value;
1972
      dyn_h->st_shndx = sym->st_shndx;
1973
 
1974
      /* For the dynamic symbol table entry, we want the value to be
1975
         address of this symbol's entry within the .opd section.  */
1976
      sym->st_value = (dyn_h->opd_offset
1977
                       + sopd->output_offset
1978
                       + sopd->output_section->vma);
1979
      sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1980
                                                         sopd->output_section);
1981
    }
1982
 
1983
  /* Initialize a .plt entry if requested.  */
1984
  if (dyn_h && dyn_h->want_plt
1985
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1986
    {
1987
      bfd_vma value;
1988
      Elf_Internal_Rela rel;
1989
 
1990
      BFD_ASSERT (splt != NULL && spltrel != NULL)
1991
 
1992
      /* We do not actually care about the value in the PLT entry
1993
         if we are creating a shared library and the symbol is
1994
         still undefined, we create a dynamic relocation to fill
1995
         in the correct value.  */
1996
      if (info->shared && h->root.type == bfd_link_hash_undefined)
1997
        value = 0;
1998
      else
1999
        value = (h->root.u.def.value + h->root.u.def.section->vma);
2000
 
2001
      /* Fill in the entry in the procedure linkage table.
2002
 
2003
         The format of a plt entry is
2004
         <funcaddr> <__gp>.
2005
 
2006
         plt_offset is the offset within the PLT section at which to
2007
         install the PLT entry.
2008
 
2009
         We are modifying the in-memory PLT contents here, so we do not add
2010
         in the output_offset of the PLT section.  */
2011
 
2012
      bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2013
      value = _bfd_get_gp_value (splt->output_section->owner);
2014
      bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2015
 
2016
      /* Create a dynamic IPLT relocation for this entry.
2017
 
2018
         We are creating a relocation in the output file's PLT section,
2019
         which is included within the DLT secton.  So we do need to include
2020
         the PLT's output_offset in the computation of the relocation's
2021
         address.  */
2022
      rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2023
                      + splt->output_section->vma);
2024
      rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2025
      rel.r_addend = 0;
2026
 
2027
      bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
2028
                                 (((Elf64_External_Rela *)
2029
                                   spltrel->contents)
2030
                                  + spltrel->reloc_count));
2031
      spltrel->reloc_count++;
2032
    }
2033
 
2034
  /* Initialize an external call stub entry if requested.  */
2035
  if (dyn_h && dyn_h->want_stub
2036
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2037
    {
2038
      bfd_vma value;
2039
      int insn;
2040
      unsigned int max_offset;
2041
 
2042
      BFD_ASSERT (stub != NULL)
2043
 
2044
      /* Install the generic stub template.
2045
 
2046
         We are modifying the contents of the stub section, so we do not
2047
         need to include the stub section's output_offset here.  */
2048
      memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2049
 
2050
      /* Fix up the first ldd instruction.
2051
 
2052
         We are modifying the contents of the STUB section in memory,
2053
         so we do not need to include its output offset in this computation.
2054
 
2055
         Note the plt_offset value is the value of the PLT entry relative to
2056
         the start of the PLT section.  These instructions will reference
2057
         data relative to the value of __gp, which may not necessarily have
2058
         the same address as the start of the PLT section.
2059
 
2060
         gp_offset contains the offset of __gp within the PLT section.  */
2061
      value = dyn_h->plt_offset - hppa_info->gp_offset;
2062
 
2063
      insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2064
      if (output_bfd->arch_info->mach >= 25)
2065
        {
2066
          /* Wide mode allows 16 bit offsets.  */
2067
          max_offset = 32768;
2068
          insn &= ~ 0xfff1;
2069
          insn |= re_assemble_16 ((int) value);
2070
        }
2071
      else
2072
        {
2073
          max_offset = 8192;
2074
          insn &= ~ 0x3ff1;
2075
          insn |= re_assemble_14 ((int) value);
2076
        }
2077
 
