OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [tags/] [VER_5_3/] [gdb-5.3/] [gdb/] [frv-tdep.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
   Copyright 2002 Free Software Foundation, Inc.
3
 
4
   This file is part of GDB.
5
 
6
   This program is free software; you can redistribute it and/or modify
7
   it under the terms of the GNU General Public License as published by
8
   the Free Software Foundation; either version 2 of the License, or
9
   (at your option) any later version.
10
 
11
   This program is distributed in the hope that it will be useful,
12
   but WITHOUT ANY WARRANTY; without even the implied warranty of
13
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
   GNU General Public License for more details.
15
 
16
   You should have received a copy of the GNU General Public License
17
   along with this program; if not, write to the Free Software
18
   Foundation, Inc., 59 Temple Place - Suite 330,
19
   Boston, MA 02111-1307, USA.  */
20
 
21
#include "defs.h"
22
#include "inferior.h"
23
#include "symfile.h"            /* for entry_point_address */
24
#include "gdbcore.h"
25
#include "arch-utils.h"
26
#include "regcache.h"
27
 
28
extern void _initialize_frv_tdep (void);
29
 
30
static gdbarch_init_ftype frv_gdbarch_init;
31
 
32
static gdbarch_register_name_ftype frv_register_name;
33
static gdbarch_register_raw_size_ftype frv_register_raw_size;
34
static gdbarch_register_virtual_size_ftype frv_register_virtual_size;
35
static gdbarch_register_virtual_type_ftype frv_register_virtual_type;
36
static gdbarch_register_byte_ftype frv_register_byte;
37
static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
38
static gdbarch_frame_chain_ftype frv_frame_chain;
39
static gdbarch_frame_saved_pc_ftype frv_frame_saved_pc;
40
static gdbarch_skip_prologue_ftype frv_skip_prologue;
41
static gdbarch_frame_init_saved_regs_ftype frv_frame_init_saved_regs;
42
static gdbarch_deprecated_extract_return_value_ftype frv_extract_return_value;
43
static gdbarch_deprecated_extract_struct_value_address_ftype frv_extract_struct_value_address;
44
static gdbarch_use_struct_convention_ftype frv_use_struct_convention;
45
static gdbarch_frameless_function_invocation_ftype frv_frameless_function_invocation;
46
static gdbarch_init_extra_frame_info_ftype stupid_useless_init_extra_frame_info;
47
static gdbarch_store_struct_return_ftype frv_store_struct_return;
48
static gdbarch_push_arguments_ftype frv_push_arguments;
49
static gdbarch_push_return_address_ftype frv_push_return_address;
50
static gdbarch_pop_frame_ftype frv_pop_frame;
51
static gdbarch_saved_pc_after_call_ftype frv_saved_pc_after_call;
52
 
53
static void frv_pop_frame_regular (struct frame_info *frame);
54
 
55
/* Register numbers.  You can change these as needed, but don't forget
56
   to update the simulator accordingly.  */
57
enum {
58
  /* The total number of registers we know exist.  */
59
  frv_num_regs = 147,
60
 
61
  /* Register numbers 0 -- 63 are always reserved for general-purpose
62
     registers.  The chip at hand may have less.  */
63
  first_gpr_regnum = 0,
64
  sp_regnum = 1,
65
  fp_regnum = 2,
66
  struct_return_regnum = 3,
67
  last_gpr_regnum = 63,
68
 
69
  /* Register numbers 64 -- 127 are always reserved for floating-point
70
     registers.  The chip at hand may have less.  */
71
  first_fpr_regnum = 64,
72
  last_fpr_regnum = 127,
73
 
74
  /* Register numbers 128 on up are always reserved for special-purpose
75
     registers.  */
76
  first_spr_regnum = 128,
77
  pc_regnum = 128,
78
  psr_regnum = 129,
79
  ccr_regnum = 130,
80
  cccr_regnum = 131,
81
  tbr_regnum = 135,
82
  brr_regnum = 136,
83
  dbar0_regnum = 137,
84
  dbar1_regnum = 138,
85
  dbar2_regnum = 139,
86
  dbar3_regnum = 140,
87
  lr_regnum = 145,
88
  lcr_regnum = 146,
89
  last_spr_regnum = 146
90
};
91
 
92
static LONGEST frv_call_dummy_words[] =
93
{0};
94
 
95
 
96
/* The contents of this structure can only be trusted after we've
97
   frv_frame_init_saved_regs on the frame.  */
98
struct frame_extra_info
99
  {
100
    /* The offset from our frame pointer to our caller's stack
101
       pointer.  */
102
    int fp_to_callers_sp_offset;
103
 
104
    /* Non-zero if we've saved our return address on the stack yet.
105
       Zero if it's still sitting in the link register.  */
106
    int lr_saved_on_stack;
107
  };
108
 
109
 
110
/* A structure describing a particular variant of the FRV.
111
   We allocate and initialize one of these structures when we create
112
   the gdbarch object for a variant.
113
 
114
   At the moment, all the FR variants we support differ only in which
115
   registers are present; the portable code of GDB knows that
116
   registers whose names are the empty string don't exist, so the
117
   `register_names' array captures all the per-variant information we
118
   need.
119
 
