1 |
1254 |
phoenix |
//==========================================================================
|
2 |
|
|
//
|
3 |
|
|
// sys/netinet/tcp_input.c
|
4 |
|
|
//
|
5 |
|
|
//
|
6 |
|
|
//
|
7 |
|
|
//==========================================================================
|
8 |
|
|
//####BSDCOPYRIGHTBEGIN####
|
9 |
|
|
//
|
10 |
|
|
// -------------------------------------------
|
11 |
|
|
//
|
12 |
|
|
// Portions of this software may have been derived from OpenBSD or other sources,
|
13 |
|
|
// and are covered by the appropriate copyright disclaimers included herein.
|
14 |
|
|
//
|
15 |
|
|
// -------------------------------------------
|
16 |
|
|
//
|
17 |
|
|
//####BSDCOPYRIGHTEND####
|
18 |
|
|
//==========================================================================
|
19 |
|
|
//#####DESCRIPTIONBEGIN####
|
20 |
|
|
//
|
21 |
|
|
// Author(s): gthomas
|
22 |
|
|
// Contributors: gthomas
|
23 |
|
|
// Date: 2000-01-10
|
24 |
|
|
// Purpose:
|
25 |
|
|
// Description:
|
26 |
|
|
//
|
27 |
|
|
//
|
28 |
|
|
//####DESCRIPTIONEND####
|
29 |
|
|
//
|
30 |
|
|
//==========================================================================
|
31 |
|
|
|
32 |
|
|
|
33 |
|
|
/* $OpenBSD: tcp_input.c,v 1.54 1999/12/15 16:37:20 provos Exp $ */
|
34 |
|
|
/* $NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $ */
|
35 |
|
|
|
36 |
|
|
/*
|
37 |
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
|
38 |
|
|
* The Regents of the University of California. All rights reserved.
|
39 |
|
|
*
|
40 |
|
|
* Redistribution and use in source and binary forms, with or without
|
41 |
|
|
* modification, are permitted provided that the following conditions
|
42 |
|
|
* are met:
|
43 |
|
|
* 1. Redistributions of source code must retain the above copyright
|
44 |
|
|
* notice, this list of conditions and the following disclaimer.
|
45 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
46 |
|
|
* notice, this list of conditions and the following disclaimer in the
|
47 |
|
|
* documentation and/or other materials provided with the distribution.
|
48 |
|
|
* 3. All advertising materials mentioning features or use of this software
|
49 |
|
|
* must display the following acknowledgement:
|
50 |
|
|
* This product includes software developed by the University of
|
51 |
|
|
* California, Berkeley and its contributors.
|
52 |
|
|
* 4. Neither the name of the University nor the names of its contributors
|
53 |
|
|
* may be used to endorse or promote products derived from this software
|
54 |
|
|
* without specific prior written permission.
|
55 |
|
|
*
|
56 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
57 |
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
58 |
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
59 |
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
60 |
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
61 |
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
62 |
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
63 |
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
64 |
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
65 |
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
66 |
|
|
* SUCH DAMAGE.
|
67 |
|
|
*
|
68 |
|
|
* @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
|
69 |
|
|
*/
|
70 |
|
|
|
71 |
|
|
/*
|
72 |
|
|
%%% portions-copyright-nrl-95
|
73 |
|
|
Portions of this software are Copyright 1995-1998 by Randall Atkinson,
|
74 |
|
|
Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
|
75 |
|
|
Reserved. All rights under this copyright have been assigned to the US
|
76 |
|
|
Naval Research Laboratory (NRL). The NRL Copyright Notice and License
|
77 |
|
|
Agreement Version 1.1 (January 17, 1995) applies to these portions of the
|
78 |
|
|
software.
|
79 |
|
|
You should have received a copy of the license with this software. If you
|
80 |
|
|
didn't get a copy, you may request one from <license@ipv6.nrl.navy.mil>.
|
81 |
|
|
*/
|
82 |
|
|
|
83 |
|
|
#ifndef TUBA_INCLUDE
|
84 |
|
|
#include <sys/param.h>
|
85 |
|
|
#ifndef __ECOS
|
86 |
|
|
#include <sys/systm.h>
|
87 |
|
|
#endif
|
88 |
|
|
#include <sys/malloc.h>
|
89 |
|
|
#include <sys/mbuf.h>
|
90 |
|
|
#include <sys/protosw.h>
|
91 |
|
|
#include <sys/socket.h>
|
92 |
|
|
#include <sys/socketvar.h>
|
93 |
|
|
#include <sys/errno.h>
|
94 |
|
|
|
95 |
|
|
#include <net/if.h>
|
96 |
|
|
#include <net/route.h>
|
97 |
|
|
|
98 |
|
|
#include <netinet/in.h>
|
99 |
|
|
#include <netinet/in_systm.h>
|
100 |
|
|
#include <netinet/ip.h>
|
101 |
|
|
#include <netinet/in_pcb.h>
|
102 |
|
|
#include <netinet/ip_var.h>
|
103 |
|
|
#include <netinet/tcp.h>
|
104 |
|
|
#include <netinet/tcp_fsm.h>
|
105 |
|
|
#include <netinet/tcp_seq.h>
|
106 |
|
|
#include <netinet/tcp_timer.h>
|
107 |
|
|
#include <netinet/tcp_var.h>
|
108 |
|
|
#include <netinet/tcpip.h>
|
109 |
|
|
#include <netinet/tcp_debug.h>
|
110 |
|
|
#ifndef __ECOS
|
111 |
|
|
#include <dev/rndvar.h>
|
112 |
|
|
#endif
|
113 |
|
|
#include <machine/stdarg.h>
|
114 |
|
|
#ifndef __ECOS
|
115 |
|
|
#include <sys/md5k.h>
|
116 |
|
|
#endif
|
117 |
|
|
|
118 |
|
|
#ifdef IPSEC
|
119 |
|
|
#include <netinet/ip_ipsp.h>
|
120 |
|
|
#endif /* IPSEC */
|
121 |
|
|
|
122 |
|
|
#ifdef INET6
|
123 |
|
|
#ifndef INET
|
124 |
|
|
#include <netinet/in.h>
|
125 |
|
|
#endif
|
126 |
|
|
#include <sys/domain.h>
|
127 |
|
|
#include <netinet6/in6_var.h>
|
128 |
|
|
#include <netinet/ip6.h>
|
129 |
|
|
#include <netinet6/ip6_var.h>
|
130 |
|
|
#include <netinet6/tcpipv6.h>
|
131 |
|
|
#include <netinet/icmp6.h>
|
132 |
|
|
#include <netinet6/nd6.h>
|
133 |
|
|
|
134 |
|
|
#ifndef CREATE_IPV6_MAPPED
|
135 |
|
|
#define CREATE_IPV6_MAPPED(a6, a4) \
|
136 |
|
|
do { \
|
137 |
|
|
bzero(&(a6), sizeof(a6)); \
|
138 |
|
|
(a6).s6_addr[10] = (a6).s6_addr[11] = 0xff; \
|
139 |
|
|
*(u_int32_t *)&(a6).s6_addr[12] = (a4); \
|
140 |
|
|
} while (0)
|
141 |
|
|
#endif
|
142 |
|
|
|
143 |
|
|
struct tcpiphdr tcp_saveti;
|
144 |
|
|
struct tcpipv6hdr tcp_saveti6;
|
145 |
|
|
|
146 |
|
|
/* for the packet header length in the mbuf */
|
147 |
|
|
#define M_PH_LEN(m) (((struct mbuf *)(m))->m_pkthdr.len)
|
148 |
|
|
#define M_V6_LEN(m) (M_PH_LEN(m) - sizeof(struct ip6_hdr))
|
149 |
|
|
#define M_V4_LEN(m) (M_PH_LEN(m) - sizeof(struct ip))
|
150 |
|
|
#endif /* INET6 */
|
151 |
|
|
|
152 |
|
|
int tcprexmtthresh = 3;
|
153 |
|
|
struct tcpiphdr tcp_saveti;
|
154 |
|
|
int tcptv_keep_init = TCPTV_KEEP_INIT;
|
155 |
|
|
|
156 |
|
|
extern u_long sb_max;
|
157 |
|
|
|
158 |
|
|
#endif /* TUBA_INCLUDE */
|
159 |
|
|
#define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
|
160 |
|
|
|
161 |
|
|
/* for modulo comparisons of timestamps */
|
162 |
|
|
#define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
|
163 |
|
|
#define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
|
164 |
|
|
|
165 |
|
|
/*
|
166 |
|
|
* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
|
167 |
|
|
*/
|
168 |
|
|
#ifdef INET6
|
169 |
|
|
#define ND6_HINT(tp) \
|
170 |
|
|
do { \
|
171 |
|
|
if (tp && tp->t_inpcb && (tp->t_inpcb->inp_flags & INP_IPV6) \
|
172 |
|
|
&& !(tp->t_inpcb->inp_flags & INP_IPV6_MAPPED) \
|
173 |
|
|
&& tp->t_inpcb->inp_route6.ro_rt) { \
|
174 |
|
|
nd6_nud_hint(tp->t_inpcb->inp_route6.ro_rt, NULL); \
|
175 |
|
|
} \
|
176 |
|
|
} while (0)
|
177 |
|
|
#else
|
178 |
|
|
#define ND6_HINT(tp)
|
179 |
|
|
#endif
|
180 |
|
|
|
181 |
|
|
/*
|
182 |
|
|
* Insert segment ti into reassembly queue of tcp with
|
183 |
|
|
* control block tp. Return TH_FIN if reassembly now includes
|
184 |
|
|
* a segment with FIN. The macro form does the common case inline
|
185 |
|
|
* (segment is the next to be received on an established connection,
|
186 |
|
|
* and the queue is empty), avoiding linkage into and removal
|
187 |
|
|
* from the queue and repetition of various conversions.
|
188 |
|
|
* Set DELACK for segments received in order, but ack immediately
|
189 |
|
|
* when segments are out of order (so fast retransmit can work).
|
190 |
|
|
*/
|
191 |
|
|
|
192 |
|
|
#ifndef TUBA_INCLUDE
|
193 |
|
|
|
194 |
|
|
int
|
195 |
|
|
tcp_reass(tp, th, m, tlen)
|
196 |
|
|
register struct tcpcb *tp;
|
197 |
|
|
register struct tcphdr *th;
|
198 |
|
|
struct mbuf *m;
|
199 |
|
|
int *tlen;
|
200 |
|
|
{
|
201 |
|
|
register struct ipqent *p, *q, *nq, *tiqe;
|
202 |
|
|
struct socket *so = tp->t_inpcb->inp_socket;
|
203 |
|
|
int flags;
|
204 |
|
|
|
205 |
|
|
/*
|
206 |
|
|
* Call with th==0 after become established to
|
207 |
|
|
* force pre-ESTABLISHED data up to user socket.
|
208 |
|
|
*/
|
209 |
|
|
if (th == 0)
|
210 |
|
|
goto present;
|
211 |
|
|
|
212 |
|
|
/*
|
213 |
|
|
* Allocate a new queue entry, before we throw away any data.
|
214 |
|
|
* If we can't, just drop the packet. XXX
|
215 |
|
|
*/
|
216 |
|
|
MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT);
|
217 |
|
|
if (tiqe == NULL) {
|
218 |
|
|
tcpstat.tcps_rcvmemdrop++;
|
219 |
|
|
m_freem(m);
|
220 |
|
|
return (0);
|
221 |
|
|
}
|
222 |
|
|
|
223 |
|
|
/*
|
224 |
|
|
* Find a segment which begins after this one does.
|
225 |
|
|
*/
|
226 |
|
|
for (p = NULL, q = tp->segq.lh_first; q != NULL;
|
227 |
|
|
p = q, q = q->ipqe_q.le_next)
|
228 |
|
|
if (SEQ_GT(q->ipqe_tcp->th_seq, th->th_seq))
|
229 |
|
|
break;
|
230 |
|
|
|
231 |
|
|
/*
|
232 |
|
|
* If there is a preceding segment, it may provide some of
|
233 |
|
|
* our data already. If so, drop the data from the incoming
|
234 |
|
|
* segment. If it provides all of our data, drop us.
|
235 |
|
|
*/
|
236 |
|
|
if (p != NULL) {
|
237 |
|
|
register struct tcphdr *phdr = p->ipqe_tcp;
|
238 |
|
|
register int i;
|
239 |
|
|
|
240 |
|
|
/* conversion to int (in i) handles seq wraparound */
|
241 |
|
|
i = phdr->th_seq + phdr->th_reseqlen - th->th_seq;
|
242 |
|
|
if (i > 0) {
|
243 |
|
|
if (i >= *tlen) {
|
244 |
|
|
tcpstat.tcps_rcvduppack++;
|
245 |
|
|
tcpstat.tcps_rcvdupbyte += *tlen;
|
246 |
|
|
m_freem(m);
|
247 |
|
|
FREE(tiqe, M_IPQ);
|
248 |
|
|
return (0);
|
249 |
|
|
}
|
250 |
|
|
m_adj(m, i);
|
251 |
|
|
*tlen -= i;
|
252 |
|
|
th->th_seq += i;
|
253 |
|
|
}
|
254 |
|
|
}
|
255 |
|
|
tcpstat.tcps_rcvoopack++;
|
256 |
|
|
tcpstat.tcps_rcvoobyte += *tlen;
|
257 |
|
|
|
258 |
|
|
/*
|
259 |
|
|
* While we overlap succeeding segments trim them or,
|
260 |
|
|
* if they are completely covered, dequeue them.
|
261 |
|
|
*/
|
262 |
|
|
for (; q != NULL; q = nq) {
|
263 |
|
|
register struct tcphdr *qhdr = q->ipqe_tcp;
|
264 |
|
|
register int i = (th->th_seq + *tlen) - qhdr->th_seq;
|
265 |
|
|
|
266 |
|
|
if (i <= 0)
|
267 |
|
|
break;
|
268 |
|
|
if (i < qhdr->th_reseqlen) {
|
269 |
|
|
qhdr->th_seq += i;
|
270 |
|
|
qhdr->th_reseqlen -= i;
|
271 |
|
|
m_adj(q->ipqe_m, i);
|
272 |
|
|
break;
|
273 |
|
|
}
|
274 |
|
|
nq = q->ipqe_q.le_next;
|
275 |
|
|
m_freem(q->ipqe_m);
|
276 |
|
|
LIST_REMOVE(q, ipqe_q);
|
277 |
|
|
FREE(q, M_IPQ);
|
278 |
|
|
}
|
279 |
|
|
|
280 |
|
|
/* Insert the new fragment queue entry into place. */
|
281 |
|
|
tiqe->ipqe_m = m;
|
282 |
|
|
th->th_reseqlen = *tlen;
|
283 |
|
|
tiqe->ipqe_tcp = th;
|
284 |
|
|
if (p == NULL) {
|
285 |
|
|
LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
|
286 |
|
|
} else {
|
287 |
|
|
LIST_INSERT_AFTER(p, tiqe, ipqe_q);
|
288 |
|
|
}
|
289 |
|
|
|
290 |
|
|
present:
|
291 |
|
|
/*
|
292 |
|
|
* Present data to user, advancing rcv_nxt through
|
293 |
|
|
* completed sequence space.
|
294 |
|
|
*/
|
295 |
|
|
if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
|
296 |
|
|
return (0);
|
297 |
|
|
q = tp->segq.lh_first;
|
298 |
|
|
if (q == NULL || q->ipqe_tcp->th_seq != tp->rcv_nxt)
|
299 |
|
|
return (0);
|
300 |
|
|
if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->th_reseqlen)
|
301 |
|
|
return (0);
|
302 |
|
|
do {
|
303 |
|
|
tp->rcv_nxt += q->ipqe_tcp->th_reseqlen;
|
304 |
|
|
flags = q->ipqe_tcp->th_flags & TH_FIN;
|
305 |
|
|
|
306 |
|
|
nq = q->ipqe_q.le_next;
|
307 |
|
|
LIST_REMOVE(q, ipqe_q);
|
308 |
|
|
ND6_HINT(tp);
|
309 |
|
|
if (so->so_state & SS_CANTRCVMORE)
|
310 |
|
|
m_freem(q->ipqe_m);
|
311 |
|
|
else
|
312 |
|
|
sbappend(&so->so_rcv, q->ipqe_m);
|
313 |
|
|
FREE(q, M_IPQ);
|
314 |
|
|
q = nq;
|
315 |
|
|
} while (q != NULL && q->ipqe_tcp->th_seq == tp->rcv_nxt);
|
316 |
|
|
sorwakeup(so);
|
317 |
|
|
return (flags);
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
/*
|
321 |
|
|
* First check for a port-specific bomb. We do not want to drop half-opens
|
322 |
|
|
* for other ports if this is the only port being bombed. We only check
|
323 |
|
|
* the bottom 40 half open connections, to avoid wasting too much time.
|
324 |
|
|
*
|
325 |
|
|
* Or, otherwise it is more likely a generic syn bomb, so delete the oldest
|
326 |
|
|
* half-open connection.
|
327 |
|
|
*/
|
328 |
|
|
void
|
329 |
|
|
tcpdropoldhalfopen(avoidtp, port)
|
330 |
|
|
struct tcpcb *avoidtp;
|
331 |
|
|
u_int16_t port;
|
332 |
|
|
{
|
333 |
|
|
register struct inpcb *inp;
|
334 |
|
|
register struct tcpcb *tp;
|
335 |
|
|
int ncheck = 40;
|
336 |
|
|
int s;
|
337 |
|
|
|
338 |
|
|
s = splnet();
|
339 |
|
|
inp = tcbtable.inpt_queue.cqh_first;
|
340 |
|
|
if (inp) /* XXX */
|
341 |
|
|
for (; inp != (struct inpcb *)&tcbtable.inpt_queue && --ncheck;
|
342 |
|
|
inp = inp->inp_queue.cqe_prev) {
|
343 |
|
|
if ((tp = (struct tcpcb *)inp->inp_ppcb) &&
|
344 |
|
|
tp != avoidtp &&
|
345 |
|
|
tp->t_state == TCPS_SYN_RECEIVED &&
|
346 |
|
|
port == inp->inp_lport) {
|
347 |
|
|
tcp_close(tp);
|
348 |
|
|
goto done;
|
349 |
|
|
}
|
350 |
|
|
}
|
351 |
|
|
|
352 |
|
|
inp = tcbtable.inpt_queue.cqh_first;
|
353 |
|
|
if (inp) /* XXX */
|
354 |
|
|
for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
|
355 |
|
|
inp = inp->inp_queue.cqe_prev) {
|
356 |
|
|
if ((tp = (struct tcpcb *)inp->inp_ppcb) &&
|
357 |
|
|
tp != avoidtp &&
|
358 |
|
|
tp->t_state == TCPS_SYN_RECEIVED) {
|
359 |
|
|
tcp_close(tp);
|
360 |
|
|
goto done;
|
361 |
|
|
}
|
362 |
|
|
}
|
363 |
|
|
done:
|
364 |
|
|
splx(s);
|
365 |
|
|
}
|
366 |
|
|
|
367 |
|
|
#if defined(INET6) && !defined(TCP6)
|
368 |
|
|
int
|
369 |
|
|
tcp6_input(mp, offp, proto)
|
370 |
|
|
struct mbuf **mp;
|
371 |
|
|
int *offp, proto;
|
372 |
|
|
{
|
373 |
|
|
struct mbuf *m = *mp;
|
374 |
|
|
|
375 |
|
|
#if defined(NFAITH) && 0 < NFAITH
|
376 |
|
|
if (m->m_pkthdr.rcvif) {
|
377 |
|
|
if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
|
378 |
|
|
/* XXX send icmp6 host/port unreach? */
|
379 |
|
|
m_freem(m);
|
380 |
|
|
return IPPROTO_DONE;
|
381 |
|
|
}
|
382 |
|
|
}
|
383 |
|
|
#endif
|
384 |
|
|
|
385 |
|
|
/*
|
386 |
|
|
* draft-itojun-ipv6-tcp-to-anycast
|
387 |
|
|
* better place to put this in?