2078
      if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2079
        {
2080
          (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2081
                                 dyn_h->root.string,
2082
                                 (long) value);
2083
          return false;
2084
        }
2085
 
2086
      bfd_put_32 (stub->owner, (bfd_vma) insn,
2087
                  stub->contents + dyn_h->stub_offset);
2088
 
2089
      /* Fix up the second ldd instruction.  */
2090
      value += 8;
2091
      insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2092
      if (output_bfd->arch_info->mach >= 25)
2093
        {
2094
          insn &= ~ 0xfff1;
2095
          insn |= re_assemble_16 ((int) value);
2096
        }
2097
      else
2098
        {
2099
          insn &= ~ 0x3ff1;
2100
          insn |= re_assemble_14 ((int) value);
2101
        }
2102
      bfd_put_32 (stub->owner, (bfd_vma) insn,
2103
                  stub->contents + dyn_h->stub_offset + 8);
2104
    }
2105
 
2106
  return true;
2107
}
2108
 
2109
/* The .opd section contains FPTRs for each function this file
2110
   exports.  Initialize the FPTR entries.  */
2111
 
2112
static boolean
2113
elf64_hppa_finalize_opd (dyn_h, data)
2114
     struct elf64_hppa_dyn_hash_entry *dyn_h;
2115
     PTR data;
2116
{
2117
  struct bfd_link_info *info = (struct bfd_link_info *)data;
2118
  struct elf64_hppa_link_hash_table *hppa_info;
2119
  struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2120
  asection *sopd;
2121
  asection *sopdrel;
2122
 
2123
  hppa_info = elf64_hppa_hash_table (info);
2124
  sopd = hppa_info->opd_sec;
2125
  sopdrel = hppa_info->opd_rel_sec;
2126
 
2127
  if (h && dyn_h->want_opd)
2128
    {
2129
      bfd_vma value;
2130
 
2131
      /* The first two words of an .opd entry are zero.
2132
 
2133
         We are modifying the contents of the OPD section in memory, so we
2134
         do not need to include its output offset in this computation.  */
2135
      memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2136
 
2137
      value = (h->root.u.def.value
2138
               + h->root.u.def.section->output_section->vma
2139
               + h->root.u.def.section->output_offset);
2140
 
2141
      /* The next word is the address of the function.  */
2142
      bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2143
 
2144
      /* The last word is our local __gp value.  */
2145
      value = _bfd_get_gp_value (sopd->output_section->owner);
2146
      bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2147
    }
2148
 
2149
  /* If we are generating a shared library, we must generate EPLT relocations
2150
     for each entry in the .opd, even for static functions (they may have
2151
     had their address taken).  */
2152
  if (info->shared && dyn_h && dyn_h->want_opd)
2153
    {
2154
      Elf64_Internal_Rela rel;
2155
      int dynindx;
2156
 
2157
      /* We may need to do a relocation against a local symbol, in
2158
         which case we have to look up it's dynamic symbol index off
2159
         the local symbol hash table.  */
2160
      if (h && h->dynindx != -1)
2161
        dynindx = h->dynindx;
2162
      else
2163
        dynindx
2164
          = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2165
                                                dyn_h->sym_indx);
2166
 
2167
      /* The offset of this relocation is the absolute address of the
2168
         .opd entry for this symbol.  */
2169
      rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2170
                      + sopd->output_section->vma);
2171
 
2172
      /* If H is non-null, then we have an external symbol.
2173
 
2174
         It is imperative that we use a different dynamic symbol for the
2175
         EPLT relocation if the symbol has global scope.
2176
 
2177
         In the dynamic symbol table, the function symbol will have a value
2178
         which is address of the function's .opd entry.
2179
 