120
   in the future, if we need to have per-variant maps for raw size,
121
   virtual type, etc., we should replace register_names with an array
122
   of structures, each of which gives all the necessary info for one
123
   register.  Don't stick parallel arrays in here --- that's so
124
   Fortran.  */
125
struct gdbarch_tdep
126
{
127
  /* How many general-purpose registers does this variant have?  */
128
  int num_gprs;
129
 
130
  /* How many floating-point registers does this variant have?  */
131
  int num_fprs;
132
 
133
  /* How many hardware watchpoints can it support?  */
134
  int num_hw_watchpoints;
135
 
136
  /* How many hardware breakpoints can it support?  */
137
  int num_hw_breakpoints;
138
 
139
  /* Register names.  */
140
  char **register_names;
141
};
142
 
143
#define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
144
 
145
 
146
/* Allocate a new variant structure, and set up default values for all
147
   the fields.  */
148
static struct gdbarch_tdep *
149
new_variant (void)
150
{
151
  struct gdbarch_tdep *var;
152
  int r;
153
  char buf[20];
154
 
155
  var = xmalloc (sizeof (*var));
156
  memset (var, 0, sizeof (*var));
157
 
158
  var->num_gprs = 64;
159
  var->num_fprs = 64;
160
  var->num_hw_watchpoints = 0;
161
  var->num_hw_breakpoints = 0;
162
 
163
  /* By default, don't supply any general-purpose or floating-point
164
     register names.  */
165
  var->register_names = (char **) xmalloc (frv_num_regs * sizeof (char *));
166
  for (r = 0; r < frv_num_regs; r++)
167
    var->register_names[r] = "";
168
 
169
  /* Do, however, supply default names for the special-purpose
170
     registers.  */
171
  for (r = first_spr_regnum; r <= last_spr_regnum; ++r)
172
    {
173
      sprintf (buf, "x%d", r);
174
      var->register_names[r] = xstrdup (buf);
175
    }
176
 
177
  var->register_names[pc_regnum] = "pc";
178
  var->register_names[lr_regnum] = "lr";
179
  var->register_names[lcr_regnum] = "lcr";
180
 
181
  var->register_names[psr_regnum] = "psr";
182
  var->register_names[ccr_regnum] = "ccr";
183
  var->register_names[cccr_regnum] = "cccr";
184
  var->register_names[tbr_regnum] = "tbr";
185
 
186
  /* Debug registers.  */
187
  var->register_names[brr_regnum] = "brr";
188
  var->register_names[dbar0_regnum] = "dbar0";
189
  var->register_names[dbar1_regnum] = "dbar1";
190
  var->register_names[dbar2_regnum] = "dbar2";
191
  var->register_names[dbar3_regnum] = "dbar3";
192
 
193
  return var;
194
}
195
 
196
 
197
/* Indicate that the variant VAR has NUM_GPRS general-purpose
198
   registers, and fill in the names array appropriately.  */
199
static void
200
set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
201
{
202
  int r;
203
 
204
  var->num_gprs = num_gprs;
205
 
206
  for (r = 0; r < num_gprs; ++r)
207
    {
208
      char buf[20];
209
 
210
      sprintf (buf, "gr%d", r);
211
      var->register_names[first_gpr_regnum + r] = xstrdup (buf);
212
    }
213
}
214
 
215
 
216
/* Indicate that the variant VAR has NUM_FPRS floating-point
217
   registers, and fill in the names array appropriately.  */
218
static void
219
set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
220
{
221
  int r;
222
 
223
  var->num_fprs = num_fprs;
224
 
225
  for (r = 0; r < num_fprs; ++r)
226
    {
227
      char buf[20];
228
 
229
      sprintf (buf, "fr%d", r);
230
      var->register_names[first_fpr_regnum + r] = xstrdup (buf);
231
    }
232
}
233
 
234
 
235
static const char *
236
frv_register_name (int reg)
237
{
238
  if (reg < 0)
239
    return "?toosmall?";
240
  if (reg >= frv_num_regs)
241
    return "?toolarge?";
242
 
243
  return CURRENT_VARIANT->register_names[reg];
244
}
245
 
246
 
247
static int
248
frv_register_raw_size (int reg)
249
{
250
  return 4;
251
}
252
 
253
static int
254
frv_register_virtual_size (int reg)
255
{
256
  return 4;
257
}
258
 
259
static struct type *
260
frv_register_virtual_type (int reg)
261
{
262
  if (reg >= 64 && reg <= 127)
263
    return builtin_type_float;
264
  else
265
    return builtin_type_int;
266
}
267
 
268
static int
269
frv_register_byte (int reg)
270
{
271
  return (reg * 4);
272
}
273
 
274
static const unsigned char *
275
frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
276
{
277
  static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
278
  *lenp = sizeof (breakpoint);
279
  return breakpoint;
280
}
281
 
282
static CORE_ADDR
283
frv_frame_chain (struct frame_info *frame)
284
{
285
  CORE_ADDR saved_fp_addr;
286
 