|
388 |
|
|
*/
|
389 |
|
|
if (m->m_flags & M_ANYCAST6) {
|
390 |
|
|
if (m->m_len >= sizeof(struct ip6_hdr)) {
|
391 |
|
|
struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
|
392 |
|
|
icmp6_error(m, ICMP6_DST_UNREACH,
|
393 |
|
|
ICMP6_DST_UNREACH_ADDR,
|
394 |
|
|
(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
|
395 |
|
|
} else
|
396 |
|
|
m_freem(m);
|
397 |
|
|
return IPPROTO_DONE;
|
398 |
|
|
}
|
399 |
|
|
|
400 |
|
|
tcp_input(m, *offp, proto);
|
401 |
|
|
return IPPROTO_DONE;
|
402 |
|
|
}
|
403 |
|
|
#endif
|
404 |
|
|
|
405 |
|
|
/*
|
406 |
|
|
* TCP input routine, follows pages 65-76 of the
|
407 |
|
|
* protocol specification dated September, 1981 very closely.
|
408 |
|
|
*/
|
409 |
|
|
void
|
410 |
|
|
#if __STDC__
|
411 |
|
|
tcp_input(struct mbuf *m, ...)
|
412 |
|
|
#else
|
413 |
|
|
tcp_input(m, va_alist)
|
414 |
|
|
register struct mbuf *m;
|
415 |
|
|
#endif
|
416 |
|
|
{
|
417 |
|
|
register struct tcpiphdr *ti;
|
418 |
|
|
register struct inpcb *inp;
|
419 |
|
|
caddr_t optp = NULL;
|
420 |
|
|
int optlen = 0;
|
421 |
|
|
int len, tlen, off;
|
422 |
|
|
register struct tcpcb *tp = 0;
|
423 |
|
|
register int tiflags;
|
424 |
|
|
struct socket *so = NULL;
|
425 |
|
|
int todrop, acked, ourfinisacked, needoutput = 0;
|
426 |
|
|
int hdroptlen = 0;
|
427 |
|
|
short ostate = 0;
|
428 |
|
|
struct in_addr laddr;
|
429 |
|
|
int dropsocket = 0;
|
430 |
|
|
int iss = 0;
|
431 |
|
|
u_long tiwin;
|
432 |
|
|
u_int32_t ts_val, ts_ecr;
|
433 |
|
|
int ts_present = 0;
|
434 |
|
|
int iphlen;
|
435 |
|
|
va_list ap;
|
436 |
|
|
register struct tcphdr *th;
|
437 |
|
|
#ifdef IPSEC
|
438 |
|
|
struct tdb *tdb = NULL;
|
439 |
|
|
#endif /* IPSEC */
|
440 |
|
|
#ifdef INET6
|
441 |
|
|
struct in6_addr laddr6;
|
442 |
|
|
unsigned short is_ipv6; /* Type of incoming datagram. */
|
443 |
|
|
struct ip6_hdr *ipv6 = NULL;
|
444 |
|
|
#endif /* INET6 */
|
445 |
|
|
|
446 |
|
|
va_start(ap, m);
|
447 |
|
|
iphlen = va_arg(ap, int);
|
448 |
|
|
va_end(ap);
|
449 |
|
|
|
450 |
|
|
tcpstat.tcps_rcvtotal++;
|
451 |
|
|
|
452 |
|
|
#ifdef IPSEC
|
453 |
|
|
/* Save the last SA which was used to process the mbuf */
|
454 |
|
|
if ((m->m_flags & (M_CONF|M_AUTH)) && m->m_pkthdr.tdbi) {
|
455 |
|
|
struct tdb_ident *tdbi = m->m_pkthdr.tdbi;
|
456 |
|
|
/* XXX gettdb() should really be called at spltdb(). */
|
457 |
|
|
/* XXX this is splsoftnet(), currently they are the same. */
|
458 |
|
|
tdb = gettdb(tdbi->spi, &tdbi->dst, tdbi->proto);
|
459 |
|
|
free(m->m_pkthdr.tdbi, M_TEMP);
|
460 |
|
|
m->m_pkthdr.tdbi = NULL;
|
461 |
|
|
}
|
462 |
|
|
#endif /* IPSEC */
|
463 |
|
|
#ifdef INET6
|
464 |
|
|
/*
|
465 |
|
|
* Before we do ANYTHING, we have to figure out if it's TCP/IPv6 or
|
466 |
|
|
* TCP/IPv4.
|
467 |
|
|
*/
|
468 |
|
|
is_ipv6 = mtod(m, struct ip *)->ip_v == 6;
|
469 |
|
|
#endif /* INET6 */
|
470 |
|
|
|
471 |
|
|
/*
|
472 |
|
|
* Get IP and TCP header together in first mbuf.
|
473 |
|
|
* Note: IP leaves IP header in first mbuf.
|
474 |
|
|
*/
|
475 |
|
|
#ifndef INET6
|
476 |
|
|
ti = mtod(m, struct tcpiphdr *);
|
477 |
|
|
#else /* INET6 */
|
478 |
|
|
if (!is_ipv6)
|
479 |
|
|
#endif /* INET6 */
|
480 |
|
|
if (iphlen > sizeof (struct ip)) {
|
481 |
|
|
#if 0 /*XXX*/
|
482 |
|
|
ip_stripoptions(m, (struct mbuf *)0);
|
483 |
|
|
#else
|
484 |
|
|
#ifdef __ECOS
|
485 |
|
|
diag_printf("extension headers are not allowed\n");
|
486 |
|
|
#else
|
487 |
|
|
printf("extension headers are not allowed\n");
|
488 |
|
|
#endif
|
489 |
|
|
m_freem(m);
|
490 |
|
|
return;
|
491 |
|
|
#endif
|
492 |
|
|
}
|
493 |
|
|
if (m->m_len < iphlen + sizeof(struct tcphdr)) {
|
494 |
|
|
if ((m = m_pullup2(m, iphlen + sizeof(struct tcphdr))) == 0) {
|
495 |
|
|
tcpstat.tcps_rcvshort++;
|
496 |
|
|
return;
|
497 |
|
|
}
|
498 |
|
|
#ifndef INET6
|
499 |
|
|
ti = mtod(m, struct tcpiphdr *);
|
500 |
|
|
#endif /* INET6 */
|
501 |
|
|
}
|
502 |
|
|
|
503 |
|
|
tlen = m->m_pkthdr.len - iphlen;
|
504 |
|
|
|
505 |
|
|
#ifdef INET6
|
506 |
|
|
/*
|
507 |
|
|
* After that, do initial segment processing which is still very
|
508 |
|
|
* dependent on what IP version you're using.
|
509 |
|
|
*/
|
510 |
|
|
|
511 |
|
|
if (is_ipv6) {
|
512 |
|
|
#ifdef DIAGNOSTIC
|
513 |
|
|
if (iphlen < sizeof(struct ip6_hdr)) {
|
514 |
|
|
m_freem(m);
|
515 |
|
|
return;
|
516 |
|
|
}
|
517 |
|
|
#endif /* DIAGNOSTIC */
|
518 |
|
|
|
519 |
|
|
/* strip off any options */
|
520 |
|
|
if (iphlen > sizeof(struct ip6_hdr)) {
|
521 |
|
|
#if 0 /*XXX*/
|
522 |
|
|
ipv6_stripoptions(m, iphlen);
|
523 |
|
|
#else
|
524 |
|
|
#ifdef __ECOS
|
525 |
|
|
diag_printf("extension headers are not allowed\n");
|
526 |
|
|
#else
|
527 |
|
|
printf("extension headers are not allowed\n");
|
528 |
|
|
#endif
|
529 |
|
|
m_freem(m);
|
530 |
|
|
return;
|
531 |
|
|
#endif
|
532 |
|
|
iphlen = sizeof(struct ip6_hdr);
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
ti = NULL;
|
536 |
|
|
ipv6 = mtod(m, struct ip6_hdr *);
|
537 |
|
|
|
538 |
|
|
if (in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr), tlen)) {
|
539 |
|
|
tcpstat.tcps_rcvbadsum++;
|
540 |
|
|
goto drop;
|
541 |
|
|
} /* endif in6_cksum */
|
542 |
|
|
} else {
|
543 |
|
|
ti = mtod(m, struct tcpiphdr *);
|
544 |
|
|
#endif /* INET6 */
|
545 |
|
|
|
546 |
|
|
/*
|
547 |
|
|
* Checksum extended TCP header and data.
|
548 |
|
|
*/
|
549 |
|
|
#ifndef INET6
|
550 |
|
|
tlen = ((struct ip *)ti)->ip_len;
|
551 |
|
|
#endif /* INET6 */
|
552 |
|
|
len = sizeof (struct ip) + tlen;
|
553 |
|
|
bzero(ti->ti_x1, sizeof ti->ti_x1);
|
554 |
|
|
ti->ti_len = (u_int16_t)tlen;
|
555 |
|
|
HTONS(ti->ti_len);
|
556 |
|
|
if ((ti->ti_sum = in_cksum(m, len)) != 0) {
|
557 |
|
|
tcpstat.tcps_rcvbadsum++;
|
558 |
|
|
goto drop;
|
559 |
|
|
}
|
560 |
|
|
#ifdef INET6
|
561 |
|
|
}
|
562 |
|
|
#endif /* INET6 */
|
563 |
|
|
#endif /* TUBA_INCLUDE */
|
564 |
|
|
|
565 |
|
|
th = (struct tcphdr *)(mtod(m, caddr_t) + iphlen);
|
566 |
|
|
|
567 |
|
|
/*
|
568 |
|
|
* Check that TCP offset makes sense,
|
569 |
|
|
* pull out TCP options and adjust length. XXX
|
570 |
|
|
*/
|
571 |
|
|
off = th->th_off << 2;
|
572 |
|
|
if (off < sizeof (struct tcphdr) || off > tlen) {
|
573 |
|
|
tcpstat.tcps_rcvbadoff++;
|
574 |
|
|
goto drop;
|
575 |
|
|
}
|
576 |
|
|
tlen -= off;
|
577 |
|
|
if (off > sizeof (struct tcphdr)) {
|
578 |
|
|
if (m->m_len < iphlen + off) {
|
579 |
|
|
if ((m = m_pullup2(m, iphlen + off)) == 0) {
|
580 |
|
|
tcpstat.tcps_rcvshort++;
|
581 |
|
|
return;
|
582 |
|
|
}
|
583 |
|
|
#ifdef INET6
|
584 |
|
|
if (is_ipv6)
|
585 |
|
|
ipv6 = mtod(m, struct ip6_hdr *);
|
586 |
|
|
else
|
587 |
|
|
#endif /* INET6 */
|
588 |
|
|
ti = mtod(m, struct tcpiphdr *);
|
589 |
|
|
th = (struct tcphdr *)(mtod(m, caddr_t) + iphlen);
|
590 |
|
|
}
|
591 |
|
|
optlen = off - sizeof (struct tcphdr);
|
592 |
|
|
optp = mtod(m, caddr_t) + iphlen + sizeof(struct tcphdr);
|
593 |
|
|
/*
|
594 |
|
|
* Do quick retrieval of timestamp options ("options
|
595 |
|
|
* prediction?"). If timestamp is the only option and it's
|
596 |
|
|
* formatted as recommended in RFC 1323 appendix A, we
|
597 |
|
|
* quickly get the values now and not bother calling
|
598 |
|
|
* tcp_dooptions(), etc.
|
599 |
|
|
*/
|
600 |
|
|
if ((optlen == TCPOLEN_TSTAMP_APPA ||
|
601 |
|
|
(optlen > TCPOLEN_TSTAMP_APPA &&
|
602 |
|
|
optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
|
603 |
|
|
*(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
|
604 |
|
|
(th->th_flags & TH_SYN) == 0) {
|
605 |
|
|
ts_present = 1;
|
606 |
|
|
ts_val = ntohl(*(u_int32_t *)(optp + 4));
|
607 |
|
|
ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
|
608 |
|
|
optp = NULL; /* we've parsed the options */
|
609 |
|
|
}
|
610 |
|
|
}
|
611 |
|
|
tiflags = th->th_flags;
|
612 |
|
|
|
613 |
|
|
/*
|
614 |
|
|
* Convert TCP protocol specific fields to host format.
|
615 |
|
|
*/
|
616 |
|
|
NTOHL(th->th_seq);
|
617 |
|
|
NTOHL(th->th_ack);
|
618 |
|
|
NTOHS(th->th_win);
|
619 |
|
|
NTOHS(th->th_urp);
|
620 |
|
|
|
621 |
|
|
/*
|
622 |
|
|
* Locate pcb for segment.
|
623 |
|
|
*/
|
624 |
|
|
findpcb:
|
625 |
|
|
#ifdef INET6
|
626 |
|
|
if (is_ipv6) {
|
627 |
|
|
inp = in6_pcbhashlookup(&tcbtable, &ipv6->ip6_src, th->th_sport,
|
628 |
|
|
&ipv6->ip6_dst, th->th_dport);
|
629 |
|
|
} else
|
630 |
|
|
#endif /* INET6 */
|
631 |
|
|
inp = in_pcbhashlookup(&tcbtable, ti->ti_src, ti->ti_sport,
|
632 |
|
|
ti->ti_dst, ti->ti_dport);
|
633 |
|
|
if (inp == 0) {
|
634 |
|
|
++tcpstat.tcps_pcbhashmiss;
|
635 |
|
|
#ifdef INET6
|
636 |
|
|
if (is_ipv6)
|
637 |
|
|
inp = in_pcblookup(&tcbtable, &ipv6->ip6_src,
|
638 |
|
|
th->th_sport, &ipv6->ip6_dst, th->th_dport,
|
639 |
|
|
INPLOOKUP_WILDCARD | INPLOOKUP_IPV6);
|
640 |
|
|
else
|
641 |
|
|
#endif /* INET6 */
|
642 |
|
|
inp = in_pcblookup(&tcbtable, &ti->ti_src, ti->ti_sport,
|
643 |
|
|
&ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
|
644 |
|
|
/*
|
645 |
|
|
* If the state is CLOSED (i.e., TCB does not exist) then
|
646 |
|
|
* all data in the incoming segment is discarded.
|
647 |
|
|
* If the TCB exists but is in CLOSED state, it is embryonic,
|
648 |
|
|
* but should either do a listen or a connect soon.
|
649 |
|
|
*/
|
650 |
|
|
if (inp == 0) {
|
651 |
|
|
++tcpstat.tcps_noport;
|
652 |
|
|
goto dropwithreset;
|
653 |
|
|
}
|
654 |
|
|
}
|
655 |
|
|
|
656 |
|
|
tp = intotcpcb(inp);
|
657 |
|
|
if (tp == 0)
|
658 |
|
|
goto dropwithreset;
|
659 |
|
|
if (tp->t_state == TCPS_CLOSED)
|
660 |
|
|
goto drop;
|
661 |
|
|
|
662 |
|
|
/* Unscale the window into a 32-bit value. */
|
663 |
|
|
if ((tiflags & TH_SYN) == 0)
|
664 |
|
|
tiwin = th->th_win << tp->snd_scale;
|
665 |
|
|
else
|
666 |
|
|
tiwin = th->th_win;
|
667 |
|
|
|
668 |
|
|
so = inp->inp_socket;
|
669 |
|
|
if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
|
670 |
|
|
if (so->so_options & SO_DEBUG) {
|
671 |
|
|
ostate = tp->t_state;
|
672 |
|
|
#ifdef INET6
|
673 |
|
|
if (is_ipv6)
|
674 |
|
|
tcp_saveti6 = *(mtod(m, struct tcpipv6hdr *));
|
675 |
|
|
else
|
676 |
|
|
#endif /* INET6 */
|
677 |
|
|
tcp_saveti = *ti;
|
678 |
|
|
}
|
679 |
|
|
if (so->so_options & SO_ACCEPTCONN) {
|
680 |
|
|
struct socket *so1;
|
681 |
|
|
|
682 |
|
|
so1 = sonewconn(so, 0);
|
683 |
|
|
if (so1 == NULL) {
|
684 |
|
|
tcpdropoldhalfopen(tp, th->th_dport);
|
685 |
|
|
so1 = sonewconn(so, 0);
|
686 |
|
|
if (so1 == NULL)
|
687 |
|
|
goto drop;
|
688 |
|
|
}
|
689 |
|
|
so = so1;
|
690 |
|
|
/*
|
691 |
|
|
* This is ugly, but ....
|
692 |
|
|
*
|
693 |
|
|
* Mark socket as temporary until we're
|
694 |
|
|
* committed to keeping it. The code at
|
695 |
|
|
* ``drop'' and ``dropwithreset'' check the
|
696 |
|
|
* flag dropsocket to see if the temporary
|
697 |
|
|
* socket created here should be discarded.
|
698 |
|
|
* We mark the socket as discardable until
|
699 |
|
|
* we're committed to it below in TCPS_LISTEN.
|
700 |
|
|
*/
|
701 |
|
|
dropsocket++;
|
702 |
|
|
#ifdef IPSEC
|
703 |
|
|
/*
|
704 |
|
|
* We need to copy the required security levels
|
705 |
|
|
* from the old pcb.
