OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [tags/] [VER_5_3/] [gdb-5.3/] [gdb/] [infrun.c] - Blame information for rev 1182

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* Target-struct-independent code to start (run) and stop an inferior
2
   process.
3
 
4
   Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5
   1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
6
   Foundation, Inc.
7
 
8
   This file is part of GDB.
9
 
10
   This program is free software; you can redistribute it and/or modify
11
   it under the terms of the GNU General Public License as published by
12
   the Free Software Foundation; either version 2 of the License, or
13
   (at your option) any later version.
14
 
15
   This program is distributed in the hope that it will be useful,
16
   but WITHOUT ANY WARRANTY; without even the implied warranty of
17
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
   GNU General Public License for more details.
19
 
20
   You should have received a copy of the GNU General Public License
21
   along with this program; if not, write to the Free Software
22
   Foundation, Inc., 59 Temple Place - Suite 330,
23
   Boston, MA 02111-1307, USA.  */
24
 
25
#include "defs.h"
26
#include "gdb_string.h"
27
#include <ctype.h>
28
#include "symtab.h"
29
#include "frame.h"
30
#include "inferior.h"
31
#include "breakpoint.h"
32
#include "gdb_wait.h"
33
#include "gdbcore.h"
34
#include "gdbcmd.h"
35
#include "cli/cli-script.h"
36
#include "target.h"
37
#include "gdbthread.h"
38
#include "annotate.h"
39
#include "symfile.h"
40
#include "top.h"
41
#include <signal.h>
42
#include "inf-loop.h"
43
#include "regcache.h"
44
#include "value.h"
45
 
46
/* Prototypes for local functions */
47
 
48
static void signals_info (char *, int);
49
 
50
static void handle_command (char *, int);
51
 
52
static void sig_print_info (enum target_signal);
53
 
54
static void sig_print_header (void);
55
 
56
static void resume_cleanups (void *);
57
 
58
static int hook_stop_stub (void *);
59
 
60
static void delete_breakpoint_current_contents (void *);
61
 
62
static void set_follow_fork_mode_command (char *arg, int from_tty,
63
                                          struct cmd_list_element *c);
64
 
65
static int restore_selected_frame (void *);
66
 
67
static void build_infrun (void);
68
 
69
static void follow_inferior_fork (int parent_pid, int child_pid,
70
                                  int has_forked, int has_vforked);
71
 
72
static void follow_fork (int parent_pid, int child_pid);
73
 
74
static void follow_vfork (int parent_pid, int child_pid);
75
 
76
static void set_schedlock_func (char *args, int from_tty,
77
                                struct cmd_list_element *c);
78
 
79
struct execution_control_state;
80
 
81
static int currently_stepping (struct execution_control_state *ecs);
82
 
83
static void xdb_handle_command (char *args, int from_tty);
84
 
85
void _initialize_infrun (void);
86
 
87
int inferior_ignoring_startup_exec_events = 0;
88
int inferior_ignoring_leading_exec_events = 0;
89
 
90
/* When set, stop the 'step' command if we enter a function which has
91
   no line number information.  The normal behavior is that we step
92
   over such function.  */
93
int step_stop_if_no_debug = 0;
94
 
95
/* In asynchronous mode, but simulating synchronous execution. */
96
 
97
int sync_execution = 0;
98
 
99
/* wait_for_inferior and normal_stop use this to notify the user
100
   when the inferior stopped in a different thread than it had been
101
   running in.  */
102
 
103
static ptid_t previous_inferior_ptid;
104
 
105
/* This is true for configurations that may follow through execl() and
106
   similar functions.  At present this is only true for HP-UX native.  */
107
 
108
#ifndef MAY_FOLLOW_EXEC
109
#define MAY_FOLLOW_EXEC (0)
110
#endif
111
 
112
static int may_follow_exec = MAY_FOLLOW_EXEC;
113
 
114
/* Dynamic function trampolines are similar to solib trampolines in that they
115
   are between the caller and the callee.  The difference is that when you
116
   enter a dynamic trampoline, you can't determine the callee's address.  Some
117
   (usually complex) code needs to run in the dynamic trampoline to figure out
118
   the callee's address.  This macro is usually called twice.  First, when we
119
   enter the trampoline (looks like a normal function call at that point).  It
120
   should return the PC of a point within the trampoline where the callee's
121
   address is known.  Second, when we hit the breakpoint, this routine returns
122
   the callee's address.  At that point, things proceed as per a step resume
123
   breakpoint.  */
124
 
125
#ifndef DYNAMIC_TRAMPOLINE_NEXTPC
126
#define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0
127
#endif
128
 
129
/* If the program uses ELF-style shared libraries, then calls to
130
   functions in shared libraries go through stubs, which live in a
131
   table called the PLT (Procedure Linkage Table).  The first time the
132
   function is called, the stub sends control to the dynamic linker,
133
   which looks up the function's real address, patches the stub so
134
   that future calls will go directly to the function, and then passes
135
   control to the function.
136
 
137
   If we are stepping at the source level, we don't want to see any of
138
   this --- we just want to skip over the stub and the dynamic linker.
139
   The simple approach is to single-step until control leaves the
140
   dynamic linker.
141
 
142
   However, on some systems (e.g., Red Hat's 5.2 distribution) the
143
   dynamic linker calls functions in the shared C library, so you
144
   can't tell from the PC alone whether the dynamic linker is still
145
   running.  In this case, we use a step-resume breakpoint to get us
146
   past the dynamic linker, as if we were using "next" to step over a
147
   function call.
148
 
149
   IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
150
   linker code or not.  Normally, this means we single-step.  However,
151
   if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
152
   address where we can place a step-resume breakpoint to get past the
153
   linker's symbol resolution function.
154
 
155
   IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
156
   pretty portable way, by comparing the PC against the address ranges
157
   of the dynamic linker's sections.
158
 
159
   SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
160
   it depends on internal details of the dynamic linker.  It's usually
161
   not too hard to figure out where to put a breakpoint, but it
162
   certainly isn't portable.  SKIP_SOLIB_RESOLVER should do plenty of
163
   sanity checking.  If it can't figure things out, returning zero and
164
   getting the (possibly confusing) stepping behavior is better than
165
   signalling an error, which will obscure the change in the
166
   inferior's state.  */
167
 
168
#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
169
#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
170
#endif
171
 
172
#ifndef SKIP_SOLIB_RESOLVER
173
#define SKIP_SOLIB_RESOLVER(pc) 0
174
#endif
175
 
176
/* This function returns TRUE if pc is the address of an instruction
177
   that lies within the dynamic linker (such as the event hook, or the
178
   dld itself).
179
 
180
   This function must be used only when a dynamic linker event has
181
   been caught, and the inferior is being stepped out of the hook, or
182
   undefined results are guaranteed.  */
183
 
184
#ifndef SOLIB_IN_DYNAMIC_LINKER
185
#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
186
#endif
187
 
188
/* On MIPS16, a function that returns a floating point value may call
189
   a library helper function to copy the return value to a floating point
190
   register.  The IGNORE_HELPER_CALL macro returns non-zero if we
191
   should ignore (i.e. step over) this function call.  */
192
#ifndef IGNORE_HELPER_CALL
193
#define IGNORE_HELPER_CALL(pc)  0
194
#endif
195
 
196
/* On some systems, the PC may be left pointing at an instruction that  won't
197
   actually be executed.  This is usually indicated by a bit in the PSW.  If
198
   we find ourselves in such a state, then we step the target beyond the
199
   nullified instruction before returning control to the user so as to avoid
200
   confusion. */
201
 
202
#ifndef INSTRUCTION_NULLIFIED
203
#define INSTRUCTION_NULLIFIED 0
204
#endif
205
 
206
/* We can't step off a permanent breakpoint in the ordinary way, because we
207
   can't remove it.  Instead, we have to advance the PC to the next
208
   instruction.  This macro should expand to a pointer to a function that
209
   does that, or zero if we have no such function.  If we don't have a
210
   definition for it, we have to report an error.  */
211
#ifndef SKIP_PERMANENT_BREAKPOINT
212
#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
213
static void
214
default_skip_permanent_breakpoint (void)
215
{
216
  error ("\
217
The program is stopped at a permanent breakpoint, but GDB does not know\n\
218
how to step past a permanent breakpoint on this architecture.  Try using\n\
219
a command like `return' or `jump' to continue execution.");
220
}
221
#endif
222
 
223
 
224
/* Convert the #defines into values.  This is temporary until wfi control
225
   flow is completely sorted out.  */
226
 
227
#ifndef HAVE_STEPPABLE_WATCHPOINT
228
#define HAVE_STEPPABLE_WATCHPOINT 0
229
#else
230
#undef  HAVE_STEPPABLE_WATCHPOINT
231
#define HAVE_STEPPABLE_WATCHPOINT 1
232
#endif
233
 
234
#ifndef HAVE_NONSTEPPABLE_WATCHPOINT
235
#define HAVE_NONSTEPPABLE_WATCHPOINT 0
236
#else
237
#undef  HAVE_NONSTEPPABLE_WATCHPOINT
238
#define HAVE_NONSTEPPABLE_WATCHPOINT 1
239
#endif
240
 
241
#ifndef HAVE_CONTINUABLE_WATCHPOINT
242
#define HAVE_CONTINUABLE_WATCHPOINT 0
243
#else
244
#undef  HAVE_CONTINUABLE_WATCHPOINT
245
#define HAVE_CONTINUABLE_WATCHPOINT 1
246
#endif
247
 
248
#ifndef CANNOT_STEP_HW_WATCHPOINTS
249
#define CANNOT_STEP_HW_WATCHPOINTS 0
250
#else
251
#undef  CANNOT_STEP_HW_WATCHPOINTS
252
#define CANNOT_STEP_HW_WATCHPOINTS 1
253
#endif
254
 
255
/* Tables of how to react to signals; the user sets them.  */
256
 
257
static unsigned char *signal_stop;
258
static unsigned char *signal_print;
259
static unsigned char *signal_program;
260
 
261
#define SET_SIGS(nsigs,sigs,flags) \
262
  do { \
263
    int signum = (nsigs); \
264
    while (signum-- > 0) \
265
      if ((sigs)[signum]) \
266
        (flags)[signum] = 1; \
267
  } while (0)
268
 
269
#define UNSET_SIGS(nsigs,sigs,flags) \
270
  do { \
271
    int signum = (nsigs); \
272
    while (signum-- > 0) \
273
      if ((sigs)[signum]) \
274
        (flags)[signum] = 0; \
275
  } while (0)
276
 
277
/* Value to pass to target_resume() to cause all threads to resume */
278
 
279
#define RESUME_ALL (pid_to_ptid (-1))
280
 
281
/* Command list pointer for the "stop" placeholder.  */
282
 
283
static struct cmd_list_element *stop_command;
284
 
285
/* Nonzero if breakpoints are now inserted in the inferior.  */
286
 
287
static int breakpoints_inserted;
288
 
289
/* Function inferior was in as of last step command.  */
290
 
291
static struct symbol *step_start_function;
292
 
293
/* Nonzero if we are expecting a trace trap and should proceed from it.  */
294
 
295
static int trap_expected;
296
 
297
#ifdef SOLIB_ADD
298
/* Nonzero if we want to give control to the user when we're notified
299
   of shared library events by the dynamic linker.  */
300
static int stop_on_solib_events;
301
#endif
302
 
303
#ifdef HP_OS_BUG
304
/* Nonzero if the next time we try to continue the inferior, it will
305
   step one instruction and generate a spurious trace trap.
306
   This is used to compensate for a bug in HP-UX.  */
307
 
308
static int trap_expected_after_continue;
309
#endif
310
 
311
/* Nonzero means expecting a trace trap
312
   and should stop the inferior and return silently when it happens.  */
313
 
314
int stop_after_trap;
315
 
316
/* Nonzero means expecting a trap and caller will handle it themselves.
317
   It is used after attach, due to attaching to a process;
318
   when running in the shell before the child program has been exec'd;
319
   and when running some kinds of remote stuff (FIXME?).  */
320
 
321
int stop_soon_quietly;
322
 
323
/* Nonzero if proceed is being used for a "finish" command or a similar
324
   situation when stop_registers should be saved.  */
325
 
326
int proceed_to_finish;
327
 
328
/* Save register contents here when about to pop a stack dummy frame,
329
   if-and-only-if proceed_to_finish is set.
330
   Thus this contains the return value from the called function (assuming
331
   values are returned in a register).  */
332
 
333
struct regcache *stop_registers;
334
 
335
/* Nonzero if program stopped due to error trying to insert breakpoints.  */
336
 
337
static int breakpoints_failed;
338
 
339
/* Nonzero after stop if current stack frame should be printed.  */
340
 
341
static int stop_print_frame;
342
 
343
static struct breakpoint *step_resume_breakpoint = NULL;
344
static struct breakpoint *through_sigtramp_breakpoint = NULL;
345
 
346
/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
347
   interactions with an inferior that is running a kernel function
348
   (aka, a system call or "syscall").  wait_for_inferior therefore
349
   may have a need to know when the inferior is in a syscall.  This
350
   is a count of the number of inferior threads which are known to
351
   currently be running in a syscall. */
352
static int number_of_threads_in_syscalls;
353
 
354
/* This is a cached copy of the pid/waitstatus of the last event
355
   returned by target_wait()/target_wait_hook().  This information is
356
   returned by get_last_target_status(). */
357
static ptid_t target_last_wait_ptid;
358
static struct target_waitstatus target_last_waitstatus;
359
 
360
/* This is used to remember when a fork, vfork or exec event
361
   was caught by a catchpoint, and thus the event is to be
362
   followed at the next resume of the inferior, and not
363
   immediately. */
364
static struct
365
{
366
  enum target_waitkind kind;
367
  struct
368
  {
369
    int parent_pid;
370
    int saw_parent_fork;
371
    int child_pid;
372
    int saw_child_fork;
373
    int saw_child_exec;
374
  }
375
  fork_event;
376
  char *execd_pathname;
377
}
378
pending_follow;
379
 
380
/* Some platforms don't allow us to do anything meaningful with a
381
   vforked child until it has exec'd.  Vforked processes on such
382
   platforms can only be followed after they've exec'd.
383
 
384
   When this is set to 0, a vfork can be immediately followed,
385
   and an exec can be followed merely as an exec.  When this is
386
   set to 1, a vfork event has been seen, but cannot be followed
387
   until the exec is seen.
388
 
389
   (In the latter case, inferior_ptid is still the parent of the
390
   vfork, and pending_follow.fork_event.child_pid is the child.  The
391
   appropriate process is followed, according to the setting of
392
   follow-fork-mode.) */
393
static int follow_vfork_when_exec;
394
 
395
static const char follow_fork_mode_ask[] = "ask";
396
static const char follow_fork_mode_both[] = "both";
397
static const char follow_fork_mode_child[] = "child";
398
static const char follow_fork_mode_parent[] = "parent";
399
 
400
static const char *follow_fork_mode_kind_names[] = {
401
  follow_fork_mode_ask,
402
  /* ??rehrauer: The "both" option is broken, by what may be a 10.20
403
     kernel problem.  It's also not terribly useful without a GUI to
404
     help the user drive two debuggers.  So for now, I'm disabling the
405
     "both" option. */
406
  /* follow_fork_mode_both, */
407
  follow_fork_mode_child,
408
  follow_fork_mode_parent,
409
  NULL
410
};
411
 
412
static const char *follow_fork_mode_string = follow_fork_mode_parent;
413
 
414
 
415
static void
416
follow_inferior_fork (int parent_pid, int child_pid, int has_forked,
417
                      int has_vforked)
418
{
419
  int followed_parent = 0;
420
  int followed_child = 0;
421
 
422
  /* Which process did the user want us to follow? */
423
  const char *follow_mode = follow_fork_mode_string;
424
 
425
  /* Or, did the user not know, and want us to ask? */
426
  if (follow_fork_mode_string == follow_fork_mode_ask)
427
    {
428
      internal_error (__FILE__, __LINE__,
429
                      "follow_inferior_fork: \"ask\" mode not implemented");
430
      /* follow_mode = follow_fork_mode_...; */
431
    }
432
 
433
  /* If we're to be following the parent, then detach from child_pid.
434
     We're already following the parent, so need do nothing explicit
435
     for it. */
436
  if (follow_mode == follow_fork_mode_parent)
437
    {
438
      followed_parent = 1;
439
 
440
      /* We're already attached to the parent, by default. */
441
 
442
      /* Before detaching from the child, remove all breakpoints from
443
         it.  (This won't actually modify the breakpoint list, but will
444
         physically remove the breakpoints from the child.) */
445
      if (!has_vforked || !follow_vfork_when_exec)
446
        {
447
          detach_breakpoints (child_pid);
448
#ifdef SOLIB_REMOVE_INFERIOR_HOOK
449
          SOLIB_REMOVE_INFERIOR_HOOK (child_pid);
450
#endif
451
        }
452
 
453
      /* Detach from the child. */
454
      dont_repeat ();
455
 
456
      target_require_detach (child_pid, "", 1);
457
    }
458
 
459
  /* If we're to be following the child, then attach to it, detach
460
     from inferior_ptid, and set inferior_ptid to child_pid. */
461
  else if (follow_mode == follow_fork_mode_child)
462
    {
463
      char child_pid_spelling[100];     /* Arbitrary length. */
464
 
465
      followed_child = 1;
466
 
467
      /* Before detaching from the parent, detach all breakpoints from
468
         the child.  But only if we're forking, or if we follow vforks
469
         as soon as they happen.  (If we're following vforks only when
470
         the child has exec'd, then it's very wrong to try to write
471
         back the "shadow contents" of inserted breakpoints now -- they
472
         belong to the child's pre-exec'd a.out.) */
473
      if (!has_vforked || !follow_vfork_when_exec)
474
        {
475
          detach_breakpoints (child_pid);
476
        }
477
 
478
      /* Before detaching from the parent, remove all breakpoints from it. */
479
      remove_breakpoints ();
480
 
481
      /* Also reset the solib inferior hook from the parent. */
482
#ifdef SOLIB_REMOVE_INFERIOR_HOOK
483
      SOLIB_REMOVE_INFERIOR_HOOK (PIDGET (inferior_ptid));
484
#endif
485
 
486
      /* Detach from the parent. */
487
      dont_repeat ();
488
      target_detach (NULL, 1);
489
 
490
      /* Attach to the child. */
491
      inferior_ptid = pid_to_ptid (child_pid);
492
      sprintf (child_pid_spelling, "%d", child_pid);
493
      dont_repeat ();
494
 
495
      target_require_attach (child_pid_spelling, 1);
496
 
497
      /* Was there a step_resume breakpoint?  (There was if the user
498
         did a "next" at the fork() call.)  If so, explicitly reset its
499
         thread number.
500
 
501
         step_resumes are a form of bp that are made to be per-thread.
502
         Since we created the step_resume bp when the parent process
503
         was being debugged, and now are switching to the child process,
504
         from the breakpoint package's viewpoint, that's a switch of
505
         "threads".  We must update the bp's notion of which thread
506
         it is for, or it'll be ignored when it triggers... */
507
      if (step_resume_breakpoint && (!has_vforked || !follow_vfork_when_exec))
508
        breakpoint_re_set_thread (step_resume_breakpoint);
509
 
510
      /* Reinsert all breakpoints in the child.  (The user may've set
511
         breakpoints after catching the fork, in which case those
512
         actually didn't get set in the child, but only in the parent.) */
513
      if (!has_vforked || !follow_vfork_when_exec)
514
        {
515
          breakpoint_re_set ();
516
          insert_breakpoints ();
517
        }
518
    }
519
 
520
  /* If we're to be following both parent and child, then fork ourselves,
521
     and attach the debugger clone to the child. */
522
  else if (follow_mode == follow_fork_mode_both)
523
    {
524
      char pid_suffix[100];     /* Arbitrary length. */
525
 
526
      /* Clone ourselves to follow the child.  This is the end of our
527
         involvement with child_pid; our clone will take it from here... */
528
      dont_repeat ();
529
      target_clone_and_follow_inferior (child_pid, &followed_child);
530
      followed_parent = !followed_child;
531
 
532
      /* We continue to follow the parent.  To help distinguish the two
533
         debuggers, though, both we and our clone will reset our prompts. */
534
      sprintf (pid_suffix, "[%d] ", PIDGET (inferior_ptid));
535
      set_prompt (strcat (get_prompt (), pid_suffix));
536
    }
537
 
538
  /* The parent and child of a vfork share the same address space.
539
     Also, on some targets the order in which vfork and exec events
540
     are received for parent in child requires some delicate handling
541
     of the events.
542
 