2180
         Thus, we can not use that dynamic symbol for the EPLT relocation
2181
         (if we did, the data in the .opd would reference itself rather
2182
         than the actual address of the function).  Instead we have to use
2183
         a new dynamic symbol which has the same value as the original global
2184
         function symbol.
2185
 
2186
         We prefix the original symbol with a "." and use the new symbol in
2187
         the EPLT relocation.  This new symbol has already been recorded in
2188
         the symbol table, we just have to look it up and use it.
2189
 
2190
         We do not have such problems with static functions because we do
2191
         not make their addresses in the dynamic symbol table point to
2192
         the .opd entry.  Ultimately this should be safe since a static
2193
         function can not be directly referenced outside of its shared
2194
         library.
2195
 
2196
         We do have to play similar games for FPTR relocations in shared
2197
         libraries, including those for static symbols.  See the FPTR
2198
         handling in elf64_hppa_finalize_dynreloc.  */
2199
      if (h)
2200
        {
2201
          char *new_name;
2202
          struct elf_link_hash_entry *nh;
2203
 
2204
          new_name = alloca (strlen (h->root.root.string) + 2);
2205
          new_name[0] = '.';
2206
          strcpy (new_name + 1, h->root.root.string);
2207
 
2208
          nh = elf_link_hash_lookup (elf_hash_table (info),
2209
                                     new_name, false, false, false);
2210
 
2211
          /* All we really want from the new symbol is its dynamic
2212
             symbol index.  */
2213
          dynindx = nh->dynindx;
2214
        }
2215
 
2216
      rel.r_addend = 0;
2217
      rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2218
 
2219
      bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2220
                                 (((Elf64_External_Rela *)
2221
                                   sopdrel->contents)
2222
                                  + sopdrel->reloc_count));
2223
      sopdrel->reloc_count++;
2224
    }
2225
  return true;
2226
}
2227
 
2228
/* The .dlt section contains addresses for items referenced through the
2229
   dlt.  Note that we can have a DLTIND relocation for a local symbol, thus
2230
   we can not depend on finish_dynamic_symbol to initialize the .dlt.  */
2231
 
2232
static boolean
2233
elf64_hppa_finalize_dlt (dyn_h, data)
2234
     struct elf64_hppa_dyn_hash_entry *dyn_h;
2235
     PTR data;
2236
{
2237
  struct bfd_link_info *info = (struct bfd_link_info *)data;
2238
  struct elf64_hppa_link_hash_table *hppa_info;
2239
  asection *sdlt, *sdltrel;
2240
  struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2241
 
2242
  hppa_info = elf64_hppa_hash_table (info);
2243
 
2244
  sdlt = hppa_info->dlt_sec;
2245
  sdltrel = hppa_info->dlt_rel_sec;
2246
 
2247
  /* H/DYN_H may refer to a local variable and we know it's
2248
     address, so there is no need to create a relocation.  Just install
2249
     the proper value into the DLT, note this shortcut can not be
2250
     skipped when building a shared library.  */
2251
  if (! info->shared && h && dyn_h->want_dlt)
2252
    {
2253
      bfd_vma value;
2254
 
2255
      /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2256
         to point to the FPTR entry in the .opd section.
2257
 
2258
         We include the OPD's output offset in this computation as
2259
         we are referring to an absolute address in the resulting
2260
         object file.  */
2261
      if (dyn_h->want_opd)
2262
        {
2263
          value = (dyn_h->opd_offset
2264
                   + hppa_info->opd_sec->output_offset
2265
                   + hppa_info->opd_sec->output_section->vma);
2266
        }
2267
      else if (h->root.u.def.section)
2268
        {
2269
          value = h->root.u.def.value + h->root.u.def.section->output_offset;
2270
          if (h->root.u.def.section->output_section)
2271
            value += h->root.u.def.section->output_section->vma;
2272
          else
2273
            value += h->root.u.def.section->vma;
2274
        }
2275
      else
2276
        /* We have an undefined function reference.  */
2277
        value = 0;
2278
 