287
  if (frame->saved_regs && frame->saved_regs[fp_regnum] != 0)
288
    saved_fp_addr = frame->saved_regs[fp_regnum];
289
  else
290
    /* Just assume it was saved in the usual place.  */
291
    saved_fp_addr = frame->frame;
292
 
293
  return read_memory_integer (saved_fp_addr, 4);
294
}
295
 
296
static CORE_ADDR
297
frv_frame_saved_pc (struct frame_info *frame)
298
{
299
  frv_frame_init_saved_regs (frame);
300
 
301
  /* Perhaps the prologue analyzer recorded where it was stored.
302
     (As of 14 Oct 2001, it never does.)  */
303
  if (frame->saved_regs && frame->saved_regs[pc_regnum] != 0)
304
    return read_memory_integer (frame->saved_regs[pc_regnum], 4);
305
 
306
  /* If the prologue analyzer tells us the link register was saved on
307
     the stack, get it from there.  */
308
  if (frame->extra_info->lr_saved_on_stack)
309
    return read_memory_integer (frame->frame + 8, 4);
310
 
311
  /* Otherwise, it's still in LR.
312
     However, if FRAME isn't the youngest frame, this is kind of
313
     suspicious --- if this frame called somebody else, then its LR
314
     has certainly been overwritten.  */
315
  if (! frame->next)
316
    return read_register (lr_regnum);
317
 
318
  /* By default, assume it's saved in the standard place, relative to
319
     the frame pointer.  */
320
  return read_memory_integer (frame->frame + 8, 4);
321
}
322
 
323
 
324
/* Return true if REG is a caller-saves ("scratch") register,
325
   false otherwise.  */
326
static int
327
is_caller_saves_reg (int reg)
328
{
329
  return ((4 <= reg && reg <= 7)
330
          || (14 <= reg && reg <= 15)
331
          || (32 <= reg && reg <= 47));
332
}
333
 
334
 
335
/* Return true if REG is a callee-saves register, false otherwise.  */
336
static int
337
is_callee_saves_reg (int reg)
338
{
339
  return ((16 <= reg && reg <= 31)
340
          || (48 <= reg && reg <= 63));
341
}
342
 
343
 
344
/* Return true if REG is an argument register, false otherwise.  */
345
static int
346
is_argument_reg (int reg)
347
{
348
  return (8 <= reg && reg <= 13);
349
}
350
 
351
 
352
/* Scan an FR-V prologue, starting at PC, until frame->PC.
353
   If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
354
   We assume FRAME's saved_regs array has already been allocated and cleared.
355
   Return the first PC value after the prologue.
356
 
357
   Note that, for unoptimized code, we almost don't need this function
358
   at all; all arguments and locals live on the stack, so we just need
359
   the FP to find everything.  The catch: structures passed by value
360
   have their addresses living in registers; they're never spilled to
361
   the stack.  So if you ever want to be able to get to these
362
   arguments in any frame but the top, you'll need to do this serious
363
   prologue analysis.  */
364
static CORE_ADDR
365
frv_analyze_prologue (CORE_ADDR pc, struct frame_info *frame)
366
{
367
  /* When writing out instruction bitpatterns, we use the following
368
     letters to label instruction fields:
369
     P - The parallel bit.  We don't use this.
370
     J - The register number of GRj in the instruction description.
371
     K - The register number of GRk in the instruction description.
372
     I - The register number of GRi.
373
     S - a signed imediate offset.
374
     U - an unsigned immediate offset.
375
 
376
     The dots below the numbers indicate where hex digit boundaries
377
     fall, to make it easier to check the numbers.  */
378
 
379
  /* Non-zero iff we've seen the instruction that initializes the
380
     frame pointer for this function's frame.  */
381
  int fp_set = 0;
382
 
383
  /* If fp_set is non_zero, then this is the distance from
384
     the stack pointer to frame pointer: fp = sp + fp_offset.  */
385
  int fp_offset = 0;
386
 
387
  /* Total size of frame prior to any alloca operations. */
388
  int framesize = 0;
389
 
390
  /* The number of the general-purpose register we saved the return
391
     address ("link register") in, or -1 if we haven't moved it yet.  */
392
  int lr_save_reg = -1;
393
 
394
  /* Non-zero iff we've saved the LR onto the stack.  */
395
  int lr_saved_on_stack = 0;
396
 
397
  /* If gr_saved[i] is non-zero, then we've noticed that general
398
     register i has been saved at gr_sp_offset[i] from the stack
399
     pointer.  */
400
  char gr_saved[64];
401
  int gr_sp_offset[64];
402
 
403
  memset (gr_saved, 0, sizeof (gr_saved));
404
 
405
  while (! frame || pc < frame->pc)
406
    {
407
      LONGEST op = read_memory_integer (pc, 4);
408
 
409
      /* The tests in this chain of ifs should be in order of
410
         decreasing selectivity, so that more particular patterns get
411
         to fire before less particular patterns.  */
412
 
413
      /* Setting the FP from the SP:
414
         ori sp, 0, fp
415
         P 000010 0100010 000001 000000000000 = 0x04881000
416
 