543
     For instance, on ptrace-based HPUX we receive the child's vfork
544
     event first, at which time the parent has been suspended by the
545
     OS and is essentially untouchable until the child's exit or second
546
     exec event arrives.  At that time, the parent's vfork event is
547
     delivered to us, and that's when we see and decide how to follow
548
     the vfork.  But to get to that point, we must continue the child
549
     until it execs or exits.  To do that smoothly, all breakpoints
550
     must be removed from the child, in case there are any set between
551
     the vfork() and exec() calls.  But removing them from the child
552
     also removes them from the parent, due to the shared-address-space
553
     nature of a vfork'd parent and child.  On HPUX, therefore, we must
554
     take care to restore the bp's to the parent before we continue it.
555
     Else, it's likely that we may not stop in the expected place.  (The
556
     worst scenario is when the user tries to step over a vfork() call;
557
     the step-resume bp must be restored for the step to properly stop
558
     in the parent after the call completes!)
559
 
560
     Sequence of events, as reported to gdb from HPUX:
561
 
562
     Parent        Child           Action for gdb to take
563
     -------------------------------------------------------
564
     1                VFORK               Continue child
565
     2                EXEC
566
     3                EXEC or EXIT
567
     4  VFORK */
568
  if (has_vforked)
569
    {
570
      target_post_follow_vfork (parent_pid,
571
                                followed_parent, child_pid, followed_child);
572
    }
573
 
574
  pending_follow.fork_event.saw_parent_fork = 0;
575
  pending_follow.fork_event.saw_child_fork = 0;
576
}
577
 
578
static void
579
follow_fork (int parent_pid, int child_pid)
580
{
581
  follow_inferior_fork (parent_pid, child_pid, 1, 0);
582
}
583
 
584
 
585
/* Forward declaration. */
586
static void follow_exec (int, char *);
587
 
588
static void
589
follow_vfork (int parent_pid, int child_pid)
590
{
591
  follow_inferior_fork (parent_pid, child_pid, 0, 1);
592
 
593
  /* Did we follow the child?  Had it exec'd before we saw the parent vfork? */
594
  if (pending_follow.fork_event.saw_child_exec
595
      && (PIDGET (inferior_ptid) == child_pid))
596
    {
597
      pending_follow.fork_event.saw_child_exec = 0;
598
      pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
599
      follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
600
      xfree (pending_follow.execd_pathname);
601
    }
602
}
603
 
604
/* EXECD_PATHNAME is assumed to be non-NULL. */
605
 
606
static void
607
follow_exec (int pid, char *execd_pathname)
608
{
609
  int saved_pid = pid;
610
  struct target_ops *tgt;
611
 
612
  if (!may_follow_exec)
613
    return;
614
 
615
  /* Did this exec() follow a vfork()?  If so, we must follow the
616
     vfork now too.  Do it before following the exec. */
617
  if (follow_vfork_when_exec &&
618
      (pending_follow.kind == TARGET_WAITKIND_VFORKED))
619
    {
620
      pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
621
      follow_vfork (PIDGET (inferior_ptid),
622
                    pending_follow.fork_event.child_pid);
623
      follow_vfork_when_exec = 0;
624
      saved_pid = PIDGET (inferior_ptid);
625
 
626
      /* Did we follow the parent?  If so, we're done.  If we followed
627
         the child then we must also follow its exec(). */
628
      if (PIDGET (inferior_ptid) == pending_follow.fork_event.parent_pid)
629
        return;
630
    }
631
 
632
  /* This is an exec event that we actually wish to pay attention to.
633
     Refresh our symbol table to the newly exec'd program, remove any
634
     momentary bp's, etc.
635
 
636
     If there are breakpoints, they aren't really inserted now,
637
     since the exec() transformed our inferior into a fresh set
638
     of instructions.
639
 
640
     We want to preserve symbolic breakpoints on the list, since
641
     we have hopes that they can be reset after the new a.out's
642
     symbol table is read.
643
 
644
     However, any "raw" breakpoints must be removed from the list
645
     (e.g., the solib bp's), since their address is probably invalid
646
     now.
647
 
648
     And, we DON'T want to call delete_breakpoints() here, since
649
     that may write the bp's "shadow contents" (the instruction
650
     value that was overwritten witha TRAP instruction).  Since
651
     we now have a new a.out, those shadow contents aren't valid. */
652
  update_breakpoints_after_exec ();
653
 
654
  /* If there was one, it's gone now.  We cannot truly step-to-next
655
     statement through an exec(). */
656
  step_resume_breakpoint = NULL;
657
  step_range_start = 0;
658
  step_range_end = 0;
659
 
660
  /* If there was one, it's gone now. */
661
  through_sigtramp_breakpoint = NULL;
662
 
663
  /* What is this a.out's name? */
664
  printf_unfiltered ("Executing new program: %s\n", execd_pathname);
665
 
666
  /* We've followed the inferior through an exec.  Therefore, the
667
     inferior has essentially been killed & reborn. */
668
 
669
  /* First collect the run target in effect.  */
670
  tgt = find_run_target ();
671
  /* If we can't find one, things are in a very strange state...  */
672
  if (tgt == NULL)
673
    error ("Could find run target to save before following exec");
674
 
675
  gdb_flush (gdb_stdout);
676
  target_mourn_inferior ();
677
  inferior_ptid = pid_to_ptid (saved_pid);
678
  /* Because mourn_inferior resets inferior_ptid. */
679
  push_target (tgt);
680
 
681
  /* That a.out is now the one to use. */
682
  exec_file_attach (execd_pathname, 0);
683
 
684
  /* And also is where symbols can be found. */
685
  symbol_file_add_main (execd_pathname, 0);
686
 
687
  /* Reset the shared library package.  This ensures that we get
688
     a shlib event when the child reaches "_start", at which point
689
     the dld will have had a chance to initialize the child. */
690
#if defined(SOLIB_RESTART)
691
  SOLIB_RESTART ();
692
#endif
693
#ifdef SOLIB_CREATE_INFERIOR_HOOK
694
  SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
695
#endif
696
 
697
  /* Reinsert all breakpoints.  (Those which were symbolic have
698
     been reset to the proper address in the new a.out, thanks
699
     to symbol_file_command...) */
700
  insert_breakpoints ();
701
 
702
  /* The next resume of this inferior should bring it to the shlib
703
     startup breakpoints.  (If the user had also set bp's on
704
     "main" from the old (parent) process, then they'll auto-
705
     matically get reset there in the new process.) */
706
}
707
 
708
/* Non-zero if we just simulating a single-step.  This is needed
709
   because we cannot remove the breakpoints in the inferior process
710
   until after the `wait' in `wait_for_inferior'.  */
711
static int singlestep_breakpoints_inserted_p = 0;
712
 
713
 
714
/* Things to clean up if we QUIT out of resume ().  */
715
/* ARGSUSED */
716
static void
717
resume_cleanups (void *ignore)
718
{
719
  normal_stop ();
720
}
721
 
722
static const char schedlock_off[] = "off";
723
static const char schedlock_on[] = "on";
724
static const char schedlock_step[] = "step";
725
static const char *scheduler_mode = schedlock_off;
726
static const char *scheduler_enums[] = {
727
  schedlock_off,
728
  schedlock_on,
729
  schedlock_step,
730
  NULL
731
};
732
 
733
static void
734
set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
735
{
736
  /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
737
     the set command passed as a parameter.  The clone operation will
738
     include (BUG?) any ``set'' command callback, if present.
739
     Commands like ``info set'' call all the ``show'' command
740
     callbacks.  Unfortunatly, for ``show'' commands cloned from
741
     ``set'', this includes callbacks belonging to ``set'' commands.
742
     Making this worse, this only occures if add_show_from_set() is
743
     called after add_cmd_sfunc() (BUG?).  */
744
  if (cmd_type (c) == set_cmd)
745
    if (!target_can_lock_scheduler)
746
      {
747
        scheduler_mode = schedlock_off;
748
        error ("Target '%s' cannot support this command.", target_shortname);
749
      }
750
}
751
 
752
 
753
/* Resume the inferior, but allow a QUIT.  This is useful if the user
754
   wants to interrupt some lengthy single-stepping operation
755
   (for child processes, the SIGINT goes to the inferior, and so
756
   we get a SIGINT random_signal, but for remote debugging and perhaps
757
   other targets, that's not true).
758
 
759
   STEP nonzero if we should step (zero to continue instead).
760
   SIG is the signal to give the inferior (zero for none).  */
761
void
762
resume (int step, enum target_signal sig)
763
{
764
  int should_resume = 1;
765
  struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
766
  QUIT;
767
 
768
  /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
769
 
770
 
771
  /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
772
     over an instruction that causes a page fault without triggering
773
     a hardware watchpoint. The kernel properly notices that it shouldn't
774
     stop, because the hardware watchpoint is not triggered, but it forgets
775
     the step request and continues the program normally.
776
     Work around the problem by removing hardware watchpoints if a step is
777
     requested, GDB will check for a hardware watchpoint trigger after the
778
     step anyway.  */
779
  if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
780
    remove_hw_watchpoints ();
781
 
782
 
783
  /* Normally, by the time we reach `resume', the breakpoints are either
784
     removed or inserted, as appropriate.  The exception is if we're sitting
785
     at a permanent breakpoint; we need to step over it, but permanent
786
     breakpoints can't be removed.  So we have to test for it here.  */
787
  if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
788
    SKIP_PERMANENT_BREAKPOINT ();
789
 
790
  if (SOFTWARE_SINGLE_STEP_P () && step)
791
    {
792
      /* Do it the hard way, w/temp breakpoints */
793
      SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
794
      /* ...and don't ask hardware to do it.  */
795
      step = 0;
796
      /* and do not pull these breakpoints until after a `wait' in
797
         `wait_for_inferior' */
798
      singlestep_breakpoints_inserted_p = 1;
799
    }
800
 
801
  /* Handle any optimized stores to the inferior NOW...  */
802
#ifdef DO_DEFERRED_STORES
803
  DO_DEFERRED_STORES;
804
#endif
805
 
806
  /* If there were any forks/vforks/execs that were caught and are
807
     now to be followed, then do so. */
808
  switch (pending_follow.kind)
809
    {
810
    case (TARGET_WAITKIND_FORKED):
811
      pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
812
      follow_fork (PIDGET (inferior_ptid),
813
                   pending_follow.fork_event.child_pid);
814
      break;
815
 
816
    case (TARGET_WAITKIND_VFORKED):
817
      {
818
        int saw_child_exec = pending_follow.fork_event.saw_child_exec;
819
 
820
        pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
821
        follow_vfork (PIDGET (inferior_ptid),
822
                      pending_follow.fork_event.child_pid);
823
 
824
        /* Did we follow the child, but not yet see the child's exec event?
825
           If so, then it actually ought to be waiting for us; we respond to
826
           parent vfork events.  We don't actually want to resume the child
827
           in this situation; we want to just get its exec event. */
828
        if (!saw_child_exec &&
829
            (PIDGET (inferior_ptid) == pending_follow.fork_event.child_pid))
830
          should_resume = 0;
831
      }
832
      break;
833
 
834
    case (TARGET_WAITKIND_EXECD):
835
      /* If we saw a vfork event but couldn't follow it until we saw
836
         an exec, then now might be the time! */
837
      pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
838
      /* follow_exec is called as soon as the exec event is seen. */
839
      break;
840
 
841
    default:
842
      break;
843
    }
844
 
845
  /* Install inferior's terminal modes.  */
846
  target_terminal_inferior ();
847
 
848
  if (should_resume)
849
    {
850
      ptid_t resume_ptid;
851
 
852
      resume_ptid = RESUME_ALL; /* Default */
853
 
854
      if ((step || singlestep_breakpoints_inserted_p) &&
855
          !breakpoints_inserted && breakpoint_here_p (read_pc ()))
856
        {
857
          /* Stepping past a breakpoint without inserting breakpoints.
858
             Make sure only the current thread gets to step, so that
859
             other threads don't sneak past breakpoints while they are
860
             not inserted. */
861
 
862
          resume_ptid = inferior_ptid;
863
        }
864
 
865
      if ((scheduler_mode == schedlock_on) ||
866
          (scheduler_mode == schedlock_step &&
867
           (step || singlestep_breakpoints_inserted_p)))
868
        {
869
          /* User-settable 'scheduler' mode requires solo thread resume. */
870
          resume_ptid = inferior_ptid;
871
        }
872
 
873
#ifdef CANNOT_STEP_BREAKPOINT
874
      /* Most targets can step a breakpoint instruction, thus executing it
875
         normally.  But if this one cannot, just continue and we will hit
876
         it anyway.  */
877
      if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
878
        step = 0;
879
#endif
880
      target_resume (resume_ptid, step, sig);
881
    }
882
 
883
  discard_cleanups (old_cleanups);
884
}
885
 
886
 
887
/* Clear out all variables saying what to do when inferior is continued.
888
   First do this, then set the ones you want, then call `proceed'.  */
889
 
890
void
891
clear_proceed_status (void)
892
{
893
  trap_expected = 0;
894
  step_range_start = 0;
895
  step_range_end = 0;
896
  step_frame_address = 0;
897
  step_over_calls = STEP_OVER_UNDEBUGGABLE;
898
  stop_after_trap = 0;
899
  stop_soon_quietly = 0;
900
  proceed_to_finish = 0;
901
  breakpoint_proceeded = 1;     /* We're about to proceed... */
902
 
903
  /* Discard any remaining commands or status from previous stop.  */
904
  bpstat_clear (&stop_bpstat);
905
}
906
 
907
/* Basic routine for continuing the program in various fashions.
908
 
909
   ADDR is the address to resume at, or -1 for resume where stopped.
910
   SIGGNAL is the signal to give it, or 0 for none,
911
   or -1 for act according to how it stopped.
912
   STEP is nonzero if should trap after one instruction.
913
   -1 means return after that and print nothing.
914
   You should probably set various step_... variables
915
   before calling here, if you are stepping.
916
 
917
   You should call clear_proceed_status before calling proceed.  */
918
 
919
void
920
proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
921
{
922
  int oneproc = 0;
923
 
924
  if (step > 0)
925
    step_start_function = find_pc_function (read_pc ());
926
  if (step < 0)
927
    stop_after_trap = 1;
928
 
929
  if (addr == (CORE_ADDR) -1)
930
    {
931
      /* If there is a breakpoint at the address we will resume at,
932
         step one instruction before inserting breakpoints
933
         so that we do not stop right away (and report a second
934
         hit at this breakpoint).  */
935
 
936
      if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
937
        oneproc = 1;
938
 
939
#ifndef STEP_SKIPS_DELAY
940
#define STEP_SKIPS_DELAY(pc) (0)
941
#define STEP_SKIPS_DELAY_P (0)
942
#endif
943
      /* Check breakpoint_here_p first, because breakpoint_here_p is fast
944
         (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
945
         is slow (it needs to read memory from the target).  */
946
      if (STEP_SKIPS_DELAY_P
947
          && breakpoint_here_p (read_pc () + 4)
948
          && STEP_SKIPS_DELAY (read_pc ()))
949
        oneproc = 1;
950
    }
951
  else
952
    {
953
      write_pc (addr);
954
    }
955
 
956
#ifdef PREPARE_TO_PROCEED
957
  /* In a multi-threaded task we may select another thread
958
     and then continue or step.
959
 
960
     But if the old thread was stopped at a breakpoint, it
961
     will immediately cause another breakpoint stop without
962
     any execution (i.e. it will report a breakpoint hit
963
     incorrectly).  So we must step over it first.
964
 
965
     PREPARE_TO_PROCEED checks the current thread against the thread
966
     that reported the most recent event.  If a step-over is required
967
     it returns TRUE and sets the current thread to the old thread. */
968
  if (PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
969
    {
970
      oneproc = 1;
971
    }
972
 
973
#endif /* PREPARE_TO_PROCEED */
974
 
975
#ifdef HP_OS_BUG
976
  if (trap_expected_after_continue)
977
    {
978
      /* If (step == 0), a trap will be automatically generated after
979
         the first instruction is executed.  Force step one
980
         instruction to clear this condition.  This should not occur
981
         if step is nonzero, but it is harmless in that case.  */
982
      oneproc = 1;
983
      trap_expected_after_continue = 0;
984
    }
985
#endif /* HP_OS_BUG */
986
 
987
  if (oneproc)
988
    /* We will get a trace trap after one instruction.
989
       Continue it automatically and insert breakpoints then.  */
990
    trap_expected = 1;
991
  else
992
    {
993
      insert_breakpoints ();
994
      /* If we get here there was no call to error() in
995
         insert breakpoints -- so they were inserted.  */
996
      breakpoints_inserted = 1;
997
    }
998
 
999
  if (siggnal != TARGET_SIGNAL_DEFAULT)
1000
    stop_signal = siggnal;
1001
  /* If this signal should not be seen by program,
1002
     give it zero.  Used for debugging signals.  */
1003
  else if (!signal_program[stop_signal])
1004
    stop_signal = TARGET_SIGNAL_0;
1005
 
1006
  annotate_starting ();
1007
 
1008
  /* Make sure that output from GDB appears before output from the
1009
     inferior.  */
1010
  gdb_flush (gdb_stdout);
1011
 
1012
  /* Resume inferior.  */
1013
  resume (oneproc || step || bpstat_should_step (), stop_signal);
1014
 
1015
  /* Wait for it to stop (if not standalone)
1016
     and in any case decode why it stopped, and act accordingly.  */
1017
  /* Do this only if we are not using the event loop, or if the target
1018
     does not support asynchronous execution. */
1019
  if (!event_loop_p || !target_can_async_p ())
1020
    {
1021
      wait_for_inferior ();
1022
      normal_stop ();
1023
    }
1024
}
1025
 
1026
/* Record the pc and sp of the program the last time it stopped.
1027
   These are just used internally by wait_for_inferior, but need
1028
   to be preserved over calls to it and cleared when the inferior
1029
   is started.  */
1030
static CORE_ADDR prev_pc;
1031
static CORE_ADDR prev_func_start;
1032
static char *prev_func_name;
1033
 
1034
 
1035
/* Start remote-debugging of a machine over a serial link.  */
1036
 
1037
void
1038
start_remote (void)
1039
{
1040
  init_thread_list ();
1041
  init_wait_for_inferior ();
1042
  stop_soon_quietly = 1;
1043
  trap_expected = 0;
1044
 
1045
  /* Always go on waiting for the target, regardless of the mode. */
1046
  /* FIXME: cagney/1999-09-23: At present it isn't possible to
1047
     indicate to wait_for_inferior that a target should timeout if
1048
     nothing is returned (instead of just blocking).  Because of this,
1049
     targets expecting an immediate response need to, internally, set
1050
     things up so that the target_wait() is forced to eventually
1051
     timeout. */
1052
  /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1053
     differentiate to its caller what the state of the target is after
1054
     the initial open has been performed.  Here we're assuming that
1055
     the target has stopped.  It should be possible to eventually have
1056
     target_open() return to the caller an indication that the target
1057
     is currently running and GDB state should be set to the same as
1058
     for an async run. */
1059
  wait_for_inferior ();
1060
  normal_stop ();
1061
}
1062
 
1063
/* Initialize static vars when a new inferior begins.  */
1064
 
1065
void
1066
init_wait_for_inferior (void)
1067
{
1068
  /* These are meaningless until the first time through wait_for_inferior.  */
1069
  prev_pc = 0;
1070
  prev_func_start = 0;
1071
  prev_func_name = NULL;
1072
 
1073
#ifdef HP_OS_BUG
1074
  trap_expected_after_continue = 0;
1075
#endif
1076
  breakpoints_inserted = 0;
1077
  breakpoint_init_inferior (inf_starting);
1078
 
1079
  /* Don't confuse first call to proceed(). */
1080
  stop_signal = TARGET_SIGNAL_0;
1081
 
1082
  /* The first resume is not following a fork/vfork/exec. */
1083
  pending_follow.kind = TARGET_WAITKIND_SPURIOUS;       /* I.e., none. */
1084
  pending_follow.fork_event.saw_parent_fork = 0;
1085
  pending_follow.fork_event.saw_child_fork = 0;
1086
  pending_follow.fork_event.saw_child_exec = 0;
1087
 
1088
  /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
1089
  number_of_threads_in_syscalls = 0;
1090
 
1091
  clear_proceed_status ();
1092
}
1093
 
1094
static void
1095
delete_breakpoint_current_contents (void *arg)
1096
{
1097
  struct breakpoint **breakpointp = (struct breakpoint **) arg;
1098
  if (*breakpointp != NULL)
1099
    {
1100
      delete_breakpoint (*breakpointp);
1101
      *breakpointp = NULL;
1102
    }
1103
}
1104
 
