OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [tags/] [nog_patch_34/] [or1ksim/] [cuc/] [timings.c] - Blame information for rev 883

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 879 markom
/* timings.c -- OpenRISC Custom Unit Compiler, timing and size estimation
2
 *    Copyright (C) 2002 Marko Mlinar, markom@opencores.org
3
 *
4
 *    This file is part of OpenRISC 1000 Architectural Simulator.
5
 *
6
 *    This program is free software; you can redistribute it and/or modify
7
 *    it under the terms of the GNU General Public License as published by
8
 *    the Free Software Foundation; either version 2 of the License, or
9
 *    (at your option) any later version.
10
 *
11
 *    This program is distributed in the hope that it will be useful,
12
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 *    GNU General Public License for more details.
15
 *
16
 *    You should have received a copy of the GNU General Public License
17
 *    along with this program; if not, write to the Free Software
18
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
 
20
#include <stdio.h>
21
#include <stdlib.h>
22
#include <stdarg.h>
23
#include <assert.h>
24
#include <math.h>
25
#include "cuc.h"
26
#include "insn.h"
27
 
28
/* average memory delays in cycles {read single, read burst, write single, write burst} */
29
static const int mdelay[4] = {4, 1, 3, 1};
30
 
31
double cycle_duration;
32
double max_bb_delay;
33
 
34
static cuc_timing_table *timing_table;
35
 
36 883 markom
/* Returns instruction delay */
37
double insn_time (cuc_insn *ii)
38 879 markom
{
39
  if (ii->opt[2] & OPT_CONST)
40
    return timing_table[ii->index].delayi;
41
  else return timing_table[ii->index].delay;
42
}
43
 
44 883 markom
/* Returns instruction size */
45
double insn_size (cuc_insn *ii)
46
{
47
  if (ii->opt[2] & OPT_CONST)
48
    return timing_table[ii->index].sizei;
49
  else return timing_table[ii->index].size;
50
}
51
 
52
/* Returns normal instruction size */
53
double ii_size (int index, int imm)
54
{
55
  if (imm) return timing_table[index].sizei;
56
  else return timing_table[index].size;
57
}
58
 
59 879 markom
/* Returns dataflow tree height in cycles */
60
static double max_delay (cuc_func *f, int b)
61
{
62
  double max_d = 0.;
63
  double *d;
64
  cuc_bb *bb = &f->bb[b];
65
  int i, j;
66
  d = (double *) malloc (sizeof (double) * bb->ninsn);
67
  for (i = 0; i < bb->ninsn; i++) {
68
    double md = 0.;
69
    for (j = 0; j < MAX_OPERANDS; j++) {
70
      int op = bb->insn[i].op[j];
71
      if (bb->insn[i].opt[j] & OPT_REF && op >= 0 && REF_BB (op) == b && REF_I (op) < i) {
72
        double t = d[REF_I (op)];
73
        if (t > md) md = t;
74
      }
75
    }
76
    d[i] = md + insn_time (&bb->insn[i]);
77
    if (d[i] > max_d) max_d = d[i];
78
  }
79
  free (d);
80
  //printf ("max_d%i=%f\n", b, max_d);
81
  return max_d;
82
}
83
 
84
/* Calculates memory delay of a single run of a basic block */
85
static int memory_delay (cuc_func *f, int b)
86
{
87
  int i;
88
  int d = 0;
89
  for (i = 0; i < f->nmsched; i++)
90
    if (REF_BB (f->msched[i]) == b) {
91
      if (f->mtype[i] & MT_WRITE) {
92
        if (!(f->mtype[i] & MT_BURST) || f->mtype[i] & MT_BURSTE) d += mdelay[2];
93
        else d += mdelay[3];
94
      } else {
95
        if (!(f->mtype[i] & MT_BURST) || f->mtype[i] & MT_BURSTE) d += mdelay[0];
96
        else d += mdelay[1];
97
      }
98
    }
99
  //printf ("md%i=%i\n", b, d);
100
  return d;
101
}
102
 
