OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [tags/] [nog_patch_65/] [or1ksim/] [cpu/] [or32/] [op_support.c] - Blame information for rev 1777

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1452 nogj
/* op_support.c -- Support routines for micro operations
2
   Copyright (C) 2005 György `nog' Jeney, nog@sdf.lonestar.org
3
 
4
This file is part of OpenRISC 1000 Architectural Simulator.
5
 
6
This program is free software; you can redistribute it and/or modify
7
it under the terms of the GNU General Public License as published by
8
the Free Software Foundation; either version 2 of the License, or
9
(at your option) any later version.
10
 
11
This program is distributed in the hope that it will be useful,
12
but WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
GNU General Public License for more details.
15
 
16
You should have received a copy of the GNU General Public License
17
along with this program; if not, write to the Free Software
18
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
 
20
 
21
#include <stdlib.h>
22
 
23
#include "config.h"
24
 
25
#ifdef HAVE_INTTYPES_H
26
#include <inttypes.h>
27
#endif
28
 
29
#include "port.h"
30
#include "arch.h"
31
#include "opcode/or32.h"
32
#include "sim-config.h"
33
#include "spr_defs.h"
34
#include "except.h"
35
#include "immu.h"
36
#include "abstract.h"
37
#include "execute.h"
38
#include "sched.h"
39
 
40
#include "i386_regs.h"
41
 
42
#include "dyn_rec.h"
43
#include "op_support.h"
44
 
45
#include "rec_i386.h"
46
 
47
/* Stuff that is really a `micro' operation but is rather big (or for some other
48
 * reason (like calling exit()) */
49
 
50
void upd_reg_from_t(oraddr_t pc)
51
{
52
  int reg;
53
 
54
  reg = cpu_state.curr_page->ts[(pc & (PAGE_SIZE - 1)) / 2];
55
 
56
  if(reg & 0x1f)
57
    cpu_state.reg[reg & 0x1f] = cpu_state.t0;
58
 
59
  if((reg >> 5) & 0x1f)
60
    cpu_state.reg[(reg >> 5) & 0x1f] = cpu_state.t1;
61
 
62
  if((reg >> 10) & 0x1f)
63
    cpu_state.reg[(reg >> 10) & 0x1f] = cpu_state.t2;
64
}
65
 
66
void op_support_nop_exit(void)
67
{
68
  upd_reg_from_t(get_pc());
69
  PRINTF("exit(%"PRIdREG")\n", cpu_state.reg[3]);
70
  fprintf(stderr, "@reset : cycles %lld, insn #%lld\n",
71
          runtime.sim.reset_cycles, runtime.cpu.reset_instructions);
72
  fprintf(stderr, "@exit  : cycles %lld, insn #%lld\n", runtime.sim.cycles,
73
          runtime.cpu.instructions);
74
  fprintf(stderr, " diff  : cycles %lld, insn #%lld\n",
75
          runtime.sim.cycles - runtime.sim.reset_cycles,
76
          runtime.cpu.instructions - runtime.cpu.reset_instructions);
77
  /* FIXME: Implement emulation of a stalled cpu
78
  if (config.debug.gdb_enabled)
79
    set_stall_state (1);
80
  else
81
    runtime.sim.cont_run = 0;
82
  */
83
  exit(0);
84
}
85
 
86
void op_support_nop_reset(void)
87
{
88
  PRINTF("****************** counters reset ******************\n");
89
  PRINTF("cycles %lld, insn #%lld\n", runtime.sim.cycles, runtime.cpu.instructions);
90
  PRINTF("****************** counters reset ******************\n");
91
  runtime.sim.reset_cycles = runtime.sim.cycles;
92
  runtime.cpu.reset_instructions = runtime.cpu.instructions;
93
}
94
 
95
void op_support_nop_printf(void)
96
{
97
  upd_reg_from_t(get_pc());
98
  simprintf(cpu_state.reg[4], cpu_state.reg[3]);
99
}
100
 
101
void op_support_nop_report(void)
102
{
103
  upd_reg_from_t(get_pc());
104
  PRINTF("report(0x%"PRIxREG");\n", cpu_state.reg[3]);
105
}
106
 
107
void op_support_nop_report_imm(int imm)
108
{
109
  upd_reg_from_t(get_pc());
110
  PRINTF("report %i (0x%"PRIxREG");\n", imm, cpu_state.reg[3]);
111
}
112
 
113
/* Handles a jump */
114
/* addr is a VIRTUAL address */
115
/* NOTE: We can't use env since this code is compiled like the rest of the
116
 * simulator (most likely without -fomit-frame-pointer) and thus env will point
117
 * to some bogus value. */
118
void do_jump(oraddr_t addr)
119
{
120
  struct dyn_page *target_dp;
121
  struct x_ref *xref;
122
  oraddr_t phys_page;
123
 