417
             .    .   .    .   .    .   .   .
418
         We treat this as part of the prologue.  */
419
      if ((op & 0x7fffffff) == 0x04881000)
420
        {
421
          fp_set = 1;
422
          fp_offset = 0;
423
        }
424
 
425
      /* Move the link register to the scratch register grJ, before saving:
426
         movsg lr, grJ
427
         P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
428
 
429
             .    .   .    .   .    .    .   .
430
         We treat this as part of the prologue.  */
431
      else if ((op & 0x7fffffc0) == 0x080d01c0)
432
        {
433
          int gr_j = op & 0x3f;
434
 
435
          /* If we're moving it to a scratch register, that's fine.  */
436
          if (is_caller_saves_reg (gr_j))
437
            lr_save_reg = gr_j;
438
          /* Otherwise it's not a prologue instruction that we
439
             recognize.  */
440
          else
441
            break;
442
        }
443
 
444
      /* To save multiple callee-saves registers on the stack, at
445
         offset zero:
446
 
447
         std grK,@(sp,gr0)
448
         P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
449
 
450
 
451
         stq grK,@(sp,gr0)
452
         P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
453
 
454
             .    .   .    .   .    .    .   .
455
         We treat this as part of the prologue, and record the register's
456
         saved address in the frame structure.  */
457
      else if ((op & 0x01ffffff) == 0x000c10c0
458
            || (op & 0x01ffffff) == 0x000c1100)
459
        {
460
          int gr_k = ((op >> 25) & 0x3f);
461
          int ope  = ((op >> 6)  & 0x3f);
462
          int count;
463
          int i;
464
 
465
          /* Is it an std or an stq?  */
466
          if (ope == 0x03)
467
            count = 2;
468
          else
469
            count = 4;
470
 
471
          /* Is it really a callee-saves register?  */
472
          if (is_callee_saves_reg (gr_k))
473
            {
474
              for (i = 0; i < count; i++)
475
                {
476
                  gr_saved[gr_k + i] = 1;
477
                  gr_sp_offset[gr_k + i] = 4 * i;
478
                }
479
            }
480
          else
481
            /* It's not a prologue instruction.  */
482
            break;
483
        }
484
 
485
      /* Adjusting the stack pointer.  (The stack pointer is GR1.)
486
         addi sp, S, sp
487
         P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
488
 
489
             .    .   .    .   .    .   .   .
490
         We treat this as part of the prologue.  */
491
      else if ((op & 0x7ffff000) == 0x02401000)
492
        {
493
          /* Sign-extend the twelve-bit field.
494
             (Isn't there a better way to do this?)  */
495
          int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
496
 
497
          framesize -= s;
498
        }
499
 
500
      /* Setting the FP to a constant distance from the SP:
501
         addi sp, S, fp
502
         P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
503
 
504
             .    .   .    .   .    .   .   .
505
         We treat this as part of the prologue.  */
506
      else if ((op & 0x7ffff000) == 0x04401000)
507
        {
508
          /* Sign-extend the twelve-bit field.
509
             (Isn't there a better way to do this?)  */
510
          int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
511
          fp_set = 1;
512
          fp_offset = s;
513
        }
514
 
515
      /* To spill an argument register to a scratch register:
516
            ori GRi, 0, GRk
517
         P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
518
 
519
             .    .   .    .   .    .   .   .
520
         For the time being, we treat this as a prologue instruction,
521
         assuming that GRi is an argument register.  This one's kind
522
         of suspicious, because it seems like it could be part of a
523
         legitimate body instruction.  But we only come here when the
524
         source info wasn't helpful, so we have to do the best we can.
525
         Hopefully once GCC and GDB agree on how to emit line number
526
         info for prologues, then this code will never come into play.  */
527
      else if ((op & 0x01fc0fff) == 0x00880000)
528
        {
529
          int gr_i = ((op >> 12) & 0x3f);
530
 
531
          /* If the source isn't an arg register, then this isn't a
532
             prologue instruction.  */
533
          if (! is_argument_reg (gr_i))
534
            break;
535
        }
536
 
537
      /* To spill 16-bit values to the stack:
538
             sthi GRk, @(fp, s)
539
         P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
540
 
541
             .    .   .    .   .    .   .   .
542
         And for 8-bit values, we use STB instructions.
543
             stbi GRk, @(fp, s)
544
         P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
545
 
546
             .    .   .    .   .    .   .   .
547
         We check that GRk is really an argument register, and treat
548
         all such as part of the prologue.  */
549
      else if (   (op & 0x01fff000) == 0x01442000
550
               || (op & 0x01fff000) == 0x01402000)
551
        {
552
          int gr_k = ((op >> 25) & 0x3f);
553
 
554
          if (! is_argument_reg (gr_k))
555
            break;              /* Source isn't an arg register.  */
556
        }
557
 
558
      /* To save multiple callee-saves register on the stack, at a
559
         non-zero offset:
560
 
561
         stdi GRk, @(sp, s)
562
         P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
563
 
564
             .    .   .    .   .    .   .   .
565
         stqi GRk, @(sp, s)
566
         P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
567
 