1105
/* This enum encodes possible reasons for doing a target_wait, so that
1106
   wfi can call target_wait in one place.  (Ultimately the call will be
1107
   moved out of the infinite loop entirely.) */
1108
 
1109
enum infwait_states
1110
{
1111
  infwait_normal_state,
1112
  infwait_thread_hop_state,
1113
  infwait_nullified_state,
1114
  infwait_nonstep_watch_state
1115
};
1116
 
1117
/* Why did the inferior stop? Used to print the appropriate messages
1118
   to the interface from within handle_inferior_event(). */
1119
enum inferior_stop_reason
1120
{
1121
  /* We don't know why. */
1122
  STOP_UNKNOWN,
1123
  /* Step, next, nexti, stepi finished. */
1124
  END_STEPPING_RANGE,
1125
  /* Found breakpoint. */
1126
  BREAKPOINT_HIT,
1127
  /* Inferior terminated by signal. */
1128
  SIGNAL_EXITED,
1129
  /* Inferior exited. */
1130
  EXITED,
1131
  /* Inferior received signal, and user asked to be notified. */
1132
  SIGNAL_RECEIVED
1133
};
1134
 
1135
/* This structure contains what used to be local variables in
1136
   wait_for_inferior.  Probably many of them can return to being
1137
   locals in handle_inferior_event.  */
1138
 
1139
struct execution_control_state
1140
{
1141
  struct target_waitstatus ws;
1142
  struct target_waitstatus *wp;
1143
  int another_trap;
1144
  int random_signal;
1145
  CORE_ADDR stop_func_start;
1146
  CORE_ADDR stop_func_end;
1147
  char *stop_func_name;
1148
  struct symtab_and_line sal;
1149
  int remove_breakpoints_on_following_step;
1150
  int current_line;
1151
  struct symtab *current_symtab;
1152
  int handling_longjmp;         /* FIXME */
1153
  ptid_t ptid;
1154
  ptid_t saved_inferior_ptid;
1155
  int update_step_sp;
1156
  int stepping_through_solib_after_catch;
1157
  bpstat stepping_through_solib_catchpoints;
1158
  int enable_hw_watchpoints_after_wait;
1159
  int stepping_through_sigtramp;
1160
  int new_thread_event;
1161
  struct target_waitstatus tmpstatus;
1162
  enum infwait_states infwait_state;
1163
  ptid_t waiton_ptid;
1164
  int wait_some_more;
1165
};
1166
 
1167
void init_execution_control_state (struct execution_control_state *ecs);
1168
 
1169
void handle_inferior_event (struct execution_control_state *ecs);
1170
 
1171
static void check_sigtramp2 (struct execution_control_state *ecs);
1172
static void step_into_function (struct execution_control_state *ecs);
1173
static void step_over_function (struct execution_control_state *ecs);
1174
static void stop_stepping (struct execution_control_state *ecs);
1175
static void prepare_to_wait (struct execution_control_state *ecs);
1176
static void keep_going (struct execution_control_state *ecs);
1177
static void print_stop_reason (enum inferior_stop_reason stop_reason,
1178
                               int stop_info);
1179
 
1180
/* Wait for control to return from inferior to debugger.
1181
   If inferior gets a signal, we may decide to start it up again
1182
   instead of returning.  That is why there is a loop in this function.
1183
   When this function actually returns it means the inferior
1184
   should be left stopped and GDB should read more commands.  */
1185
 
1186
void
1187
wait_for_inferior (void)
1188
{
1189
  struct cleanup *old_cleanups;
1190
  struct execution_control_state ecss;
1191
  struct execution_control_state *ecs;
1192
 
1193
  old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1194
                               &step_resume_breakpoint);
1195
  make_cleanup (delete_breakpoint_current_contents,
1196
                &through_sigtramp_breakpoint);
1197
 
1198
  /* wfi still stays in a loop, so it's OK just to take the address of
1199
     a local to get the ecs pointer.  */
1200
  ecs = &ecss;
1201
 
1202
  /* Fill in with reasonable starting values.  */
1203
  init_execution_control_state (ecs);
1204
 
1205
  /* We'll update this if & when we switch to a new thread. */
1206
  previous_inferior_ptid = inferior_ptid;
1207
 
1208
  overlay_cache_invalid = 1;
1209
 
1210
  /* We have to invalidate the registers BEFORE calling target_wait
1211
     because they can be loaded from the target while in target_wait.
1212
     This makes remote debugging a bit more efficient for those
1213
     targets that provide critical registers as part of their normal
1214
     status mechanism. */
1215
 
1216
  registers_changed ();
1217
 
1218
  while (1)
1219
    {
1220
      if (target_wait_hook)
1221
        ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
1222
      else
1223
        ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1224
 
1225
      /* Now figure out what to do with the result of the result.  */
1226
      handle_inferior_event (ecs);
1227
 
1228
      if (!ecs->wait_some_more)
1229
        break;
1230
    }
1231
  do_cleanups (old_cleanups);
1232
}
1233
 
1234
/* Asynchronous version of wait_for_inferior. It is called by the
1235
   event loop whenever a change of state is detected on the file
1236
   descriptor corresponding to the target. It can be called more than
1237
   once to complete a single execution command. In such cases we need
1238
   to keep the state in a global variable ASYNC_ECSS. If it is the
1239
   last time that this function is called for a single execution
1240
   command, then report to the user that the inferior has stopped, and
1241
   do the necessary cleanups. */
1242
 
1243
struct execution_control_state async_ecss;
1244
struct execution_control_state *async_ecs;
1245
 
1246
void
1247
fetch_inferior_event (void *client_data)
1248
{
1249
  static struct cleanup *old_cleanups;
1250
 
1251
  async_ecs = &async_ecss;
1252
 
1253
  if (!async_ecs->wait_some_more)
1254
    {
1255
      old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1256
                                        &step_resume_breakpoint);
1257
      make_exec_cleanup (delete_breakpoint_current_contents,
1258
                         &through_sigtramp_breakpoint);
1259
 
1260
      /* Fill in with reasonable starting values.  */
1261
      init_execution_control_state (async_ecs);
1262
 
1263
      /* We'll update this if & when we switch to a new thread. */
1264
      previous_inferior_ptid = inferior_ptid;
1265
 
1266
      overlay_cache_invalid = 1;
1267
 
1268
      /* We have to invalidate the registers BEFORE calling target_wait
1269
         because they can be loaded from the target while in target_wait.
1270
         This makes remote debugging a bit more efficient for those
1271
         targets that provide critical registers as part of their normal
1272
         status mechanism. */
1273
 
1274
      registers_changed ();
1275
    }
1276
 
1277
  if (target_wait_hook)
1278
    async_ecs->ptid =
1279
      target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1280
  else
1281
    async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1282
 
1283
  /* Now figure out what to do with the result of the result.  */
1284
  handle_inferior_event (async_ecs);
1285
 
1286
  if (!async_ecs->wait_some_more)
1287
    {
1288
      /* Do only the cleanups that have been added by this
1289
         function. Let the continuations for the commands do the rest,
1290
         if there are any. */
1291
      do_exec_cleanups (old_cleanups);
1292
      normal_stop ();
1293
      if (step_multi && stop_step)
1294
        inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1295
      else
1296
        inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1297
    }
1298
}
1299
 
1300
/* Prepare an execution control state for looping through a
1301
   wait_for_inferior-type loop.  */
1302
 
1303
void
1304
init_execution_control_state (struct execution_control_state *ecs)
1305
{
1306
  /* ecs->another_trap? */
1307
  ecs->random_signal = 0;
1308
  ecs->remove_breakpoints_on_following_step = 0;
1309
  ecs->handling_longjmp = 0;     /* FIXME */
1310
  ecs->update_step_sp = 0;
1311
  ecs->stepping_through_solib_after_catch = 0;
1312
  ecs->stepping_through_solib_catchpoints = NULL;
1313
  ecs->enable_hw_watchpoints_after_wait = 0;
1314
  ecs->stepping_through_sigtramp = 0;
1315
  ecs->sal = find_pc_line (prev_pc, 0);
1316
  ecs->current_line = ecs->sal.line;
1317
  ecs->current_symtab = ecs->sal.symtab;
1318
  ecs->infwait_state = infwait_normal_state;
1319
  ecs->waiton_ptid = pid_to_ptid (-1);
1320
  ecs->wp = &(ecs->ws);
1321
}
1322
 
1323
/* Call this function before setting step_resume_breakpoint, as a
1324
   sanity check.  There should never be more than one step-resume
1325
   breakpoint per thread, so we should never be setting a new
1326
   step_resume_breakpoint when one is already active.  */
1327
static void
1328
check_for_old_step_resume_breakpoint (void)
1329
{
1330
  if (step_resume_breakpoint)
1331
    warning
1332
      ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1333
}
1334
 
1335
/* Return the cached copy of the last pid/waitstatus returned by
1336
   target_wait()/target_wait_hook().  The data is actually cached by
1337
   handle_inferior_event(), which gets called immediately after
1338
   target_wait()/target_wait_hook().  */
1339
 
1340
void
1341
get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1342
{
1343
  *ptidp = target_last_wait_ptid;
1344
  *status = target_last_waitstatus;
1345
}
1346
 
1347
/* Switch thread contexts, maintaining "infrun state". */
1348
 
1349
static void
1350
context_switch (struct execution_control_state *ecs)
1351
{
1352
  /* Caution: it may happen that the new thread (or the old one!)
1353
     is not in the thread list.  In this case we must not attempt
1354
     to "switch context", or we run the risk that our context may
1355
     be lost.  This may happen as a result of the target module
1356
     mishandling thread creation.  */
1357
 
1358
  if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1359
    {                           /* Perform infrun state context switch: */
1360
      /* Save infrun state for the old thread.  */
1361
      save_infrun_state (inferior_ptid, prev_pc,
1362
                         prev_func_start, prev_func_name,
1363
                         trap_expected, step_resume_breakpoint,
1364
                         through_sigtramp_breakpoint, step_range_start,
1365
                         step_range_end, step_frame_address,
1366
                         ecs->handling_longjmp, ecs->another_trap,
1367
                         ecs->stepping_through_solib_after_catch,
1368
                         ecs->stepping_through_solib_catchpoints,
1369
                         ecs->stepping_through_sigtramp,
1370
                         ecs->current_line, ecs->current_symtab, step_sp);
1371
 
1372
      /* Load infrun state for the new thread.  */
1373
      load_infrun_state (ecs->ptid, &prev_pc,
1374
                         &prev_func_start, &prev_func_name,
1375
                         &trap_expected, &step_resume_breakpoint,
1376
                         &through_sigtramp_breakpoint, &step_range_start,
1377
                         &step_range_end, &step_frame_address,
1378
                         &ecs->handling_longjmp, &ecs->another_trap,
1379
                         &ecs->stepping_through_solib_after_catch,
1380
                         &ecs->stepping_through_solib_catchpoints,
1381
                         &ecs->stepping_through_sigtramp,
1382
                         &ecs->current_line, &ecs->current_symtab, &step_sp);
1383
    }
1384
  inferior_ptid = ecs->ptid;
1385
}
1386
 
1387
 
1388
/* Given an execution control state that has been freshly filled in
1389
   by an event from the inferior, figure out what it means and take
1390
   appropriate action.  */
1391
 
1392
void
1393
handle_inferior_event (struct execution_control_state *ecs)
1394
{
1395
  CORE_ADDR tmp;
1396
  int stepped_after_stopped_by_watchpoint;
1397
  int sw_single_step_trap_p = 0;
1398
 
1399
  /* Cache the last pid/waitstatus. */
1400
  target_last_wait_ptid = ecs->ptid;
1401
  target_last_waitstatus = *ecs->wp;
1402
 
1403
  switch (ecs->infwait_state)
1404
    {
1405
    case infwait_thread_hop_state:
1406
      /* Cancel the waiton_ptid. */
1407
      ecs->waiton_ptid = pid_to_ptid (-1);
1408
      /* Fall thru to the normal_state case. */
1409
 
1410
    case infwait_normal_state:
1411
      /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1412
         is serviced in this loop, below. */
1413
      if (ecs->enable_hw_watchpoints_after_wait)
1414
        {
1415
          TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1416
          ecs->enable_hw_watchpoints_after_wait = 0;
1417
        }
1418
      stepped_after_stopped_by_watchpoint = 0;
1419
      break;
1420
 
1421
    case infwait_nullified_state:
1422
      break;
1423
 
1424
    case infwait_nonstep_watch_state:
1425
      insert_breakpoints ();
1426
 
1427
      /* FIXME-maybe: is this cleaner than setting a flag?  Does it
1428
         handle things like signals arriving and other things happening
1429
         in combination correctly?  */
1430
      stepped_after_stopped_by_watchpoint = 1;
1431
      break;
1432
    }
1433
  ecs->infwait_state = infwait_normal_state;
1434
 
1435
  flush_cached_frames ();
1436
 
1437
  /* If it's a new process, add it to the thread database */
1438
 
1439
  ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1440
                           && !in_thread_list (ecs->ptid));
1441
 
1442
  if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1443
      && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1444
    {
1445
      add_thread (ecs->ptid);
1446
 
1447
      ui_out_text (uiout, "[New ");
1448
      ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1449
      ui_out_text (uiout, "]\n");
1450
 
1451
#if 0
1452
      /* NOTE: This block is ONLY meant to be invoked in case of a
1453
         "thread creation event"!  If it is invoked for any other
1454
         sort of event (such as a new thread landing on a breakpoint),
1455
         the event will be discarded, which is almost certainly
1456
         a bad thing!
1457
 
1458
         To avoid this, the low-level module (eg. target_wait)
1459
         should call in_thread_list and add_thread, so that the
1460
         new thread is known by the time we get here.  */
1461
 
1462
      /* We may want to consider not doing a resume here in order
1463
         to give the user a chance to play with the new thread.
1464
         It might be good to make that a user-settable option.  */
1465
 
1466
      /* At this point, all threads are stopped (happens
1467
         automatically in either the OS or the native code).
1468
         Therefore we need to continue all threads in order to
1469
         make progress.  */
1470
 
1471
      target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1472
      prepare_to_wait (ecs);
1473
      return;
1474
#endif
1475
    }
1476
 
1477
  switch (ecs->ws.kind)
1478
    {
1479
    case TARGET_WAITKIND_LOADED:
1480
      /* Ignore gracefully during startup of the inferior, as it
1481
         might be the shell which has just loaded some objects,
1482
         otherwise add the symbols for the newly loaded objects.  */
1483
#ifdef SOLIB_ADD
1484
      if (!stop_soon_quietly)
1485
        {
1486
          /* Remove breakpoints, SOLIB_ADD might adjust
1487
             breakpoint addresses via breakpoint_re_set.  */
1488
          if (breakpoints_inserted)
1489
            remove_breakpoints ();
1490
 
1491
          /* Check for any newly added shared libraries if we're
1492
             supposed to be adding them automatically.  Switch
1493
             terminal for any messages produced by
1494
             breakpoint_re_set.  */
1495
          target_terminal_ours_for_output ();
1496
          SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
1497
          target_terminal_inferior ();
1498
 
1499
          /* Reinsert breakpoints and continue.  */
1500
          if (breakpoints_inserted)
1501
            insert_breakpoints ();
1502
        }
1503
#endif
1504
      resume (0, TARGET_SIGNAL_0);
1505
      prepare_to_wait (ecs);
1506
      return;
1507
 
1508
    case TARGET_WAITKIND_SPURIOUS:
1509
      resume (0, TARGET_SIGNAL_0);
1510
      prepare_to_wait (ecs);
1511
      return;
1512
 
1513
    case TARGET_WAITKIND_EXITED:
1514
      target_terminal_ours ();  /* Must do this before mourn anyway */
1515
      print_stop_reason (EXITED, ecs->ws.value.integer);
1516
 
1517
      /* Record the exit code in the convenience variable $_exitcode, so
1518
         that the user can inspect this again later.  */
1519
      set_internalvar (lookup_internalvar ("_exitcode"),
1520
                       value_from_longest (builtin_type_int,
1521
                                           (LONGEST) ecs->ws.value.integer));
1522
      gdb_flush (gdb_stdout);
1523
      target_mourn_inferior ();
1524
      singlestep_breakpoints_inserted_p = 0;     /*SOFTWARE_SINGLE_STEP_P() */
1525
      stop_print_frame = 0;
1526
      stop_stepping (ecs);
1527
      return;
1528
 
1529
    case TARGET_WAITKIND_SIGNALLED:
1530
      stop_print_frame = 0;
1531
      stop_signal = ecs->ws.value.sig;
1532
      target_terminal_ours ();  /* Must do this before mourn anyway */
1533
 
1534
      /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1535
         reach here unless the inferior is dead.  However, for years
1536
         target_kill() was called here, which hints that fatal signals aren't
1537
         really fatal on some systems.  If that's true, then some changes
1538
         may be needed. */
1539
      target_mourn_inferior ();
1540
 
1541
      print_stop_reason (SIGNAL_EXITED, stop_signal);
1542
      singlestep_breakpoints_inserted_p = 0;     /*SOFTWARE_SINGLE_STEP_P() */
1543
      stop_stepping (ecs);
1544
      return;
1545
 
1546
      /* The following are the only cases in which we keep going;
1547
         the above cases end in a continue or goto. */
1548
    case TARGET_WAITKIND_FORKED:
1549
      stop_signal = TARGET_SIGNAL_TRAP;
1550
      pending_follow.kind = ecs->ws.kind;
1551
 
1552
      /* Ignore fork events reported for the parent; we're only
1553
         interested in reacting to forks of the child.  Note that
1554
         we expect the child's fork event to be available if we
1555
         waited for it now. */
1556
      if (ptid_equal (inferior_ptid, ecs->ptid))
1557
        {
1558
          pending_follow.fork_event.saw_parent_fork = 1;
1559
          pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1560
          pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1561
          prepare_to_wait (ecs);
1562
          return;
1563
        }
1564
      else
1565
        {
1566
          pending_follow.fork_event.saw_child_fork = 1;
1567
          pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
1568
          pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
1569
        }
1570
 
1571
      stop_pc = read_pc_pid (ecs->ptid);
1572
      ecs->saved_inferior_ptid = inferior_ptid;
1573
      inferior_ptid = ecs->ptid;
1574
      /* The second argument of bpstat_stop_status is meant to help
1575
         distinguish between a breakpoint trap and a singlestep trap.
1576
         This is only important on targets where DECR_PC_AFTER_BREAK
1577
         is non-zero.  The prev_pc test is meant to distinguish between
1578
         singlestepping a trap instruction, and singlestepping thru a
1579
         jump to the instruction following a trap instruction. */
1580
 
1581
      stop_bpstat = bpstat_stop_status (&stop_pc,
1582
                                        currently_stepping (ecs) &&
1583
                                        prev_pc !=
1584
                                        stop_pc - DECR_PC_AFTER_BREAK);
1585
      ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1586
      inferior_ptid = ecs->saved_inferior_ptid;
1587
      goto process_event_stop_test;
1588
 
1589
      /* If this a platform which doesn't allow a debugger to touch a
1590
         vfork'd inferior until after it exec's, then we'd best keep
1591
         our fingers entirely off the inferior, other than continuing
1592
         it.  This has the unfortunate side-effect that catchpoints
1593
         of vforks will be ignored.  But since the platform doesn't
1594
         allow the inferior be touched at vfork time, there's really
1595
         little choice. */
1596
    case TARGET_WAITKIND_VFORKED:
1597
      stop_signal = TARGET_SIGNAL_TRAP;
1598
      pending_follow.kind = ecs->ws.kind;
1599
 
1600
      /* Is this a vfork of the parent?  If so, then give any
1601
         vfork catchpoints a chance to trigger now.  (It's
1602
         dangerous to do so if the child canot be touched until
1603
         it execs, and the child has not yet exec'd.  We probably
1604
         should warn the user to that effect when the catchpoint
1605
         triggers...) */
1606
      if (ptid_equal (ecs->ptid, inferior_ptid))
1607
        {
1608
          pending_follow.fork_event.saw_parent_fork = 1;
1609
          pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1610
          pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1611
        }
1612
 
1613
      /* If we've seen the child's vfork event but cannot really touch
1614
         the child until it execs, then we must continue the child now.
1615
         Else, give any vfork catchpoints a chance to trigger now. */
1616
      else
1617
        {
1618
          pending_follow.fork_event.saw_child_fork = 1;
1619
          pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
1620
          pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
1621
          target_post_startup_inferior (pid_to_ptid
1622
                                        (pending_follow.fork_event.
1623
                                         child_pid));
1624
          follow_vfork_when_exec = !target_can_follow_vfork_prior_to_exec ();
1625
          if (follow_vfork_when_exec)
1626
            {
1627
              target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1628
              prepare_to_wait (ecs);
1629
              return;
1630
            }
1631
        }
1632
 