|
706 |
|
|
*/
|
707 |
|
|
{
|
708 |
|
|
struct inpcb *newinp = (struct inpcb *)so->so_pcb;
|
709 |
|
|
bcopy(inp->inp_seclevel, newinp->inp_seclevel,
|
710 |
|
|
sizeof(inp->inp_seclevel));
|
711 |
|
|
newinp->inp_secrequire = inp->inp_secrequire;
|
712 |
|
|
}
|
713 |
|
|
#endif /* IPSEC */
|
714 |
|
|
#ifdef INET6
|
715 |
|
|
/*
|
716 |
|
|
* inp still has the OLD in_pcb stuff, set the
|
717 |
|
|
* v6-related flags on the new guy, too. This is
|
718 |
|
|
* done particularly for the case where an AF_INET6
|
719 |
|
|
* socket is bound only to a port, and a v4 connection
|
720 |
|
|
* comes in on that port.
|
721 |
|
|
* we also copy the flowinfo from the original pcb
|
722 |
|
|
* to the new one.
|
723 |
|
|
*/
|
724 |
|
|
{
|
725 |
|
|
int flags = inp->inp_flags;
|
726 |
|
|
struct inpcb *oldinpcb = inp;
|
727 |
|
|
|
728 |
|
|
inp = (struct inpcb *)so->so_pcb;
|
729 |
|
|
inp->inp_flags |= (flags & (INP_IPV6 | INP_IPV6_UNDEC
|
730 |
|
|
| INP_IPV6_MAPPED));
|
731 |
|
|
if ((inp->inp_flags & INP_IPV6) &&
|
732 |
|
|
!(inp->inp_flags & INP_IPV6_MAPPED)) {
|
733 |
|
|
inp->inp_ipv6.ip6_hlim =
|
734 |
|
|
oldinpcb->inp_ipv6.ip6_hlim;
|
735 |
|
|
inp->inp_ipv6.ip6_flow =
|
736 |
|
|
oldinpcb->inp_ipv6.ip6_flow;
|
737 |
|
|
}
|
738 |
|
|
}
|
739 |
|
|
#else /* INET6 */
|
740 |
|
|
inp = (struct inpcb *)so->so_pcb;
|
741 |
|
|
#endif /* INET6 */
|
742 |
|
|
inp->inp_lport = th->th_dport;
|
743 |
|
|
#ifdef INET6
|
744 |
|
|
if (is_ipv6) {
|
745 |
|
|
inp->inp_laddr6 = ipv6->ip6_dst;
|
746 |
|
|
inp->inp_fflowinfo = htonl(0x0fffffff) &
|
747 |
|
|
ipv6->ip6_flow;
|
748 |
|
|
|
749 |
|
|
/*inp->inp_options = ip6_srcroute();*/ /* soon. */
|
750 |
|
|
/* still need to tweak outbound options
|
751 |
|
|
processing to include this mbuf in
|
752 |
|
|
the right place and put the correct
|
753 |
|
|
NextHdr values in the right places.
|
754 |
|
|
XXX rja */
|
755 |
|
|
} else {
|
756 |
|
|
if (inp->inp_flags & INP_IPV6) {/* v4 to v6 socket */
|
757 |
|
|
CREATE_IPV6_MAPPED(inp->inp_laddr6,
|
758 |
|
|
ti->ti_dst.s_addr);
|
759 |
|
|
} else {
|
760 |
|
|
#endif /* INET6 */
|
761 |
|
|
inp->inp_laddr = ti->ti_dst;
|
762 |
|
|
inp->inp_options = ip_srcroute();
|
763 |
|
|
#ifdef INET6
|
764 |
|
|
}
|
765 |
|
|
}
|
766 |
|
|
#endif /* INET6 */
|
767 |
|
|
in_pcbrehash(inp);
|
768 |
|
|
tp = intotcpcb(inp);
|
769 |
|
|
tp->t_state = TCPS_LISTEN;
|
770 |
|
|
|
771 |
|
|
/* Compute proper scaling value from buffer space
|
772 |
|
|
*/
|
773 |
|
|
while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
|
774 |
|
|
TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat)
|
775 |
|
|
tp->request_r_scale++;
|
776 |
|
|
}
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
#ifdef IPSEC
|
780 |
|
|
/* Check if this socket requires security for incoming packets */
|
781 |
|
|
if ((inp->inp_seclevel[SL_AUTH] >= IPSEC_LEVEL_REQUIRE &&
|
782 |
|
|
!(m->m_flags & M_AUTH)) ||
|
783 |
|
|
(inp->inp_seclevel[SL_ESP_TRANS] >= IPSEC_LEVEL_REQUIRE &&
|
784 |
|
|
!(m->m_flags & M_CONF))) {
|
785 |
|
|
#ifdef notyet
|
786 |
|
|
#ifdef INET6
|
787 |
|
|
if (is_ipv6)
|
788 |
|
|
icmp6_error(m, ICMPV6_BLAH, ICMPV6_BLAH, 0);
|
789 |
|
|
else
|
790 |
|
|
#endif /* INET6 */
|
791 |
|
|
icmp_error(m, ICMP_BLAH, ICMP_BLAH, 0, 0);
|
792 |
|
|
#endif /* notyet */
|
793 |
|
|
tcpstat.tcps_rcvnosec++;
|
794 |
|
|
goto drop;
|
795 |
|
|
}
|
796 |
|
|
/* Use tdb_bind_out for this inp's outbound communication */
|
797 |
|
|
if (tdb)
|
798 |
|
|
tdb_add_inp(tdb, inp);
|
799 |
|
|
#endif /*IPSEC */
|
800 |
|
|
|
801 |
|
|
/*
|
802 |
|
|
* Segment received on connection.
|
803 |
|
|
* Reset idle time and keep-alive timer.
|
804 |
|
|
*/
|
805 |
|
|
tp->t_idle = 0;
|
806 |
|
|
if (tp->t_state != TCPS_SYN_RECEIVED)
|
807 |
|
|
tp->t_timer[TCPT_KEEP] = tcp_keepidle;
|
808 |
|
|
|
809 |
|
|
#ifdef TCP_SACK
|
810 |
|
|
if (!tp->sack_disable)
|
811 |
|
|
tcp_del_sackholes(tp, th); /* Delete stale SACK holes */
|
812 |
|
|
#endif /* TCP_SACK */
|
813 |
|
|
|
814 |
|
|
/*
|
815 |
|
|
* Process options if not in LISTEN state,
|
816 |
|
|
* else do it below (after getting remote address).
|
817 |
|
|
*/
|
818 |
|
|
if (optp && tp->t_state != TCPS_LISTEN)
|
819 |
|
|
tcp_dooptions(tp, optp, optlen, th,
|
820 |
|
|
&ts_present, &ts_val, &ts_ecr);
|
821 |
|
|
|
822 |
|
|
#ifdef TCP_SACK
|
823 |
|
|
if (!tp->sack_disable) {
|
824 |
|
|
tp->rcv_laststart = th->th_seq; /* last rec'vd segment*/
|
825 |
|
|
tp->rcv_lastend = th->th_seq + tlen;
|
826 |
|
|
}
|
827 |
|
|
#endif /* TCP_SACK */
|
828 |
|
|
/*
|
829 |
|
|
* Header prediction: check for the two common cases
|
830 |
|
|
* of a uni-directional data xfer. If the packet has
|
831 |
|
|
* no control flags, is in-sequence, the window didn't
|
832 |
|
|
* change and we're not retransmitting, it's a
|
833 |
|
|
* candidate. If the length is zero and the ack moved
|
834 |
|
|
* forward, we're the sender side of the xfer. Just
|
835 |
|
|
* free the data acked & wake any higher level process
|
836 |
|
|
* that was blocked waiting for space. If the length
|
837 |
|
|
* is non-zero and the ack didn't move, we're the
|
838 |
|
|
* receiver side. If we're getting packets in-order
|
839 |
|
|
* (the reassembly queue is empty), add the data to
|
840 |
|
|
* the socket buffer and note that we need a delayed ack.
|
841 |
|
|
*/
|
842 |
|
|
if (tp->t_state == TCPS_ESTABLISHED &&
|
843 |
|
|
(tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
|
844 |
|
|
(!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) &&
|
845 |
|
|
th->th_seq == tp->rcv_nxt &&
|
846 |
|
|
tiwin && tiwin == tp->snd_wnd &&
|
847 |
|
|
tp->snd_nxt == tp->snd_max) {
|
848 |
|
|
|
849 |
|
|
/*
|
850 |
|
|
* If last ACK falls within this segment's sequence numbers,
|
851 |
|
|
* record the timestamp.
|
852 |
|
|
* Fix from Braden, see Stevens p. 870
|
853 |
|
|
*/
|
854 |
|
|
if (ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
|
855 |
|
|
tp->ts_recent_age = tcp_now;
|
856 |
|
|
tp->ts_recent = ts_val;
|
857 |
|
|
}
|
858 |
|
|
|
859 |
|
|
if (tlen == 0) {
|
860 |
|
|
if (SEQ_GT(th->th_ack, tp->snd_una) &&
|
861 |
|
|
SEQ_LEQ(th->th_ack, tp->snd_max) &&
|
862 |
|
|
tp->snd_cwnd >= tp->snd_wnd &&
|
863 |
|
|
tp->t_dupacks == 0) {
|
864 |
|
|
/*
|
865 |
|
|
* this is a pure ack for outstanding data.
|
866 |
|
|
*/
|
867 |
|
|
++tcpstat.tcps_predack;
|
868 |
|
|
if (ts_present)
|
869 |
|
|
tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
|
870 |
|
|
else if (tp->t_rtt &&
|
871 |
|
|
SEQ_GT(th->th_ack, tp->t_rtseq))
|
872 |
|
|
tcp_xmit_timer(tp, tp->t_rtt);
|
873 |
|
|
acked = th->th_ack - tp->snd_una;
|
874 |
|
|
tcpstat.tcps_rcvackpack++;
|
875 |
|
|
tcpstat.tcps_rcvackbyte += acked;
|
876 |
|
|
ND6_HINT(tp);
|
877 |
|
|
sbdrop(&so->so_snd, acked);
|
878 |
|
|
tp->snd_una = th->th_ack;
|
879 |
|
|
#if defined(TCP_SACK) || defined(TCP_NEWRENO)
|
880 |
|
|
/*
|
881 |
|
|
* We want snd_last to track snd_una so
|
882 |
|
|
* as to avoid sequence wraparound problems
|
883 |
|
|
* for very large transfers.
|
884 |
|
|
*/
|
885 |
|
|
tp->snd_last = tp->snd_una;
|
886 |
|
|
#endif /* TCP_SACK or TCP_NEWRENO */
|
887 |
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
888 |
|
|
tp->snd_fack = tp->snd_una;
|
889 |
|
|
tp->retran_data = 0;
|
890 |
|
|
#endif /* TCP_FACK */
|
891 |
|
|
m_freem(m);
|
892 |
|
|
|
893 |
|
|
/*
|
894 |
|
|
* If all outstanding data are acked, stop
|
895 |
|
|
* retransmit timer, otherwise restart timer
|
896 |
|
|
* using current (possibly backed-off) value.
|
897 |
|
|
* If process is waiting for space,
|
898 |
|
|
* wakeup/selwakeup/signal. If data
|
899 |
|
|
* are ready to send, let tcp_output
|
900 |
|
|
* decide between more output or persist.
|
901 |
|
|
*/
|
902 |
|
|
if (tp->snd_una == tp->snd_max)
|
903 |
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
904 |
|
|
else if (tp->t_timer[TCPT_PERSIST] == 0)
|
905 |
|
|
tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
|
906 |
|
|
|
907 |
|
|
if (sb_notify(&so->so_snd))
|
908 |
|
|
sowwakeup(so);
|
909 |
|
|
if (so->so_snd.sb_cc)
|
910 |
|
|
(void) tcp_output(tp);
|
911 |
|
|
return;
|
912 |
|
|
}
|
913 |
|
|
} else if (th->th_ack == tp->snd_una &&
|
914 |
|
|
tp->segq.lh_first == NULL &&
|
915 |
|
|
tlen <= sbspace(&so->so_rcv)) {
|
916 |
|
|
/*
|
917 |
|
|
* This is a pure, in-sequence data packet
|
918 |
|
|
* with nothing on the reassembly queue and
|
919 |
|
|
* we have enough buffer space to take it.
|
920 |
|
|
*/
|
921 |
|
|
#ifdef TCP_SACK
|
922 |
|
|
/* Clean receiver SACK report if present */
|
923 |
|
|
if (!tp->sack_disable && tp->rcv_numsacks)
|
924 |
|
|
tcp_clean_sackreport(tp);
|
925 |
|
|
#endif /* TCP_SACK */
|
926 |
|
|
++tcpstat.tcps_preddat;
|
927 |
|
|
tp->rcv_nxt += tlen;
|
928 |
|
|
tcpstat.tcps_rcvpack++;
|
929 |
|
|
tcpstat.tcps_rcvbyte += tlen;
|
930 |
|
|
ND6_HINT(tp);
|
931 |
|
|
/*
|
932 |
|
|
* Drop TCP, IP headers and TCP options then add data
|
933 |
|
|
* to socket buffer.
|
934 |
|
|
*/
|
935 |
|
|
m_adj(m, iphlen + off);
|
936 |
|
|
sbappend(&so->so_rcv, m);
|
937 |
|
|
sorwakeup(so);
|
938 |
|
|
if (th->th_flags & TH_PUSH)
|
939 |
|
|
tp->t_flags |= TF_ACKNOW;
|
940 |
|
|
else
|
941 |
|
|
tp->t_flags |= TF_DELACK;
|
942 |
|
|
return;
|
943 |
|
|
}
|
944 |
|
|
}
|
945 |
|
|
|
946 |
|
|
/*
|
947 |
|
|
* Compute mbuf offset to TCP data segment.
|
948 |
|
|
*/
|
949 |
|
|
hdroptlen = iphlen + off;
|
950 |
|
|
|
951 |
|
|
/*
|
952 |
|
|
* Calculate amount of space in receive window,
|
953 |
|
|
* and then do TCP input processing.
|
954 |
|
|
* Receive window is amount of space in rcv queue,
|
955 |
|
|
* but not less than advertised window.
|
956 |
|
|
*/
|
957 |
|
|
{ int win;
|
958 |
|
|
|
959 |
|
|
win = sbspace(&so->so_rcv);
|
960 |
|
|
if (win < 0)
|
961 |
|
|
win = 0;
|
962 |
|
|
tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
|
963 |
|
|
}
|
964 |
|
|
|
965 |
|
|
switch (tp->t_state) {
|
966 |
|
|
|
967 |
|
|
/*
|
968 |
|
|
* If the state is LISTEN then ignore segment if it contains an RST.
|
969 |
|
|
* If the segment contains an ACK then it is bad and send a RST.
|
970 |
|
|
* If it does not contain a SYN then it is not interesting; drop it.
|
971 |
|
|
* If it is from this socket, drop it, it must be forged.
|
972 |
|
|
* Don't bother responding if the destination was a broadcast.
|
973 |
|
|
* Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
|
974 |
|
|
* tp->iss, and send a segment:
|
975 |
|
|
* <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
|
976 |
|
|
* Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
|
977 |
|
|
* Fill in remote peer address fields if not previously specified.
|
978 |
|
|
* Enter SYN_RECEIVED state, and process any other fields of this
|
979 |
|
|
* segment in this state.
|
980 |
|
|
*/
|
981 |
|
|
case TCPS_LISTEN: {
|
982 |
|
|
struct mbuf *am;
|
983 |
|
|
register struct sockaddr_in *sin;
|
984 |
|
|
#ifdef INET6
|
985 |
|
|
register struct sockaddr_in6 *sin6;
|
986 |
|
|
#endif /* INET6 */
|
987 |
|
|
|
988 |
|
|
if (tiflags & TH_RST)
|
989 |
|
|
goto drop;
|
990 |
|
|
if (tiflags & TH_ACK)
|
991 |
|
|
goto dropwithreset;
|
992 |
|
|
if ((tiflags & TH_SYN) == 0)
|
993 |
|
|
goto drop;
|
994 |
|
|
if (th->th_dport == th->th_sport) {
|
995 |
|
|
#ifdef INET6
|
996 |
|
|
if (is_ipv6) {
|
997 |
|
|
if (IN6_ARE_ADDR_EQUAL(&ipv6->ip6_src, &ipv6->ip6_dst))
|
998 |
|
|
goto drop;
|
999 |
|
|
} else {
|
1000 |
|
|
#endif /* INET6 */
|
1001 |
|
|
if (ti->ti_dst.s_addr == ti->ti_src.s_addr)
|
1002 |
|
|
goto drop;
|
1003 |
|
|
#ifdef INET6
|
1004 |
|
|
}
|
1005 |
|
|
#endif /* INET6 */
|
1006 |
|
|
}
|
1007 |
|
|
|
1008 |
|
|
/*
|
1009 |
|
|
* RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
|
1010 |
|
|
* in_broadcast() should never return true on a received
|
1011 |
|
|
* packet with M_BCAST not set.
|
1012 |
|
|
*/
|
1013 |
|
|
if (m->m_flags & (M_BCAST|M_MCAST))
|
1014 |
|
|
goto drop;
|
1015 |
|
|
#ifdef INET6
|
1016 |
|
|
if (is_ipv6) {
|
1017 |
|
|
/* XXX What about IPv6 Anycasting ?? :-( rja */
|
1018 |
|
|
if (IN6_IS_ADDR_MULTICAST(&ipv6->ip6_dst))
|
1019 |
|
|
goto drop;
|
1020 |
|
|
} else
|
1021 |
|
|
#endif /* INET6 */
|
1022 |
|
|
if (IN_MULTICAST(ti->ti_dst.s_addr))
|
1023 |
|
|
goto drop;
|
1024 |
|
|
am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
|
1025 |
|
|
if (am == NULL)
|
1026 |
|
|
goto drop;
|
1027 |
|
|
#ifdef INET6
|
1028 |
|
|
if (is_ipv6) {
|
1029 |
|
|
/*
|
1030 |
|
|
* This is probably the place to set the tp->pf value.
|
1031 |
|
|
* (Don't forget to do it in the v4 code as well!)
|
1032 |
|
|
*
|
1033 |
|
|
* Also, remember to blank out things like flowlabel, or
|
1034 |
|
|
* set flowlabel for accepted sockets in v6.
|
1035 |
|
|
*
|
1036 |
|
|
* FURTHERMORE, this is PROBABLY the place where the whole
|
1037 |
|
|
* business of key munging is set up for passive
|
1038 |
|
|
* connections.