568
             .    .   .    .   .    .   .   .
569
         We treat this as part of the prologue, and record the register's
570
         saved address in the frame structure.  */
571
      else if ((op & 0x01fff000) == 0x014c1000
572
            || (op & 0x01fff000) == 0x01501000)
573
        {
574
          int gr_k = ((op >> 25) & 0x3f);
575
          int count;
576
          int i;
577
 
578
          /* Is it a stdi or a stqi?  */
579
          if ((op & 0x01fff000) == 0x014c1000)
580
            count = 2;
581
          else
582
            count = 4;
583
 
584
          /* Is it really a callee-saves register?  */
585
          if (is_callee_saves_reg (gr_k))
586
            {
587
              /* Sign-extend the twelve-bit field.
588
                 (Isn't there a better way to do this?)  */
589
              int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
590
 
591
              for (i = 0; i < count; i++)
592
                {
593
                  gr_saved[gr_k + i] = 1;
594
                  gr_sp_offset[gr_k + i] = s + (4 * i);
595
                }
596
            }
597
          else
598
            /* It's not a prologue instruction.  */
599
            break;
600
        }
601
 
602
      /* Storing any kind of integer register at any constant offset
603
         from any other register.
604
 
605
         st GRk, @(GRi, gr0)
606
         P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
607
 
608
             .    .   .    .   .    .    .   .
609
         sti GRk, @(GRi, d12)
610
         P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
611
 
612
             .    .   .    .   .    .   .   .
613
         These could be almost anything, but a lot of prologue
614
         instructions fall into this pattern, so let's decode the
615
         instruction once, and then work at a higher level.  */
616
      else if (((op & 0x01fc0fff) == 0x000c0080)
617
            || ((op & 0x01fc0000) == 0x01480000))
618
        {
619
          int gr_k = ((op >> 25) & 0x3f);
620
          int gr_i = ((op >> 12) & 0x3f);
621
          int offset;
622
 
623
          /* Are we storing with gr0 as an offset, or using an
624
             immediate value?  */
625
          if ((op & 0x01fc0fff) == 0x000c0080)
626
            offset = 0;
627
          else
628
            offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
629
 
630
          /* If the address isn't relative to the SP or FP, it's not a
631
             prologue instruction.  */
632
          if (gr_i != sp_regnum && gr_i != fp_regnum)
633
            break;
634
 
635
          /* Saving the old FP in the new frame (relative to the SP).  */
636
          if (gr_k == fp_regnum && gr_i == sp_regnum)
637
            ;
638
 
639
          /* Saving callee-saves register(s) on the stack, relative to
640
             the SP.  */
641
          else if (gr_i == sp_regnum
642
                   && is_callee_saves_reg (gr_k))
643
            {
644
              gr_saved[gr_k] = 1;
645
              gr_sp_offset[gr_k] = offset;
646
            }
647
 
648
          /* Saving the scratch register holding the return address.  */
649
          else if (lr_save_reg != -1
650
                   && gr_k == lr_save_reg)
651
            lr_saved_on_stack = 1;
652
 
653
          /* Spilling int-sized arguments to the stack.  */
654
          else if (is_argument_reg (gr_k))
655
            ;
656
 
657
          /* It's not a store instruction we recognize, so this must
658
             be the end of the prologue.  */
659
          else
660
            break;
661
        }
662
 
663
      /* It's not any instruction we recognize, so this must be the end
664
         of the prologue.  */
665
      else
666
        break;
667
 
668
      pc += 4;
669
    }
670
 
671
  if (frame)
672
    {
673
      frame->extra_info->lr_saved_on_stack = lr_saved_on_stack;
674
 
675
      /* If we know the relationship between the stack and frame
676
         pointers, record the addresses of the registers we noticed.
677
         Note that we have to do this as a separate step at the end,
678
         because instructions may save relative to the SP, but we need
679
         their addresses relative to the FP.  */
680
      if (fp_set)
681
        {
682
          int i;
683
 
684
          for (i = 0; i < 64; i++)
685
            if (gr_saved[i])
686
              frame->saved_regs[i] = (frame->frame
687
                                      - fp_offset + gr_sp_offset[i]);
688
 
689
          frame->extra_info->fp_to_callers_sp_offset = framesize - fp_offset;
690
        }
691
    }
692
 
693
  return pc;
694
}
695
 
696
 
697
static CORE_ADDR
698
frv_skip_prologue (CORE_ADDR pc)
699
{
700
  CORE_ADDR func_addr, func_end, new_pc;
701
 
702
  new_pc = pc;
703
 
704
  /* If the line table has entry for a line *within* the function
705
     (i.e., not in the prologue, and not past the end), then that's
706
     our location.  */
707
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
708
    {
709
      struct symtab_and_line sal;
710
 
711
      sal = find_pc_line (func_addr, 0);
712
 
713
      if (sal.line != 0 && sal.end < func_end)
714
        {
715
          new_pc = sal.end;
716
        }
717
    }
718
 
719
  /* The FR-V prologue is at least five instructions long (twenty bytes).
720
     If we didn't find a real source location past that, then
721
     do a full analysis of the prologue.  */
722
  if (new_pc < pc + 20)
723
    new_pc = frv_analyze_prologue (pc, 0);
724
 