1633
      stop_pc = read_pc ();
1634
      /* The second argument of bpstat_stop_status is meant to help
1635
         distinguish between a breakpoint trap and a singlestep trap.
1636
         This is only important on targets where DECR_PC_AFTER_BREAK
1637
         is non-zero.  The prev_pc test is meant to distinguish between
1638
         singlestepping a trap instruction, and singlestepping thru a
1639
         jump to the instruction following a trap instruction. */
1640
 
1641
      stop_bpstat = bpstat_stop_status (&stop_pc,
1642
                                        currently_stepping (ecs) &&
1643
                                        prev_pc !=
1644
                                        stop_pc - DECR_PC_AFTER_BREAK);
1645
      ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1646
      goto process_event_stop_test;
1647
 
1648
    case TARGET_WAITKIND_EXECD:
1649
      stop_signal = TARGET_SIGNAL_TRAP;
1650
 
1651
      /* Is this a target which reports multiple exec events per actual
1652
         call to exec()?  (HP-UX using ptrace does, for example.)  If so,
1653
         ignore all but the last one.  Just resume the exec'r, and wait
1654
         for the next exec event. */
1655
      if (inferior_ignoring_leading_exec_events)
1656
        {
1657
          inferior_ignoring_leading_exec_events--;
1658
          if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1659
            ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1660
                                                    parent_pid);
1661
          target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1662
          prepare_to_wait (ecs);
1663
          return;
1664
        }
1665
      inferior_ignoring_leading_exec_events =
1666
        target_reported_exec_events_per_exec_call () - 1;
1667
 
1668
      pending_follow.execd_pathname =
1669
        savestring (ecs->ws.value.execd_pathname,
1670
                    strlen (ecs->ws.value.execd_pathname));
1671
 
1672
      /* Did inferior_ptid exec, or did a (possibly not-yet-followed)
1673
         child of a vfork exec?
1674
 
1675
         ??rehrauer: This is unabashedly an HP-UX specific thing.  On
1676
         HP-UX, events associated with a vforking inferior come in
1677
         threes: a vfork event for the child (always first), followed
1678
         a vfork event for the parent and an exec event for the child.
1679
         The latter two can come in either order.
1680
 
1681
         If we get the parent vfork event first, life's good: We follow
1682
         either the parent or child, and then the child's exec event is
1683
         a "don't care".
1684
 
1685
         But if we get the child's exec event first, then we delay
1686
         responding to it until we handle the parent's vfork.  Because,
1687
         otherwise we can't satisfy a "catch vfork". */
1688
      if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1689
        {
1690
          pending_follow.fork_event.saw_child_exec = 1;
1691
 
1692
          /* On some targets, the child must be resumed before
1693
             the parent vfork event is delivered.  A single-step
1694
             suffices. */
1695
          if (RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK ())
1696
            target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1697
          /* We expect the parent vfork event to be available now. */
1698
          prepare_to_wait (ecs);
1699
          return;
1700
        }
1701
 
1702
      /* This causes the eventpoints and symbol table to be reset.  Must
1703
         do this now, before trying to determine whether to stop. */
1704
      follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1705
      xfree (pending_follow.execd_pathname);
1706
 
1707
      stop_pc = read_pc_pid (ecs->ptid);
1708
      ecs->saved_inferior_ptid = inferior_ptid;
1709
      inferior_ptid = ecs->ptid;
1710
      /* The second argument of bpstat_stop_status is meant to help
1711
         distinguish between a breakpoint trap and a singlestep trap.
1712
         This is only important on targets where DECR_PC_AFTER_BREAK
1713
         is non-zero.  The prev_pc test is meant to distinguish between
1714
         singlestepping a trap instruction, and singlestepping thru a
1715
         jump to the instruction following a trap instruction. */
1716
 
1717
      stop_bpstat = bpstat_stop_status (&stop_pc,
1718
                                        currently_stepping (ecs) &&
1719
                                        prev_pc !=
1720
                                        stop_pc - DECR_PC_AFTER_BREAK);
1721
      ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1722
      inferior_ptid = ecs->saved_inferior_ptid;
1723
      goto process_event_stop_test;
1724
 
1725
      /* These syscall events are returned on HP-UX, as part of its
1726
         implementation of page-protection-based "hardware" watchpoints.
1727
         HP-UX has unfortunate interactions between page-protections and
1728
         some system calls.  Our solution is to disable hardware watches
1729
         when a system call is entered, and reenable them when the syscall
1730
         completes.  The downside of this is that we may miss the precise
1731
         point at which a watched piece of memory is modified.  "Oh well."
1732
 
1733
         Note that we may have multiple threads running, which may each
1734
         enter syscalls at roughly the same time.  Since we don't have a
1735
         good notion currently of whether a watched piece of memory is
1736
         thread-private, we'd best not have any page-protections active
1737
         when any thread is in a syscall.  Thus, we only want to reenable
1738
         hardware watches when no threads are in a syscall.
1739
 
1740
         Also, be careful not to try to gather much state about a thread
1741
         that's in a syscall.  It's frequently a losing proposition. */
1742
    case TARGET_WAITKIND_SYSCALL_ENTRY:
1743
      number_of_threads_in_syscalls++;
1744
      if (number_of_threads_in_syscalls == 1)
1745
        {
1746
          TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1747
        }
1748
      resume (0, TARGET_SIGNAL_0);
1749
      prepare_to_wait (ecs);
1750
      return;
1751
 
1752
      /* Before examining the threads further, step this thread to
1753
         get it entirely out of the syscall.  (We get notice of the
1754
         event when the thread is just on the verge of exiting a
1755
         syscall.  Stepping one instruction seems to get it back
1756
         into user code.)
1757
 
1758
         Note that although the logical place to reenable h/w watches
1759
         is here, we cannot.  We cannot reenable them before stepping
1760
         the thread (this causes the next wait on the thread to hang).
1761
 
1762
         Nor can we enable them after stepping until we've done a wait.
1763
         Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1764
         here, which will be serviced immediately after the target
1765
         is waited on. */
1766
    case TARGET_WAITKIND_SYSCALL_RETURN:
1767
      target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1768
 
1769
      if (number_of_threads_in_syscalls > 0)
1770
        {
1771
          number_of_threads_in_syscalls--;
1772
          ecs->enable_hw_watchpoints_after_wait =
1773
            (number_of_threads_in_syscalls == 0);
1774
        }
1775
      prepare_to_wait (ecs);
1776
      return;
1777
 
1778
    case TARGET_WAITKIND_STOPPED:
1779
      stop_signal = ecs->ws.value.sig;
1780
      break;
1781
 
1782
      /* We had an event in the inferior, but we are not interested
1783
         in handling it at this level. The lower layers have already
1784
         done what needs to be done, if anything. This case can
1785
         occur only when the target is async or extended-async. One
1786
         of the circumstamces for this to happen is when the
1787
         inferior produces output for the console. The inferior has
1788
         not stopped, and we are ignoring the event. */
1789
    case TARGET_WAITKIND_IGNORE:
1790
      ecs->wait_some_more = 1;
1791
      return;
1792
    }
1793
 
1794
  /* We may want to consider not doing a resume here in order to give
1795
     the user a chance to play with the new thread.  It might be good
1796
     to make that a user-settable option.  */
1797
 
1798
  /* At this point, all threads are stopped (happens automatically in
1799
     either the OS or the native code).  Therefore we need to continue
1800
     all threads in order to make progress.  */
1801
  if (ecs->new_thread_event)
1802
    {
1803
      target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1804
      prepare_to_wait (ecs);
1805
      return;
1806
    }
1807
 
1808
  stop_pc = read_pc_pid (ecs->ptid);
1809
 
1810
  /* See if a thread hit a thread-specific breakpoint that was meant for
1811
     another thread.  If so, then step that thread past the breakpoint,
1812
     and continue it.  */
1813
 
1814
  if (stop_signal == TARGET_SIGNAL_TRAP)
1815
    {
1816
      /* Check if a regular breakpoint has been hit before checking
1817
         for a potential single step breakpoint. Otherwise, GDB will
1818
         not see this breakpoint hit when stepping onto breakpoints.  */
1819
      if (breakpoints_inserted
1820
          && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
1821
        {
1822
          ecs->random_signal = 0;
1823
          if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
1824
                                        ecs->ptid))
1825
            {
1826
              int remove_status;
1827
 
1828
              /* Saw a breakpoint, but it was hit by the wrong thread.
1829
                 Just continue. */
1830
              if (DECR_PC_AFTER_BREAK)
1831
                write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->ptid);
1832
 
1833
              remove_status = remove_breakpoints ();
1834
              /* Did we fail to remove breakpoints?  If so, try
1835
                 to set the PC past the bp.  (There's at least
1836
                 one situation in which we can fail to remove
1837
                 the bp's: On HP-UX's that use ttrace, we can't
1838
                 change the address space of a vforking child
1839
                 process until the child exits (well, okay, not
1840
                 then either :-) or execs. */
1841
              if (remove_status != 0)
1842
                {
1843
                  /* FIXME!  This is obviously non-portable! */
1844
                  write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4, ecs->ptid);
1845
                  /* We need to restart all the threads now,
1846
                   * unles we're running in scheduler-locked mode.
1847
                   * Use currently_stepping to determine whether to
1848
                   * step or continue.
1849
                   */
1850
                  /* FIXME MVS: is there any reason not to call resume()? */
1851
                  if (scheduler_mode == schedlock_on)
1852
                    target_resume (ecs->ptid,
1853
                                   currently_stepping (ecs), TARGET_SIGNAL_0);
1854
                  else
1855
                    target_resume (RESUME_ALL,
1856
                                   currently_stepping (ecs), TARGET_SIGNAL_0);
1857
                  prepare_to_wait (ecs);
1858
                  return;
1859
                }
1860
              else
1861
                {               /* Single step */
1862
                  breakpoints_inserted = 0;
1863
                  if (!ptid_equal (inferior_ptid, ecs->ptid))
1864
                    context_switch (ecs);
1865
                  ecs->waiton_ptid = ecs->ptid;
1866
                  ecs->wp = &(ecs->ws);
1867
                  ecs->another_trap = 1;
1868
 
1869
                  ecs->infwait_state = infwait_thread_hop_state;
1870
                  keep_going (ecs);
1871
                  registers_changed ();
1872
                  return;
1873
                }
1874
            }
1875
        }
1876
      else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1877
        {
1878
          /* Readjust the stop_pc as it is off by DECR_PC_AFTER_BREAK
1879
             compared to the value it would have if the system stepping
1880
             capability was used. This allows the rest of the code in
1881
             this function to use this address without having to worry
1882
             whether software single step is in use or not.  */
1883
          if (DECR_PC_AFTER_BREAK)
1884
            {
1885
              stop_pc -= DECR_PC_AFTER_BREAK;
1886
              write_pc_pid (stop_pc, ecs->ptid);
1887
            }
1888
 
1889
          sw_single_step_trap_p = 1;
1890
          ecs->random_signal = 0;
1891
        }
1892
    }
1893
  else
1894
    ecs->random_signal = 1;
1895
 
1896
  /* See if something interesting happened to the non-current thread.  If
1897
     so, then switch to that thread, and eventually give control back to
1898
     the user.
1899
 
1900
     Note that if there's any kind of pending follow (i.e., of a fork,
1901
     vfork or exec), we don't want to do this now.  Rather, we'll let
1902
     the next resume handle it. */
1903
  if (!ptid_equal (ecs->ptid, inferior_ptid) &&
1904
      (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1905
    {
1906
      int printed = 0;
1907
 
1908
      /* If it's a random signal for a non-current thread, notify user
1909
         if he's expressed an interest. */
1910
      if (ecs->random_signal && signal_print[stop_signal])
1911
        {
1912
/* ??rehrauer: I don't understand the rationale for this code.  If the
1913
   inferior will stop as a result of this signal, then the act of handling
1914
   the stop ought to print a message that's couches the stoppage in user
1915
   terms, e.g., "Stopped for breakpoint/watchpoint".  If the inferior
1916
   won't stop as a result of the signal -- i.e., if the signal is merely
1917
   a side-effect of something GDB's doing "under the covers" for the
1918
   user, such as stepping threads over a breakpoint they shouldn't stop
1919
   for -- then the message seems to be a serious annoyance at best.
1920
 
1921
   For now, remove the message altogether. */
1922
#if 0
1923
          printed = 1;
1924
          target_terminal_ours_for_output ();
1925
          printf_filtered ("\nProgram received signal %s, %s.\n",
1926
                           target_signal_to_name (stop_signal),
1927
                           target_signal_to_string (stop_signal));
1928
          gdb_flush (gdb_stdout);
1929
#endif
1930
        }
1931
 
1932
      /* If it's not SIGTRAP and not a signal we want to stop for, then
1933
         continue the thread. */
1934
 
1935
      if (stop_signal != TARGET_SIGNAL_TRAP && !signal_stop[stop_signal])
1936
        {
1937
          if (printed)
1938
            target_terminal_inferior ();
1939
 
1940
          /* Clear the signal if it should not be passed.  */
1941
          if (signal_program[stop_signal] == 0)
1942
            stop_signal = TARGET_SIGNAL_0;
1943
 
1944
          target_resume (ecs->ptid, 0, stop_signal);
1945
          prepare_to_wait (ecs);
1946
          return;
1947
        }
1948
 
1949
      /* It's a SIGTRAP or a signal we're interested in.  Switch threads,
1950
         and fall into the rest of wait_for_inferior().  */
1951
 
1952
      context_switch (ecs);
1953
 
1954
      if (context_hook)
1955
        context_hook (pid_to_thread_id (ecs->ptid));
1956
 
1957
      flush_cached_frames ();
1958
    }
1959
 
1960
  if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1961
    {
1962
      /* Pull the single step breakpoints out of the target. */
1963
      SOFTWARE_SINGLE_STEP (0, 0);
1964
      singlestep_breakpoints_inserted_p = 0;
1965
    }
1966
 
1967
  /* If PC is pointing at a nullified instruction, then step beyond
1968
     it so that the user won't be confused when GDB appears to be ready
1969
     to execute it. */
1970
 
1971
  /*      if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1972
  if (INSTRUCTION_NULLIFIED)
1973
    {
1974
      registers_changed ();
1975
      target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1976
 
1977
      /* We may have received a signal that we want to pass to
1978
         the inferior; therefore, we must not clobber the waitstatus
1979
         in WS. */
1980
 
1981
      ecs->infwait_state = infwait_nullified_state;
1982
      ecs->waiton_ptid = ecs->ptid;
1983
      ecs->wp = &(ecs->tmpstatus);
1984
      prepare_to_wait (ecs);
1985
      return;
1986
    }
1987
 
1988
  /* It may not be necessary to disable the watchpoint to stop over
1989
     it.  For example, the PA can (with some kernel cooperation)
1990
     single step over a watchpoint without disabling the watchpoint.  */
1991
  if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1992
    {
1993
      resume (1, 0);
1994
      prepare_to_wait (ecs);
1995
      return;
1996
    }
1997
 
1998
  /* It is far more common to need to disable a watchpoint to step
1999
     the inferior over it.  FIXME.  What else might a debug
2000
     register or page protection watchpoint scheme need here?  */
2001
  if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
2002
    {
2003
      /* At this point, we are stopped at an instruction which has
2004
         attempted to write to a piece of memory under control of
2005
         a watchpoint.  The instruction hasn't actually executed
2006
         yet.  If we were to evaluate the watchpoint expression
2007
         now, we would get the old value, and therefore no change
2008
         would seem to have occurred.
2009
 
2010
         In order to make watchpoints work `right', we really need
2011
         to complete the memory write, and then evaluate the
2012
         watchpoint expression.  The following code does that by
2013
         removing the watchpoint (actually, all watchpoints and
2014
         breakpoints), single-stepping the target, re-inserting
2015
         watchpoints, and then falling through to let normal
2016
         single-step processing handle proceed.  Since this
2017
         includes evaluating watchpoints, things will come to a
2018
         stop in the correct manner.  */
2019
 
2020
      if (DECR_PC_AFTER_BREAK)
2021
        write_pc (stop_pc - DECR_PC_AFTER_BREAK);
2022
 
2023
      remove_breakpoints ();
2024
      registers_changed ();
2025
      target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);    /* Single step */
2026
 
2027
      ecs->waiton_ptid = ecs->ptid;
2028
      ecs->wp = &(ecs->ws);
2029
      ecs->infwait_state = infwait_nonstep_watch_state;
2030
      prepare_to_wait (ecs);
2031
      return;
2032
    }
2033
 
2034
  /* It may be possible to simply continue after a watchpoint.  */
2035
  if (HAVE_CONTINUABLE_WATCHPOINT)
2036
    STOPPED_BY_WATCHPOINT (ecs->ws);
2037
 
2038
  ecs->stop_func_start = 0;
2039
  ecs->stop_func_end = 0;
2040
  ecs->stop_func_name = 0;
2041
  /* Don't care about return value; stop_func_start and stop_func_name
2042
     will both be 0 if it doesn't work.  */
2043
  find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2044
                            &ecs->stop_func_start, &ecs->stop_func_end);
2045
  ecs->stop_func_start += FUNCTION_START_OFFSET;
2046
  ecs->another_trap = 0;
2047
  bpstat_clear (&stop_bpstat);
2048
  stop_step = 0;
2049
  stop_stack_dummy = 0;
2050
  stop_print_frame = 1;
2051
  ecs->random_signal = 0;
2052
  stopped_by_random_signal = 0;
2053
  breakpoints_failed = 0;
2054
 
2055
  /* Look at the cause of the stop, and decide what to do.
2056
     The alternatives are:
2057
     1) break; to really stop and return to the debugger,
2058
     2) drop through to start up again
2059
     (set ecs->another_trap to 1 to single step once)
2060
     3) set ecs->random_signal to 1, and the decision between 1 and 2
2061
     will be made according to the signal handling tables.  */
2062
 
2063
  /* First, distinguish signals caused by the debugger from signals
2064
     that have to do with the program's own actions.
2065
     Note that breakpoint insns may cause SIGTRAP or SIGILL
2066
     or SIGEMT, depending on the operating system version.
2067
     Here we detect when a SIGILL or SIGEMT is really a breakpoint
2068
     and change it to SIGTRAP.  */
2069
 
2070
  if (stop_signal == TARGET_SIGNAL_TRAP
2071
      || (breakpoints_inserted &&
2072
          (stop_signal == TARGET_SIGNAL_ILL
2073
           || stop_signal == TARGET_SIGNAL_EMT)) || stop_soon_quietly)
2074
    {
2075
      if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2076
        {
2077
          stop_print_frame = 0;
2078
          stop_stepping (ecs);
2079
          return;
2080
        }
2081
      if (stop_soon_quietly)
2082
        {
2083
          stop_stepping (ecs);
2084
          return;
2085
        }
2086
 
2087
      /* Don't even think about breakpoints
2088
         if just proceeded over a breakpoint.
2089
 
2090
         However, if we are trying to proceed over a breakpoint
2091
         and end up in sigtramp, then through_sigtramp_breakpoint
2092
         will be set and we should check whether we've hit the
2093
         step breakpoint.  */
2094
      if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
2095
          && through_sigtramp_breakpoint == NULL)
2096
        bpstat_clear (&stop_bpstat);
2097
      else
2098
        {
2099
          /* See if there is a breakpoint at the current PC.  */
2100
 
2101
          /* The second argument of bpstat_stop_status is meant to help
2102
             distinguish between a breakpoint trap and a singlestep trap.
2103
             This is only important on targets where DECR_PC_AFTER_BREAK
2104
             is non-zero.  The prev_pc test is meant to distinguish between
2105
             singlestepping a trap instruction, and singlestepping thru a
2106
             jump to the instruction following a trap instruction.
2107
 
2108
             Therefore, pass TRUE if our reason for stopping is
2109
             something other than hitting a breakpoint.  We do this by
2110
             checking that either: we detected earlier a software single
2111
             step trap or, 1) stepping is going on and 2) we didn't hit
2112
             a breakpoint in a signal handler without an intervening stop
2113
             in sigtramp, which is detected by a new stack pointer value
2114
             below any usual function calling stack adjustments.  */
2115
          stop_bpstat =
2116
            bpstat_stop_status
2117
              (&stop_pc,
2118
               sw_single_step_trap_p
2119
               || (currently_stepping (ecs)
2120
                   && prev_pc != stop_pc - DECR_PC_AFTER_BREAK
2121
                   && !(step_range_end
2122
                        && INNER_THAN (read_sp (), (step_sp - 16)))));
2123
          /* Following in case break condition called a
2124
             function.  */
2125
          stop_print_frame = 1;
2126
        }
2127
 