103
/* Cuts the tree and marks registers */
104
void cut_tree (cuc_func *f, int b, double sd)
105
{
106
  int i, j;
107
  double *depths;
108
  cuc_bb *bb = &f->bb[b];
109
  depths = (double *) malloc (sizeof (double) * bb->ninsn);
110
 
111
  for (i = 0; i < bb->ninsn; i++) {
112
    double md = 0.;
113
    int mg = 0;
114
    for (j = 0; j < MAX_OPERANDS; j++) {
115
      int op = bb->insn[i].op[j];
116
      if (bb->insn[i].opt[j] & OPT_REF && op >= 0 && REF_BB (op) == b && REF_I (op) < i) {
117
        double t = depths[REF_I (op)];
118
        if (f->INSN(op).type & IT_CUT) {
119
          if (f->INSN(op).tmp + 1 >= mg) {
120
            if (f->INSN(op).tmp + 1 > mg) md = 0.;
121
            mg = f->INSN(op).tmp + 1;
122
            if (t > md) md = t;
123
          }
124
        } else {
125
          if (f->INSN(op).tmp >= mg) {
126
            if (f->INSN(op).tmp > mg) md = 0.;
127
            mg = f->INSN(op).tmp;
128
            if (t > md) md = t;
129
          }
130
        }
131
      }
132
    }
133
    //printf ("%2x md%.1f ", i, md);
134
    md += insn_time (&bb->insn[i]);
135
    //printf ("md%.1f mg%i %.1f\n", md, mg, sd);
136
    bb->insn[i].tmp = mg;
137
    if (md > sd) {
138
      bb->insn[i].type |= IT_CUT;
139
      if (md > cycle_duration)
140
        log ("WARNING: operation t%x_%x may need to be registered inbetween\n", b, i);
141
      depths[i] = 0.;
142
    } else depths[i] = md;
143
  }
144
  free (depths);
145
}
146
 
147
/* How many cycles we need now to get through the BB */
148
static int new_bb_cycles (cuc_func *f, int b, int cut)
149
{
150
  long d;
151
  double x = max_delay (f, b);
152
  d = ceil (x / cycle_duration);
153
  if (d < 1) d = 1;
154
  if (cut && x > cycle_duration) cut_tree (f, b, x / d);
155
 
156
  if (x / d > max_bb_delay) max_bb_delay = x / d;
157 883 markom
 
158 879 markom
  return memory_delay (f, b) + d;
159
}
160
 
161
/* Cuts the tree and marks registers */
162
void mark_cut (cuc_func *f)
163
{
164
  int b, i;
165
  for (b = 0; b < f->num_bb; b++)
166
    for (i = 0; i < f->bb[b].ninsn; i++)
167
      f->bb[b].insn[i].tmp = 0; /* Set starting groups */
168
  if (no_multicycle)
169
    for (b = 0; b < f->num_bb; b++)
170
      new_bb_cycles (f, b, 1);
171
}
172
 
173
/* Returns basic block circuit area */
174
static double bb_size (cuc_bb *bb)
175
{
176
  int i;
177
  double d = 0.;
178
  for (i = 0; i < bb->ninsn; i++) {
179
    if (bb->insn[i].opt[2] & OPT_CONST)
180
      d = d + timing_table[bb->insn[i].index].sizei;
181
    else d = d + timing_table[bb->insn[i].index].size;
182
  }
183
  return d;
184
}
185
 
186
/* Recalculates bb[].cnt values, based on generated profile file */
187
void recalc_cnts (cuc_func *f, char *bb_filename)
188
{
189
  int i, r, b, prevbb = -1, prevcnt = 0;
190
  int buf[256];
191
  const int bufsize = 256;
192
  FILE *fi = fopen (bb_filename, "rb");
193
 
194
  assert (fi);
195
 
196
  /* initialize counts */
197
  for (b = 0; b < f->num_bb; b++) f->bb[b].cnt = 0;
198
 