2279
      /* We do not need to include the output offset of the DLT section
2280
         here because we are modifying the in-memory contents.  */
2281
      bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2282
    }
2283
 
2284
  /* Create a relocation for the DLT entry assocated with this symbol.
2285
     When building a shared library the symbol does not have to be dynamic.  */
2286
  if (dyn_h->want_dlt
2287
      && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2288
    {
2289
      Elf64_Internal_Rela rel;
2290
      int dynindx;
2291
 
2292
      /* We may need to do a relocation against a local symbol, in
2293
         which case we have to look up it's dynamic symbol index off
2294
         the local symbol hash table.  */
2295
      if (h && h->dynindx != -1)
2296
        dynindx = h->dynindx;
2297
      else
2298
        dynindx
2299
          = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2300
                                                dyn_h->sym_indx);
2301
 
2302
      /* Create a dynamic relocation for this entry.  Do include the output
2303
         offset of the DLT entry since we need an absolute address in the
2304
         resulting object file.  */
2305
      rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2306
                      + sdlt->output_section->vma);
2307
      if (h && h->type == STT_FUNC)
2308
          rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2309
      else
2310
          rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2311
      rel.r_addend = 0;
2312
 
2313
      bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2314
                                 (((Elf64_External_Rela *)
2315
                                   sdltrel->contents)
2316
                                  + sdltrel->reloc_count));
2317
      sdltrel->reloc_count++;
2318
    }
2319
  return true;
2320
}
2321
 
2322
/* Finalize the dynamic relocations.  Specifically the FPTR relocations
2323
   for dynamic functions used to initialize static data.  */
2324
 
2325
static boolean
2326
elf64_hppa_finalize_dynreloc (dyn_h, data)
2327
     struct elf64_hppa_dyn_hash_entry *dyn_h;
2328
     PTR data;
2329
{
2330
  struct bfd_link_info *info = (struct bfd_link_info *)data;
2331
  struct elf64_hppa_link_hash_table *hppa_info;
2332
  struct elf_link_hash_entry *h;
2333
  int dynamic_symbol;
2334
 
2335
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2336
 
2337
  if (!dynamic_symbol && !info->shared)
2338
    return true;
2339
 
2340
  if (dyn_h->reloc_entries)
2341
    {
2342
      struct elf64_hppa_dyn_reloc_entry *rent;
2343
      int dynindx;
2344
 
2345
      hppa_info = elf64_hppa_hash_table (info);
2346
      h = dyn_h->h;
2347
 
2348
      /* We may need to do a relocation against a local symbol, in
2349
         which case we have to look up it's dynamic symbol index off
2350
         the local symbol hash table.  */
2351
      if (h && h->dynindx != -1)
2352
        dynindx = h->dynindx;
2353
      else
2354
        dynindx
2355
          = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2356
                                                dyn_h->sym_indx);
2357
 
2358
      for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2359
        {
2360
          Elf64_Internal_Rela rel;
2361
 
2362
          /* Allocate one iff we are building a shared library, the relocation
2363
             isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
2364
          if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2365
            continue;
2366
 
2367
          /* Create a dynamic relocation for this entry.
2368
 
2369
             We need the output offset for the reloc's section because
2370
             we are creating an absolute address in the resulting object
2371
             file.  */
2372
          rel.r_offset = (rent->offset + rent->sec->output_offset
2373
                          + rent->sec->output_section->vma);
2374
 
2375
          /* An FPTR64 relocation implies that we took the address of
2376
             a function and that the function has an entry in the .opd
2377
             section.  We want the FPTR64 relocation to reference the
2378
             entry in .opd.
2379
 
2380
             We could munge the symbol value in the dynamic symbol table
2381
             (in fact we already do for functions with global scope) to point
2382
             to the .opd entry.  Then we could use that dynamic symbol in
2383
             this relocation.
2384
 