2128
      if (stop_signal == TARGET_SIGNAL_TRAP)
2129
        ecs->random_signal
2130
          = !(bpstat_explains_signal (stop_bpstat)
2131
              || trap_expected
2132
              || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
2133
                  && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
2134
                                       FRAME_FP (get_current_frame ())))
2135
              || (step_range_end && step_resume_breakpoint == NULL));
2136
 
2137
      else
2138
        {
2139
          ecs->random_signal = !(bpstat_explains_signal (stop_bpstat)
2140
                                 /* End of a stack dummy.  Some systems (e.g. Sony
2141
                                    news) give another signal besides SIGTRAP, so
2142
                                    check here as well as above.  */
2143
                                 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
2144
                                     && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
2145
                                                          FRAME_FP
2146
                                                          (get_current_frame
2147
                                                           ()))));
2148
          if (!ecs->random_signal)
2149
            stop_signal = TARGET_SIGNAL_TRAP;
2150
        }
2151
    }
2152
 
2153
  /* When we reach this point, we've pretty much decided
2154
     that the reason for stopping must've been a random
2155
     (unexpected) signal. */
2156
 
2157
  else
2158
    ecs->random_signal = 1;
2159
  /* If a fork, vfork or exec event was seen, then there are two
2160
     possible responses we can make:
2161
 
2162
     1. If a catchpoint triggers for the event (ecs->random_signal == 0),
2163
     then we must stop now and issue a prompt.  We will resume
2164
     the inferior when the user tells us to.
2165
     2. If no catchpoint triggers for the event (ecs->random_signal == 1),
2166
     then we must resume the inferior now and keep checking.
2167
 
2168
     In either case, we must take appropriate steps to "follow" the
2169
     the fork/vfork/exec when the inferior is resumed.  For example,
2170
     if follow-fork-mode is "child", then we must detach from the
2171
     parent inferior and follow the new child inferior.
2172
 
2173
     In either case, setting pending_follow causes the next resume()
2174
     to take the appropriate following action. */
2175
process_event_stop_test:
2176
  if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
2177
    {
2178
      if (ecs->random_signal)   /* I.e., no catchpoint triggered for this. */
2179
        {
2180
          trap_expected = 1;
2181
          stop_signal = TARGET_SIGNAL_0;
2182
          keep_going (ecs);
2183
          return;
2184
        }
2185
    }
2186
  else if (ecs->ws.kind == TARGET_WAITKIND_VFORKED)
2187
    {
2188
      if (ecs->random_signal)   /* I.e., no catchpoint triggered for this. */
2189
        {
2190
          stop_signal = TARGET_SIGNAL_0;
2191
          keep_going (ecs);
2192
          return;
2193
        }
2194
    }
2195
  else if (ecs->ws.kind == TARGET_WAITKIND_EXECD)
2196
    {
2197
      pending_follow.kind = ecs->ws.kind;
2198
      if (ecs->random_signal)   /* I.e., no catchpoint triggered for this. */
2199
        {
2200
          trap_expected = 1;
2201
          stop_signal = TARGET_SIGNAL_0;
2202
          keep_going (ecs);
2203
          return;
2204
        }
2205
    }
2206
 
2207
  /* For the program's own signals, act according to
2208
     the signal handling tables.  */
2209
 
2210
  if (ecs->random_signal)
2211
    {
2212
      /* Signal not for debugging purposes.  */
2213
      int printed = 0;
2214
 
2215
      stopped_by_random_signal = 1;
2216
 
2217
      if (signal_print[stop_signal])
2218
        {
2219
          printed = 1;
2220
          target_terminal_ours_for_output ();
2221
          print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2222
        }
2223
      if (signal_stop[stop_signal])
2224
        {
2225
          stop_stepping (ecs);
2226
          return;
2227
        }
2228
      /* If not going to stop, give terminal back
2229
         if we took it away.  */
2230
      else if (printed)
2231
        target_terminal_inferior ();
2232
 
2233
      /* Clear the signal if it should not be passed.  */
2234
      if (signal_program[stop_signal] == 0)
2235
        stop_signal = TARGET_SIGNAL_0;
2236
 
2237
      /* I'm not sure whether this needs to be check_sigtramp2 or
2238
         whether it could/should be keep_going.
2239
 
2240
         This used to jump to step_over_function if we are stepping,
2241
         which is wrong.
2242
 
2243
         Suppose the user does a `next' over a function call, and while
2244
         that call is in progress, the inferior receives a signal for
2245
         which GDB does not stop (i.e., signal_stop[SIG] is false).  In
2246
         that case, when we reach this point, there is already a
2247
         step-resume breakpoint established, right where it should be:
2248
         immediately after the function call the user is "next"-ing
2249
         over.  If we call step_over_function now, two bad things
2250
         happen:
2251
 
2252
         - we'll create a new breakpoint, at wherever the current
2253
         frame's return address happens to be.  That could be
2254
         anywhere, depending on what function call happens to be on
2255
         the top of the stack at that point.  Point is, it's probably
2256
         not where we need it.
2257
 
2258
         - the existing step-resume breakpoint (which is at the correct
2259
         address) will get orphaned: step_resume_breakpoint will point
2260
         to the new breakpoint, and the old step-resume breakpoint
2261
         will never be cleaned up.
2262
 
2263
         The old behavior was meant to help HP-UX single-step out of
2264
         sigtramps.  It would place the new breakpoint at prev_pc, which
2265
         was certainly wrong.  I don't know the details there, so fixing
2266
         this probably breaks that.  As with anything else, it's up to
2267
         the HP-UX maintainer to furnish a fix that doesn't break other
2268
         platforms.  --JimB, 20 May 1999 */
2269
      check_sigtramp2 (ecs);
2270
      keep_going (ecs);
2271
      return;
2272
    }
2273
 
2274
  /* Handle cases caused by hitting a breakpoint.  */
2275
  {
2276
    CORE_ADDR jmp_buf_pc;
2277
    struct bpstat_what what;
2278
 
2279
    what = bpstat_what (stop_bpstat);
2280
 
2281
    if (what.call_dummy)
2282
      {
2283
        stop_stack_dummy = 1;
2284
#ifdef HP_OS_BUG
2285
        trap_expected_after_continue = 1;
2286
#endif
2287
      }
2288
 
2289
    switch (what.main_action)
2290
      {
2291
      case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2292
        /* If we hit the breakpoint at longjmp, disable it for the
2293
           duration of this command.  Then, install a temporary
2294
           breakpoint at the target of the jmp_buf. */
2295
        disable_longjmp_breakpoint ();
2296
        remove_breakpoints ();
2297
        breakpoints_inserted = 0;
2298
        if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2299
          {
2300
            keep_going (ecs);
2301
            return;
2302
          }
2303
 
2304
        /* Need to blow away step-resume breakpoint, as it
2305
           interferes with us */
2306
        if (step_resume_breakpoint != NULL)
2307
          {
2308
            delete_step_resume_breakpoint (&step_resume_breakpoint);
2309
          }
2310
        /* Not sure whether we need to blow this away too, but probably
2311
           it is like the step-resume breakpoint.  */
2312
        if (through_sigtramp_breakpoint != NULL)
2313
          {
2314
            delete_breakpoint (through_sigtramp_breakpoint);
2315
            through_sigtramp_breakpoint = NULL;
2316
          }
2317
 
2318
#if 0
2319
        /* FIXME - Need to implement nested temporary breakpoints */
2320
        if (step_over_calls > 0)
2321
          set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
2322
        else
2323
#endif /* 0 */
2324
          set_longjmp_resume_breakpoint (jmp_buf_pc, NULL);
2325
        ecs->handling_longjmp = 1;      /* FIXME */
2326
        keep_going (ecs);
2327
        return;
2328
 
2329
      case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2330
      case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2331
        remove_breakpoints ();
2332
        breakpoints_inserted = 0;
2333
#if 0
2334
        /* FIXME - Need to implement nested temporary breakpoints */
2335
        if (step_over_calls
2336
            && (INNER_THAN (FRAME_FP (get_current_frame ()),
2337
                            step_frame_address)))
2338
          {
2339
            ecs->another_trap = 1;
2340
            keep_going (ecs);
2341
            return;
2342
          }
2343
#endif /* 0 */
2344
        disable_longjmp_breakpoint ();
2345
        ecs->handling_longjmp = 0;       /* FIXME */
2346
        if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2347
          break;
2348
        /* else fallthrough */
2349
 
2350
      case BPSTAT_WHAT_SINGLE:
2351
        if (breakpoints_inserted)
2352
          {
2353
            remove_breakpoints ();
2354
          }
2355
        breakpoints_inserted = 0;
2356
        ecs->another_trap = 1;
2357
        /* Still need to check other stuff, at least the case
2358
           where we are stepping and step out of the right range.  */
2359
        break;
2360
 
2361
      case BPSTAT_WHAT_STOP_NOISY:
2362
        stop_print_frame = 1;
2363
 
2364
        /* We are about to nuke the step_resume_breakpoint and
2365
           through_sigtramp_breakpoint via the cleanup chain, so
2366
           no need to worry about it here.  */
2367
 
2368
        stop_stepping (ecs);
2369
        return;
2370
 
2371
      case BPSTAT_WHAT_STOP_SILENT:
2372
        stop_print_frame = 0;
2373
 
2374
        /* We are about to nuke the step_resume_breakpoint and
2375
           through_sigtramp_breakpoint via the cleanup chain, so
2376
           no need to worry about it here.  */
2377
 
2378
        stop_stepping (ecs);
2379
        return;
2380
 
2381
      case BPSTAT_WHAT_STEP_RESUME:
2382
        /* This proably demands a more elegant solution, but, yeah
2383
           right...
2384
 
2385
           This function's use of the simple variable
2386
           step_resume_breakpoint doesn't seem to accomodate
2387
           simultaneously active step-resume bp's, although the
2388
           breakpoint list certainly can.
2389
 
2390
           If we reach here and step_resume_breakpoint is already
2391
           NULL, then apparently we have multiple active
2392
           step-resume bp's.  We'll just delete the breakpoint we
2393
           stopped at, and carry on.
2394
 
2395
           Correction: what the code currently does is delete a
2396
           step-resume bp, but it makes no effort to ensure that
2397
           the one deleted is the one currently stopped at.  MVS  */
2398
 
2399
        if (step_resume_breakpoint == NULL)
2400
          {
2401
            step_resume_breakpoint =
2402
              bpstat_find_step_resume_breakpoint (stop_bpstat);
2403
          }
2404
        delete_step_resume_breakpoint (&step_resume_breakpoint);
2405
        break;
2406
 
2407
      case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2408
        if (through_sigtramp_breakpoint)
2409
          delete_breakpoint (through_sigtramp_breakpoint);
2410
        through_sigtramp_breakpoint = NULL;
2411
 
2412
        /* If were waiting for a trap, hitting the step_resume_break
2413
           doesn't count as getting it.  */
2414
        if (trap_expected)
2415
          ecs->another_trap = 1;
2416
        break;
2417
 
2418
      case BPSTAT_WHAT_CHECK_SHLIBS:
2419
      case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2420
#ifdef SOLIB_ADD
2421
        {
2422
          /* Remove breakpoints, we eventually want to step over the
2423
             shlib event breakpoint, and SOLIB_ADD might adjust
2424
             breakpoint addresses via breakpoint_re_set.  */
2425
          if (breakpoints_inserted)
2426
            remove_breakpoints ();
2427
          breakpoints_inserted = 0;
2428
 
2429
          /* Check for any newly added shared libraries if we're
2430
             supposed to be adding them automatically.  Switch
2431
             terminal for any messages produced by
2432
             breakpoint_re_set.  */
2433
          target_terminal_ours_for_output ();
2434
          SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
2435
          target_terminal_inferior ();
2436
 
2437
          /* Try to reenable shared library breakpoints, additional
2438
             code segments in shared libraries might be mapped in now. */
2439
          re_enable_breakpoints_in_shlibs ();
2440
 
2441
          /* If requested, stop when the dynamic linker notifies
2442
             gdb of events.  This allows the user to get control
2443
             and place breakpoints in initializer routines for
2444
             dynamically loaded objects (among other things).  */
2445
          if (stop_on_solib_events)
2446
            {
2447
              stop_stepping (ecs);
2448
              return;
2449
            }
2450
 
2451
          /* If we stopped due to an explicit catchpoint, then the
2452
             (see above) call to SOLIB_ADD pulled in any symbols
2453
             from a newly-loaded library, if appropriate.
2454
 
2455
             We do want the inferior to stop, but not where it is
2456
             now, which is in the dynamic linker callback.  Rather,
2457
             we would like it stop in the user's program, just after
2458
             the call that caused this catchpoint to trigger.  That
2459
             gives the user a more useful vantage from which to
2460
             examine their program's state. */
2461
          else if (what.main_action ==
2462
                   BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2463
            {
2464
              /* ??rehrauer: If I could figure out how to get the
2465
                 right return PC from here, we could just set a temp
2466
                 breakpoint and resume.  I'm not sure we can without
2467
                 cracking open the dld's shared libraries and sniffing
2468
                 their unwind tables and text/data ranges, and that's
2469
                 not a terribly portable notion.
2470
 
2471
                 Until that time, we must step the inferior out of the
2472
                 dld callback, and also out of the dld itself (and any
2473
                 code or stubs in libdld.sl, such as "shl_load" and
2474
                 friends) until we reach non-dld code.  At that point,
2475
                 we can stop stepping. */
2476
              bpstat_get_triggered_catchpoints (stop_bpstat,
2477
                                                &ecs->
2478
                                                stepping_through_solib_catchpoints);
2479
              ecs->stepping_through_solib_after_catch = 1;
2480
 
2481
              /* Be sure to lift all breakpoints, so the inferior does
2482
                 actually step past this point... */
2483
              ecs->another_trap = 1;
2484
              break;
2485
            }
2486
          else
2487
            {
2488
              /* We want to step over this breakpoint, then keep going.  */
2489
              ecs->another_trap = 1;
2490
              break;
2491
            }
2492
        }
2493
#endif
2494
        break;
2495
 
2496
      case BPSTAT_WHAT_LAST:
2497
        /* Not a real code, but listed here to shut up gcc -Wall.  */
2498
 
2499
      case BPSTAT_WHAT_KEEP_CHECKING:
2500
        break;
2501
      }
2502
  }
2503
 
2504
  /* We come here if we hit a breakpoint but should not
2505
     stop for it.  Possibly we also were stepping
2506
     and should stop for that.  So fall through and
2507
     test for stepping.  But, if not stepping,
2508
     do not stop.  */
2509
 
2510
  /* Are we stepping to get the inferior out of the dynamic
2511
     linker's hook (and possibly the dld itself) after catching
2512
     a shlib event? */
2513
  if (ecs->stepping_through_solib_after_catch)
2514
    {
2515
#if defined(SOLIB_ADD)
2516
      /* Have we reached our destination?  If not, keep going. */
2517
      if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2518
        {
2519
          ecs->another_trap = 1;
2520
          keep_going (ecs);
2521
          return;
2522
        }
2523
#endif
2524
      /* Else, stop and report the catchpoint(s) whose triggering
2525
         caused us to begin stepping. */
2526
      ecs->stepping_through_solib_after_catch = 0;
2527
      bpstat_clear (&stop_bpstat);
2528
      stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2529
      bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2530
      stop_print_frame = 1;
2531
      stop_stepping (ecs);
2532
      return;
2533
    }
2534
 
2535
  if (!CALL_DUMMY_BREAKPOINT_OFFSET_P)
2536
    {
2537
      /* This is the old way of detecting the end of the stack dummy.
2538
         An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
2539
         handled above.  As soon as we can test it on all of them, all
2540
         architectures should define it.  */
2541
 
2542
      /* If this is the breakpoint at the end of a stack dummy,
2543
         just stop silently, unless the user was doing an si/ni, in which
2544
         case she'd better know what she's doing.  */
2545
 
2546
      if (CALL_DUMMY_HAS_COMPLETED (stop_pc, read_sp (),
2547
                                    FRAME_FP (get_current_frame ()))
2548
          && !step_range_end)
2549
        {
2550
          stop_print_frame = 0;
2551
          stop_stack_dummy = 1;
2552
#ifdef HP_OS_BUG
2553
          trap_expected_after_continue = 1;
2554
#endif
2555
          stop_stepping (ecs);
2556
          return;
2557
        }
2558
    }
2559
 
2560
  if (step_resume_breakpoint)
2561
    {
2562
      /* Having a step-resume breakpoint overrides anything
2563
         else having to do with stepping commands until
2564
         that breakpoint is reached.  */
2565
      /* I'm not sure whether this needs to be check_sigtramp2 or
2566
         whether it could/should be keep_going.  */
2567
      check_sigtramp2 (ecs);
2568
      keep_going (ecs);
2569
      return;
2570
    }
2571
 
2572
  if (step_range_end == 0)
2573
    {
2574
      /* Likewise if we aren't even stepping.  */
2575
      /* I'm not sure whether this needs to be check_sigtramp2 or
2576
         whether it could/should be keep_going.  */
2577
      check_sigtramp2 (ecs);
2578
      keep_going (ecs);
2579
      return;
2580
    }
2581
 
2582
  /* If stepping through a line, keep going if still within it.
2583
 
2584
     Note that step_range_end is the address of the first instruction
2585
     beyond the step range, and NOT the address of the last instruction
2586
     within it! */
2587
  if (stop_pc >= step_range_start && stop_pc < step_range_end)
2588
    {
2589
      /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2590
         So definately need to check for sigtramp here.  */
2591
      check_sigtramp2 (ecs);
2592
      keep_going (ecs);
2593
      return;
2594
    }
2595
 
2596
  /* We stepped out of the stepping range.  */
2597
 
2598
  /* If we are stepping at the source level and entered the runtime
2599
     loader dynamic symbol resolution code, we keep on single stepping
2600
     until we exit the run time loader code and reach the callee's
2601
     address.  */
2602
  if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2603
      && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2604
    {
2605
      CORE_ADDR pc_after_resolver = SKIP_SOLIB_RESOLVER (stop_pc);
2606
 
2607
      if (pc_after_resolver)
2608
        {
2609
          /* Set up a step-resume breakpoint at the address
2610
             indicated by SKIP_SOLIB_RESOLVER.  */
2611
          struct symtab_and_line sr_sal;
2612
          INIT_SAL (&sr_sal);
2613
          sr_sal.pc = pc_after_resolver;
2614
 
2615
          check_for_old_step_resume_breakpoint ();
2616
          step_resume_breakpoint =
2617
            set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2618
          if (breakpoints_inserted)
2619
            insert_breakpoints ();
2620
        }
2621
 
2622
      keep_going (ecs);
2623
      return;
2624
    }
2625
 
2626
  /* We can't update step_sp every time through the loop, because
2627
     reading the stack pointer would slow down stepping too much.
2628
     But we can update it every time we leave the step range.  */
2629
  ecs->update_step_sp = 1;
2630
 
2631
  /* Did we just take a signal?  */
2632
  if (PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2633
      && !PC_IN_SIGTRAMP (prev_pc, prev_func_name)
2634
      && INNER_THAN (read_sp (), step_sp))
2635
    {
2636
      /* We've just taken a signal; go until we are back to
2637
         the point where we took it and one more.  */
2638
 
2639
      /* Note: The test above succeeds not only when we stepped
2640
         into a signal handler, but also when we step past the last
2641
         statement of a signal handler and end up in the return stub
2642
         of the signal handler trampoline.  To distinguish between
2643
         these two cases, check that the frame is INNER_THAN the
2644
         previous one below. pai/1997-09-11 */
2645
 
2646
 
2647
      {
2648
        CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
2649
 
2650
        if (INNER_THAN (current_frame, step_frame_address))
2651
          {
2652
            /* We have just taken a signal; go until we are back to
2653
               the point where we took it and one more.  */
2654
 
2655
            /* This code is needed at least in the following case:
2656
               The user types "next" and then a signal arrives (before
2657
               the "next" is done).  */
2658
 
2659
            /* Note that if we are stopped at a breakpoint, then we need
2660
               the step_resume breakpoint to override any breakpoints at
2661
               the same location, so that we will still step over the
2662
               breakpoint even though the signal happened.  */
2663
            struct symtab_and_line sr_sal;
2664
 
2665
            INIT_SAL (&sr_sal);
2666
            sr_sal.symtab = NULL;
2667
            sr_sal.line = 0;
2668
            sr_sal.pc = prev_pc;
2669
            /* We could probably be setting the frame to
2670
               step_frame_address; I don't think anyone thought to
2671
               try it.  */
2672
            check_for_old_step_resume_breakpoint ();
2673
            step_resume_breakpoint =
2674
              set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2675
            if (breakpoints_inserted)
2676
              insert_breakpoints ();
2677
          }
2678
        else
2679
          {
2680
            /* We just stepped out of a signal handler and into
2681
               its calling trampoline.
2682
 