|
1039 |
|
|
*/
|
1040 |
|
|
am->m_len = sizeof(struct sockaddr_in6);
|
1041 |
|
|
sin6 = mtod(am, struct sockaddr_in6 *);
|
1042 |
|
|
sin6->sin6_family = AF_INET6;
|
1043 |
|
|
sin6->sin6_len = sizeof(struct sockaddr_in6);
|
1044 |
|
|
sin6->sin6_addr = ipv6->ip6_src;
|
1045 |
|
|
sin6->sin6_port = th->th_sport;
|
1046 |
|
|
sin6->sin6_flowinfo = htonl(0x0fffffff) &
|
1047 |
|
|
inp->inp_ipv6.ip6_flow;
|
1048 |
|
|
laddr6 = inp->inp_laddr6;
|
1049 |
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6))
|
1050 |
|
|
inp->inp_laddr6 = ipv6->ip6_dst;
|
1051 |
|
|
/* This is a good optimization. */
|
1052 |
|
|
if (in6_pcbconnect(inp, am)) {
|
1053 |
|
|
inp->inp_laddr6 = laddr6;
|
1054 |
|
|
(void) m_free(am);
|
1055 |
|
|
goto drop;
|
1056 |
|
|
} /* endif in6_pcbconnect() */
|
1057 |
|
|
tp->pf = PF_INET6;
|
1058 |
|
|
} else {
|
1059 |
|
|
/*
|
1060 |
|
|
* Letting v4 incoming datagrams to reach valid
|
1061 |
|
|
* PF_INET6 sockets causes some overhead here.
|
1062 |
|
|
*/
|
1063 |
|
|
if (inp->inp_flags & INP_IPV6) {
|
1064 |
|
|
if (!(inp->inp_flags & (INP_IPV6_UNDEC|INP_IPV6_MAPPED))) {
|
1065 |
|
|
(void) m_free(am);
|
1066 |
|
|
goto drop;
|
1067 |
|
|
}
|
1068 |
|
|
|
1069 |
|
|
am->m_len = sizeof(struct sockaddr_in6);
|
1070 |
|
|
|
1071 |
|
|
sin6 = mtod(am, struct sockaddr_in6 *);
|
1072 |
|
|
sin6->sin6_family = AF_INET6;
|
1073 |
|
|
sin6->sin6_len = sizeof(*sin6);
|
1074 |
|
|
CREATE_IPV6_MAPPED(sin6->sin6_addr, ti->ti_src.s_addr);
|
1075 |
|
|
sin6->sin6_port = th->th_sport;
|
1076 |
|
|
sin6->sin6_flowinfo = 0;
|
1077 |
|
|
|
1078 |
|
|
laddr6 = inp->inp_laddr6;
|
1079 |
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY)
|
1080 |
|
|
CREATE_IPV6_MAPPED(inp->inp_laddr6, ti->ti_dst.s_addr);
|
1081 |
|
|
|
1082 |
|
|
/*
|
1083 |
|
|
* The pcb initially has the v6 default hoplimit
|
1084 |
|
|
* set. We're sending v4 packets so we need to set
|
1085 |
|
|
* the v4 ttl and tos.
|
1086 |
|
|
*/
|
1087 |
|
|
inp->inp_ip.ip_ttl = ip_defttl;
|
1088 |
|
|
inp->inp_ip.ip_tos = 0;
|
1089 |
|
|
|
1090 |
|
|
if (in6_pcbconnect(inp, am)) {
|
1091 |
|
|
inp->inp_laddr6 = laddr6;
|
1092 |
|
|
(void) m_freem(am);
|
1093 |
|
|
goto drop;
|
1094 |
|
|
}
|
1095 |
|
|
tp->pf = PF_INET;
|
1096 |
|
|
} else {
|
1097 |
|
|
#endif /* INET6 */
|
1098 |
|
|
am->m_len = sizeof (struct sockaddr_in);
|
1099 |
|
|
sin = mtod(am, struct sockaddr_in *);
|
1100 |
|
|
sin->sin_family = AF_INET;
|
1101 |
|
|
sin->sin_len = sizeof(*sin);
|
1102 |
|
|
sin->sin_addr = ti->ti_src;
|
1103 |
|
|
sin->sin_port = ti->ti_sport;
|
1104 |
|
|
bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
|
1105 |
|
|
laddr = inp->inp_laddr;
|
1106 |
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY)
|
1107 |
|
|
inp->inp_laddr = ti->ti_dst;
|
1108 |
|
|
if (in_pcbconnect(inp, am)) {
|
1109 |
|
|
inp->inp_laddr = laddr;
|
1110 |
|
|
(void) m_free(am);
|
1111 |
|
|
goto drop;
|
1112 |
|
|
}
|
1113 |
|
|
(void) m_free(am);
|
1114 |
|
|
tp->pf = PF_INET;
|
1115 |
|
|
#ifdef INET6
|
1116 |
|
|
} /* if (inp->inp_flags & INP_IPV6) */
|
1117 |
|
|
} /* if (is_ipv6) */
|
1118 |
|
|
#endif /* INET6 */
|
1119 |
|
|
tp->t_template = tcp_template(tp);
|
1120 |
|
|
if (tp->t_template == 0) {
|
1121 |
|
|
tp = tcp_drop(tp, ENOBUFS);
|
1122 |
|
|
dropsocket = 0; /* socket is already gone */
|
1123 |
|
|
goto drop;
|
1124 |
|
|
}
|
1125 |
|
|
if (optp)
|
1126 |
|
|
tcp_dooptions(tp, optp, optlen, th,
|
1127 |
|
|
&ts_present, &ts_val, &ts_ecr);
|
1128 |
|
|
#ifdef TCP_SACK
|
1129 |
|
|
/*
|
1130 |
|
|
* If peer did not send a SACK_PERMITTED option (i.e., if
|
1131 |
|
|
* tcp_dooptions() did not set TF_SACK_PERMIT), set
|
1132 |
|
|
* sack_disable to 1 if it is currently 0.
|
1133 |
|
|
*/
|
1134 |
|
|
if (!tp->sack_disable)
|
1135 |
|
|
if ((tp->t_flags & TF_SACK_PERMIT) == 0)
|
1136 |
|
|
tp->sack_disable = 1;
|
1137 |
|
|
#endif
|
1138 |
|
|
|
1139 |
|
|
if (iss)
|
1140 |
|
|
tp->iss = iss;
|
1141 |
|
|
else
|
1142 |
|
|
tp->iss = tcp_iss;
|
1143 |
|
|
#ifdef TCP_COMPAT_42
|
1144 |
|
|
tcp_iss += TCP_ISSINCR/2;
|
1145 |
|
|
#else /* TCP_COMPAT_42 */
|
1146 |
|
|
tcp_iss += arc4random() % TCP_ISSINCR + 1;
|
1147 |
|
|
#endif /* !TCP_COMPAT_42 */
|
1148 |
|
|
tp->irs = th->th_seq;
|
1149 |
|
|
tcp_sendseqinit(tp);
|
1150 |
|
|
#if defined (TCP_SACK) || defined (TCP_NEWRENO)
|
1151 |
|
|
tp->snd_last = tp->snd_una;
|
1152 |
|
|
#endif /* TCP_SACK || TCP_NEWRENO */
|
1153 |
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
1154 |
|
|
tp->snd_fack = tp->snd_una;
|
1155 |
|
|
tp->retran_data = 0;
|
1156 |
|
|
tp->snd_awnd = 0;
|
1157 |
|
|
#endif /* TCP_FACK */
|
1158 |
|
|
tcp_rcvseqinit(tp);
|
1159 |
|
|
tp->t_flags |= TF_ACKNOW;
|
1160 |
|
|
tp->t_state = TCPS_SYN_RECEIVED;
|
1161 |
|
|
tp->t_timer[TCPT_KEEP] = tcptv_keep_init;
|
1162 |
|
|
dropsocket = 0; /* committed to socket */
|
1163 |
|
|
tcpstat.tcps_accepts++;
|
1164 |
|
|
goto trimthenstep6;
|
1165 |
|
|
}
|
1166 |
|
|
|
1167 |
|
|
/*
|
1168 |
|
|
* If the state is SYN_RECEIVED:
|
1169 |
|
|
* if seg contains SYN/ACK, send an RST.
|
1170 |
|
|
* if seg contains an ACK, but not for our SYN/ACK, send an RST
|
1171 |
|
|
*/
|
1172 |
|
|
|
1173 |
|
|
case TCPS_SYN_RECEIVED:
|
1174 |
|
|
if (tiflags & TH_ACK) {
|
1175 |
|
|
if (tiflags & TH_SYN) {
|
1176 |
|
|
tcpstat.tcps_badsyn++;
|
1177 |
|
|
goto dropwithreset;
|
1178 |
|
|
}
|
1179 |
|
|
if (SEQ_LEQ(th->th_ack, tp->snd_una) ||
|
1180 |
|
|
SEQ_GT(th->th_ack, tp->snd_max))
|
1181 |
|
|
goto dropwithreset;
|
1182 |
|
|
}
|
1183 |
|
|
break;
|
1184 |
|
|
|
1185 |
|
|
/*
|
1186 |
|
|
* If the state is SYN_SENT:
|
1187 |
|
|
* if seg contains an ACK, but not for our SYN, drop the input.
|
1188 |
|
|
* if seg contains a RST, then drop the connection.
|
1189 |
|
|
* if seg does not contain SYN, then drop it.
|
1190 |
|
|
* Otherwise this is an acceptable SYN segment
|
1191 |
|
|
* initialize tp->rcv_nxt and tp->irs
|
1192 |
|
|
* if seg contains ack then advance tp->snd_una
|
1193 |
|
|
* if SYN has been acked change to ESTABLISHED else SYN_RCVD state
|
1194 |
|
|
* arrange for segment to be acked (eventually)
|
1195 |
|
|
* continue processing rest of data/controls, beginning with URG
|
1196 |
|
|
*/
|
1197 |
|
|
case TCPS_SYN_SENT:
|
1198 |
|
|
if ((tiflags & TH_ACK) &&
|
1199 |
|
|
(SEQ_LEQ(th->th_ack, tp->iss) ||
|
1200 |
|
|
SEQ_GT(th->th_ack, tp->snd_max)))
|
1201 |
|
|
goto dropwithreset;
|
1202 |
|
|
if (tiflags & TH_RST) {
|
1203 |
|
|
if (tiflags & TH_ACK)
|
1204 |
|
|
tp = tcp_drop(tp, ECONNREFUSED);
|
1205 |
|
|
goto drop;
|
1206 |
|
|
}
|
1207 |
|
|
if ((tiflags & TH_SYN) == 0)
|
1208 |
|
|
goto drop;
|
1209 |
|
|
if (tiflags & TH_ACK) {
|
1210 |
|
|
tp->snd_una = th->th_ack;
|
1211 |
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_una))
|
1212 |
|
|
tp->snd_nxt = tp->snd_una;
|
1213 |
|
|
}
|
1214 |
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
1215 |
|
|
tp->irs = th->th_seq;
|
1216 |
|
|
tcp_rcvseqinit(tp);
|
1217 |
|
|
tp->t_flags |= TF_ACKNOW;
|
1218 |
|
|
#ifdef TCP_SACK
|
1219 |
|
|
/*
|
1220 |
|
|
* If we've sent a SACK_PERMITTED option, and the peer
|
1221 |
|
|
* also replied with one, then TF_SACK_PERMIT should have
|
1222 |
|
|
* been set in tcp_dooptions(). If it was not, disable SACKs.
|
1223 |
|
|
*/
|
1224 |
|
|
if (!tp->sack_disable)
|
1225 |
|
|
if ((tp->t_flags & TF_SACK_PERMIT) == 0)
|
1226 |
|
|
tp->sack_disable = 1;
|
1227 |
|
|
#endif
|
1228 |
|
|
if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
|
1229 |
|
|
tcpstat.tcps_connects++;
|
1230 |
|
|
soisconnected(so);
|
1231 |
|
|
tp->t_state = TCPS_ESTABLISHED;
|
1232 |
|
|
/* Do window scaling on this connection? */
|
1233 |
|
|
if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
|
1234 |
|
|
(TF_RCVD_SCALE|TF_REQ_SCALE)) {
|
1235 |
|
|
tp->snd_scale = tp->requested_s_scale;
|
1236 |
|
|
tp->rcv_scale = tp->request_r_scale;
|
1237 |
|
|
}
|
1238 |
|
|
(void) tcp_reass(tp, (struct tcphdr *)0,
|
1239 |
|
|
(struct mbuf *)0, &tlen);
|
1240 |
|
|
/*
|
1241 |
|
|
* if we didn't have to retransmit the SYN,
|
1242 |
|
|
* use its rtt as our initial srtt & rtt var.
|
1243 |
|
|
*/
|
1244 |
|
|
if (tp->t_rtt)
|
1245 |
|
|
tcp_xmit_timer(tp, tp->t_rtt);
|
1246 |
|
|
/*
|
1247 |
|
|
* Since new data was acked (the SYN), open the
|
1248 |
|
|
* congestion window by one MSS. We do this
|
1249 |
|
|
* here, because we won't go through the normal
|
1250 |
|
|
* ACK processing below. And since this is the
|
1251 |
|
|
* start of the connection, we know we are in
|
1252 |
|
|
* the exponential phase of slow-start.
|
1253 |
|
|
*/
|
1254 |
|
|
tp->snd_cwnd += tp->t_maxseg;
|
1255 |
|
|
} else
|
1256 |
|
|
tp->t_state = TCPS_SYN_RECEIVED;
|
1257 |
|
|
|
1258 |
|
|
trimthenstep6:
|
1259 |
|
|
/*
|
1260 |
|
|
* Advance ti->ti_seq to correspond to first data byte.
|
1261 |
|
|
* If data, trim to stay within window,
|
1262 |
|
|
* dropping FIN if necessary.
|
1263 |
|
|
*/
|
1264 |
|
|
th->th_seq++;
|
1265 |
|
|
if (tlen > tp->rcv_wnd) {
|
1266 |
|
|
todrop = tlen - tp->rcv_wnd;
|
1267 |
|
|
m_adj(m, -todrop);
|
1268 |
|
|
tlen = tp->rcv_wnd;
|
1269 |
|
|
tiflags &= ~TH_FIN;
|
1270 |
|
|
tcpstat.tcps_rcvpackafterwin++;
|
1271 |
|
|
tcpstat.tcps_rcvbyteafterwin += todrop;
|
1272 |
|
|
}
|
1273 |
|
|
tp->snd_wl1 = th->th_seq - 1;
|
1274 |
|
|
tp->rcv_up = th->th_seq;
|
1275 |
|
|
goto step6;
|
1276 |
|
|
}
|
1277 |
|
|
|
1278 |
|
|
/*
|
1279 |
|
|
* States other than LISTEN or SYN_SENT.
|
1280 |
|
|
* First check timestamp, if present.
|
1281 |
|
|
* Then check that at least some bytes of segment are within
|
1282 |
|
|
* receive window. If segment begins before rcv_nxt,
|
1283 |
|
|
* drop leading data (and SYN); if nothing left, just ack.
|
1284 |
|
|
*
|
1285 |
|
|
* RFC 1323 PAWS: If we have a timestamp reply on this segment
|
1286 |
|
|
* and it's less than ts_recent, drop it.
|
1287 |
|
|
*/
|
1288 |
|
|
if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
|
1289 |
|
|
TSTMP_LT(ts_val, tp->ts_recent)) {
|
1290 |
|
|
|
1291 |
|
|
/* Check to see if ts_recent is over 24 days old. */
|
1292 |
|
|
if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
|
1293 |
|
|
/*
|
1294 |
|
|
* Invalidate ts_recent. If this segment updates
|
1295 |
|
|
* ts_recent, the age will be reset later and ts_recent
|
1296 |
|
|
* will get a valid value. If it does not, setting
|
1297 |
|
|
* ts_recent to zero will at least satisfy the
|
1298 |
|
|
* requirement that zero be placed in the timestamp
|
1299 |
|
|
* echo reply when ts_recent isn't valid. The
|
1300 |
|
|
* age isn't reset until we get a valid ts_recent
|
1301 |
|
|
* because we don't want out-of-order segments to be
|
1302 |
|
|
* dropped when ts_recent is old.
|
1303 |
|
|
*/
|
1304 |
|
|
tp->ts_recent = 0;
|
1305 |
|
|
} else {
|
1306 |
|
|
tcpstat.tcps_rcvduppack++;
|
1307 |
|
|
tcpstat.tcps_rcvdupbyte += tlen;
|
1308 |
|
|
tcpstat.tcps_pawsdrop++;
|
1309 |
|
|
goto dropafterack;
|
1310 |
|
|
}
|
1311 |
|
|
}
|
1312 |
|
|
|
1313 |
|
|
todrop = tp->rcv_nxt - th->th_seq;
|
1314 |
|
|
if (todrop > 0) {
|
1315 |
|
|
if (tiflags & TH_SYN) {
|
1316 |
|
|
tiflags &= ~TH_SYN;
|
1317 |
|
|
th->th_seq++;
|
1318 |
|
|
if (th->th_urp > 1)
|
1319 |
|
|
th->th_urp--;
|
1320 |
|
|
else
|
1321 |
|
|
tiflags &= ~TH_URG;
|
1322 |
|
|
todrop--;
|
1323 |
|
|
}
|
1324 |
|
|
if (todrop >= tlen ||
|
1325 |
|
|
(todrop == tlen && (tiflags & TH_FIN) == 0)) {
|
1326 |
|
|
/*
|
1327 |
|
|
* Any valid FIN must be to the left of the
|
1328 |
|
|
* window. At this point, FIN must be a
|
1329 |
|
|
* duplicate or out-of-sequence, so drop it.
|
1330 |
|
|
*/
|
1331 |
|
|
tiflags &= ~TH_FIN;
|
1332 |
|
|
/*
|
1333 |
|
|
* Send ACK to resynchronize, and drop any data,
|
1334 |
|
|
* but keep on processing for RST or ACK.
|
1335 |
|
|
*/
|
1336 |
|
|
tp->t_flags |= TF_ACKNOW;
|
1337 |
|
|
tcpstat.tcps_rcvdupbyte += todrop = tlen;
|
1338 |
|
|
tcpstat.tcps_rcvduppack++;
|
1339 |
|
|
} else {
|
1340 |
|
|
tcpstat.tcps_rcvpartduppack++;
|
1341 |
|
|
tcpstat.tcps_rcvpartdupbyte += todrop;
|
1342 |
|
|
}
|
1343 |
|
|
hdroptlen += todrop; /* drop from head afterwards */
|
1344 |
|
|
th->th_seq += todrop;
|
1345 |
|
|
tlen -= todrop;
|
1346 |
|
|
if (th->th_urp > todrop)
|
1347 |
|
|
th->th_urp -= todrop;
|
1348 |
|
|
else {
|
1349 |
|
|
tiflags &= ~TH_URG;
|
1350 |
|
|
th->th_urp = 0;
|
1351 |
|
|
}
|
1352 |
|
|
}
|
1353 |
|
|
|
1354 |
|
|
/*
|
1355 |
|
|
* If new data are received on a connection after the
|
1356 |
|
|
* user processes are gone, then RST the other end.