2385
             Or we could do something sensible, not munge the symbol's
2386
             address and instead just use a different symbol to reference
2387
             the .opd entry.  At least that seems sensible until you
2388
             realize there's no local dynamic symbols we can use for that
2389
             purpose.  Thus the hair in the check_relocs routine.
2390
 
2391
             We use a section symbol recorded by check_relocs as the
2392
             base symbol for the relocation.  The addend is the difference
2393
             between the section symbol and the address of the .opd entry.  */
2394
          if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2395
            {
2396
              bfd_vma value, value2;
2397
 
2398
              /* First compute the address of the opd entry for this symbol.  */
2399
              value = (dyn_h->opd_offset
2400
                       + hppa_info->opd_sec->output_section->vma
2401
                       + hppa_info->opd_sec->output_offset);
2402
 
2403
              /* Compute the value of the start of the section with
2404
                 the relocation.  */
2405
              value2 = (rent->sec->output_section->vma
2406
                        + rent->sec->output_offset);
2407
 
2408
              /* Compute the difference between the start of the section
2409
                 with the relocation and the opd entry.  */
2410
              value -= value2;
2411
 
2412
              /* The result becomes the addend of the relocation.  */
2413
              rel.r_addend = value;
2414
 
2415
              /* The section symbol becomes the symbol for the dynamic
2416
                 relocation.  */
2417
              dynindx
2418
                = _bfd_elf_link_lookup_local_dynindx (info,
2419
                                                      rent->sec->owner,
2420
                                                      rent->sec_symndx);
2421
            }
2422
          else
2423
            rel.r_addend = rent->addend;
2424
 
2425
          rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2426
 
2427
          bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2428
                                     &rel,
2429
                                     (((Elf64_External_Rela *)
2430
                                      hppa_info->other_rel_sec->contents)
2431
                                      + hppa_info->other_rel_sec->reloc_count));
2432
          hppa_info->other_rel_sec->reloc_count++;
2433
        }
2434
    }
2435
 
2436
  return true;
2437
}
2438
 
2439
/* Used to decide how to sort relocs in an optimal manner for the
2440
   dynamic linker, before writing them out.  */
2441
 
2442
static enum elf_reloc_type_class
2443
elf64_hppa_reloc_type_class (rela)
2444
     const Elf_Internal_Rela *rela;
2445
{
2446
  if (ELF64_R_SYM (rela->r_info) == 0)
2447
    return reloc_class_relative;
2448
 
2449
  switch ((int) ELF64_R_TYPE (rela->r_info))
2450
    {
2451
    case R_PARISC_IPLT:
2452
      return reloc_class_plt;
2453
    case R_PARISC_COPY:
2454
      return reloc_class_copy;
2455
    default:
2456
      return reloc_class_normal;
2457
    }
2458
}
2459
 
2460
/* Finish up the dynamic sections.  */
2461
 
2462
static boolean
2463
elf64_hppa_finish_dynamic_sections (output_bfd, info)
2464
     bfd *output_bfd;
2465
     struct bfd_link_info *info;
2466
{
2467
  bfd *dynobj;
2468
  asection *sdyn;
2469
  struct elf64_hppa_link_hash_table *hppa_info;
2470
 
2471
  hppa_info = elf64_hppa_hash_table (info);
2472
 
2473
  /* Finalize the contents of the .opd section.  */
2474
  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2475
                                elf64_hppa_finalize_opd,
2476
                                info);
2477
 
2478
  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2479
                                elf64_hppa_finalize_dynreloc,
2480
                                info);
2481
 
2482
  /* Finalize the contents of the .dlt section.  */
2483
  dynobj = elf_hash_table (info)->dynobj;
2484
  /* Finalize the contents of the .dlt section.  */
2485
  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2486
                                elf64_hppa_finalize_dlt,
2487
                                info);
2488
 