2683
               Normally, we'd call step_over_function from
2684
               here, but for some reason GDB can't unwind the
2685
               stack correctly to find the real PC for the point
2686
               user code where the signal trampoline will return
2687
               -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2688
               But signal trampolines are pretty small stubs of
2689
               code, anyway, so it's OK instead to just
2690
               single-step out.  Note: assuming such trampolines
2691
               don't exhibit recursion on any platform... */
2692
            find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2693
                                      &ecs->stop_func_start,
2694
                                      &ecs->stop_func_end);
2695
            /* Readjust stepping range */
2696
            step_range_start = ecs->stop_func_start;
2697
            step_range_end = ecs->stop_func_end;
2698
            ecs->stepping_through_sigtramp = 1;
2699
          }
2700
      }
2701
 
2702
 
2703
      /* If this is stepi or nexti, make sure that the stepping range
2704
         gets us past that instruction.  */
2705
      if (step_range_end == 1)
2706
        /* FIXME: Does this run afoul of the code below which, if
2707
           we step into the middle of a line, resets the stepping
2708
           range?  */
2709
        step_range_end = (step_range_start = prev_pc) + 1;
2710
 
2711
      ecs->remove_breakpoints_on_following_step = 1;
2712
      keep_going (ecs);
2713
      return;
2714
    }
2715
 
2716
  if (stop_pc == ecs->stop_func_start   /* Quick test */
2717
      || (in_prologue (stop_pc, ecs->stop_func_start) &&
2718
          !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2719
      || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2720
      || ecs->stop_func_name == 0)
2721
    {
2722
      /* It's a subroutine call.  */
2723
 
2724
      if ((step_over_calls == STEP_OVER_NONE)
2725
          || ((step_range_end == 1)
2726
              && in_prologue (prev_pc, ecs->stop_func_start)))
2727
        {
2728
          /* I presume that step_over_calls is only 0 when we're
2729
             supposed to be stepping at the assembly language level
2730
             ("stepi").  Just stop.  */
2731
          /* Also, maybe we just did a "nexti" inside a prolog,
2732
             so we thought it was a subroutine call but it was not.
2733
             Stop as well.  FENN */
2734
          stop_step = 1;
2735
          print_stop_reason (END_STEPPING_RANGE, 0);
2736
          stop_stepping (ecs);
2737
          return;
2738
        }
2739
 
2740
      if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
2741
        {
2742
          /* We're doing a "next".  */
2743
 
2744
          if (PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2745
              && INNER_THAN (step_frame_address, read_sp ()))
2746
            /* We stepped out of a signal handler, and into its
2747
               calling trampoline.  This is misdetected as a
2748
               subroutine call, but stepping over the signal
2749
               trampoline isn't such a bad idea.  In order to do
2750
               that, we have to ignore the value in
2751
               step_frame_address, since that doesn't represent the
2752
               frame that'll reach when we return from the signal
2753
               trampoline.  Otherwise we'll probably continue to the
2754
               end of the program.  */
2755
            step_frame_address = 0;
2756
 
2757
          step_over_function (ecs);
2758
          keep_going (ecs);
2759
          return;
2760
        }
2761
 
2762
      /* If we are in a function call trampoline (a stub between
2763
         the calling routine and the real function), locate the real
2764
         function.  That's what tells us (a) whether we want to step
2765
         into it at all, and (b) what prologue we want to run to
2766
         the end of, if we do step into it.  */
2767
      tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
2768
      if (tmp != 0)
2769
        ecs->stop_func_start = tmp;
2770
      else
2771
        {
2772
          tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc);
2773
          if (tmp)
2774
            {
2775
              struct symtab_and_line xxx;
2776
              /* Why isn't this s_a_l called "sr_sal", like all of the
2777
                 other s_a_l's where this code is duplicated?  */
2778
              INIT_SAL (&xxx);  /* initialize to zeroes */
2779
              xxx.pc = tmp;
2780
              xxx.section = find_pc_overlay (xxx.pc);
2781
              check_for_old_step_resume_breakpoint ();
2782
              step_resume_breakpoint =
2783
                set_momentary_breakpoint (xxx, NULL, bp_step_resume);
2784
              insert_breakpoints ();
2785
              keep_going (ecs);
2786
              return;
2787
            }
2788
        }
2789
 
2790
      /* If we have line number information for the function we
2791
         are thinking of stepping into, step into it.
2792
 
2793
         If there are several symtabs at that PC (e.g. with include
2794
         files), just want to know whether *any* of them have line
2795
         numbers.  find_pc_line handles this.  */
2796
      {
2797
        struct symtab_and_line tmp_sal;
2798
 
2799
        tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2800
        if (tmp_sal.line != 0)
2801
          {
2802
            step_into_function (ecs);
2803
            return;
2804
          }
2805
      }
2806
 
2807
      /* If we have no line number and the step-stop-if-no-debug
2808
         is set, we stop the step so that the user has a chance to
2809
         switch in assembly mode.  */
2810
      if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2811
        {
2812
          stop_step = 1;
2813
          print_stop_reason (END_STEPPING_RANGE, 0);
2814
          stop_stepping (ecs);
2815
          return;
2816
        }
2817
 
2818
      step_over_function (ecs);
2819
      keep_going (ecs);
2820
      return;
2821
 
2822
    }
2823
 
2824
  /* We've wandered out of the step range.  */
2825
 
2826
  ecs->sal = find_pc_line (stop_pc, 0);
2827
 
2828
  if (step_range_end == 1)
2829
    {
2830
      /* It is stepi or nexti.  We always want to stop stepping after
2831
         one instruction.  */
2832
      stop_step = 1;
2833
      print_stop_reason (END_STEPPING_RANGE, 0);
2834
      stop_stepping (ecs);
2835
      return;
2836
    }
2837
 
2838
  /* If we're in the return path from a shared library trampoline,
2839
     we want to proceed through the trampoline when stepping.  */
2840
  if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2841
    {
2842
      CORE_ADDR tmp;
2843
 
2844
      /* Determine where this trampoline returns.  */
2845
      tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
2846
 
2847
      /* Only proceed through if we know where it's going.  */
2848
      if (tmp)
2849
        {
2850
          /* And put the step-breakpoint there and go until there. */
2851
          struct symtab_and_line sr_sal;
2852
 
2853
          INIT_SAL (&sr_sal);   /* initialize to zeroes */
2854
          sr_sal.pc = tmp;
2855
          sr_sal.section = find_pc_overlay (sr_sal.pc);
2856
          /* Do not specify what the fp should be when we stop
2857
             since on some machines the prologue
2858
             is where the new fp value is established.  */
2859
          check_for_old_step_resume_breakpoint ();
2860
          step_resume_breakpoint =
2861
            set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2862
          if (breakpoints_inserted)
2863
            insert_breakpoints ();
2864
 
2865
          /* Restart without fiddling with the step ranges or
2866
             other state.  */
2867
          keep_going (ecs);
2868
          return;
2869
        }
2870
    }
2871
 
2872
  if (ecs->sal.line == 0)
2873
    {
2874
      /* We have no line number information.  That means to stop
2875
         stepping (does this always happen right after one instruction,
2876
         when we do "s" in a function with no line numbers,
2877
         or can this happen as a result of a return or longjmp?).  */
2878
      stop_step = 1;
2879
      print_stop_reason (END_STEPPING_RANGE, 0);
2880
      stop_stepping (ecs);
2881
      return;
2882
    }
2883
 
2884
  if ((stop_pc == ecs->sal.pc)
2885
      && (ecs->current_line != ecs->sal.line
2886
          || ecs->current_symtab != ecs->sal.symtab))
2887
    {
2888
      /* We are at the start of a different line.  So stop.  Note that
2889
         we don't stop if we step into the middle of a different line.
2890
         That is said to make things like for (;;) statements work
2891
         better.  */
2892
      stop_step = 1;
2893
      print_stop_reason (END_STEPPING_RANGE, 0);
2894
      stop_stepping (ecs);
2895
      return;
2896
    }
2897
 
2898
  /* We aren't done stepping.
2899
 
2900
     Optimize by setting the stepping range to the line.
2901
     (We might not be in the original line, but if we entered a
2902
     new line in mid-statement, we continue stepping.  This makes
2903
     things like for(;;) statements work better.)  */
2904
 
2905
  if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2906
    {
2907
      /* If this is the last line of the function, don't keep stepping
2908
         (it would probably step us out of the function).
2909
         This is particularly necessary for a one-line function,
2910
         in which after skipping the prologue we better stop even though
2911
         we will be in mid-line.  */
2912
      stop_step = 1;
2913
      print_stop_reason (END_STEPPING_RANGE, 0);
2914
      stop_stepping (ecs);
2915
      return;
2916
    }
2917
  step_range_start = ecs->sal.pc;
2918
  step_range_end = ecs->sal.end;
2919
  step_frame_address = FRAME_FP (get_current_frame ());
2920
  ecs->current_line = ecs->sal.line;
2921
  ecs->current_symtab = ecs->sal.symtab;
2922
 
2923
  /* In the case where we just stepped out of a function into the middle
2924
     of a line of the caller, continue stepping, but step_frame_address
2925
     must be modified to current frame */
2926
  {
2927
    CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
2928
    if (!(INNER_THAN (current_frame, step_frame_address)))
2929
      step_frame_address = current_frame;
2930
  }
2931
 
2932
  keep_going (ecs);
2933
}
2934
 
2935
/* Are we in the middle of stepping?  */
2936
 
2937
static int
2938
currently_stepping (struct execution_control_state *ecs)
2939
{
2940
  return ((through_sigtramp_breakpoint == NULL
2941
           && !ecs->handling_longjmp
2942
           && ((step_range_end && step_resume_breakpoint == NULL)
2943
               || trap_expected))
2944
          || ecs->stepping_through_solib_after_catch
2945
          || bpstat_should_step ());
2946
}
2947
 
2948
static void
2949
check_sigtramp2 (struct execution_control_state *ecs)
2950
{
2951
  if (trap_expected
2952
      && PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2953
      && !PC_IN_SIGTRAMP (prev_pc, prev_func_name)
2954
      && INNER_THAN (read_sp (), step_sp))
2955
    {
2956
      /* What has happened here is that we have just stepped the
2957
         inferior with a signal (because it is a signal which
2958
         shouldn't make us stop), thus stepping into sigtramp.
2959
 
2960
         So we need to set a step_resume_break_address breakpoint and
2961
         continue until we hit it, and then step.  FIXME: This should
2962
         be more enduring than a step_resume breakpoint; we should
2963
         know that we will later need to keep going rather than
2964
         re-hitting the breakpoint here (see the testsuite,
2965
         gdb.base/signals.exp where it says "exceedingly difficult").  */
2966
 
2967
      struct symtab_and_line sr_sal;
2968
 
2969
      INIT_SAL (&sr_sal);       /* initialize to zeroes */
2970
      sr_sal.pc = prev_pc;
2971
      sr_sal.section = find_pc_overlay (sr_sal.pc);
2972
      /* We perhaps could set the frame if we kept track of what the
2973
         frame corresponding to prev_pc was.  But we don't, so don't.  */
2974
      through_sigtramp_breakpoint =
2975
        set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
2976
      if (breakpoints_inserted)
2977
        insert_breakpoints ();
2978
 
2979
      ecs->remove_breakpoints_on_following_step = 1;
2980
      ecs->another_trap = 1;
2981
    }
2982
}
2983
 
2984
/* Subroutine call with source code we should not step over.  Do step
2985
   to the first line of code in it.  */
2986
 
2987
static void
2988
step_into_function (struct execution_control_state *ecs)
2989
{
2990
  struct symtab *s;
2991
  struct symtab_and_line sr_sal;
2992
 
2993
  s = find_pc_symtab (stop_pc);
2994
  if (s && s->language != language_asm)
2995
    ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2996
 
2997
  ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2998
  /* Use the step_resume_break to step until the end of the prologue,
2999
     even if that involves jumps (as it seems to on the vax under
3000
     4.2).  */
3001
  /* If the prologue ends in the middle of a source line, continue to
3002
     the end of that source line (if it is still within the function).
3003
     Otherwise, just go to end of prologue.  */
3004
#ifdef PROLOGUE_FIRSTLINE_OVERLAP
3005
  /* no, don't either.  It skips any code that's legitimately on the
3006
     first line.  */
3007
#else
3008
  if (ecs->sal.end
3009
      && ecs->sal.pc != ecs->stop_func_start
3010
      && ecs->sal.end < ecs->stop_func_end)
3011
    ecs->stop_func_start = ecs->sal.end;
3012
#endif
3013
 
3014
  if (ecs->stop_func_start == stop_pc)
3015
    {
3016
      /* We are already there: stop now.  */
3017
      stop_step = 1;
3018
      print_stop_reason (END_STEPPING_RANGE, 0);
3019
      stop_stepping (ecs);
3020
      return;
3021
    }
3022
  else
3023
    {
3024
      /* Put the step-breakpoint there and go until there.  */
3025
      INIT_SAL (&sr_sal);       /* initialize to zeroes */
3026
      sr_sal.pc = ecs->stop_func_start;
3027
      sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3028
      /* Do not specify what the fp should be when we stop since on
3029
         some machines the prologue is where the new fp value is
3030
         established.  */
3031
      check_for_old_step_resume_breakpoint ();
3032
      step_resume_breakpoint =
3033
        set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
3034
      if (breakpoints_inserted)
3035
        insert_breakpoints ();
3036
 
3037
      /* And make sure stepping stops right away then.  */
3038
      step_range_end = step_range_start;
3039
    }
3040
  keep_going (ecs);
3041
}
3042
 
3043
/* We've just entered a callee, and we wish to resume until it returns
3044
   to the caller.  Setting a step_resume breakpoint on the return
3045
   address will catch a return from the callee.
3046
 
3047
   However, if the callee is recursing, we want to be careful not to
3048
   catch returns of those recursive calls, but only of THIS instance
3049
   of the call.
3050
 
3051
   To do this, we set the step_resume bp's frame to our current
3052
   caller's frame (step_frame_address, which is set by the "next" or
3053
   "until" command, before execution begins).  */
3054
 
3055
static void
3056
step_over_function (struct execution_control_state *ecs)
3057
{
3058
  struct symtab_and_line sr_sal;
3059
 
3060
  INIT_SAL (&sr_sal);           /* initialize to zeros */
3061
  sr_sal.pc = ADDR_BITS_REMOVE (SAVED_PC_AFTER_CALL (get_current_frame ()));
3062
  sr_sal.section = find_pc_overlay (sr_sal.pc);
3063
 
3064
  check_for_old_step_resume_breakpoint ();
3065
  step_resume_breakpoint =
3066
    set_momentary_breakpoint (sr_sal, get_current_frame (), bp_step_resume);
3067
 
3068
  if (step_frame_address && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
3069
    step_resume_breakpoint->frame = step_frame_address;
3070
 
3071
  if (breakpoints_inserted)
3072
    insert_breakpoints ();
3073
}
3074
 
3075
static void
3076
stop_stepping (struct execution_control_state *ecs)
3077
{
3078
  if (target_has_execution)
3079
    {
3080
      /* Are we stopping for a vfork event?  We only stop when we see
3081
         the child's event.  However, we may not yet have seen the
3082
         parent's event.  And, inferior_ptid is still set to the
3083
         parent's pid, until we resume again and follow either the
3084
         parent or child.
3085
 
3086
         To ensure that we can really touch inferior_ptid (aka, the
3087
         parent process) -- which calls to functions like read_pc
3088
         implicitly do -- wait on the parent if necessary. */
3089
      if ((pending_follow.kind == TARGET_WAITKIND_VFORKED)
3090
          && !pending_follow.fork_event.saw_parent_fork)
3091
        {
3092
          ptid_t parent_ptid;
3093
 
3094
          do
3095
            {
3096
              if (target_wait_hook)
3097
                parent_ptid = target_wait_hook (pid_to_ptid (-1), &(ecs->ws));
3098
              else
3099
                parent_ptid = target_wait (pid_to_ptid (-1), &(ecs->ws));
3100
            }
3101
          while (!ptid_equal (parent_ptid, inferior_ptid));
3102
        }
3103
 
3104
      /* Assuming the inferior still exists, set these up for next
3105
         time, just like we did above if we didn't break out of the
3106
         loop.  */
3107
      prev_pc = read_pc ();
3108
      prev_func_start = ecs->stop_func_start;
3109
      prev_func_name = ecs->stop_func_name;
3110
    }
3111
 
3112
  /* Let callers know we don't want to wait for the inferior anymore.  */
3113
  ecs->wait_some_more = 0;
3114
}
3115
 
3116
/* This function handles various cases where we need to continue
3117
   waiting for the inferior.  */
3118
/* (Used to be the keep_going: label in the old wait_for_inferior) */
3119
 
3120
static void
3121
keep_going (struct execution_control_state *ecs)
3122
{
3123
  /* ??rehrauer: ttrace on HP-UX theoretically allows one to debug a
3124
     vforked child between its creation and subsequent exit or call to
3125
     exec().  However, I had big problems in this rather creaky exec
3126
     engine, getting that to work.  The fundamental problem is that
3127
     I'm trying to debug two processes via an engine that only
3128
     understands a single process with possibly multiple threads.
3129
 
3130
     Hence, this spot is known to have problems when
3131
     target_can_follow_vfork_prior_to_exec returns 1. */
3132
 
3133
  /* Save the pc before execution, to compare with pc after stop.  */
3134
  prev_pc = read_pc ();         /* Might have been DECR_AFTER_BREAK */
3135
  prev_func_start = ecs->stop_func_start;       /* Ok, since if DECR_PC_AFTER
3136
                                                   BREAK is defined, the
3137
                                                   original pc would not have
3138
                                                   been at the start of a
3139
                                                   function. */
3140
  prev_func_name = ecs->stop_func_name;
3141
 
3142
  if (ecs->update_step_sp)
3143
    step_sp = read_sp ();
3144
  ecs->update_step_sp = 0;
3145
 
3146
  /* If we did not do break;, it means we should keep running the
3147
     inferior and not return to debugger.  */
3148
 
3149
  if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
3150
    {
3151
      /* We took a signal (which we are supposed to pass through to
3152
         the inferior, else we'd have done a break above) and we
3153
         haven't yet gotten our trap.  Simply continue.  */
3154
      resume (currently_stepping (ecs), stop_signal);
3155
    }
3156
  else
3157
    {
3158
      /* Either the trap was not expected, but we are continuing
3159
         anyway (the user asked that this signal be passed to the
3160
         child)
3161
         -- or --
3162
         The signal was SIGTRAP, e.g. it was our signal, but we
3163
         decided we should resume from it.
3164
 
3165
         We're going to run this baby now!
3166
 
3167
         Insert breakpoints now, unless we are trying to one-proceed
3168
         past a breakpoint.  */
3169
      /* If we've just finished a special step resume and we don't
3170
         want to hit a breakpoint, pull em out.  */
3171
      if (step_resume_breakpoint == NULL
3172
          && through_sigtramp_breakpoint == NULL
3173
          && ecs->remove_breakpoints_on_following_step)
3174
        {
3175
          ecs->remove_breakpoints_on_following_step = 0;
3176
          remove_breakpoints ();
3177
          breakpoints_inserted = 0;
3178
        }
3179
      else if (!breakpoints_inserted &&
3180
               (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
3181
        {
3182
          breakpoints_failed = insert_breakpoints ();
3183
          if (breakpoints_failed)
3184
            {
3185
              stop_stepping (ecs);
3186
              return;
3187
            }
3188
          breakpoints_inserted = 1;
3189
        }
3190
 
3191
      trap_expected = ecs->another_trap;
3192
 
3193
      /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3194
         specifies that such a signal should be delivered to the
3195
         target program).
3196
 
3197
         Typically, this would occure when a user is debugging a
3198
         target monitor on a simulator: the target monitor sets a
3199
         breakpoint; the simulator encounters this break-point and
3200
         halts the simulation handing control to GDB; GDB, noteing
3201
         that the break-point isn't valid, returns control back to the
3202
         simulator; the simulator then delivers the hardware
3203
         equivalent of a SIGNAL_TRAP to the program being debugged. */
3204
 
3205
      if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
3206
        stop_signal = TARGET_SIGNAL_0;
3207
 
3208
#ifdef SHIFT_INST_REGS
3209
      /* I'm not sure when this following segment applies.  I do know,
3210
         now, that we shouldn't rewrite the regs when we were stopped
3211
         by a random signal from the inferior process.  */
3212
      /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
3213
         (this is only used on the 88k).  */
3214
 