|
1357 |
|
|
*/
|
1358 |
|
|
if ((so->so_state & SS_NOFDREF) &&
|
1359 |
|
|
tp->t_state > TCPS_CLOSE_WAIT && tlen) {
|
1360 |
|
|
tp = tcp_close(tp);
|
1361 |
|
|
tcpstat.tcps_rcvafterclose++;
|
1362 |
|
|
goto dropwithreset;
|
1363 |
|
|
}
|
1364 |
|
|
|
1365 |
|
|
/*
|
1366 |
|
|
* If segment ends after window, drop trailing data
|
1367 |
|
|
* (and PUSH and FIN); if nothing left, just ACK.
|
1368 |
|
|
*/
|
1369 |
|
|
todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
|
1370 |
|
|
if (todrop > 0) {
|
1371 |
|
|
tcpstat.tcps_rcvpackafterwin++;
|
1372 |
|
|
if (todrop >= tlen) {
|
1373 |
|
|
tcpstat.tcps_rcvbyteafterwin += tlen;
|
1374 |
|
|
/*
|
1375 |
|
|
* If a new connection request is received
|
1376 |
|
|
* while in TIME_WAIT, drop the old connection
|
1377 |
|
|
* and start over if the sequence numbers
|
1378 |
|
|
* are above the previous ones.
|
1379 |
|
|
*/
|
1380 |
|
|
if (tiflags & TH_SYN &&
|
1381 |
|
|
tp->t_state == TCPS_TIME_WAIT &&
|
1382 |
|
|
SEQ_GT(th->th_seq, tp->rcv_nxt)) {
|
1383 |
|
|
iss = tp->snd_nxt + TCP_ISSINCR;
|
1384 |
|
|
tp = tcp_close(tp);
|
1385 |
|
|
goto findpcb;
|
1386 |
|
|
}
|
1387 |
|
|
/*
|
1388 |
|
|
* If window is closed can only take segments at
|
1389 |
|
|
* window edge, and have to drop data and PUSH from
|
1390 |
|
|
* incoming segments. Continue processing, but
|
1391 |
|
|
* remember to ack. Otherwise, drop segment
|
1392 |
|
|
* and ack.
|
1393 |
|
|
*/
|
1394 |
|
|
if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
|
1395 |
|
|
tp->t_flags |= TF_ACKNOW;
|
1396 |
|
|
tcpstat.tcps_rcvwinprobe++;
|
1397 |
|
|
} else
|
1398 |
|
|
goto dropafterack;
|
1399 |
|
|
} else
|
1400 |
|
|
tcpstat.tcps_rcvbyteafterwin += todrop;
|
1401 |
|
|
m_adj(m, -todrop);
|
1402 |
|
|
tlen -= todrop;
|
1403 |
|
|
tiflags &= ~(TH_PUSH|TH_FIN);
|
1404 |
|
|
}
|
1405 |
|
|
|
1406 |
|
|
/*
|
1407 |
|
|
* If last ACK falls within this segment's sequence numbers,
|
1408 |
|
|
* record its timestamp.
|
1409 |
|
|
* Fix from Braden, see Stevens p. 870
|
1410 |
|
|
*/
|
1411 |
|
|
if (ts_present && TSTMP_GEQ(ts_val, tp->ts_recent) &&
|
1412 |
|
|
SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
|
1413 |
|
|
tp->ts_recent_age = tcp_now;
|
1414 |
|
|
tp->ts_recent = ts_val;
|
1415 |
|
|
}
|
1416 |
|
|
|
1417 |
|
|
/*
|
1418 |
|
|
* If the RST bit is set examine the state:
|
1419 |
|
|
* SYN_RECEIVED STATE:
|
1420 |
|
|
* If passive open, return to LISTEN state.
|
1421 |
|
|
* If active open, inform user that connection was refused.
|
1422 |
|
|
* ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
|
1423 |
|
|
* Inform user that connection was reset, and close tcb.
|
1424 |
|
|
* CLOSING, LAST_ACK, TIME_WAIT STATES
|
1425 |
|
|
* Close the tcb.
|
1426 |
|
|
*/
|
1427 |
|
|
if (tiflags & TH_RST) {
|
1428 |
|
|
#ifndef INET6
|
1429 |
|
|
if (ti->ti_seq != tp->last_ack_sent)
|
1430 |
|
|
#else
|
1431 |
|
|
if (th->th_seq != tp->last_ack_sent)
|
1432 |
|
|
#endif
|
1433 |
|
|
goto drop;
|
1434 |
|
|
|
1435 |
|
|
switch (tp->t_state) {
|
1436 |
|
|
case TCPS_SYN_RECEIVED:
|
1437 |
|
|
so->so_error = ECONNREFUSED;
|
1438 |
|
|
goto close;
|
1439 |
|
|
|
1440 |
|
|
case TCPS_ESTABLISHED:
|
1441 |
|
|
case TCPS_FIN_WAIT_1:
|
1442 |
|
|
case TCPS_FIN_WAIT_2:
|
1443 |
|
|
case TCPS_CLOSE_WAIT:
|
1444 |
|
|
so->so_error = ECONNRESET;
|
1445 |
|
|
close:
|
1446 |
|
|
tp->t_state = TCPS_CLOSED;
|
1447 |
|
|
tcpstat.tcps_drops++;
|
1448 |
|
|
tp = tcp_close(tp);
|
1449 |
|
|
goto drop;
|
1450 |
|
|
case TCPS_CLOSING:
|
1451 |
|
|
case TCPS_LAST_ACK:
|
1452 |
|
|
case TCPS_TIME_WAIT:
|
1453 |
|
|
tp = tcp_close(tp);
|
1454 |
|
|
goto drop;
|
1455 |
|
|
}
|
1456 |
|
|
}
|
1457 |
|
|
|
1458 |
|
|
/*
|
1459 |
|
|
* If a SYN is in the window, then this is an
|
1460 |
|
|
* error and we send an RST and drop the connection.
|
1461 |
|
|
*/
|
1462 |
|
|
if (tiflags & TH_SYN) {
|
1463 |
|
|
tp = tcp_drop(tp, ECONNRESET);
|
1464 |
|
|
goto dropwithreset;
|
1465 |
|
|
}
|
1466 |
|
|
|
1467 |
|
|
/*
|
1468 |
|
|
* If the ACK bit is off we drop the segment and return.
|
1469 |
|
|
*/
|
1470 |
|
|
if ((tiflags & TH_ACK) == 0) {
|
1471 |
|
|
if (tp->t_flags & TF_ACKNOW)
|
1472 |
|
|
goto dropafterack;
|
1473 |
|
|
else
|
1474 |
|
|
goto drop;
|
1475 |
|
|
}
|
1476 |
|
|
|
1477 |
|
|
/*
|
1478 |
|
|
* Ack processing.
|
1479 |
|
|
*/
|
1480 |
|
|
switch (tp->t_state) {
|
1481 |
|
|
|
1482 |
|
|
/*
|
1483 |
|
|
* In SYN_RECEIVED state, the ack ACKs our SYN, so enter
|
1484 |
|
|
* ESTABLISHED state and continue processing.
|
1485 |
|
|
* The ACK was checked above.
|
1486 |
|
|
*/
|
1487 |
|
|
case TCPS_SYN_RECEIVED:
|
1488 |
|
|
tcpstat.tcps_connects++;
|
1489 |
|
|
soisconnected(so);
|
1490 |
|
|
tp->t_state = TCPS_ESTABLISHED;
|
1491 |
|
|
/* Do window scaling? */
|
1492 |
|
|
if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
|
1493 |
|
|
(TF_RCVD_SCALE|TF_REQ_SCALE)) {
|
1494 |
|
|
tp->snd_scale = tp->requested_s_scale;
|
1495 |
|
|
tp->rcv_scale = tp->request_r_scale;
|
1496 |
|
|
}
|
1497 |
|
|
(void) tcp_reass(tp, (struct tcphdr *)0, (struct mbuf *)0,
|
1498 |
|
|
&tlen);
|
1499 |
|
|
tp->snd_wl1 = th->th_seq - 1;
|
1500 |
|
|
/* fall into ... */
|
1501 |
|
|
|
1502 |
|
|
/*
|
1503 |
|
|
* In ESTABLISHED state: drop duplicate ACKs; ACK out of range
|
1504 |
|
|
* ACKs. If the ack is in the range
|
1505 |
|
|
* tp->snd_una < ti->ti_ack <= tp->snd_max
|
1506 |
|
|
* then advance tp->snd_una to ti->ti_ack and drop
|
1507 |
|
|
* data from the retransmission queue. If this ACK reflects
|
1508 |
|
|
* more up to date window information we update our window information.
|
1509 |
|
|
*/
|
1510 |
|
|
case TCPS_ESTABLISHED:
|
1511 |
|
|
case TCPS_FIN_WAIT_1:
|
1512 |
|
|
case TCPS_FIN_WAIT_2:
|
1513 |
|
|
case TCPS_CLOSE_WAIT:
|
1514 |
|
|
case TCPS_CLOSING:
|
1515 |
|
|
case TCPS_LAST_ACK:
|
1516 |
|
|
case TCPS_TIME_WAIT:
|
1517 |
|
|
if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
|
1518 |
|
|
/*
|
1519 |
|
|
* Duplicate/old ACK processing.
|
1520 |
|
|
* Increments t_dupacks:
|
1521 |
|
|
* Pure duplicate (same seq/ack/window, no data)
|
1522 |
|
|
* Doesn't affect t_dupacks:
|
1523 |
|
|
* Data packets.
|
1524 |
|
|
* Normal window updates (window opens)
|
1525 |
|
|
* Resets t_dupacks:
|
1526 |
|
|
* New data ACKed.
|
1527 |
|
|
* Window shrinks
|
1528 |
|
|
* Old ACK
|
1529 |
|
|
*/
|
1530 |
|
|
if (tlen)
|
1531 |
|
|
break;
|
1532 |
|
|
/*
|
1533 |
|
|
* If we get an old ACK, there is probably packet
|
1534 |
|
|
* reordering going on. Be conservative and reset
|
1535 |
|
|
* t_dupacks so that we are less agressive in
|
1536 |
|
|
* doing a fast retransmit.
|
1537 |
|
|
*/
|
1538 |
|
|
if (th->th_ack != tp->snd_una) {
|
1539 |
|
|
tp->t_dupacks = 0;
|
1540 |
|
|
break;
|
1541 |
|
|
}
|
1542 |
|
|
if (tiwin == tp->snd_wnd) {
|
1543 |
|
|
tcpstat.tcps_rcvdupack++;
|
1544 |
|
|
/*
|
1545 |
|
|
* If we have outstanding data (other than
|
1546 |
|
|
* a window probe), this is a completely
|
1547 |
|
|
* duplicate ack (ie, window info didn't
|
1548 |
|
|
* change), the ack is the biggest we've
|
1549 |
|
|
* seen and we've seen exactly our rexmt
|
1550 |
|
|
* threshhold of them, assume a packet
|
1551 |
|
|
* has been dropped and retransmit it.
|
1552 |
|
|
* Kludge snd_nxt & the congestion
|
1553 |
|
|
* window so we send only this one
|
1554 |
|
|
* packet.
|
1555 |
|
|
*
|
1556 |
|
|
* We know we're losing at the current
|
1557 |
|
|
* window size so do congestion avoidance
|
1558 |
|
|
* (set ssthresh to half the current window
|
1559 |
|
|
* and pull our congestion window back to
|
1560 |
|
|
* the new ssthresh).
|
1561 |
|
|
*
|
1562 |
|
|
* Dup acks mean that packets have left the
|
1563 |
|
|
* network (they're now cached at the receiver)
|
1564 |
|
|
* so bump cwnd by the amount in the receiver
|
1565 |
|
|
* to keep a constant cwnd packets in the
|
1566 |
|
|
* network.
|
1567 |
|
|
*/
|
1568 |
|
|
if (tp->t_timer[TCPT_REXMT] == 0)
|
1569 |
|
|
tp->t_dupacks = 0;
|
1570 |
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
1571 |
|
|
/*
|
1572 |
|
|
* In FACK, can enter fast rec. if the receiver
|
1573 |
|
|
* reports a reass. queue longer than 3 segs.
|
1574 |
|
|
*/
|
1575 |
|
|
else if (++tp->t_dupacks == tcprexmtthresh ||
|
1576 |
|
|
((SEQ_GT(tp->snd_fack, tcprexmtthresh *
|
1577 |
|
|
tp->t_maxseg + tp->snd_una)) &&
|
1578 |
|
|
SEQ_GT(tp->snd_una, tp->snd_last))) {
|
1579 |
|
|
#else
|
1580 |
|
|
else if (++tp->t_dupacks == tcprexmtthresh) {
|
1581 |
|
|
#endif /* TCP_FACK */
|
1582 |
|
|
tcp_seq onxt = tp->snd_nxt;
|
1583 |
|
|
u_long win =
|
1584 |
|
|
ulmin(tp->snd_wnd, tp->snd_cwnd) /
|
1585 |
|
|
2 / tp->t_maxseg;
|
1586 |
|
|
|
1587 |
|
|
#if defined(TCP_SACK) || defined(TCP_NEWRENO)
|
1588 |
|
|
if (SEQ_LT(th->th_ack, tp->snd_last)){
|
1589 |
|
|
/*
|
1590 |
|
|
* False fast retx after
|
1591 |
|
|
* timeout. Do not cut window.
|
1592 |
|
|
*/
|
1593 |
|
|
tp->snd_cwnd += tp->t_maxseg;
|
1594 |
|
|
tp->t_dupacks = 0;
|
1595 |
|
|
(void) tcp_output(tp);
|
1596 |
|
|
goto drop;
|
1597 |
|
|
}
|
1598 |
|
|
#endif
|
1599 |
|
|
if (win < 2)
|
1600 |
|
|
win = 2;
|
1601 |
|
|
tp->snd_ssthresh = win * tp->t_maxseg;
|
1602 |
|
|
#if defined(TCP_SACK) || defined(TCP_NEWRENO)
|
1603 |
|
|
tp->snd_last = tp->snd_max;
|
1604 |
|
|
#endif
|
1605 |
|
|
#ifdef TCP_SACK
|
1606 |
|
|
if (!tp->sack_disable) {
|
1607 |
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
1608 |
|
|
tp->t_rtt = 0;
|
1609 |
|
|
tcpstat.tcps_sndrexmitfast++;
|
1610 |
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
1611 |
|
|
(void) tcp_output(tp);
|
1612 |
|
|
/*
|
1613 |
|
|
* During FR, snd_cwnd is held
|
1614 |
|
|
* constant for FACK.
|
1615 |
|
|
*/
|
1616 |
|
|
tp->snd_cwnd = tp->snd_ssthresh;
|
1617 |
|
|
tp->t_dupacks = tcprexmtthresh;
|
1618 |
|
|
#else
|
1619 |
|
|
/*
|
1620 |
|
|
* tcp_output() will send
|
1621 |
|
|
* oldest SACK-eligible rtx.
|
1622 |
|
|
*/
|
1623 |
|
|
(void) tcp_output(tp);
|
1624 |
|
|
tp->snd_cwnd = tp->snd_ssthresh+
|
1625 |
|
|
tp->t_maxseg * tp->t_dupacks;
|
1626 |
|
|
#endif /* TCP_FACK */
|
1627 |
|
|
goto drop;
|
1628 |
|
|
}
|
1629 |
|
|
#endif /* TCP_SACK */
|
1630 |
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
1631 |
|
|
tp->t_rtt = 0;
|
1632 |
|
|
tp->snd_nxt = th->th_ack;
|
1633 |
|
|
tp->snd_cwnd = tp->t_maxseg;
|
1634 |
|
|
tcpstat.tcps_sndrexmitfast++;
|
1635 |
|
|
(void) tcp_output(tp);
|
1636 |
|
|
|
1637 |
|
|
tp->snd_cwnd = tp->snd_ssthresh +
|
1638 |
|
|
tp->t_maxseg * tp->t_dupacks;
|
1639 |
|
|
if (SEQ_GT(onxt, tp->snd_nxt))
|
1640 |
|
|
tp->snd_nxt = onxt;
|
1641 |
|
|
goto drop;
|
1642 |
|
|
} else if (tp->t_dupacks > tcprexmtthresh) {
|
1643 |
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
1644 |
|
|
/*
|
1645 |
|
|
* while (awnd < cwnd)
|
1646 |
|
|
* sendsomething();
|
1647 |
|
|
*/
|
1648 |
|
|
if (!tp->sack_disable) {
|
1649 |
|
|
if (tp->snd_awnd < tp->snd_cwnd)
|
1650 |
|
|
tcp_output(tp);
|
1651 |
|
|
goto drop;
|
1652 |
|
|
}
|
1653 |
|
|
#endif /* TCP_FACK */
|
1654 |
|
|
tp->snd_cwnd += tp->t_maxseg;
|
1655 |
|
|
(void) tcp_output(tp);
|
1656 |
|
|
goto drop;
|
1657 |
|
|
}
|
1658 |
|
|
} else if (tiwin < tp->snd_wnd) {
|
1659 |
|
|
/*
|
1660 |
|
|
* The window was retracted! Previous dup
|
1661 |
|
|
* ACKs may have been due to packets arriving
|
1662 |
|
|
* after the shrunken window, not a missing
|
1663 |
|
|
* packet, so play it safe and reset t_dupacks
|
1664 |
|
|
*/
|
1665 |
|
|
tp->t_dupacks = 0;
|
1666 |
|
|
}
|
1667 |
|
|
break;
|
1668 |
|
|
}
|
1669 |
|
|
/*
|
1670 |
|
|
* If the congestion window was inflated to account
|
1671 |
|
|
* for the other side's cached packets, retract it.
|
1672 |
|
|
*/
|
1673 |
|
|
#ifdef TCP_NEWRENO
|
1674 |
|
|
if (tp->t_dupacks >= tcprexmtthresh && !tcp_newreno(tp, th)) {
|
1675 |
|
|
/* Out of fast recovery */
|
1676 |
|
|
tp->snd_cwnd = tp->snd_ssthresh;
|
1677 |
|
|
/*
|
1678 |
|
|
* Window inflation should have left us with approx.
|
1679 |
|
|
* snd_ssthresh outstanding data. But in case we
|
1680 |
|
|
* would be inclined to send a burst, better to do
|
1681 |
|
|
* it via the slow start mechanism.