2489
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2490
 
2491
  if (elf_hash_table (info)->dynamic_sections_created)
2492
    {
2493
      Elf64_External_Dyn *dyncon, *dynconend;
2494
 
2495
      BFD_ASSERT (sdyn != NULL);
2496
 
2497
      dyncon = (Elf64_External_Dyn *) sdyn->contents;
2498
      dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2499
      for (; dyncon < dynconend; dyncon++)
2500
        {
2501
          Elf_Internal_Dyn dyn;
2502
          asection *s;
2503
 
2504
          bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2505
 
2506
          switch (dyn.d_tag)
2507
            {
2508
            default:
2509
              break;
2510
 
2511
            case DT_HP_LOAD_MAP:
2512
              /* Compute the absolute address of 16byte scratchpad area
2513
                 for the dynamic linker.
2514
 
2515
                 By convention the linker script will allocate the scratchpad
2516
                 area at the start of the .data section.  So all we have to
2517
                 to is find the start of the .data section.  */
2518
              s = bfd_get_section_by_name (output_bfd, ".data");
2519
              dyn.d_un.d_ptr = s->vma;
2520
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2521
              break;
2522
 
2523
            case DT_PLTGOT:
2524
              /* HP's use PLTGOT to set the GOT register.  */
2525
              dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2526
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2527
              break;
2528
 
2529
            case DT_JMPREL:
2530
              s = hppa_info->plt_rel_sec;
2531
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2532
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2533
              break;
2534
 
2535
            case DT_PLTRELSZ:
2536
              s = hppa_info->plt_rel_sec;
2537
              dyn.d_un.d_val = s->_raw_size;
2538
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2539
              break;
2540
 
2541
            case DT_RELA:
2542
              s = hppa_info->other_rel_sec;
2543
              if (! s || ! s->_raw_size)
2544
                s = hppa_info->dlt_rel_sec;
2545
              if (! s || ! s->_raw_size)
2546
                s = hppa_info->opd_rel_sec;
2547
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2548
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2549
              break;
2550
 
2551
            case DT_RELASZ:
2552
              s = hppa_info->other_rel_sec;
2553
              dyn.d_un.d_val = s->_raw_size;
2554
              s = hppa_info->dlt_rel_sec;
2555
              dyn.d_un.d_val += s->_raw_size;
2556
              s = hppa_info->opd_rel_sec;
2557
              dyn.d_un.d_val += s->_raw_size;
2558
              /* There is some question about whether or not the size of
2559
                 the PLT relocs should be included here.  HP's tools do
2560
                 it, so we'll emulate them.  */
2561
              s = hppa_info->plt_rel_sec;
2562
              dyn.d_un.d_val += s->_raw_size;
2563
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2564
              break;
2565
 
2566
            }
2567
        }
2568
    }
2569
 
2570
  return true;
2571
}
2572
 
2573
/* Return the number of additional phdrs we will need.
2574
 
2575
   The generic ELF code only creates PT_PHDRs for executables.  The HP
2576
   dynamic linker requires PT_PHDRs for dynamic libraries too.
2577
 
2578
   This routine indicates that the backend needs one additional program
2579
   header for that case.
2580
 
2581
   Note we do not have access to the link info structure here, so we have
2582
   to guess whether or not we are building a shared library based on the
2583
   existence of a .interp section.  */
2584
 
2585
static int
2586
elf64_hppa_additional_program_headers (abfd)
2587
     bfd *abfd;
2588
{
2589
  asection *s;
2590
 
2591
  /* If we are creating a shared library, then we have to create a
2592
     PT_PHDR segment.  HP's dynamic linker chokes without it.  */
2593
  s = bfd_get_section_by_name (abfd, ".interp");
2594
  if (! s)
2595
    return 1;
2596
  return 0;
2597
}
2598
 
2599
/* Allocate and initialize any program headers required by this
2600
   specific backend.
2601
 