3215
      if (!bpstat_explains_signal (stop_bpstat)
3216
          && (stop_signal != TARGET_SIGNAL_CHLD) && !stopped_by_random_signal)
3217
        SHIFT_INST_REGS ();
3218
#endif /* SHIFT_INST_REGS */
3219
 
3220
      resume (currently_stepping (ecs), stop_signal);
3221
    }
3222
 
3223
  prepare_to_wait (ecs);
3224
}
3225
 
3226
/* This function normally comes after a resume, before
3227
   handle_inferior_event exits.  It takes care of any last bits of
3228
   housekeeping, and sets the all-important wait_some_more flag.  */
3229
 
3230
static void
3231
prepare_to_wait (struct execution_control_state *ecs)
3232
{
3233
  if (ecs->infwait_state == infwait_normal_state)
3234
    {
3235
      overlay_cache_invalid = 1;
3236
 
3237
      /* We have to invalidate the registers BEFORE calling
3238
         target_wait because they can be loaded from the target while
3239
         in target_wait.  This makes remote debugging a bit more
3240
         efficient for those targets that provide critical registers
3241
         as part of their normal status mechanism. */
3242
 
3243
      registers_changed ();
3244
      ecs->waiton_ptid = pid_to_ptid (-1);
3245
      ecs->wp = &(ecs->ws);
3246
    }
3247
  /* This is the old end of the while loop.  Let everybody know we
3248
     want to wait for the inferior some more and get called again
3249
     soon.  */
3250
  ecs->wait_some_more = 1;
3251
}
3252
 
3253
/* Print why the inferior has stopped. We always print something when
3254
   the inferior exits, or receives a signal. The rest of the cases are
3255
   dealt with later on in normal_stop() and print_it_typical().  Ideally
3256
   there should be a call to this function from handle_inferior_event()
3257
   each time stop_stepping() is called.*/
3258
static void
3259
print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3260
{
3261
  switch (stop_reason)
3262
    {
3263
    case STOP_UNKNOWN:
3264
      /* We don't deal with these cases from handle_inferior_event()
3265
         yet. */
3266
      break;
3267
    case END_STEPPING_RANGE:
3268
      /* We are done with a step/next/si/ni command. */
3269
      /* For now print nothing. */
3270
      /* Print a message only if not in the middle of doing a "step n"
3271
         operation for n > 1 */
3272
      if (!step_multi || !stop_step)
3273
        if (ui_out_is_mi_like_p (uiout))
3274
          ui_out_field_string (uiout, "reason", "end-stepping-range");
3275
      break;
3276
    case BREAKPOINT_HIT:
3277
      /* We found a breakpoint. */
3278
      /* For now print nothing. */
3279
      break;
3280
    case SIGNAL_EXITED:
3281
      /* The inferior was terminated by a signal. */
3282
      annotate_signalled ();
3283
      if (ui_out_is_mi_like_p (uiout))
3284
        ui_out_field_string (uiout, "reason", "exited-signalled");
3285
      ui_out_text (uiout, "\nProgram terminated with signal ");
3286
      annotate_signal_name ();
3287
      ui_out_field_string (uiout, "signal-name",
3288
                           target_signal_to_name (stop_info));
3289
      annotate_signal_name_end ();
3290
      ui_out_text (uiout, ", ");
3291
      annotate_signal_string ();
3292
      ui_out_field_string (uiout, "signal-meaning",
3293
                           target_signal_to_string (stop_info));
3294
      annotate_signal_string_end ();
3295
      ui_out_text (uiout, ".\n");
3296
      ui_out_text (uiout, "The program no longer exists.\n");
3297
      break;
3298
    case EXITED:
3299
      /* The inferior program is finished. */
3300
      annotate_exited (stop_info);
3301
      if (stop_info)
3302
        {
3303
          if (ui_out_is_mi_like_p (uiout))
3304
            ui_out_field_string (uiout, "reason", "exited");
3305
          ui_out_text (uiout, "\nProgram exited with code ");
3306
          ui_out_field_fmt (uiout, "exit-code", "0%o",
3307
                            (unsigned int) stop_info);
3308
          ui_out_text (uiout, ".\n");
3309
        }
3310
      else
3311
        {
3312
          if (ui_out_is_mi_like_p (uiout))
3313
            ui_out_field_string (uiout, "reason", "exited-normally");
3314
          ui_out_text (uiout, "\nProgram exited normally.\n");
3315
        }
3316
      break;
3317
    case SIGNAL_RECEIVED:
3318
      /* Signal received. The signal table tells us to print about
3319
         it. */
3320
      annotate_signal ();
3321
      ui_out_text (uiout, "\nProgram received signal ");
3322
      annotate_signal_name ();
3323
      if (ui_out_is_mi_like_p (uiout))
3324
        ui_out_field_string (uiout, "reason", "signal-received");
3325
      ui_out_field_string (uiout, "signal-name",
3326
                           target_signal_to_name (stop_info));
3327
      annotate_signal_name_end ();
3328
      ui_out_text (uiout, ", ");
3329
      annotate_signal_string ();
3330
      ui_out_field_string (uiout, "signal-meaning",
3331
                           target_signal_to_string (stop_info));
3332
      annotate_signal_string_end ();
3333
      ui_out_text (uiout, ".\n");
3334
      break;
3335
    default:
3336
      internal_error (__FILE__, __LINE__,
3337
                      "print_stop_reason: unrecognized enum value");
3338
      break;
3339
    }
3340
}
3341
 
3342
 
3343
/* Here to return control to GDB when the inferior stops for real.
3344
   Print appropriate messages, remove breakpoints, give terminal our modes.
3345
 
3346
   STOP_PRINT_FRAME nonzero means print the executing frame
3347
   (pc, function, args, file, line number and line text).
3348
   BREAKPOINTS_FAILED nonzero means stop was due to error
3349
   attempting to insert breakpoints.  */
3350
 
3351
void
3352
normal_stop (void)
3353
{
3354
  /* As with the notification of thread events, we want to delay
3355
     notifying the user that we've switched thread context until
3356
     the inferior actually stops.
3357
 
3358
     (Note that there's no point in saying anything if the inferior
3359
     has exited!) */
3360
  if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3361
      && target_has_execution)
3362
    {
3363
      target_terminal_ours_for_output ();
3364
      printf_filtered ("[Switching to %s]\n",
3365
                       target_pid_or_tid_to_str (inferior_ptid));
3366
      previous_inferior_ptid = inferior_ptid;
3367
    }
3368
 
3369
  /* Make sure that the current_frame's pc is correct.  This
3370
     is a correction for setting up the frame info before doing
3371
     DECR_PC_AFTER_BREAK */
3372
  if (target_has_execution && get_current_frame ())
3373
    (get_current_frame ())->pc = read_pc ();
3374
 
3375
  if (target_has_execution && breakpoints_inserted)
3376
    {
3377
      if (remove_breakpoints ())
3378
        {
3379
          target_terminal_ours_for_output ();
3380
          printf_filtered ("Cannot remove breakpoints because ");
3381
          printf_filtered ("program is no longer writable.\n");
3382
          printf_filtered ("It might be running in another process.\n");
3383
          printf_filtered ("Further execution is probably impossible.\n");
3384
        }
3385
    }
3386
  breakpoints_inserted = 0;
3387
 
3388
  /* Delete the breakpoint we stopped at, if it wants to be deleted.
3389
     Delete any breakpoint that is to be deleted at the next stop.  */
3390
 
3391
  breakpoint_auto_delete (stop_bpstat);
3392
 
3393
  /* If an auto-display called a function and that got a signal,
3394
     delete that auto-display to avoid an infinite recursion.  */
3395
 
3396
  if (stopped_by_random_signal)
3397
    disable_current_display ();
3398
 
3399
  /* Don't print a message if in the middle of doing a "step n"
3400
     operation for n > 1 */
3401
  if (step_multi && stop_step)
3402
    goto done;
3403
 
3404
  target_terminal_ours ();
3405
 
3406
  /* Look up the hook_stop and run it (CLI internally handles problem
3407
     of stop_command's pre-hook not existing).  */
3408
  if (stop_command)
3409
    catch_errors (hook_stop_stub, stop_command,
3410
                  "Error while running hook_stop:\n", RETURN_MASK_ALL);
3411
 
3412
  if (!target_has_stack)
3413
    {
3414
 
3415
      goto done;
3416
    }
3417
 
3418
  /* Select innermost stack frame - i.e., current frame is frame 0,
3419
     and current location is based on that.
3420
     Don't do this on return from a stack dummy routine,
3421
     or if the program has exited. */
3422
 
3423
  if (!stop_stack_dummy)
3424
    {
3425
      select_frame (get_current_frame ());
3426
 
3427
      /* Print current location without a level number, if
3428
         we have changed functions or hit a breakpoint.
3429
         Print source line if we have one.
3430
         bpstat_print() contains the logic deciding in detail
3431
         what to print, based on the event(s) that just occurred. */
3432
 
3433
      if (stop_print_frame && selected_frame)
3434
        {
3435
          int bpstat_ret;
3436
          int source_flag;
3437
          int do_frame_printing = 1;
3438
 
3439
          bpstat_ret = bpstat_print (stop_bpstat);
3440
          switch (bpstat_ret)
3441
            {
3442
            case PRINT_UNKNOWN:
3443
              if (stop_step
3444
                  && step_frame_address == FRAME_FP (get_current_frame ())
3445
                  && step_start_function == find_pc_function (stop_pc))
3446
                source_flag = SRC_LINE; /* finished step, just print source line */
3447
              else
3448
                source_flag = SRC_AND_LOC;      /* print location and source line */
3449
              break;
3450
            case PRINT_SRC_AND_LOC:
3451
              source_flag = SRC_AND_LOC;        /* print location and source line */
3452
              break;
3453
            case PRINT_SRC_ONLY:
3454
              source_flag = SRC_LINE;
3455
              break;
3456
            case PRINT_NOTHING:
3457
              source_flag = SRC_LINE;   /* something bogus */
3458
              do_frame_printing = 0;
3459
              break;
3460
            default:
3461
              internal_error (__FILE__, __LINE__, "Unknown value.");
3462
            }
3463
          /* For mi, have the same behavior every time we stop:
3464
             print everything but the source line. */
3465
          if (ui_out_is_mi_like_p (uiout))
3466
            source_flag = LOC_AND_ADDRESS;
3467
 
3468
          if (ui_out_is_mi_like_p (uiout))
3469
            ui_out_field_int (uiout, "thread-id",
3470
                              pid_to_thread_id (inferior_ptid));
3471
          /* The behavior of this routine with respect to the source
3472
             flag is:
3473
             SRC_LINE: Print only source line
3474
             LOCATION: Print only location
3475
             SRC_AND_LOC: Print location and source line */
3476
          if (do_frame_printing)
3477
            show_and_print_stack_frame (selected_frame, -1, source_flag);
3478
 
3479
          /* Display the auto-display expressions.  */
3480
          do_displays ();
3481
        }
3482
    }
3483
 
3484
  /* Save the function value return registers, if we care.
3485
     We might be about to restore their previous contents.  */
3486
  if (proceed_to_finish)
3487
    /* NB: The copy goes through to the target picking up the value of
3488
       all the registers.  */
3489
    regcache_cpy (stop_registers, current_regcache);
3490
 
3491
  if (stop_stack_dummy)
3492
    {
3493
      /* Pop the empty frame that contains the stack dummy.
3494
         POP_FRAME ends with a setting of the current frame, so we
3495
         can use that next. */
3496
      POP_FRAME;
3497
      /* Set stop_pc to what it was before we called the function.
3498
         Can't rely on restore_inferior_status because that only gets
3499
         called if we don't stop in the called function.  */
3500
      stop_pc = read_pc ();
3501
      select_frame (get_current_frame ());
3502
    }
3503
 
3504
done:
3505
  annotate_stopped ();
3506
}
3507
 
3508
static int
3509
hook_stop_stub (void *cmd)
3510
{
3511
  execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3512
  return (0);
3513
}
3514
 
3515
int
3516
signal_stop_state (int signo)
3517
{
3518
  return signal_stop[signo];
3519
}
3520
 
3521
int
3522
signal_print_state (int signo)
3523
{
3524
  return signal_print[signo];
3525
}
3526
 
3527
int
3528
signal_pass_state (int signo)
3529
{
3530
  return signal_program[signo];
3531
}
3532
 
3533
int
3534
signal_stop_update (int signo, int state)
3535
{
3536
  int ret = signal_stop[signo];
3537
  signal_stop[signo] = state;
3538
  return ret;
3539
}
3540
 
3541
int
3542
signal_print_update (int signo, int state)
3543
{
3544
  int ret = signal_print[signo];
3545
  signal_print[signo] = state;
3546
  return ret;
3547
}
3548
 
3549
int
3550
signal_pass_update (int signo, int state)
3551
{
3552
  int ret = signal_program[signo];
3553
  signal_program[signo] = state;
3554
  return ret;
3555
}
3556
 
3557
static void
3558
sig_print_header (void)
3559
{
3560
  printf_filtered ("\
3561
Signal        Stop\tPrint\tPass to program\tDescription\n");
3562
}
3563
 
3564
static void
3565
sig_print_info (enum target_signal oursig)
3566
{
3567
  char *name = target_signal_to_name (oursig);
3568
  int name_padding = 13 - strlen (name);
3569
 
3570
  if (name_padding <= 0)
3571
    name_padding = 0;
3572
 
3573
  printf_filtered ("%s", name);
3574
  printf_filtered ("%*.*s ", name_padding, name_padding, "                 ");
3575
  printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3576
  printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3577
  printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3578
  printf_filtered ("%s\n", target_signal_to_string (oursig));
3579
}
3580
 
3581
/* Specify how various signals in the inferior should be handled.  */
3582
 
3583
static void
3584
handle_command (char *args, int from_tty)
3585
{
3586
  char **argv;
3587
  int digits, wordlen;
3588
  int sigfirst, signum, siglast;
3589
  enum target_signal oursig;
3590
  int allsigs;
3591
  int nsigs;
3592
  unsigned char *sigs;
3593
  struct cleanup *old_chain;
3594
 
3595
  if (args == NULL)
3596
    {
3597
      error_no_arg ("signal to handle");
3598
    }
3599
 
3600
  /* Allocate and zero an array of flags for which signals to handle. */
3601
 
3602
  nsigs = (int) TARGET_SIGNAL_LAST;
3603
  sigs = (unsigned char *) alloca (nsigs);
3604
  memset (sigs, 0, nsigs);
3605
 
3606
  /* Break the command line up into args. */
3607
 
3608
  argv = buildargv (args);
3609
  if (argv == NULL)
3610
    {
3611
      nomem (0);
3612
    }
3613
  old_chain = make_cleanup_freeargv (argv);
3614
 
3615
  /* Walk through the args, looking for signal oursigs, signal names, and
3616
     actions.  Signal numbers and signal names may be interspersed with
3617
     actions, with the actions being performed for all signals cumulatively
3618
     specified.  Signal ranges can be specified as <LOW>-<HIGH>. */
3619
 
3620
  while (*argv != NULL)
3621
    {
3622
      wordlen = strlen (*argv);
3623
      for (digits = 0; isdigit ((*argv)[digits]); digits++)
3624
        {;
3625
        }
3626
      allsigs = 0;
3627
      sigfirst = siglast = -1;
3628
 
3629
      if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3630
        {
3631
          /* Apply action to all signals except those used by the
3632
             debugger.  Silently skip those. */
3633
          allsigs = 1;
3634
          sigfirst = 0;
3635
          siglast = nsigs - 1;
3636
        }
3637
      else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3638
        {
3639
          SET_SIGS (nsigs, sigs, signal_stop);
3640
          SET_SIGS (nsigs, sigs, signal_print);
3641
        }
3642
      else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3643
        {
3644
          UNSET_SIGS (nsigs, sigs, signal_program);
3645
        }
3646
      else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3647
        {
3648
          SET_SIGS (nsigs, sigs, signal_print);
3649
        }
3650
      else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3651
        {
3652
          SET_SIGS (nsigs, sigs, signal_program);
3653
        }
3654
      else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3655
        {
3656
          UNSET_SIGS (nsigs, sigs, signal_stop);
3657
        }
3658
      else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3659
        {
3660
          SET_SIGS (nsigs, sigs, signal_program);
3661
        }
3662
      else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3663
        {
3664
          UNSET_SIGS (nsigs, sigs, signal_print);
3665
          UNSET_SIGS (nsigs, sigs, signal_stop);
3666
        }
3667
      else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3668
        {
3669
          UNSET_SIGS (nsigs, sigs, signal_program);
3670
        }
3671
      else if (digits > 0)
3672
        {
3673
          /* It is numeric.  The numeric signal refers to our own
3674
             internal signal numbering from target.h, not to host/target
3675
             signal  number.  This is a feature; users really should be
3676
             using symbolic names anyway, and the common ones like
3677
             SIGHUP, SIGINT, SIGALRM, etc. will work right anyway.  */
3678
 
3679
          sigfirst = siglast = (int)
3680
            target_signal_from_command (atoi (*argv));
3681
          if ((*argv)[digits] == '-')
3682
            {
3683
              siglast = (int)
3684
                target_signal_from_command (atoi ((*argv) + digits + 1));
3685
            }
3686
          if (sigfirst > siglast)
3687
            {
3688
              /* Bet he didn't figure we'd think of this case... */
3689
              signum = sigfirst;
3690
              sigfirst = siglast;
3691
              siglast = signum;
3692
            }
3693
        }
3694
      else
3695
        {
3696
          oursig = target_signal_from_name (*argv);
3697
          if (oursig != TARGET_SIGNAL_UNKNOWN)
3698
            {
3699
              sigfirst = siglast = (int) oursig;
3700
            }
3701
          else
3702
            {
3703
              /* Not a number and not a recognized flag word => complain.  */
3704
              error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3705
            }
3706
        }
3707
 
3708
      /* If any signal numbers or symbol names were found, set flags for
3709
         which signals to apply actions to. */
3710
 
3711
      for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3712
        {
3713
          switch ((enum target_signal) signum)
3714
            {
3715
            case TARGET_SIGNAL_TRAP:
3716
            case TARGET_SIGNAL_INT:
3717
              if (!allsigs && !sigs[signum])
3718
                {
3719
                  if (query ("%s is used by the debugger.\n\
3720
Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3721
                    {
3722
                      sigs[signum] = 1;
3723
                    }
3724
                  else
3725
                    {
3726
                      printf_unfiltered ("Not confirmed, unchanged.\n");
3727
                      gdb_flush (gdb_stdout);
3728
                    }
3729
                }
3730
              break;
3731
            case TARGET_SIGNAL_0:
3732
            case TARGET_SIGNAL_DEFAULT:
3733
            case TARGET_SIGNAL_UNKNOWN:
3734
              /* Make sure that "all" doesn't print these.  */
3735
              break;
3736
            default:
3737
              sigs[signum] = 1;
3738
              break;
3739
            }
3740
        }
3741
 
3742
      argv++;
3743
    }
3744
 
3745
  target_notice_signals (inferior_ptid);
3746
 
3747
  if (from_tty)
3748
    {
3749
      /* Show the results.  */
3750
      sig_print_header ();
3751
      for (signum = 0; signum < nsigs; signum++)
3752
        {
3753
          if (sigs[signum])
3754
            {
3755
              sig_print_info (signum);
3756
            }
3757
        }
3758
    }
3759
 
3760
  do_cleanups (old_chain);
3761
}
3762
 
3763
static void
3764
xdb_handle_command (char *args, int from_tty)
3765
{
3766
  char **argv;
3767
  struct cleanup *old_chain;
3768
 
3769
  /* Break the command line up into args. */
3770
 
3771
  argv = buildargv (args);
3772
  if (argv == NULL)
3773
    {
3774
      nomem (0);
3775
    }
3776
  old_chain = make_cleanup_freeargv (argv);
3777
  if (argv[1] != (char *) NULL)
3778
    {
3779
      char *argBuf;
3780
      int bufLen;
3781
 
3782
      bufLen = strlen (argv[0]) + 20;
3783
      argBuf = (char *) xmalloc (bufLen);
3784
      if (argBuf)
3785
        {
3786
          int validFlag = 1;
3787
          enum target_signal oursig;
3788
 