|
1682 |
|
|
*/
|
1683 |
|
|
if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
|
1684 |
|
|
tp->snd_ssthresh)
|
1685 |
|
|
tp->snd_cwnd = tcp_seq_subtract(tp->snd_max,
|
1686 |
|
|
th->th_ack) + tp->t_maxseg;
|
1687 |
|
|
tp->t_dupacks = 0;
|
1688 |
|
|
}
|
1689 |
|
|
#elif defined(TCP_SACK)
|
1690 |
|
|
if (!tp->sack_disable) {
|
1691 |
|
|
if (tp->t_dupacks >= tcprexmtthresh) {
|
1692 |
|
|
/* Check for a partial ACK */
|
1693 |
|
|
if (tcp_sack_partialack(tp, th)) {
|
1694 |
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
1695 |
|
|
/* Force call to tcp_output */
|
1696 |
|
|
if (tp->snd_awnd < tp->snd_cwnd)
|
1697 |
|
|
needoutput = 1;
|
1698 |
|
|
#else
|
1699 |
|
|
tp->snd_cwnd += tp->t_maxseg;
|
1700 |
|
|
needoutput = 1;
|
1701 |
|
|
#endif /* TCP_FACK */
|
1702 |
|
|
} else {
|
1703 |
|
|
/* Out of fast recovery */
|
1704 |
|
|
tp->snd_cwnd = tp->snd_ssthresh;
|
1705 |
|
|
if (tcp_seq_subtract(tp->snd_max,
|
1706 |
|
|
th->th_ack) < tp->snd_ssthresh)
|
1707 |
|
|
tp->snd_cwnd =
|
1708 |
|
|
tcp_seq_subtract(tp->snd_max,
|
1709 |
|
|
th->th_ack) + tp->t_maxseg;
|
1710 |
|
|
tp->t_dupacks = 0;
|
1711 |
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
1712 |
|
|
if (SEQ_GT(th->th_ack, tp->snd_fack))
|
1713 |
|
|
tp->snd_fack = th->th_ack;
|
1714 |
|
|
#endif /* TCP_FACK */
|
1715 |
|
|
}
|
1716 |
|
|
}
|
1717 |
|
|
} else {
|
1718 |
|
|
if (tp->t_dupacks >= tcprexmtthresh &&
|
1719 |
|
|
!tcp_newreno(tp, th)) {
|
1720 |
|
|
/* Out of fast recovery */
|
1721 |
|
|
tp->snd_cwnd = tp->snd_ssthresh;
|
1722 |
|
|
if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
|
1723 |
|
|
tp->snd_ssthresh)
|
1724 |
|
|
tp->snd_cwnd =
|
1725 |
|
|
tcp_seq_subtract(tp->snd_max,
|
1726 |
|
|
th->th_ack) + tp->t_maxseg;
|
1727 |
|
|
tp->t_dupacks = 0;
|
1728 |
|
|
}
|
1729 |
|
|
}
|
1730 |
|
|
#else /* else neither TCP_NEWRENO nor TCP_SACK */
|
1731 |
|
|
if (tp->t_dupacks >= tcprexmtthresh &&
|
1732 |
|
|
tp->snd_cwnd > tp->snd_ssthresh)
|
1733 |
|
|
tp->snd_cwnd = tp->snd_ssthresh;
|
1734 |
|
|
tp->t_dupacks = 0;
|
1735 |
|
|
#endif
|
1736 |
|
|
if (SEQ_GT(th->th_ack, tp->snd_max)) {
|
1737 |
|
|
tcpstat.tcps_rcvacktoomuch++;
|
1738 |
|
|
goto dropafterack;
|
1739 |
|
|
}
|
1740 |
|
|
acked = th->th_ack - tp->snd_una;
|
1741 |
|
|
tcpstat.tcps_rcvackpack++;
|
1742 |
|
|
tcpstat.tcps_rcvackbyte += acked;
|
1743 |
|
|
|
1744 |
|
|
/*
|
1745 |
|
|
* If we have a timestamp reply, update smoothed
|
1746 |
|
|
* round trip time. If no timestamp is present but
|
1747 |
|
|
* transmit timer is running and timed sequence
|
1748 |
|
|
* number was acked, update smoothed round trip time.
|
1749 |
|
|
* Since we now have an rtt measurement, cancel the
|
1750 |
|
|
* timer backoff (cf., Phil Karn's retransmit alg.).
|
1751 |
|
|
* Recompute the initial retransmit timer.
|
1752 |
|
|
*/
|
1753 |
|
|
if (ts_present)
|
1754 |
|
|
tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
|
1755 |
|
|
else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
|
1756 |
|
|
tcp_xmit_timer(tp,tp->t_rtt);
|
1757 |
|
|
|
1758 |
|
|
/*
|
1759 |
|
|
* If all outstanding data is acked, stop retransmit
|
1760 |
|
|
* timer and remember to restart (more output or persist).
|
1761 |
|
|
* If there is more data to be acked, restart retransmit
|
1762 |
|
|
* timer, using current (possibly backed-off) value.
|
1763 |
|
|
*/
|
1764 |
|
|
if (th->th_ack == tp->snd_max) {
|
1765 |
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
1766 |
|
|
needoutput = 1;
|
1767 |
|
|
} else if (tp->t_timer[TCPT_PERSIST] == 0)
|
1768 |
|
|
tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
|
1769 |
|
|
/*
|
1770 |
|
|
* When new data is acked, open the congestion window.
|
1771 |
|
|
* If the window gives us less than ssthresh packets
|
1772 |
|
|
* in flight, open exponentially (maxseg per packet).
|
1773 |
|
|
* Otherwise open linearly: maxseg per window
|
1774 |
|
|
* (maxseg^2 / cwnd per packet).
|
1775 |
|
|
*/
|
1776 |
|
|
{
|
1777 |
|
|
register u_int cw = tp->snd_cwnd;
|
1778 |
|
|
register u_int incr = tp->t_maxseg;
|
1779 |
|
|
|
1780 |
|
|
if (cw > tp->snd_ssthresh)
|
1781 |
|
|
incr = incr * incr / cw;
|
1782 |
|
|
#if defined (TCP_NEWRENO) || defined (TCP_SACK)
|
1783 |
|
|
if (SEQ_GEQ(th->th_ack, tp->snd_last))
|
1784 |
|
|
#endif
|
1785 |
|
|
tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
|
1786 |
|
|
}
|
1787 |
|
|
ND6_HINT(tp);
|
1788 |
|
|
if (acked > so->so_snd.sb_cc) {
|
1789 |
|
|
tp->snd_wnd -= so->so_snd.sb_cc;
|
1790 |
|
|
sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
|
1791 |
|
|
ourfinisacked = 1;
|
1792 |
|
|
} else {
|
1793 |
|
|
sbdrop(&so->so_snd, acked);
|
1794 |
|
|
tp->snd_wnd -= acked;
|
1795 |
|
|
ourfinisacked = 0;
|
1796 |
|
|
}
|
1797 |
|
|
if (sb_notify(&so->so_snd))
|
1798 |
|
|
sowwakeup(so);
|
1799 |
|
|
tp->snd_una = th->th_ack;
|
1800 |
|
|
if (SEQ_LT(tp->snd_nxt, tp->snd_una))
|
1801 |
|
|
tp->snd_nxt = tp->snd_una;
|
1802 |
|
|
#if defined (TCP_SACK) && defined (TCP_FACK)
|
1803 |
|
|
if (SEQ_GT(tp->snd_una, tp->snd_fack))
|
1804 |
|
|
tp->snd_fack = tp->snd_una;
|
1805 |
|
|
#endif
|
1806 |
|
|
|
1807 |
|
|
switch (tp->t_state) {
|
1808 |
|
|
|
1809 |
|
|
/*
|
1810 |
|
|
* In FIN_WAIT_1 STATE in addition to the processing
|
1811 |
|
|
* for the ESTABLISHED state if our FIN is now acknowledged
|
1812 |
|
|
* then enter FIN_WAIT_2.
|
1813 |
|
|
*/
|
1814 |
|
|
case TCPS_FIN_WAIT_1:
|
1815 |
|
|
if (ourfinisacked) {
|
1816 |
|
|
/*
|
1817 |
|
|
* If we can't receive any more
|
1818 |
|
|
* data, then closing user can proceed.
|
1819 |
|
|
* Starting the timer is contrary to the
|
1820 |
|
|
* specification, but if we don't get a FIN
|
1821 |
|
|
* we'll hang forever.
|
1822 |
|
|
*/
|
1823 |
|
|
if (so->so_state & SS_CANTRCVMORE) {
|
1824 |
|
|
soisdisconnected(so);
|
1825 |
|
|
tp->t_timer[TCPT_2MSL] = tcp_maxidle;
|
1826 |
|
|
}
|
1827 |
|
|
tp->t_state = TCPS_FIN_WAIT_2;
|
1828 |
|
|
}
|
1829 |
|
|
break;
|
1830 |
|
|
|
1831 |
|
|
/*
|
1832 |
|
|
* In CLOSING STATE in addition to the processing for
|
1833 |
|
|
* the ESTABLISHED state if the ACK acknowledges our FIN
|
1834 |
|
|
* then enter the TIME-WAIT state, otherwise ignore
|
1835 |
|
|
* the segment.
|
1836 |
|
|
*/
|
1837 |
|
|
case TCPS_CLOSING:
|
1838 |
|
|
if (ourfinisacked) {
|
1839 |
|
|
tp->t_state = TCPS_TIME_WAIT;
|
1840 |
|
|
tcp_canceltimers(tp);
|
1841 |
|
|
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
|
1842 |
|
|
soisdisconnected(so);
|
1843 |
|
|
}
|
1844 |
|
|
break;
|
1845 |
|
|
|
1846 |
|
|
/*
|
1847 |
|
|
* In LAST_ACK, we may still be waiting for data to drain
|
1848 |
|
|
* and/or to be acked, as well as for the ack of our FIN.
|
1849 |
|
|
* If our FIN is now acknowledged, delete the TCB,
|
1850 |
|
|
* enter the closed state and return.
|
1851 |
|
|
*/
|
1852 |
|
|
case TCPS_LAST_ACK:
|
1853 |
|
|
if (ourfinisacked) {
|
1854 |
|
|
tp = tcp_close(tp);
|
1855 |
|
|
goto drop;
|
1856 |
|
|
}
|
1857 |
|
|
break;
|
1858 |
|
|
|
1859 |
|
|
/*
|
1860 |
|
|
* In TIME_WAIT state the only thing that should arrive
|
1861 |
|
|
* is a retransmission of the remote FIN. Acknowledge
|
1862 |
|
|
* it and restart the finack timer.
|
1863 |
|
|
*/
|
1864 |
|
|
case TCPS_TIME_WAIT:
|
1865 |
|
|
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
|
1866 |
|
|
goto dropafterack;
|
1867 |
|
|
}
|
1868 |
|
|
}
|
1869 |
|
|
|
1870 |
|
|
step6:
|
1871 |
|
|
/*
|
1872 |
|
|
* Update window information.
|
1873 |
|
|
* Don't look at window if no ACK: TAC's send garbage on first SYN.
|
1874 |
|
|
*/
|
1875 |
|
|
if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
|
1876 |
|
|
(tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
|
1877 |
|
|
(tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
|
1878 |
|
|
/* keep track of pure window updates */
|
1879 |
|
|
if (tlen == 0 &&
|
1880 |
|
|
tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
|
1881 |
|
|
tcpstat.tcps_rcvwinupd++;
|
1882 |
|
|
tp->snd_wnd = tiwin;
|
1883 |
|
|
tp->snd_wl1 = th->th_seq;
|
1884 |
|
|
tp->snd_wl2 = th->th_ack;
|
1885 |
|
|
if (tp->snd_wnd > tp->max_sndwnd)
|
1886 |
|
|
tp->max_sndwnd = tp->snd_wnd;
|
1887 |
|
|
needoutput = 1;
|
1888 |
|
|
}
|
1889 |
|
|
|
1890 |
|
|
/*
|
1891 |
|
|
* Process segments with URG.
|
1892 |
|
|
*/
|
1893 |
|
|
if ((tiflags & TH_URG) && th->th_urp &&
|
1894 |
|
|
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
1895 |
|
|
/*
|
1896 |
|
|
* This is a kludge, but if we receive and accept
|
1897 |
|
|
* random urgent pointers, we'll crash in
|
1898 |
|
|
* soreceive. It's hard to imagine someone
|
1899 |
|
|
* actually wanting to send this much urgent data.
|
1900 |
|
|
*/
|
1901 |
|
|
if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
|
1902 |
|
|
th->th_urp = 0; /* XXX */
|
1903 |
|
|
tiflags &= ~TH_URG; /* XXX */
|
1904 |
|
|
goto dodata; /* XXX */
|
1905 |
|
|
}
|
1906 |
|
|
/*
|
1907 |
|
|
* If this segment advances the known urgent pointer,
|
1908 |
|
|
* then mark the data stream. This should not happen
|
1909 |
|
|
* in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
|
1910 |
|
|
* a FIN has been received from the remote side.
|
1911 |
|
|
* In these states we ignore the URG.
|
1912 |
|
|
*
|
1913 |
|
|
* According to RFC961 (Assigned Protocols),
|
1914 |
|
|
* the urgent pointer points to the last octet
|
1915 |
|
|
* of urgent data. We continue, however,
|
1916 |
|
|
* to consider it to indicate the first octet
|
1917 |
|
|
* of data past the urgent section as the original
|
1918 |
|
|
* spec states (in one of two places).
|
1919 |
|
|
*/
|
1920 |
|
|
if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
|
1921 |
|
|
tp->rcv_up = th->th_seq + th->th_urp;
|
1922 |
|
|
so->so_oobmark = so->so_rcv.sb_cc +
|
1923 |
|
|
(tp->rcv_up - tp->rcv_nxt) - 1;
|
1924 |
|
|
if (so->so_oobmark == 0)
|
1925 |
|
|
so->so_state |= SS_RCVATMARK;
|
1926 |
|
|
sohasoutofband(so);
|
1927 |
|
|
tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
|
1928 |
|
|
}
|
1929 |
|
|
/*
|
1930 |
|
|
* Remove out of band data so doesn't get presented to user.
|
1931 |
|
|
* This can happen independent of advancing the URG pointer,
|
1932 |
|
|
* but if two URG's are pending at once, some out-of-band
|
1933 |
|
|
* data may creep in... ick.
|
1934 |
|
|
*/
|
1935 |
|
|
if (th->th_urp <= (u_int16_t) tlen
|
1936 |
|
|
#ifdef SO_OOBINLINE
|
1937 |
|
|
&& (so->so_options & SO_OOBINLINE) == 0
|
1938 |
|
|
#endif
|
1939 |
|
|
)
|
1940 |
|
|
tcp_pulloutofband(so, th->th_urp, m, hdroptlen);
|
1941 |
|
|
} else
|
1942 |
|
|
/*
|
1943 |
|
|
* If no out of band data is expected,
|
1944 |
|
|
* pull receive urgent pointer along
|
1945 |
|
|
* with the receive window.
|
1946 |
|
|
*/
|
1947 |
|
|
if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
|
1948 |
|
|
tp->rcv_up = tp->rcv_nxt;
|
1949 |
|
|
dodata: /* XXX */
|
1950 |
|
|
|
1951 |
|
|
/*
|
1952 |
|
|
* Process the segment text, merging it into the TCP sequencing queue,
|
1953 |
|
|
* and arranging for acknowledgment of receipt if necessary.
|
1954 |
|
|
* This process logically involves adjusting tp->rcv_wnd as data
|
1955 |
|
|
* is presented to the user (this happens in tcp_usrreq.c,
|
1956 |
|
|
* case PRU_RCVD). If a FIN has already been received on this
|
1957 |
|
|
* connection then we just ignore the text.
|
1958 |
|
|
*/
|
1959 |
|
|
if ((tlen || (tiflags & TH_FIN)) &&
|
1960 |
|
|
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
1961 |
|
|
if (th->th_seq == tp->rcv_nxt && tp->segq.lh_first == NULL &&
|
1962 |
|
|
tp->t_state == TCPS_ESTABLISHED) {
|
1963 |
|
|
if (th->th_flags & TH_PUSH)
|
1964 |
|
|
tp->t_flags |= TF_ACKNOW;
|
1965 |
|
|
else
|
1966 |
|
|
tp->t_flags |= TF_DELACK;
|
1967 |
|
|
tp->rcv_nxt += tlen;
|
1968 |
|
|
tiflags = th->th_flags & TH_FIN;
|
1969 |
|
|
tcpstat.tcps_rcvpack++;
|
1970 |
|
|
tcpstat.tcps_rcvbyte += tlen;
|
1971 |
|
|
ND6_HINT(tp);
|
1972 |
|
|
m_adj(m, hdroptlen);
|
1973 |
|
|
sbappend(&so->so_rcv, m);
|
1974 |
|
|
sorwakeup(so);
|
1975 |
|
|
} else {
|
1976 |
|
|
m_adj(m, hdroptlen);
|
1977 |
|
|
tiflags = tcp_reass(tp, th, m, &tlen);
|
1978 |
|
|
tp->t_flags |= TF_ACKNOW;
|
1979 |
|
|
}
|
1980 |
|
|
#ifdef TCP_SACK
|
1981 |
|
|
if (!tp->sack_disable)
|
1982 |
|
|
tcp_update_sack_list(tp);
|
1983 |
|
|
#endif
|
1984 |
|
|
|
1985 |
|
|
/*
|
1986 |
|
|
* variable len never referenced again in modern BSD,
|
1987 |
|
|
* so why bother computing it ??
|
1988 |
|
|
*/
|
1989 |
|
|
#if 0
|
1990 |
|
|
/*
|
1991 |
|
|
* Note the amount of data that peer has sent into
|
1992 |
|
|
* our window, in order to estimate the sender's
|
1993 |
|
|
* buffer size.
|
1994 |
|
|
*/
|
1995 |
|
|
len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
|
1996 |
|
|
#endif /* 0 */
|
1997 |
|
|
} else {
|
1998 |
|
|
m_freem(m);
|
1999 |
|
|
tiflags &= ~TH_FIN;
|
2000 |
|
|
}
|
2001 |
|
|
|
2002 |
|
|
/*
|
2003 |
|
|
* If FIN is received ACK the FIN and let the user know
|
2004 |
|
|
* that the connection is closing. Ignore a FIN received before
|
2005 |
|
|
* the connection is fully established.
|
2006 |
|
|
*/
|
2007 |
|
|
if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
|
2008 |
|
|
if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
|
2009 |
|
|
socantrcvmore(so);
|
2010 |
|
|
tp->t_flags |= TF_ACKNOW;
|
2011 |
|
|
tp->rcv_nxt++;
|
2012 |
|
|
}
|
2013 |
|
|
switch (tp->t_state) {
|
2014 |
|
|
|
2015 |
|
|
/*
|
2016 |
|
|
* In ESTABLISHED STATE enter the CLOSE_WAIT state.