725
  return new_pc;
726
}
727
 
728
static void
729
frv_frame_init_saved_regs (struct frame_info *frame)
730
{
731
  if (frame->saved_regs)
732
    return;
733
 
734
  frame_saved_regs_zalloc (frame);
735
  frame->saved_regs[fp_regnum] = frame->frame;
736
 
737
  /* Find the beginning of this function, so we can analyze its
738
     prologue.  */
739
  {
740
    CORE_ADDR func_addr, func_end;
741
 
742
    if (find_pc_partial_function (frame->pc, NULL, &func_addr, &func_end))
743
      frv_analyze_prologue (func_addr, frame);
744
  }
745
}
746
 
747
/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
748
   EXTRACT_RETURN_VALUE?  GCC_P is true if compiled with gcc
749
   and TYPE is the type (which is known to be struct, union or array).
750
 
751
   The frv returns all structs in memory.  */
752
 
753
static int
754
frv_use_struct_convention (int gcc_p, struct type *type)
755
{
756
  return 1;
757
}
758
 
759
static void
760
frv_extract_return_value (struct type *type, char *regbuf, char *valbuf)
761
{
762
  memcpy (valbuf, (regbuf
763
                   + frv_register_byte (8)
764
                   + (TYPE_LENGTH (type) < 4 ? 4 - TYPE_LENGTH (type) : 0)),
765
                   TYPE_LENGTH (type));
766
}
767
 
768
static CORE_ADDR
769
frv_extract_struct_value_address (char *regbuf)
770
{
771
  return extract_address (regbuf + frv_register_byte (struct_return_regnum),
772
                          4);
773
}
774
 
775
static void
776
frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
777
{
778
  write_register (struct_return_regnum, addr);
779
}
780
 
781
static int
782
frv_frameless_function_invocation (struct frame_info *frame)
783
{
784
  return frameless_look_for_prologue (frame);
785
}
786
 
787
static CORE_ADDR
788
frv_saved_pc_after_call (struct frame_info *frame)
789
{
790
  return read_register (lr_regnum);
791
}
792
 
793
static void
794
frv_init_extra_frame_info (int fromleaf, struct frame_info *frame)
795
{
796
  frame->extra_info = (struct frame_extra_info *)
797
    frame_obstack_alloc (sizeof (struct frame_extra_info));
798
  frame->extra_info->fp_to_callers_sp_offset = 0;
799
  frame->extra_info->lr_saved_on_stack = 0;
800
}
801
 
802
#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
803
#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
804
 
805
static CORE_ADDR
806
frv_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
807
                    int struct_return, CORE_ADDR struct_addr)
808
{
809
  int argreg;
810
  int argnum;
811
  char *val;
812
  char valbuf[4];
813
  struct value *arg;
814
  struct type *arg_type;
815
  int len;
816
  enum type_code typecode;
817
  CORE_ADDR regval;
818
  int stack_space;
819
  int stack_offset;
820
 
821
#if 0
822
  printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
823
         nargs, (int) sp, struct_return, struct_addr);
824
#endif
825
 
826
  stack_space = 0;
827
  for (argnum = 0; argnum < nargs; ++argnum)
828
    stack_space += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
829
 
830
  stack_space -= (6 * 4);
831
  if (stack_space > 0)
832
    sp -= stack_space;
833
 
834
  /* Make sure stack is dword aligned. */
835
  sp = ROUND_DOWN (sp, 8);
836
 
837
  stack_offset = 0;
838
 
839
  argreg = 8;
840
 
841
  if (struct_return)
842
    write_register (struct_return_regnum, struct_addr);
843
 
844
  for (argnum = 0; argnum < nargs; ++argnum)
845
    {
846
      arg = args[argnum];
847
      arg_type = check_typedef (VALUE_TYPE (arg));
848
      len = TYPE_LENGTH (arg_type);
849
      typecode = TYPE_CODE (arg_type);
850
 
851
      if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
852
        {
853
          store_address (valbuf, 4, VALUE_ADDRESS (arg));
854
          typecode = TYPE_CODE_PTR;
855
          len = 4;
856
          val = valbuf;
857
        }
858
      else
859
        {
860
          val = (char *) VALUE_CONTENTS (arg);
861
        }
862
 
863
      while (len > 0)
864
        {
865
          int partial_len = (len < 4 ? len : 4);
866
 
867
          if (argreg < 14)
868
            {
869
              regval = extract_address (val, partial_len);
870
#if 0
871
              printf("  Argnum %d data %x -> reg %d\n",
872
                     argnum, (int) regval, argreg);
873
#endif
874
              write_register (argreg, regval);
875
              ++argreg;
876
            }
877
          else
878
            {
879
#if 0
880
              printf("  Argnum %d data %x -> offset %d (%x)\n",
881
                     argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
882
#endif
883
              write_memory (sp + stack_offset, val, partial_len);
884
              stack_offset += ROUND_UP(partial_len, 4);
885
            }
886
          len -= partial_len;
887
          val += partial_len;
888
        }
889
    }
890
  return sp;
891
}
892
 