124
  /* The pc is set to the location of the jump in op_set_pc_preemt(_check) and
125
   * then it is incermented by 4 when the scheduler is run.  If a scheduled job
126
   * so happens to raise an exception cpu_state.delay_insn will still be set and
127
   * so except_handle will do its pc adjusting magic (ie. -4 from it) and every-
128
   * thing ends up just working right, except when a scheduled job does not
129
   * raise an exeception.  In that case we set the pc here explicitly */
130
  set_pc(addr);
131
 
132
  /* immu_translate must be called after set_pc.  If it would be called before
133
   * it and it issued an ITLB miss then it would appear that the instruction
134
   * that faulted was the instruction in the delay slot which is incorrect */
135
  phys_page = immu_translate(addr);
136
 
137
  /* do_jump is called from the delay slot, which is the jump instruction
138
   * address + 4. */
139
/*
140
  printf("Recompiled code jumping out to %"PRIxADDR" from %"PRIxADDR"\n",
141
         phys_page, cpu_state.sprs[SPR_PPC] - 4);
142
*/
143
 
144
  /* immu_translate() adds the hit delay to runtime.sim.mem_cycles but we add it
145
   * to the cycles when the instruction is executed so if we don't reset it now
146
   * it will produce wrong results */
147
  runtime.sim.mem_cycles = 0;
148
 
149
  target_dp = find_dynd_page(phys_page);
150
 
151
  if(!target_dp)
152
    target_dp = new_dp(phys_page);
153
 
154
  /* Since writes to the 0x0-0xff range do not dirtyfy a page recompile the 0x0
155
   * page if the jump is to that location */
156
  if(phys_page < 0x100)
157
    target_dp->dirty = 1;
158
 
159
  /* Check if this location is cross-referenced */
160
  if(!(xref = find_host_x_ref(target_dp->xrefs, phys_page))) {
161
    target_dp->dirty = 1;
162
    xref = add_to_xrefs(target_dp, phys_page);
163
    if(cpu_state.curr_page)
164
      add_to_held_xrefs(cpu_state.curr_page, xref);
165
  } else {
166
    /* Only increment reference count if this page didn't already */
167
    if(cpu_state.curr_page && !find_held_x_ref(cpu_state.curr_page->held_xrefs,
168
                                               phys_page)) {
169
      xref->ref++;
170
      add_to_held_xrefs(cpu_state.curr_page, xref);
171
    }
172
  }
173
 
174
  if(target_dp->dirty)
175
    recompile_page(target_dp);
176
 
177
  cpu_state.curr_page = target_dp;
178
 
179
  /* FIXME: If the page is backed by more than one type of memory, this will
180
   * produce wrong results */
181
  if(cpu_state.sprs[SPR_SR] & SPR_SR_IME)
182
    /* Add the mmu hit delay to the cycle counter */
183
    upd_cycles_dec(target_dp->delayr - config.immu.hitdelay);
184
  else
185
    upd_cycles_dec(target_dp->delayr);
186
 
187
  cpu_state.ts_current = 0;
188
 
189
  /* Initially this (and do_rfe/handle_except) returned the address that we
190
   * should jump to and then the recompiled code performed the jump.  This was
191
   * no problem if the jump was trully an interpage jump or if the location
192
   * didn't need recompileation.  If the jump is page local and the page needs
193
   * recompileation there is a very high probability that the page will move in
194
   * memory and then the return address that is on the stack will point to
195
   * memory that has already been freed, sometimes leading to crashes */
196
  /* This looks like it could really be simpler, but no it can't.  The only
197
   * issue here is the stack: it has to be unwound.  This function is called
198
   * from except_handle, which generally ends up quite high on the stack... */
199
  or_longjmp(xref->dyn_addr);
200
}
201
 
202
/* l.rfe is a hard instruction to emulate.  One could just call
203
 * do_jump(cpu_state.sprs[SPR_EPCR_BASE]), but then the location that we jump to
204
 * will get cross referenced and because the page that contains the exception
205
 * handlers is very rearly marked as dirty it will accumulate alot of held
206
 * cross references over time. */
207
void do_rfe(void)
208
{
209
  struct dyn_page *target_dp;
210
  struct x_ref *xref;
211
  oraddr_t phys_page;
212
  int already_held = 0;
213
 
214
  set_pc(cpu_state.sprs[SPR_EPCR_BASE]);
215
 
216
  phys_page = immu_translate(cpu_state.sprs[SPR_EPCR_BASE]);
217
 
218
  /* Same reason as in do_jump() */
219
  runtime.sim.mem_cycles = 0;
220
 
221
  /* op_do_sched has run by the time this is run, which makes the pc point to
222
   * the instruction after l.rfe. */
223
  printf("Returning from exception to %"PRIxADDR" from %"PRIxADDR"\n",
224
         phys_page, cpu_state.sprs[SPR_PPC]);
225
 