199
  /* read control flow from file and set counts */
200
  do {
201
    r = fread (buf, sizeof (int), bufsize, fi);
202
    for (i = 0; i < r; i++) {
203
      b = f->init_bb_reloc[buf[i]];
204
      if (b < 0) continue;
205
      /* Were we in the loop? */
206
      if (b == prevbb) {
207
        prevcnt++;
208
      } else {
209
        /* End the block */
210
        if (prevbb >= 0) f->bb[prevbb].cnt += prevcnt / f->bb[prevbb].unrolled + 1;
211
        prevcnt = 0;
212
        prevbb = b;
213
      }
214
    }
215
  } while (r == bufsize);
216
 
217
  fclose (fi);
218
}
219
 
220
/* Analizes current version of design and places results into timings structure */
221
void analyse_timings (cuc_func *f, cuc_timings *timings)
222
{
223
  long new_time = 0;
224
  double size = 0.;
225 883 markom
  int b, i;
226 879 markom
 
227 883 markom
  /* Add time needed for mtspr/mfspr */
228
  for (i = 0; i < MAX_REGS; i++) if (f->used_regs[i]) new_time++;
229
  new_time++; /* always one mfspr at the end */
230
  new_time *= f->num_runs;
231
 
232 879 markom
  max_bb_delay = 0.;
233
  for (b = 0; b < f->num_bb; b++) {
234
    new_time += new_bb_cycles (f, b, 0) * f->bb[b].cnt;
235
    size = size + bb_size (&f->bb[b]);
236
  }
237
  timings->new_time = new_time;
238
  timings->size = size;
239
  log ("Max circuit delay %.2fns; max circuit clock speed %.1fMHz\n",
240
                  max_bb_delay, 1000. / max_bb_delay);
241
}
242
 
243
/* Loads in the specified timings table */
244
void load_timing_table (char *filename)
245
{
246
  int i;
247
  FILE *fi;
248
 
249
  log ("Loading timings from %s\n", filename);
250
  log ("Using clock delay %.2fns (frequency %.0fMHz)\n", cycle_duration, 1000. / cycle_duration);
251
  assert (fi = fopen (filename, "rt"));
252
 
253
  timing_table = (cuc_timing_table *)malloc ((II_LAST + 1) * sizeof (cuc_timing_table));
254
  assert (timing_table);
255
  for (i = 0; i <= II_LAST; i++) {
256
    timing_table[i].size = -1.;
257
    timing_table[i].sizei = -1.;
258
    timing_table[i].delay = -1.;
259
    timing_table[i].delayi = -1.;
260
  }
261
 
262
  while (!feof(fi)) {
263
    char tmp[256];
264
    int index;
265
    double a[4];
266
    char c;
267
    if (fscanf (fi, "%s", tmp) != 1) break;
268
    if (tmp[0] == '#') {
269
      while (!feof (fi) && fgetc (fi) != '\n');
270
      continue;
271
    }
272
    for (i = 0; i <= II_LAST; i++)
273
      if (strcmp (known[i].name, tmp) == 0) {
274
        index = i;
275
        break;
276
      }
277
    assert (index <= II_LAST);
278
    i = index;
279
    if (fscanf (fi, "%lf%lf%lf%lf\n", &timing_table[i].size,
280
                &timing_table[i].sizei, &timing_table[i].delay, &timing_table[i].delayi) != 4) break;
281
    /*printf ("!%s size %f,%f delay %f,%f\n", known[i].name, timing_table[i].size,
282
                    timing_table[i].sizei, timing_table[i].delay, timing_table[i].delayi);*/
283
  }
284
 
285
  /* Was everything initialized? */
286
  for (i = 0; i <= II_LAST; i++) {
287
    assert (timing_table[i].size >= 0 && timing_table[i].sizei >= 0
288
     && timing_table[i].delay >= 0 && timing_table[i].delayi >= 0);
289
    /*printf ("%s size %f,%f delay %f,%f\n", known[i], timing_table[i].size,
290
                    timing_table[i].sizei, timing_table[i].delay, timing_table[i].delayi);*/
291
  }
292
 
293
  fclose (fi);
294
}
295
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.