893
static CORE_ADDR
894
frv_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
895
{
896
  write_register (lr_regnum, CALL_DUMMY_ADDRESS ());
897
  return sp;
898
}
899
 
900
static void
901
frv_store_return_value (struct type *type, char *valbuf)
902
{
903
  int length = TYPE_LENGTH (type);
904
  int reg8_offset = frv_register_byte (8);
905
 
906
  if (length <= 4)
907
    write_register_bytes (reg8_offset + (4 - length), valbuf, length);
908
  else if (length == 8)
909
    write_register_bytes (reg8_offset, valbuf, length);
910
  else
911
    internal_error (__FILE__, __LINE__,
912
                    "Don't know how to return a %d-byte value.", length);
913
}
914
 
915
static void
916
frv_pop_frame (void)
917
{
918
  generic_pop_current_frame (frv_pop_frame_regular);
919
}
920
 
921
static void
922
frv_pop_frame_regular (struct frame_info *frame)
923
{
924
  CORE_ADDR fp;
925
  int regno;
926
 
927
  fp = frame->frame;
928
 
929
  frv_frame_init_saved_regs (frame);
930
 
931
  write_register (pc_regnum, frv_frame_saved_pc (frame));
932
  for (regno = 0; regno < frv_num_regs; ++regno)
933
    {
934
      if (frame->saved_regs[regno]
935
          && regno != pc_regnum
936
          && regno != sp_regnum)
937
        {
938
          write_register (regno,
939
                          read_memory_integer (frame->saved_regs[regno], 4));
940
        }
941
    }
942
  write_register (sp_regnum, fp + frame->extra_info->fp_to_callers_sp_offset);
943
  flush_cached_frames ();
944
}
945
 
946
 
947
static void
948
frv_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
949
                                   CORE_ADDR *targ_addr, int *targ_len)
950
{
951
  *targ_addr = memaddr;
952
  *targ_len  = nr_bytes;
953
}
954
 
955
 
956
/* Hardware watchpoint / breakpoint support for the FR500
957
   and FR400.  */
958
 
959
int
960
frv_check_watch_resources (int type, int cnt, int ot)
961
{
962
  struct gdbarch_tdep *var = CURRENT_VARIANT;
963
 
964
  /* Watchpoints not supported on simulator.  */
965
  if (strcmp (target_shortname, "sim") == 0)
966
    return 0;
967
 
968
  if (type == bp_hardware_breakpoint)
969
    {
970
      if (var->num_hw_breakpoints == 0)
971
        return 0;
972
      else if (cnt <= var->num_hw_breakpoints)
973
        return 1;
974
    }
975
  else
976
    {
977
      if (var->num_hw_watchpoints == 0)
978
        return 0;
979
      else if (ot)
980
        return -1;
981
      else if (cnt <= var->num_hw_watchpoints)
982
        return 1;
983
    }
984
  return -1;
985
}
986
 
987
 
988
CORE_ADDR
989
frv_stopped_data_address (void)
990
{
991
  CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
992
 
993
  brr = read_register (brr_regnum);
994
  dbar0 = read_register (dbar0_regnum);
995
  dbar1 = read_register (dbar1_regnum);
996
  dbar2 = read_register (dbar2_regnum);
997
  dbar3 = read_register (dbar3_regnum);
998
 
999
  if (brr & (1<<11))
1000
    return dbar0;
1001
  else if (brr & (1<<10))
1002
    return dbar1;
1003
  else if (brr & (1<<9))
1004
    return dbar2;
1005
  else if (brr & (1<<8))
1006
    return dbar3;
1007
  else
1008
    return 0;
1009
}
1010
 
1011
static struct gdbarch *
1012
frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1013
{
1014
  struct gdbarch *gdbarch;
1015
  struct gdbarch_tdep *var;
1016
 
1017
  /* Check to see if we've already built an appropriate architecture
1018
     object for this executable.  */
1019
  arches = gdbarch_list_lookup_by_info (arches, &info);
1020
  if (arches)
1021
    return arches->gdbarch;
1022
 
1023
  /* Select the right tdep structure for this variant.  */
1024
  var = new_variant ();
1025
  switch (info.bfd_arch_info->mach)
1026
    {
1027
    case bfd_mach_frv:
1028
    case bfd_mach_frvsimple:
1029
    case bfd_mach_fr500:
1030
    case bfd_mach_frvtomcat:
1031
      set_variant_num_gprs (var, 64);
1032
      set_variant_num_fprs (var, 64);
1033
      break;
1034
 
1035
    case bfd_mach_fr400:
1036
      set_variant_num_gprs (var, 32);
1037
      set_variant_num_fprs (var, 32);
1038
      break;
1039
 
1040
    default:
1041
      /* Never heard of this variant.  */
1042
      return 0;
1043
    }
1044
 