226
  target_dp = find_dynd_page(phys_page);
227
 
228
  if(!target_dp)
229
    target_dp = new_dp(phys_page);
230
 
231
  /* Since writes to the 0x0-0xff range do not dirtyfy a page recompile the 0x0
232
   * page if the jump is to that location */
233
  if(phys_page < 0x100)
234
    target_dp->dirty = 1;
235
 
236
  /* Check if this location is cross-referenced */
237
  if(!(xref = find_host_x_ref(target_dp->xrefs, phys_page))) {
238
    xref = add_to_xrefs(target_dp, phys_page);
239
    /* Calling dirtyfy_page is real tempting but if we get to the situation were
240
     * the l.rfe instruction and the location to which it returns to are on the
241
     * same page then all the exception cross references will get removed and
242
     * this will result in excessive recompileations of this page */
243
    target_dp->dirty = 1;
244
 
245
    /* There is alot of code (especially in linux) that do loops like this:
246
     * int a;
247
     * // Stuff such that b gets on another page than a
248
     * int b;
249
     * for(i = 0; i < (some big value); i++) {
250
     *   a = b;
251
     *   // Some more stuff
252
     * }
253
     * Here a DTLB miss will happen on every acess to a and b and l.rfe will
254
     * always return to the same locations but since the previous l.rfe to this
255
     * page was to a different location the page will get recompiled each time a
256
     * or b is acessed.  This is why the last NUM_RFE_HELD returns are `cached'.
257
     */
258
    if(++cpu_state.rfe_held_xref_pos == NUM_RFE_HELD)
259
      cpu_state.rfe_held_xref_pos = 0;
260
 
261
    if(cpu_state.rfe_held_xrefs[cpu_state.rfe_held_xref_pos])
262
      cpu_state.rfe_held_xrefs[cpu_state.rfe_held_xref_pos]->ref--;
263
 
264
    cpu_state.rfe_held_xrefs[cpu_state.rfe_held_xref_pos] = xref;
265
  } else {
266
    /* Make sure we increase this cross reference's reference count, since it is
267
     * decremented below. */
268
    xref->ref++;
269
    already_held = 1;
270
  }
271
 
272
  if(target_dp->dirty)
273
    recompile_page(target_dp);
274
 
275
  if(already_held)
276
    xref->ref--;
277
 
278
  cpu_state.curr_page = target_dp;
279
 
280
  /* FIXME: If the page is backed by more than one type of memory, this will
281
   * produce wrong results */
282
  if(cpu_state.sprs[SPR_SR] & SPR_SR_IME)
283
    /* Add the mmu hit delay to the cycle counter */
284
    upd_cycles_dec(target_dp->delayr - config.immu.hitdelay);
285
  else
286
    upd_cycles_dec(target_dp->delayr);
287
 
288
  cpu_state.ts_current = 0;
289
 
290
  /* See the comment at the end of do_jump */
291
  or_longjmp(xref->dyn_addr);
292
}
293
 
294
/* Handles an exception. */
295
void handle_except(oraddr_t except)
296
{
297
  struct dyn_page *target_dp;
298
  struct x_ref *xref;
299
 
300
  /* NOTE: It is known when this code will be run.  It is therefore not
301
   * necessary to have to plough through cpu_state.curr_page->ts to store the
302
   * temporaries.  On the other hand, except_handle is also called from the
303
   * scheduler, therefore we don't know when it is called and we can't move the
304
   * temporaries to their permanent storeage in the recompiled code. */
305
 
306
  /* op_do_sched has run by the time we run this, which makes the pc point to
307
   * the next instruction. */
308
  printf("Exception %"PRIxADDR" (%s) from %"PRIxADDR"\n", except,
309
         except_name(except), get_pc() - 4);
310
 
311
  set_pc(except);
312
 
313
  target_dp = find_dynd_page(except);
314
 
315
  if(!target_dp)
316
    target_dp = new_dp(except);
317
 
318
  /* Check if this location is cross-referenced */
319
  if(!(xref = find_host_x_ref(target_dp->xrefs, except))) {
320
    /* See the comment in do_rfe for why dirtyfy page is not called */
321
    target_dp->dirty = 1;
322
    xref = add_to_xrefs(target_dp, except);
323
  } else {
324
    /* If this cross reference is scheduled for removal increment its reference
325
     * count */
326
    if(!xref->ref)
327
      xref->ref++;
328
  }
329
 
330
  if(target_dp->dirty)
331
    recompile_page(target_dp);
332
 
333
  cpu_state.curr_page = target_dp;
334
 
335
  /* FIXME: If the page is backed by more than one type of memory, this will
336
   * produce wrong results */
337
  /* Address translation is disabled above (no need to add hitdelay) */
338
  upd_cycles_dec(target_dp->delayr);
339
 
340
  cpu_state.ts_current = 0;
341
 
342
  /* See the comment at the end of do_jump */
343
  or_longjmp(xref->dyn_addr);
344
}
345
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.