|
2017 |
|
|
*/
|
2018 |
|
|
case TCPS_ESTABLISHED:
|
2019 |
|
|
tp->t_state = TCPS_CLOSE_WAIT;
|
2020 |
|
|
break;
|
2021 |
|
|
|
2022 |
|
|
/*
|
2023 |
|
|
* If still in FIN_WAIT_1 STATE FIN has not been acked so
|
2024 |
|
|
* enter the CLOSING state.
|
2025 |
|
|
*/
|
2026 |
|
|
case TCPS_FIN_WAIT_1:
|
2027 |
|
|
tp->t_state = TCPS_CLOSING;
|
2028 |
|
|
break;
|
2029 |
|
|
|
2030 |
|
|
/*
|
2031 |
|
|
* In FIN_WAIT_2 state enter the TIME_WAIT state,
|
2032 |
|
|
* starting the time-wait timer, turning off the other
|
2033 |
|
|
* standard timers.
|
2034 |
|
|
*/
|
2035 |
|
|
case TCPS_FIN_WAIT_2:
|
2036 |
|
|
tp->t_state = TCPS_TIME_WAIT;
|
2037 |
|
|
tcp_canceltimers(tp);
|
2038 |
|
|
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
|
2039 |
|
|
soisdisconnected(so);
|
2040 |
|
|
break;
|
2041 |
|
|
|
2042 |
|
|
/*
|
2043 |
|
|
* In TIME_WAIT state restart the 2 MSL time_wait timer.
|
2044 |
|
|
*/
|
2045 |
|
|
case TCPS_TIME_WAIT:
|
2046 |
|
|
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
|
2047 |
|
|
break;
|
2048 |
|
|
}
|
2049 |
|
|
}
|
2050 |
|
|
#ifdef TCPDEBUG
|
2051 |
|
|
if (so->so_options & SO_DEBUG) {
|
2052 |
|
|
#ifdef INET6
|
2053 |
|
|
if (tp->pf == PF_INET6)
|
2054 |
|
|
tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti6, 0, tlen);
|
2055 |
|
|
else
|
2056 |
|
|
#endif /* INET6 */
|
2057 |
|
|
tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti, 0, tlen);
|
2058 |
|
|
}
|
2059 |
|
|
#endif /* TCPDEBUG */
|
2060 |
|
|
|
2061 |
|
|
/*
|
2062 |
|
|
* Return any desired output.
|
2063 |
|
|
*/
|
2064 |
|
|
if (needoutput || (tp->t_flags & TF_ACKNOW)) {
|
2065 |
|
|
(void) tcp_output(tp);
|
2066 |
|
|
}
|
2067 |
|
|
return;
|
2068 |
|
|
|
2069 |
|
|
dropafterack:
|
2070 |
|
|
/*
|
2071 |
|
|
* Generate an ACK dropping incoming segment if it occupies
|
2072 |
|
|
* sequence space, where the ACK reflects our state.
|
2073 |
|
|
*/
|
2074 |
|
|
if (tiflags & TH_RST)
|
2075 |
|
|
goto drop;
|
2076 |
|
|
m_freem(m);
|
2077 |
|
|
tp->t_flags |= TF_ACKNOW;
|
2078 |
|
|
(void) tcp_output(tp);
|
2079 |
|
|
return;
|
2080 |
|
|
|
2081 |
|
|
dropwithreset:
|
2082 |
|
|
/*
|
2083 |
|
|
* Generate a RST, dropping incoming segment.
|
2084 |
|
|
* Make ACK acceptable to originator of segment.
|
2085 |
|
|
* Don't bother to respond if destination was broadcast/multicast.
|
2086 |
|
|
*/
|
2087 |
|
|
if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
|
2088 |
|
|
goto drop;
|
2089 |
|
|
#ifdef INET6
|
2090 |
|
|
if (is_ipv6) {
|
2091 |
|
|
/* For following calls to tcp_respond */
|
2092 |
|
|
ti = mtod(m, struct tcpiphdr *);
|
2093 |
|
|
if (IN6_IS_ADDR_MULTICAST(&ipv6->ip6_dst))
|
2094 |
|
|
goto drop;
|
2095 |
|
|
} else {
|
2096 |
|
|
#endif /* INET6 */
|
2097 |
|
|
if (IN_MULTICAST(ti->ti_dst.s_addr))
|
2098 |
|
|
goto drop;
|
2099 |
|
|
#ifdef INET6
|
2100 |
|
|
}
|
2101 |
|
|
#endif /* INET6 */
|
2102 |
|
|
if (tiflags & TH_ACK)
|
2103 |
|
|
tcp_respond(tp, (caddr_t) ti, m, (tcp_seq)0, th->th_ack, TH_RST);
|
2104 |
|
|
else {
|
2105 |
|
|
if (tiflags & TH_SYN)
|
2106 |
|
|
tlen++;
|
2107 |
|
|
tcp_respond(tp, (caddr_t) ti, m, th->th_seq+tlen, (tcp_seq)0,
|
2108 |
|
|
TH_RST|TH_ACK);
|
2109 |
|
|
}
|
2110 |
|
|
/* destroy temporarily created socket */
|
2111 |
|
|
if (dropsocket)
|
2112 |
|
|
(void) soabort(so);
|
2113 |
|
|
return;
|
2114 |
|
|
|
2115 |
|
|
drop:
|
2116 |
|
|
/*
|
2117 |
|
|
* Drop space held by incoming segment and return.
|
2118 |
|
|
*/
|
2119 |
|
|
#ifdef TCPDEBUG
|
2120 |
|
|
if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
|
2121 |
|
|
#ifdef INET6
|
2122 |
|
|
if (tp->pf == PF_INET6)
|
2123 |
|
|
tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti6, 0, tlen);
|
2124 |
|
|
else
|
2125 |
|
|
#endif /* INET6 */
|
2126 |
|
|
tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti, 0, tlen);
|
2127 |
|
|
}
|
2128 |
|
|
#endif /* TCPDEBUG */
|
2129 |
|
|
|
2130 |
|
|
m_freem(m);
|
2131 |
|
|
/* destroy temporarily created socket */
|
2132 |
|
|
if (dropsocket)
|
2133 |
|
|
(void) soabort(so);
|
2134 |
|
|
return;
|
2135 |
|
|
#ifndef TUBA_INCLUDE
|
2136 |
|
|
}
|
2137 |
|
|
|
2138 |
|
|
void
|
2139 |
|
|
tcp_dooptions(tp, cp, cnt, th, ts_present, ts_val, ts_ecr)
|
2140 |
|
|
struct tcpcb *tp;
|
2141 |
|
|
u_char *cp;
|
2142 |
|
|
int cnt;
|
2143 |
|
|
struct tcphdr *th;
|
2144 |
|
|
int *ts_present;
|
2145 |
|
|
u_int32_t *ts_val, *ts_ecr;
|
2146 |
|
|
{
|
2147 |
|
|
u_int16_t mss = 0;
|
2148 |
|
|
int opt, optlen;
|
2149 |
|
|
|
2150 |
|
|
for (; cnt > 0; cnt -= optlen, cp += optlen) {
|
2151 |
|
|
opt = cp[0];
|
2152 |
|
|
if (opt == TCPOPT_EOL)
|
2153 |
|
|
break;
|
2154 |
|
|
if (opt == TCPOPT_NOP)
|
2155 |
|
|
optlen = 1;
|
2156 |
|
|
else {
|
2157 |
|
|
optlen = cp[1];
|
2158 |
|
|
if (optlen <= 0)
|
2159 |
|
|
break;
|
2160 |
|
|
}
|
2161 |
|
|
switch (opt) {
|
2162 |
|
|
|
2163 |
|
|
default:
|
2164 |
|
|
continue;
|
2165 |
|
|
|
2166 |
|
|
case TCPOPT_MAXSEG:
|
2167 |
|
|
if (optlen != TCPOLEN_MAXSEG)
|
2168 |
|
|
continue;
|
2169 |
|
|
if (!(th->th_flags & TH_SYN))
|
2170 |
|
|
continue;
|
2171 |
|
|
bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
|
2172 |
|
|
NTOHS(mss);
|
2173 |
|
|
break;
|
2174 |
|
|
|
2175 |
|
|
case TCPOPT_WINDOW:
|
2176 |
|
|
if (optlen != TCPOLEN_WINDOW)
|
2177 |
|
|
continue;
|
2178 |
|
|
if (!(th->th_flags & TH_SYN))
|
2179 |
|
|
continue;
|
2180 |
|
|
tp->t_flags |= TF_RCVD_SCALE;
|
2181 |
|
|
tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
|
2182 |
|
|
break;
|
2183 |
|
|
|
2184 |
|
|
case TCPOPT_TIMESTAMP:
|
2185 |
|
|
if (optlen != TCPOLEN_TIMESTAMP)
|
2186 |
|
|
continue;
|
2187 |
|
|
*ts_present = 1;
|
2188 |
|
|
bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val));
|
2189 |
|
|
NTOHL(*ts_val);
|
2190 |
|
|
bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
|
2191 |
|
|
NTOHL(*ts_ecr);
|
2192 |
|
|
|
2193 |
|
|
/*
|
2194 |
|
|
* A timestamp received in a SYN makes
|
2195 |
|
|
* it ok to send timestamp requests and replies.
|
2196 |
|
|
*/
|
2197 |
|
|
if (th->th_flags & TH_SYN) {
|
2198 |
|
|
tp->t_flags |= TF_RCVD_TSTMP;
|
2199 |
|
|
tp->ts_recent = *ts_val;
|
2200 |
|
|
tp->ts_recent_age = tcp_now;
|
2201 |
|
|
}
|
2202 |
|
|
break;
|
2203 |
|
|
|
2204 |
|
|
#ifdef TCP_SACK
|
2205 |
|
|
case TCPOPT_SACK_PERMITTED:
|
2206 |
|
|
if (tp->sack_disable || optlen!=TCPOLEN_SACK_PERMITTED)
|
2207 |
|
|
continue;
|
2208 |
|
|
if (th->th_flags & TH_SYN)
|
2209 |
|
|
/* MUST only be set on SYN */
|
2210 |
|
|
tp->t_flags |= TF_SACK_PERMIT;
|
2211 |
|
|
break;
|
2212 |
|
|
case TCPOPT_SACK:
|
2213 |
|
|
if (tcp_sack_option(tp, th, cp, optlen))
|
2214 |
|
|
continue;
|
2215 |
|
|
break;
|
2216 |
|
|
#endif
|
2217 |
|
|
}
|
2218 |
|
|
}
|
2219 |
|
|
/* Update t_maxopd and t_maxseg after all options are processed */
|
2220 |
|
|
if (th->th_flags & TH_SYN)
|
2221 |
|
|
(void) tcp_mss(tp, mss); /* sets t_maxseg */
|
2222 |
|
|
}
|
2223 |
|
|
|
2224 |
|
|
#if defined(TCP_SACK) || defined(TCP_NEWRENO)
|
2225 |
|
|
u_long
|
2226 |
|
|
tcp_seq_subtract(a, b)
|
2227 |
|
|
u_long a, b;
|
2228 |
|
|
{
|
2229 |
|
|
return ((long)(a - b));
|
2230 |
|
|
}
|
2231 |
|
|
#endif
|
2232 |
|
|
|
2233 |
|
|
|
2234 |
|
|
#ifdef TCP_SACK
|
2235 |
|
|
/*
|
2236 |
|
|
* This function is called upon receipt of new valid data (while not in header
|
2237 |
|
|
* prediction mode), and it updates the ordered list of sacks.
|
2238 |
|
|
*/
|
2239 |
|
|
void
|
2240 |
|
|
tcp_update_sack_list(tp)
|
2241 |
|
|
struct tcpcb *tp;
|
2242 |
|
|
{
|
2243 |
|
|
/*
|
2244 |
|
|
* First reported block MUST be the most recent one. Subsequent
|
2245 |
|
|
* blocks SHOULD be in the order in which they arrived at the
|
2246 |
|
|
* receiver. These two conditions make the implementation fully
|
2247 |
|
|
* compliant with RFC 2018.
|
2248 |
|
|
*/
|
2249 |
|
|
int i, j = 0, count = 0, lastpos = -1;
|
2250 |
|
|
struct sackblk sack, firstsack, temp[MAX_SACK_BLKS];
|
2251 |
|
|
|
2252 |
|
|
/* First clean up current list of sacks */
|
2253 |
|
|
for (i = 0; i < tp->rcv_numsacks; i++) {
|
2254 |
|
|
sack = tp->sackblks[i];
|
2255 |
|
|
if (sack.start == 0 && sack.end == 0) {
|
2256 |
|
|
count++; /* count = number of blocks to be discarded */
|
2257 |
|
|
continue;
|
2258 |
|
|
}
|
2259 |
|
|
if (SEQ_LEQ(sack.end, tp->rcv_nxt)) {
|
2260 |
|
|
tp->sackblks[i].start = tp->sackblks[i].end = 0;
|
2261 |
|
|
count++;
|
2262 |
|
|
} else {
|
2263 |
|
|
temp[j].start = tp->sackblks[i].start;
|
2264 |
|
|
temp[j++].end = tp->sackblks[i].end;
|
2265 |
|
|
}
|
2266 |
|
|
}
|
2267 |
|
|
tp->rcv_numsacks -= count;
|
2268 |
|
|
if (tp->rcv_numsacks == 0) { /* no sack blocks currently (fast path) */
|
2269 |
|
|
tcp_clean_sackreport(tp);
|
2270 |
|
|
if (SEQ_LT(tp->rcv_nxt, tp->rcv_laststart)) {
|
2271 |
|
|
/* ==> need first sack block */
|
2272 |
|
|
tp->sackblks[0].start = tp->rcv_laststart;
|
2273 |
|
|
tp->sackblks[0].end = tp->rcv_lastend;
|
2274 |
|
|
tp->rcv_numsacks = 1;
|
2275 |
|
|
}
|
2276 |
|
|
return;
|
2277 |
|
|
}
|
2278 |
|
|
/* Otherwise, sack blocks are already present. */
|
2279 |
|
|
for (i = 0; i < tp->rcv_numsacks; i++)
|
2280 |
|
|
tp->sackblks[i] = temp[i]; /* first copy back sack list */
|
2281 |
|
|
if (SEQ_GEQ(tp->rcv_nxt, tp->rcv_lastend))
|
2282 |
|
|
return; /* sack list remains unchanged */
|
2283 |
|
|
/*
|
2284 |
|
|
* From here, segment just received should be (part of) the 1st sack.
|
2285 |
|
|
* Go through list, possibly coalescing sack block entries.
|
2286 |
|
|
*/
|
2287 |
|
|
firstsack.start = tp->rcv_laststart;
|
2288 |
|
|
firstsack.end = tp->rcv_lastend;
|
2289 |
|
|
for (i = 0; i < tp->rcv_numsacks; i++) {
|
2290 |
|
|
sack = tp->sackblks[i];
|
2291 |
|
|
if (SEQ_LT(sack.end, firstsack.start) ||
|
2292 |
|
|
SEQ_GT(sack.start, firstsack.end))
|
2293 |
|
|
continue; /* no overlap */
|
2294 |
|
|
if (sack.start == firstsack.start && sack.end == firstsack.end){
|
2295 |
|
|
/*
|
2296 |
|
|
* identical block; delete it here since we will
|
2297 |
|
|
* move it to the front of the list.
|
2298 |
|
|
*/
|
2299 |
|
|
tp->sackblks[i].start = tp->sackblks[i].end = 0;
|
2300 |
|
|
lastpos = i; /* last posn with a zero entry */
|
2301 |
|
|
continue;
|
2302 |
|
|
}
|
2303 |
|
|
if (SEQ_LEQ(sack.start, firstsack.start))
|
2304 |
|
|
firstsack.start = sack.start; /* merge blocks */
|
2305 |
|
|
if (SEQ_GEQ(sack.end, firstsack.end))
|
2306 |
|
|
firstsack.end = sack.end; /* merge blocks */
|
2307 |
|
|
tp->sackblks[i].start = tp->sackblks[i].end = 0;
|
2308 |
|
|
lastpos = i; /* last posn with a zero entry */
|
2309 |
|
|
}
|
2310 |
|
|
if (lastpos != -1) { /* at least one merge */
|
2311 |
|
|
for (i = 0, j = 1; i < tp->rcv_numsacks; i++) {
|
2312 |
|
|
sack = tp->sackblks[i];
|
2313 |
|
|
if (sack.start == 0 && sack.end == 0)
|
2314 |
|
|
continue;
|
2315 |
|
|
temp[j++] = sack;
|
2316 |
|
|
}
|
2317 |
|
|
tp->rcv_numsacks = j; /* including first blk (added later) */
|
2318 |
|
|
for (i = 1; i < tp->rcv_numsacks; i++) /* now copy back */
|
2319 |
|
|
tp->sackblks[i] = temp[i];
|
2320 |
|
|
} else { /* no merges -- shift sacks by 1 */
|
2321 |
|
|
if (tp->rcv_numsacks < MAX_SACK_BLKS)
|
2322 |
|
|
tp->rcv_numsacks++;
|
2323 |
|
|
for (i = tp->rcv_numsacks-1; i > 0; i--)
|
2324 |
|
|
tp->sackblks[i] = tp->sackblks[i-1];
|
2325 |
|
|
}
|
2326 |
|
|
tp->sackblks[0] = firstsack;
|
2327 |
|
|
return;
|
2328 |
|
|
}
|
2329 |
|
|
|
2330 |
|
|
/*
|
2331 |
|
|
* Process the TCP SACK option. Returns 1 if tcp_dooptions() should continue,
|
2332 |
|
|
* and 0 otherwise, if the option was fine. tp->snd_holes is an ordered list
|
2333 |
|
|
* of holes (oldest to newest, in terms of the sequence space).