2602
   The generic ELF code only creates PT_PHDRs for executables.  The HP
2603
   dynamic linker requires PT_PHDRs for dynamic libraries too.
2604
 
2605
   This allocates the PT_PHDR and initializes it in a manner suitable
2606
   for the HP linker.
2607
 
2608
   Note we do not have access to the link info structure here, so we have
2609
   to guess whether or not we are building a shared library based on the
2610
   existence of a .interp section.  */
2611
 
2612
static boolean
2613
elf64_hppa_modify_segment_map (abfd)
2614
     bfd *abfd;
2615
{
2616
  struct elf_segment_map *m;
2617
  asection *s;
2618
 
2619
  s = bfd_get_section_by_name (abfd, ".interp");
2620
  if (! s)
2621
    {
2622
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2623
        if (m->p_type == PT_PHDR)
2624
          break;
2625
      if (m == NULL)
2626
        {
2627
          m = ((struct elf_segment_map *)
2628
               bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2629
          if (m == NULL)
2630
            return false;
2631
 
2632
          m->p_type = PT_PHDR;
2633
          m->p_flags = PF_R | PF_X;
2634
          m->p_flags_valid = 1;
2635
          m->p_paddr_valid = 1;
2636
          m->includes_phdrs = 1;
2637
 
2638
          m->next = elf_tdata (abfd)->segment_map;
2639
          elf_tdata (abfd)->segment_map = m;
2640
        }
2641
    }
2642
 
2643
  for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2644
    if (m->p_type == PT_LOAD)
2645
      {
2646
        unsigned int i;
2647
 
2648
        for (i = 0; i < m->count; i++)
2649
          {
2650
            /* The code "hint" is not really a hint.  It is a requirement
2651
               for certain versions of the HP dynamic linker.  Worse yet,
2652
               it must be set even if the shared library does not have
2653
               any code in its "text" segment (thus the check for .hash
2654
               to catch this situation).  */
2655
            if (m->sections[i]->flags & SEC_CODE
2656
                || (strcmp (m->sections[i]->name, ".hash") == 0))
2657
              m->p_flags |= (PF_X | PF_HP_CODE);
2658
          }
2659
      }
2660
 
2661
  return true;
2662
}
2663
 
2664
/* Called when writing out an object file to decide the type of a
2665
   symbol.  */
2666
static int
2667
elf64_hppa_elf_get_symbol_type (elf_sym, type)
2668
     Elf_Internal_Sym *elf_sym;
2669
     int type;
2670
{
2671
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2672
    return STT_PARISC_MILLI;
2673
  else
2674
    return type;
2675
}
2676
 
2677
/* The hash bucket size is the standard one, namely 4.  */
2678
 
2679
const struct elf_size_info hppa64_elf_size_info =
2680
{
2681
  sizeof (Elf64_External_Ehdr),
2682
  sizeof (Elf64_External_Phdr),
2683
  sizeof (Elf64_External_Shdr),
2684
  sizeof (Elf64_External_Rel),
2685
  sizeof (Elf64_External_Rela),
2686
  sizeof (Elf64_External_Sym),
2687
  sizeof (Elf64_External_Dyn),
2688
  sizeof (Elf_External_Note),
2689
  4,
2690
  1,
2691
  64, 8,
2692
  ELFCLASS64, EV_CURRENT,
2693
  bfd_elf64_write_out_phdrs,
2694
  bfd_elf64_write_shdrs_and_ehdr,
2695
  bfd_elf64_write_relocs,
2696
  bfd_elf64_swap_symbol_in,
2697
  bfd_elf64_swap_symbol_out,
2698
  bfd_elf64_slurp_reloc_table,
2699
  bfd_elf64_slurp_symbol_table,
2700
  bfd_elf64_swap_dyn_in,
2701
  bfd_elf64_swap_dyn_out,
2702
  NULL,
2703
  NULL,
2704
  NULL,
2705
  NULL
2706
};
2707
 