1045
  gdbarch = gdbarch_alloc (&info, var);
1046
 
1047
  set_gdbarch_short_bit (gdbarch, 16);
1048
  set_gdbarch_int_bit (gdbarch, 32);
1049
  set_gdbarch_long_bit (gdbarch, 32);
1050
  set_gdbarch_long_long_bit (gdbarch, 64);
1051
  set_gdbarch_float_bit (gdbarch, 32);
1052
  set_gdbarch_double_bit (gdbarch, 64);
1053
  set_gdbarch_long_double_bit (gdbarch, 64);
1054
  set_gdbarch_ptr_bit (gdbarch, 32);
1055
 
1056
  set_gdbarch_num_regs (gdbarch, frv_num_regs);
1057
  set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1058
  set_gdbarch_fp_regnum (gdbarch, fp_regnum);
1059
  set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1060
 
1061
  set_gdbarch_register_name (gdbarch, frv_register_name);
1062
  set_gdbarch_register_size (gdbarch, 4);
1063
  set_gdbarch_register_bytes (gdbarch, frv_num_regs * 4);
1064
  set_gdbarch_register_byte (gdbarch, frv_register_byte);
1065
  set_gdbarch_register_raw_size (gdbarch, frv_register_raw_size);
1066
  set_gdbarch_max_register_raw_size (gdbarch, 4);
1067
  set_gdbarch_register_virtual_size (gdbarch, frv_register_virtual_size);
1068
  set_gdbarch_max_register_virtual_size (gdbarch, 4);
1069
  set_gdbarch_register_virtual_type (gdbarch, frv_register_virtual_type);
1070
 
1071
  set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1072
  set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1073
 
1074
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1075
  set_gdbarch_frame_args_skip (gdbarch, 0);
1076
  set_gdbarch_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
1077
 
1078
  set_gdbarch_saved_pc_after_call (gdbarch, frv_saved_pc_after_call);
1079
 
1080
  set_gdbarch_frame_chain (gdbarch, frv_frame_chain);
1081
  set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1082
  set_gdbarch_frame_saved_pc (gdbarch, frv_frame_saved_pc);
1083
  set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1084
  set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1085
 
1086
  set_gdbarch_frame_init_saved_regs (gdbarch, frv_frame_init_saved_regs);
1087
 
1088
  set_gdbarch_use_struct_convention (gdbarch, frv_use_struct_convention);
1089
  set_gdbarch_deprecated_extract_return_value (gdbarch, frv_extract_return_value);
1090
 
1091
  set_gdbarch_store_struct_return (gdbarch, frv_store_struct_return);
1092
  set_gdbarch_deprecated_store_return_value (gdbarch, frv_store_return_value);
1093
  set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1094
 
1095
  /* Settings for calling functions in the inferior.  */
1096
  set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1097
  set_gdbarch_call_dummy_length (gdbarch, 0);
1098
  set_gdbarch_coerce_float_to_double (gdbarch,
1099
                                      standard_coerce_float_to_double);
1100
  set_gdbarch_push_arguments (gdbarch, frv_push_arguments);
1101
  set_gdbarch_push_return_address (gdbarch, frv_push_return_address);
1102
  set_gdbarch_pop_frame (gdbarch, frv_pop_frame);
1103
 
1104
  set_gdbarch_call_dummy_p (gdbarch, 1);
1105
  set_gdbarch_call_dummy_words (gdbarch, frv_call_dummy_words);
1106
  set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (frv_call_dummy_words));
1107
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1108
  set_gdbarch_init_extra_frame_info (gdbarch, frv_init_extra_frame_info);
1109
 
1110
  /* Settings that should be unnecessary.  */
1111
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1112
 
1113
  set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
1114
  set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1115
  set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
1116
  set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
1117
  set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
1118
 
1119
  set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1120
  set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1121
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1122
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1123
  set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1124
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1125
  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1126
  set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1127
 
1128
  set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
1129
 
1130
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
1131
  set_gdbarch_function_start_offset (gdbarch, 0);
1132
  set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
1133
 
1134
  set_gdbarch_remote_translate_xfer_address
1135
    (gdbarch, frv_remote_translate_xfer_address);
1136
 
1137
  /* Hardware watchpoint / breakpoint support.  */
1138
  switch (info.bfd_arch_info->mach)
1139
    {
1140
    case bfd_mach_frv:
1141
    case bfd_mach_frvsimple:
1142
    case bfd_mach_fr500:
1143
    case bfd_mach_frvtomcat:
1144
      /* fr500-style hardware debugging support.  */
1145
      var->num_hw_watchpoints = 4;
1146
      var->num_hw_breakpoints = 4;
1147
      break;
1148
 
1149
    case bfd_mach_fr400:
1150
      /* fr400-style hardware debugging support.  */
1151
      var->num_hw_watchpoints = 2;
1152
      var->num_hw_breakpoints = 4;
1153
      break;
1154
 
1155
    default:
1156
      /* Otherwise, assume we don't have hardware debugging support.  */
1157
      var->num_hw_watchpoints = 0;
1158
      var->num_hw_breakpoints = 0;
1159
      break;
1160
    }
1161
 
1162
  return gdbarch;
1163
}
1164
 
1165
void
1166
_initialize_frv_tdep (void)
1167
{
1168
  register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1169
 
1170
  tm_print_insn = print_insn_frv;
1171
}
1172
 
1173
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.