3789
          oursig = target_signal_from_name (argv[0]);
3790
          memset (argBuf, 0, bufLen);
3791
          if (strcmp (argv[1], "Q") == 0)
3792
            sprintf (argBuf, "%s %s", argv[0], "noprint");
3793
          else
3794
            {
3795
              if (strcmp (argv[1], "s") == 0)
3796
                {
3797
                  if (!signal_stop[oursig])
3798
                    sprintf (argBuf, "%s %s", argv[0], "stop");
3799
                  else
3800
                    sprintf (argBuf, "%s %s", argv[0], "nostop");
3801
                }
3802
              else if (strcmp (argv[1], "i") == 0)
3803
                {
3804
                  if (!signal_program[oursig])
3805
                    sprintf (argBuf, "%s %s", argv[0], "pass");
3806
                  else
3807
                    sprintf (argBuf, "%s %s", argv[0], "nopass");
3808
                }
3809
              else if (strcmp (argv[1], "r") == 0)
3810
                {
3811
                  if (!signal_print[oursig])
3812
                    sprintf (argBuf, "%s %s", argv[0], "print");
3813
                  else
3814
                    sprintf (argBuf, "%s %s", argv[0], "noprint");
3815
                }
3816
              else
3817
                validFlag = 0;
3818
            }
3819
          if (validFlag)
3820
            handle_command (argBuf, from_tty);
3821
          else
3822
            printf_filtered ("Invalid signal handling flag.\n");
3823
          if (argBuf)
3824
            xfree (argBuf);
3825
        }
3826
    }
3827
  do_cleanups (old_chain);
3828
}
3829
 
3830
/* Print current contents of the tables set by the handle command.
3831
   It is possible we should just be printing signals actually used
3832
   by the current target (but for things to work right when switching
3833
   targets, all signals should be in the signal tables).  */
3834
 
3835
static void
3836
signals_info (char *signum_exp, int from_tty)
3837
{
3838
  enum target_signal oursig;
3839
  sig_print_header ();
3840
 
3841
  if (signum_exp)
3842
    {
3843
      /* First see if this is a symbol name.  */
3844
      oursig = target_signal_from_name (signum_exp);
3845
      if (oursig == TARGET_SIGNAL_UNKNOWN)
3846
        {
3847
          /* No, try numeric.  */
3848
          oursig =
3849
            target_signal_from_command (parse_and_eval_long (signum_exp));
3850
        }
3851
      sig_print_info (oursig);
3852
      return;
3853
    }
3854
 
3855
  printf_filtered ("\n");
3856
  /* These ugly casts brought to you by the native VAX compiler.  */
3857
  for (oursig = TARGET_SIGNAL_FIRST;
3858
       (int) oursig < (int) TARGET_SIGNAL_LAST;
3859
       oursig = (enum target_signal) ((int) oursig + 1))
3860
    {
3861
      QUIT;
3862
 
3863
      if (oursig != TARGET_SIGNAL_UNKNOWN
3864
          && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3865
        sig_print_info (oursig);
3866
    }
3867
 
3868
  printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3869
}
3870
 
3871
struct inferior_status
3872
{
3873
  enum target_signal stop_signal;
3874
  CORE_ADDR stop_pc;
3875
  bpstat stop_bpstat;
3876
  int stop_step;
3877
  int stop_stack_dummy;
3878
  int stopped_by_random_signal;
3879
  int trap_expected;
3880
  CORE_ADDR step_range_start;
3881
  CORE_ADDR step_range_end;
3882
  CORE_ADDR step_frame_address;
3883
  enum step_over_calls_kind step_over_calls;
3884
  CORE_ADDR step_resume_break_address;
3885
  int stop_after_trap;
3886
  int stop_soon_quietly;
3887
  struct regcache *stop_registers;
3888
 
3889
  /* These are here because if call_function_by_hand has written some
3890
     registers and then decides to call error(), we better not have changed
3891
     any registers.  */
3892
  struct regcache *registers;
3893
 
3894
  /* A frame unique identifier.  */
3895
  struct frame_id selected_frame_id;
3896
 
3897
  int breakpoint_proceeded;
3898
  int restore_stack_info;
3899
  int proceed_to_finish;
3900
};
3901
 
3902
void
3903
write_inferior_status_register (struct inferior_status *inf_status, int regno,
3904
                                LONGEST val)
3905
{
3906
  int size = REGISTER_RAW_SIZE (regno);
3907
  void *buf = alloca (size);
3908
  store_signed_integer (buf, size, val);
3909
  regcache_raw_write (inf_status->registers, regno, buf);
3910
}
3911
 
3912
/* Save all of the information associated with the inferior<==>gdb
3913
   connection.  INF_STATUS is a pointer to a "struct inferior_status"
3914
   (defined in inferior.h).  */
3915
 
3916
struct inferior_status *
3917
save_inferior_status (int restore_stack_info)
3918
{
3919
  struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3920
 
3921
  inf_status->stop_signal = stop_signal;
3922
  inf_status->stop_pc = stop_pc;
3923
  inf_status->stop_step = stop_step;
3924
  inf_status->stop_stack_dummy = stop_stack_dummy;
3925
  inf_status->stopped_by_random_signal = stopped_by_random_signal;
3926
  inf_status->trap_expected = trap_expected;
3927
  inf_status->step_range_start = step_range_start;
3928
  inf_status->step_range_end = step_range_end;
3929
  inf_status->step_frame_address = step_frame_address;
3930
  inf_status->step_over_calls = step_over_calls;
3931
  inf_status->stop_after_trap = stop_after_trap;
3932
  inf_status->stop_soon_quietly = stop_soon_quietly;
3933
  /* Save original bpstat chain here; replace it with copy of chain.
3934
     If caller's caller is walking the chain, they'll be happier if we
3935
     hand them back the original chain when restore_inferior_status is
3936
     called.  */
3937
  inf_status->stop_bpstat = stop_bpstat;
3938
  stop_bpstat = bpstat_copy (stop_bpstat);
3939
  inf_status->breakpoint_proceeded = breakpoint_proceeded;
3940
  inf_status->restore_stack_info = restore_stack_info;
3941
  inf_status->proceed_to_finish = proceed_to_finish;
3942
 
3943
  inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3944
 
3945
  inf_status->registers = regcache_dup (current_regcache);
3946
 
3947
  get_frame_id (selected_frame, &inf_status->selected_frame_id);
3948
  return inf_status;
3949
}
3950
 
3951
static int
3952
restore_selected_frame (void *args)
3953
{
3954
  struct frame_id *fid = (struct frame_id *) args;
3955
  struct frame_info *frame;
3956
 
3957
  frame = frame_find_by_id (*fid);
3958
 
3959
  /* If inf_status->selected_frame_address is NULL, there was no
3960
     previously selected frame.  */
3961
  if (frame == NULL)
3962
    {
3963
      warning ("Unable to restore previously selected frame.\n");
3964
      return 0;
3965
    }
3966
 
3967
  select_frame (frame);
3968
 
3969
  return (1);
3970
}
3971
 
3972
void
3973
restore_inferior_status (struct inferior_status *inf_status)
3974
{
3975
  stop_signal = inf_status->stop_signal;
3976
  stop_pc = inf_status->stop_pc;
3977
  stop_step = inf_status->stop_step;
3978
  stop_stack_dummy = inf_status->stop_stack_dummy;
3979
  stopped_by_random_signal = inf_status->stopped_by_random_signal;
3980
  trap_expected = inf_status->trap_expected;
3981
  step_range_start = inf_status->step_range_start;
3982
  step_range_end = inf_status->step_range_end;
3983
  step_frame_address = inf_status->step_frame_address;
3984
  step_over_calls = inf_status->step_over_calls;
3985
  stop_after_trap = inf_status->stop_after_trap;
3986
  stop_soon_quietly = inf_status->stop_soon_quietly;
3987
  bpstat_clear (&stop_bpstat);
3988
  stop_bpstat = inf_status->stop_bpstat;
3989
  breakpoint_proceeded = inf_status->breakpoint_proceeded;
3990
  proceed_to_finish = inf_status->proceed_to_finish;
3991
 
3992
  /* FIXME: Is the restore of stop_registers always needed. */
3993
  regcache_xfree (stop_registers);
3994
  stop_registers = inf_status->stop_registers;
3995
 
3996
  /* The inferior can be gone if the user types "print exit(0)"
3997
     (and perhaps other times).  */
3998
  if (target_has_execution)
3999
    /* NB: The register write goes through to the target.  */
4000
    regcache_cpy (current_regcache, inf_status->registers);
4001
  regcache_xfree (inf_status->registers);
4002
 
4003
  /* FIXME: If we are being called after stopping in a function which
4004
     is called from gdb, we should not be trying to restore the
4005
     selected frame; it just prints a spurious error message (The
4006
     message is useful, however, in detecting bugs in gdb (like if gdb
4007
     clobbers the stack)).  In fact, should we be restoring the
4008
     inferior status at all in that case?  .  */
4009
 
4010
  if (target_has_stack && inf_status->restore_stack_info)
4011
    {
4012
      /* The point of catch_errors is that if the stack is clobbered,
4013
         walking the stack might encounter a garbage pointer and
4014
         error() trying to dereference it.  */
4015
      if (catch_errors
4016
          (restore_selected_frame, &inf_status->selected_frame_id,
4017
           "Unable to restore previously selected frame:\n",
4018
           RETURN_MASK_ERROR) == 0)
4019
        /* Error in restoring the selected frame.  Select the innermost
4020
           frame.  */
4021
        select_frame (get_current_frame ());
4022
 
4023
    }
4024
 
4025
  xfree (inf_status);
4026
}
4027
 
4028
static void
4029
do_restore_inferior_status_cleanup (void *sts)
4030
{
4031
  restore_inferior_status (sts);
4032
}
4033
 
4034
struct cleanup *
4035
make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4036
{
4037
  return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4038
}
4039
 
4040
void
4041
discard_inferior_status (struct inferior_status *inf_status)
4042
{
4043
  /* See save_inferior_status for info on stop_bpstat. */
4044
  bpstat_clear (&inf_status->stop_bpstat);
4045
  regcache_xfree (inf_status->registers);
4046
  regcache_xfree (inf_status->stop_registers);
4047
  xfree (inf_status);
4048
}
4049
 
4050
/* Oft used ptids */
4051
ptid_t null_ptid;
4052
ptid_t minus_one_ptid;
4053
 
4054
/* Create a ptid given the necessary PID, LWP, and TID components.  */
4055
 
4056
ptid_t
4057
ptid_build (int pid, long lwp, long tid)
4058
{
4059
  ptid_t ptid;
4060
 
4061
  ptid.pid = pid;
4062
  ptid.lwp = lwp;
4063
  ptid.tid = tid;
4064
  return ptid;
4065
}
4066
 
4067
/* Create a ptid from just a pid.  */
4068
 
4069
ptid_t
4070
pid_to_ptid (int pid)
4071
{
4072
  return ptid_build (pid, 0, 0);
4073
}
4074
 
4075
/* Fetch the pid (process id) component from a ptid.  */
4076
 
4077
int
4078
ptid_get_pid (ptid_t ptid)
4079
{
4080
  return ptid.pid;
4081
}
4082
 
4083
/* Fetch the lwp (lightweight process) component from a ptid.  */
4084
 
4085
long
4086
ptid_get_lwp (ptid_t ptid)
4087
{
4088
  return ptid.lwp;
4089
}
4090
 
4091
/* Fetch the tid (thread id) component from a ptid.  */
4092
 
4093
long
4094
ptid_get_tid (ptid_t ptid)
4095
{
4096
  return ptid.tid;
4097
}
4098
 
4099
/* ptid_equal() is used to test equality of two ptids.  */
4100
 
4101
int
4102
ptid_equal (ptid_t ptid1, ptid_t ptid2)
4103
{
4104
  return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4105
          && ptid1.tid == ptid2.tid);
4106
}
4107
 
4108
/* restore_inferior_ptid() will be used by the cleanup machinery
4109
   to restore the inferior_ptid value saved in a call to
4110
   save_inferior_ptid().  */
4111
 
4112
static void
4113
restore_inferior_ptid (void *arg)
4114
{
4115
  ptid_t *saved_ptid_ptr = arg;
4116
  inferior_ptid = *saved_ptid_ptr;
4117
  xfree (arg);
4118
}
4119
 
4120
/* Save the value of inferior_ptid so that it may be restored by a
4121
   later call to do_cleanups().  Returns the struct cleanup pointer
4122
   needed for later doing the cleanup.  */
4123
 
4124
struct cleanup *
4125
save_inferior_ptid (void)
4126
{
4127
  ptid_t *saved_ptid_ptr;
4128
 
4129
  saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4130
  *saved_ptid_ptr = inferior_ptid;
4131
  return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4132
}
4133
 
4134
 
4135
static void
4136
build_infrun (void)
4137
{
4138
  stop_registers = regcache_xmalloc (current_gdbarch);
4139
}
4140
 
4141
void
4142
_initialize_infrun (void)
4143
{
4144
  register int i;
4145
  register int numsigs;
4146
  struct cmd_list_element *c;
4147
 
4148
  register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
4149
  register_gdbarch_swap (NULL, 0, build_infrun);
4150
 
4151
  add_info ("signals", signals_info,
4152
            "What debugger does when program gets various signals.\n\
4153
Specify a signal as argument to print info on that signal only.");
4154
  add_info_alias ("handle", "signals", 0);
4155
 
4156
  add_com ("handle", class_run, handle_command,
4157
           concat ("Specify how to handle a signal.\n\
4158
Args are signals and actions to apply to those signals.\n\
4159
Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4160
from 1-15 are allowed for compatibility with old versions of GDB.\n\
4161
Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4162
The special arg \"all\" is recognized to mean all signals except those\n\
4163
used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4164
\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4165
Stop means reenter debugger if this signal happens (implies print).\n\
4166
Print means print a message if this signal happens.\n\
4167
Pass means let program see this signal; otherwise program doesn't know.\n\
4168
Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4169
Pass and Stop may be combined.", NULL));
4170
  if (xdb_commands)
4171
    {
4172
      add_com ("lz", class_info, signals_info,
4173
               "What debugger does when program gets various signals.\n\
4174
Specify a signal as argument to print info on that signal only.");
4175
      add_com ("z", class_run, xdb_handle_command,
4176
               concat ("Specify how to handle a signal.\n\
4177
Args are signals and actions to apply to those signals.\n\
4178
Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4179
from 1-15 are allowed for compatibility with old versions of GDB.\n\
4180
Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4181
The special arg \"all\" is recognized to mean all signals except those\n\
4182
used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
4183
\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4184
nopass), \"Q\" (noprint)\n\
4185
Stop means reenter debugger if this signal happens (implies print).\n\
4186
Print means print a message if this signal happens.\n\
4187
Pass means let program see this signal; otherwise program doesn't know.\n\
4188
Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4189
Pass and Stop may be combined.", NULL));
4190
    }
4191
 
4192
  if (!dbx_commands)
4193
    stop_command =
4194
      add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
4195
This allows you to set a list of commands to be run each time execution\n\
4196
of the program stops.", &cmdlist);
4197
 
4198
  numsigs = (int) TARGET_SIGNAL_LAST;
4199
  signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4200
  signal_print = (unsigned char *)
4201
    xmalloc (sizeof (signal_print[0]) * numsigs);
4202
  signal_program = (unsigned char *)
4203
    xmalloc (sizeof (signal_program[0]) * numsigs);
4204
  for (i = 0; i < numsigs; i++)
4205
    {
4206
      signal_stop[i] = 1;
4207
      signal_print[i] = 1;
4208
      signal_program[i] = 1;
4209
    }
4210
 
4211
  /* Signals caused by debugger's own actions
4212
     should not be given to the program afterwards.  */
4213
  signal_program[TARGET_SIGNAL_TRAP] = 0;
4214
  signal_program[TARGET_SIGNAL_INT] = 0;
4215
 
4216
  /* Signals that are not errors should not normally enter the debugger.  */
4217
  signal_stop[TARGET_SIGNAL_ALRM] = 0;
4218
  signal_print[TARGET_SIGNAL_ALRM] = 0;
4219
  signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4220
  signal_print[TARGET_SIGNAL_VTALRM] = 0;
4221
  signal_stop[TARGET_SIGNAL_PROF] = 0;
4222
  signal_print[TARGET_SIGNAL_PROF] = 0;
4223
  signal_stop[TARGET_SIGNAL_CHLD] = 0;
4224
  signal_print[TARGET_SIGNAL_CHLD] = 0;
4225
  signal_stop[TARGET_SIGNAL_IO] = 0;
4226
  signal_print[TARGET_SIGNAL_IO] = 0;
4227
  signal_stop[TARGET_SIGNAL_POLL] = 0;
4228
  signal_print[TARGET_SIGNAL_POLL] = 0;
4229
  signal_stop[TARGET_SIGNAL_URG] = 0;
4230
  signal_print[TARGET_SIGNAL_URG] = 0;
4231
  signal_stop[TARGET_SIGNAL_WINCH] = 0;
4232
  signal_print[TARGET_SIGNAL_WINCH] = 0;
4233
 
4234
  /* These signals are used internally by user-level thread
4235
     implementations.  (See signal(5) on Solaris.)  Like the above
4236
     signals, a healthy program receives and handles them as part of
4237
     its normal operation.  */
4238
  signal_stop[TARGET_SIGNAL_LWP] = 0;
4239
  signal_print[TARGET_SIGNAL_LWP] = 0;
4240
  signal_stop[TARGET_SIGNAL_WAITING] = 0;
4241
  signal_print[TARGET_SIGNAL_WAITING] = 0;
4242
  signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4243
  signal_print[TARGET_SIGNAL_CANCEL] = 0;
4244
 
4245
#ifdef SOLIB_ADD
4246
  add_show_from_set
4247
    (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
4248
                  (char *) &stop_on_solib_events,
4249
                  "Set stopping for shared library events.\n\
4250
If nonzero, gdb will give control to the user when the dynamic linker\n\
4251
notifies gdb of shared library events.  The most common event of interest\n\
4252
to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
4253
#endif
4254
 
4255
  c = add_set_enum_cmd ("follow-fork-mode",
4256
                        class_run,
4257
                        follow_fork_mode_kind_names, &follow_fork_mode_string,
4258
/* ??rehrauer:  The "both" option is broken, by what may be a 10.20
4259
   kernel problem.  It's also not terribly useful without a GUI to
4260
   help the user drive two debuggers.  So for now, I'm disabling
4261
   the "both" option.  */
4262
/*                      "Set debugger response to a program call of fork \
4263
   or vfork.\n\
4264
   A fork or vfork creates a new process.  follow-fork-mode can be:\n\
4265
   parent  - the original process is debugged after a fork\n\
4266
   child   - the new process is debugged after a fork\n\
4267
   both    - both the parent and child are debugged after a fork\n\
4268
   ask     - the debugger will ask for one of the above choices\n\
4269
   For \"both\", another copy of the debugger will be started to follow\n\
4270
   the new child process.  The original debugger will continue to follow\n\
4271
   the original parent process.  To distinguish their prompts, the\n\
4272
   debugger copy's prompt will be changed.\n\
4273
   For \"parent\" or \"child\", the unfollowed process will run free.\n\
4274
   By default, the debugger will follow the parent process.",
4275
 */
4276
                        "Set debugger response to a program call of fork \
4277
or vfork.\n\
4278
A fork or vfork creates a new process.  follow-fork-mode can be:\n\
4279
  parent  - the original process is debugged after a fork\n\
4280
  child   - the new process is debugged after a fork\n\
4281
  ask     - the debugger will ask for one of the above choices\n\
4282
For \"parent\" or \"child\", the unfollowed process will run free.\n\
4283
By default, the debugger will follow the parent process.", &setlist);
4284
  add_show_from_set (c, &showlist);
4285
 
4286
  c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums,        /* array of string names */
4287
                        &scheduler_mode,        /* current mode  */
4288
                        "Set mode for locking scheduler during execution.\n\
4289
off  == no locking (threads may preempt at any time)\n\
4290
on   == full locking (no thread except the current thread may run)\n\
4291
step == scheduler locked during every single-step operation.\n\
4292
        In this mode, no other thread may run during a step command.\n\
4293
        Other threads may run while stepping over a function call ('next').", &setlist);
4294
 
4295
  set_cmd_sfunc (c, set_schedlock_func);        /* traps on target vector */
4296
  add_show_from_set (c, &showlist);
4297
 
4298
  c = add_set_cmd ("step-mode", class_run,
4299
                   var_boolean, (char *) &step_stop_if_no_debug,
4300
                   "Set mode of the step operation. When set, doing a step over a\n\
4301
function without debug line information will stop at the first\n\
4302
instruction of that function. Otherwise, the function is skipped and\n\
4303
the step command stops at a different source line.", &setlist);
4304
  add_show_from_set (c, &showlist);
4305
 
4306
  /* ptid initializations */
4307
  null_ptid = ptid_build (0, 0, 0);
4308
  minus_one_ptid = ptid_build (-1, 0, 0);
4309
  inferior_ptid = null_ptid;
4310
  target_last_wait_ptid = minus_one_ptid;
4311
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.