2708
#define TARGET_BIG_SYM                  bfd_elf64_hppa_vec
2709
#define TARGET_BIG_NAME                 "elf64-hppa"
2710
#define ELF_ARCH                        bfd_arch_hppa
2711
#define ELF_MACHINE_CODE                EM_PARISC
2712
/* This is not strictly correct.  The maximum page size for PA2.0 is
2713
   64M.  But everything still uses 4k.  */
2714
#define ELF_MAXPAGESIZE                 0x1000
2715
#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2716
#define bfd_elf64_bfd_is_local_label_name       elf_hppa_is_local_label_name
2717
#define elf_info_to_howto               elf_hppa_info_to_howto
2718
#define elf_info_to_howto_rel           elf_hppa_info_to_howto_rel
2719
 
2720
#define elf_backend_section_from_shdr   elf64_hppa_section_from_shdr
2721
#define elf_backend_object_p            elf64_hppa_object_p
2722
#define elf_backend_final_write_processing \
2723
                                        elf_hppa_final_write_processing
2724
#define elf_backend_fake_sections       elf_hppa_fake_sections
2725
#define elf_backend_add_symbol_hook     elf_hppa_add_symbol_hook
2726
 
2727
#define elf_backend_relocate_section    elf_hppa_relocate_section
2728
 
2729
#define bfd_elf64_bfd_final_link        elf_hppa_final_link
2730
 
2731
#define elf_backend_create_dynamic_sections \
2732
                                        elf64_hppa_create_dynamic_sections
2733
#define elf_backend_post_process_headers        elf64_hppa_post_process_headers
2734
 
2735
#define elf_backend_adjust_dynamic_symbol \
2736
                                        elf64_hppa_adjust_dynamic_symbol
2737
 
2738
#define elf_backend_size_dynamic_sections \
2739
                                        elf64_hppa_size_dynamic_sections
2740
 
2741
#define elf_backend_finish_dynamic_symbol \
2742
                                        elf64_hppa_finish_dynamic_symbol
2743
#define elf_backend_finish_dynamic_sections \
2744
                                        elf64_hppa_finish_dynamic_sections
2745
 
2746
/* Stuff for the BFD linker: */
2747
#define bfd_elf64_bfd_link_hash_table_create \
2748
        elf64_hppa_hash_table_create
2749
 
2750
#define elf_backend_check_relocs \
2751
        elf64_hppa_check_relocs
2752
 
2753
#define elf_backend_size_info \
2754
  hppa64_elf_size_info
2755
 
2756
#define elf_backend_additional_program_headers \
2757
        elf64_hppa_additional_program_headers
2758
 
2759
#define elf_backend_modify_segment_map \
2760
        elf64_hppa_modify_segment_map
2761
 
2762
#define elf_backend_link_output_symbol_hook \
2763
        elf64_hppa_link_output_symbol_hook
2764
 
2765
#define elf_backend_want_got_plt        0
2766
#define elf_backend_plt_readonly        0
2767
#define elf_backend_want_plt_sym        0
2768
#define elf_backend_got_header_size     0
2769
#define elf_backend_plt_header_size     0
2770
#define elf_backend_type_change_ok true
2771
#define elf_backend_get_symbol_type          elf64_hppa_elf_get_symbol_type
2772
#define elf_backend_reloc_type_class         elf64_hppa_reloc_type_class
2773
#define elf_backend_rela_normal              1
2774
 
2775
#include "elf64-target.h"
2776
 
2777
#undef TARGET_BIG_SYM
2778
#define TARGET_BIG_SYM                  bfd_elf64_hppa_linux_vec
2779
#undef TARGET_BIG_NAME
2780
#define TARGET_BIG_NAME                 "elf64-hppa-linux"
2781
 
2782
#define INCLUDED_TARGET_FILE 1
2783
#include "elf64-target.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.