|
2334 |
|
|
*/
|
2335 |
|
|
int
|
2336 |
|
|
tcp_sack_option(tp, th, cp, optlen)
|
2337 |
|
|
struct tcpcb *tp;
|
2338 |
|
|
struct tcphdr *th;
|
2339 |
|
|
u_char *cp;
|
2340 |
|
|
int optlen;
|
2341 |
|
|
{
|
2342 |
|
|
int tmp_olen;
|
2343 |
|
|
u_char *tmp_cp;
|
2344 |
|
|
struct sackhole *cur, *p, *temp;
|
2345 |
|
|
|
2346 |
|
|
if (tp->sack_disable)
|
2347 |
|
|
return 1;
|
2348 |
|
|
|
2349 |
|
|
/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
|
2350 |
|
|
if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
|
2351 |
|
|
return 1;
|
2352 |
|
|
tmp_cp = cp + 2;
|
2353 |
|
|
tmp_olen = optlen - 2;
|
2354 |
|
|
if (tp->snd_numholes < 0)
|
2355 |
|
|
tp->snd_numholes = 0;
|
2356 |
|
|
if (tp->t_maxseg == 0)
|
2357 |
|
|
panic("tcp_sack_option"); /* Should never happen */
|
2358 |
|
|
while (tmp_olen > 0) {
|
2359 |
|
|
struct sackblk sack;
|
2360 |
|
|
|
2361 |
|
|
bcopy((char *) tmp_cp, (char *) &(sack.start), sizeof(tcp_seq));
|
2362 |
|
|
NTOHL(sack.start);
|
2363 |
|
|
bcopy((char *) tmp_cp + sizeof(tcp_seq),
|
2364 |
|
|
(char *) &(sack.end), sizeof(tcp_seq));
|
2365 |
|
|
NTOHL(sack.end);
|
2366 |
|
|
tmp_olen -= TCPOLEN_SACK;
|
2367 |
|
|
tmp_cp += TCPOLEN_SACK;
|
2368 |
|
|
if (SEQ_LEQ(sack.end, sack.start))
|
2369 |
|
|
continue; /* bad SACK fields */
|
2370 |
|
|
if (SEQ_LEQ(sack.end, tp->snd_una))
|
2371 |
|
|
continue; /* old block */
|
2372 |
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
2373 |
|
|
/* Updates snd_fack. */
|
2374 |
|
|
if (SEQ_GEQ(sack.end, tp->snd_fack))
|
2375 |
|
|
tp->snd_fack = sack.end;
|
2376 |
|
|
#endif /* TCP_FACK */
|
2377 |
|
|
if (SEQ_GT(th->th_ack, tp->snd_una)) {
|
2378 |
|
|
if (SEQ_LT(sack.start, th->th_ack))
|
2379 |
|
|
continue;
|
2380 |
|
|
} else {
|
2381 |
|
|
if (SEQ_LT(sack.start, tp->snd_una))
|
2382 |
|
|
continue;
|
2383 |
|
|
}
|
2384 |
|
|
if (SEQ_GT(sack.end, tp->snd_max))
|
2385 |
|
|
continue;
|
2386 |
|
|
if (tp->snd_holes == 0) { /* first hole */
|
2387 |
|
|
tp->snd_holes = (struct sackhole *)
|
2388 |
|
|
malloc(sizeof(struct sackhole), M_PCB, M_NOWAIT);
|
2389 |
|
|
if (tp->snd_holes == NULL) {
|
2390 |
|
|
/* ENOBUFS, so ignore SACKed block for now*/
|
2391 |
|
|
continue;
|
2392 |
|
|
}
|
2393 |
|
|
cur = tp->snd_holes;
|
2394 |
|
|
cur->start = th->th_ack;
|
2395 |
|
|
cur->end = sack.start;
|
2396 |
|
|
cur->rxmit = cur->start;
|
2397 |
|
|
cur->next = 0;
|
2398 |
|
|
tp->snd_numholes = 1;
|
2399 |
|
|
tp->rcv_lastsack = sack.end;
|
2400 |
|
|
/*
|
2401 |
|
|
* dups is at least one. If more data has been
|
2402 |
|
|
* SACKed, it can be greater than one.
|
2403 |
|
|
*/
|
2404 |
|
|
cur->dups = min(tcprexmtthresh,
|
2405 |
|
|
((sack.end - cur->end)/tp->t_maxseg));
|
2406 |
|
|
if (cur->dups < 1)
|
2407 |
|
|
cur->dups = 1;
|
2408 |
|
|
continue; /* with next sack block */
|
2409 |
|
|
}
|
2410 |
|
|
/* Go thru list of holes: p = previous, cur = current */
|
2411 |
|
|
p = cur = tp->snd_holes;
|
2412 |
|
|
while (cur) {
|
2413 |
|
|
if (SEQ_LEQ(sack.end, cur->start))
|
2414 |
|
|
/* SACKs data before the current hole */
|
2415 |
|
|
break; /* no use going through more holes */
|
2416 |
|
|
if (SEQ_GEQ(sack.start, cur->end)) {
|
2417 |
|
|
/* SACKs data beyond the current hole */
|
2418 |
|
|
cur->dups++;
|
2419 |
|
|
if ( ((sack.end - cur->end)/tp->t_maxseg) >=
|
2420 |
|
|
tcprexmtthresh)
|
2421 |
|
|
cur->dups = tcprexmtthresh;
|
2422 |
|
|
p = cur;
|
2423 |
|
|
cur = cur->next;
|
2424 |
|
|
continue;
|
2425 |
|
|
}
|
2426 |
|
|
if (SEQ_LEQ(sack.start, cur->start)) {
|
2427 |
|
|
/* Data acks at least the beginning of hole */
|
2428 |
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
2429 |
|
|
if (SEQ_GT(sack.end, cur->rxmit))
|
2430 |
|
|
tp->retran_data -=
|
2431 |
|
|
tcp_seq_subtract(cur->rxmit,
|
2432 |
|
|
cur->start);
|
2433 |
|
|
else
|
2434 |
|
|
tp->retran_data -=
|
2435 |
|
|
tcp_seq_subtract(sack.end,
|
2436 |
|
|
cur->start);
|
2437 |
|
|
#endif /* TCP_FACK */
|
2438 |
|
|
if (SEQ_GEQ(sack.end,cur->end)){
|
2439 |
|
|
/* Acks entire hole, so delete hole */
|
2440 |
|
|
if (p != cur) {
|
2441 |
|
|
p->next = cur->next;
|
2442 |
|
|
free(cur, M_PCB);
|
2443 |
|
|
cur = p->next;
|
2444 |
|
|
} else {
|
2445 |
|
|
cur=cur->next;
|
2446 |
|
|
free(p, M_PCB);
|
2447 |
|
|
p = cur;
|
2448 |
|
|
tp->snd_holes = p;
|
2449 |
|
|
}
|
2450 |
|
|
tp->snd_numholes--;
|
2451 |
|
|
continue;
|
2452 |
|
|
}
|
2453 |
|
|
/* otherwise, move start of hole forward */
|
2454 |
|
|
cur->start = sack.end;
|
2455 |
|
|
cur->rxmit = max (cur->rxmit, cur->start);
|
2456 |
|
|
p = cur;
|
2457 |
|
|
cur = cur->next;
|
2458 |
|
|
continue;
|
2459 |
|
|
}
|
2460 |
|
|
/* move end of hole backward */
|
2461 |
|
|
if (SEQ_GEQ(sack.end, cur->end)) {
|
2462 |
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
2463 |
|
|
if (SEQ_GT(cur->rxmit, sack.start))
|
2464 |
|
|
tp->retran_data -=
|
2465 |
|
|
tcp_seq_subtract(cur->rxmit,
|
2466 |
|
|
sack.start);
|
2467 |
|
|
#endif /* TCP_FACK */
|
2468 |
|
|
cur->end = sack.start;
|
2469 |
|
|
cur->rxmit = min (cur->rxmit, cur->end);
|
2470 |
|
|
cur->dups++;
|
2471 |
|
|
if ( ((sack.end - cur->end)/tp->t_maxseg) >=
|
2472 |
|
|
tcprexmtthresh)
|
2473 |
|
|
cur->dups = tcprexmtthresh;
|
2474 |
|
|
p = cur;
|
2475 |
|
|
cur = cur->next;
|
2476 |
|
|
continue;
|
2477 |
|
|
}
|
2478 |
|
|
if (SEQ_LT(cur->start, sack.start) &&
|
2479 |
|
|
SEQ_GT(cur->end, sack.end)) {
|
2480 |
|
|
/*
|
2481 |
|
|
* ACKs some data in middle of a hole; need to
|
2482 |
|
|
* split current hole
|
2483 |
|
|
*/
|
2484 |
|
|
temp = (struct sackhole *)malloc(sizeof(*temp),
|
2485 |
|
|
M_PCB,M_NOWAIT);
|
2486 |
|
|
if (temp == NULL)
|
2487 |
|
|
continue; /* ENOBUFS */
|
2488 |
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
2489 |
|
|
if (SEQ_GT(cur->rxmit, sack.end))
|
2490 |
|
|
tp->retran_data -=
|
2491 |
|
|
tcp_seq_subtract(sack.end,
|
2492 |
|
|
sack.start);
|
2493 |
|
|
else if (SEQ_GT(cur->rxmit, sack.start))
|
2494 |
|
|
tp->retran_data -=
|
2495 |
|
|
tcp_seq_subtract(cur->rxmit,
|
2496 |
|
|
sack.start);
|
2497 |
|
|
#endif /* TCP_FACK */
|
2498 |
|
|
temp->next = cur->next;
|
2499 |
|
|
temp->start = sack.end;
|
2500 |
|
|
temp->end = cur->end;
|
2501 |
|
|
temp->dups = cur->dups;
|
2502 |
|
|
temp->rxmit = max (cur->rxmit, temp->start);
|
2503 |
|
|
cur->end = sack.start;
|
2504 |
|
|
cur->rxmit = min (cur->rxmit, cur->end);
|
2505 |
|
|
cur->dups++;
|
2506 |
|
|
if ( ((sack.end - cur->end)/tp->t_maxseg) >=
|
2507 |
|
|
tcprexmtthresh)
|
2508 |
|
|
cur->dups = tcprexmtthresh;
|
2509 |
|
|
cur->next = temp;
|
2510 |
|
|
p = temp;
|
2511 |
|
|
cur = p->next;
|
2512 |
|
|
tp->snd_numholes++;
|
2513 |
|
|
}
|
2514 |
|
|
}
|
2515 |
|
|
/* At this point, p points to the last hole on the list */
|
2516 |
|
|
if (SEQ_LT(tp->rcv_lastsack, sack.start)) {
|
2517 |
|
|
/*
|
2518 |
|
|
* Need to append new hole at end.
|
2519 |
|
|
* Last hole is p (and it's not NULL).
|
2520 |
|
|
*/
|
2521 |
|
|
temp = (struct sackhole *) malloc(sizeof(*temp),
|
2522 |
|
|
M_PCB, M_NOWAIT);
|
2523 |
|
|
if (temp == NULL)
|
2524 |
|
|
continue; /* ENOBUFS */
|
2525 |
|
|
temp->start = tp->rcv_lastsack;
|
2526 |
|
|
temp->end = sack.start;
|
2527 |
|
|
temp->dups = min(tcprexmtthresh,
|
2528 |
|
|
((sack.end - sack.start)/tp->t_maxseg));
|
2529 |
|
|
if (temp->dups < 1)
|
2530 |
|
|
temp->dups = 1;
|
2531 |
|
|
temp->rxmit = temp->start;
|
2532 |
|
|
temp->next = 0;
|
2533 |
|
|
p->next = temp;
|
2534 |
|
|
tp->rcv_lastsack = sack.end;
|
2535 |
|
|
tp->snd_numholes++;
|
2536 |
|
|
}
|
2537 |
|
|
}
|
2538 |
|
|
#if defined(TCP_SACK) && defined(TCP_FACK)
|
2539 |
|
|
/*
|
2540 |
|
|
* Update retran_data and snd_awnd. Go through the list of
|
2541 |
|
|
* holes. Increment retran_data by (hole->rxmit - hole->start).
|
2542 |
|
|
*/
|
2543 |
|
|
tp->retran_data = 0;
|
2544 |
|
|
cur = tp->snd_holes;
|
2545 |
|
|
while (cur) {
|
2546 |
|
|
tp->retran_data += cur->rxmit - cur->start;
|
2547 |
|
|
cur = cur->next;
|
2548 |
|
|
}
|
2549 |
|
|
tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt, tp->snd_fack) +
|
2550 |
|
|
tp->retran_data;
|
2551 |
|
|
#endif /* TCP_FACK */
|
2552 |
|
|
|
2553 |
|
|
return 0;
|
2554 |
|
|
}
|
2555 |
|
|
|
2556 |
|
|
/*
|
2557 |
|
|
* Delete stale (i.e, cumulatively ack'd) holes. Hole is deleted only if
|
2558 |
|
|
* it is completely acked; otherwise, tcp_sack_option(), called from
|
2559 |
|
|
* tcp_dooptions(), will fix up the hole.
|
2560 |
|
|
*/
|
2561 |
|
|
void
|
2562 |
|
|
tcp_del_sackholes(tp, th)
|
2563 |
|
|
struct tcpcb *tp;
|
2564 |
|
|
struct tcphdr *th;
|
2565 |
|
|
{
|
2566 |
|
|
if (!tp->sack_disable && tp->t_state != TCPS_LISTEN) {
|
2567 |
|
|
/* max because this could be an older ack just arrived */
|
2568 |
|
|
tcp_seq lastack = SEQ_GT(th->th_ack, tp->snd_una) ?
|
2569 |
|
|
th->th_ack : tp->snd_una;
|
2570 |
|
|
struct sackhole *cur = tp->snd_holes;
|
2571 |
|
|
struct sackhole *prev = cur;
|
2572 |
|
|
while (cur)
|
2573 |
|
|
if (SEQ_LEQ(cur->end, lastack)) {
|
2574 |
|
|
cur = cur->next;
|
2575 |
|
|
free(prev, M_PCB);
|
2576 |
|
|
prev = cur;
|
2577 |
|
|
tp->snd_numholes--;
|
2578 |
|
|
} else if (SEQ_LT(cur->start, lastack)) {
|
2579 |
|
|
cur->start = lastack;
|
2580 |
|
|
break;
|
2581 |
|
|
} else
|
2582 |
|
|
break;
|
2583 |
|
|
tp->snd_holes = cur;
|
2584 |
|
|
}
|
2585 |
|
|
}
|
2586 |
|
|
|
2587 |
|
|
/*
|
2588 |
|
|
* Delete all receiver-side SACK information.
|
2589 |
|
|
*/
|
2590 |
|
|
void
|
2591 |
|
|
tcp_clean_sackreport(tp)
|
2592 |
|
|
struct tcpcb *tp;
|
2593 |
|
|
{
|
2594 |
|
|
int i;
|
2595 |
|
|
|
2596 |
|
|
tp->rcv_numsacks = 0;
|
2597 |
|
|
for (i = 0; i < MAX_SACK_BLKS; i++)
|
2598 |
|
|
tp->sackblks[i].start = tp->sackblks[i].end=0;
|
2599 |
|
|
|
2600 |
|
|
}
|
2601 |
|
|
|
2602 |
|
|
/*
|
2603 |
|
|
* Checks for partial ack. If partial ack arrives, turn off retransmission
|
2604 |
|
|
* timer, deflate the window, do not clear tp->t_dupacks, and return 1.
|
2605 |
|
|
* If the ack advances at least to tp->snd_last, return 0.
|
2606 |
|
|
*/
|
2607 |
|
|
int
|
2608 |
|
|
tcp_sack_partialack(tp, th)
|
2609 |
|
|
struct tcpcb *tp;
|
2610 |
|
|
struct tcphdr *th;
|
2611 |
|
|
{
|
2612 |
|
|
if (SEQ_LT(th->th_ack, tp->snd_last)) {
|
2613 |
|
|
/* Turn off retx. timer (will start again next segment) */
|
2614 |
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
2615 |
|
|
tp->t_rtt = 0;
|
2616 |
|
|
#ifndef TCP_FACK
|
2617 |
|
|
/*
|
2618 |
|
|
* Partial window deflation. This statement relies on the
|
2619 |
|
|
* fact that tp->snd_una has not been updated yet. In FACK
|
2620 |
|
|
* hold snd_cwnd constant during fast recovery.
|
2621 |
|
|
*/
|
2622 |
|
|
tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
|
2623 |
|
|
#endif
|
2624 |
|
|
return 1;
|
2625 |
|
|
}
|
2626 |
|
|
return 0;
|
2627 |
|
|
}
|
2628 |
|
|
#endif /* TCP_SACK */
|
2629 |
|
|
|
2630 |
|
|
/*
|
2631 |
|
|
* Pull out of band byte out of a segment so
|
2632 |
|
|
* it doesn't appear in the user's data queue.
|
2633 |
|
|
* It is still reflected in the segment length for
|
2634 |
|
|
* sequencing purposes.
|
2635 |
|
|
*/
|
2636 |
|
|
void
|
2637 |
|
|
tcp_pulloutofband(so, urgent, m, off)
|
2638 |
|
|
struct socket *so;
|
2639 |
|
|
u_int urgent;
|
2640 |
|
|
register struct mbuf *m;
|
2641 |
|
|
int off;
|
2642 |
|
|
{
|
2643 |
|
|
int cnt = off + urgent - 1;
|
2644 |
|
|
|
2645 |
|
|
while (cnt >= 0) {
|
2646 |
|
|
if (m->m_len > cnt) {
|
2647 |
|
|
char *cp = mtod(m, caddr_t) + cnt;
|
2648 |
|
|
struct tcpcb *tp = sototcpcb(so);
|
2649 |
|
|
|
2650 |
|
|
tp->t_iobc = *cp;
|
2651 |
|
|
tp->t_oobflags |= TCPOOB_HAVEDATA;
|
2652 |
|
|
bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
|
2653 |
|
|
m->m_len--;
|
2654 |
|
|
return;
|
2655 |
|
|
}
|
2656 |
|
|
cnt -= m->m_len;
|
2657 |
|
|
m = m->m_next;
|
2658 |
|
|
if (m == 0)
|
2659 |
|
|
break;
|
2660 |
|
|
}
|
2661 |
|
|
panic("tcp_pulloutofband");
|
2662 |
|
|
}
|
2663 |
|
|
|
2664 |
|
|
/*
|
2665 |
|
|
* Collect new round-trip time estimate
|
2666 |
|
|
* and update averages and current timeout.
|
2667 |
|
|
*/
|
2668 |
|
|
void
|
2669 |
|
|
tcp_xmit_timer(tp, rtt)
|
2670 |
|
|
register struct tcpcb *tp;
|
2671 |
|
|
short rtt;
|
2672 |
|
|
{
|
2673 |
|
|
register short delta;
|
2674 |
|
|
short rttmin;
|
2675 |
|
|
|
2676 |
|
|
tcpstat.tcps_rttupdated++;
|
2677 |
|
|
--rtt;
|
2678 |
|
|
if (tp->t_srtt != 0) {
|
2679 |
|
|
/*
|
2680 |
|
|
* srtt is stored as fixed point with 3 bits after the
|
2681 |
|
|
* binary point (i.e., scaled by 8). The following magic
|
2682 |
|
|
* is equivalent to the smoothing algorithm in rfc793 with
|
2683 |
|
|
* an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
|
2684 |
|
|
* point). Adjust rtt to origin 0.
|
2685 |
|
|
*/
|
2686 |
|
|
delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
|
2687 |
|
|
if ((tp->t_srtt += delta) <= 0)
|
2688 |
|
|
tp->t_srtt = 1;
|
2689 |
|
|
/*
|
2690 |
|
|
* We accumulate a smoothed rtt variance (actually, a
|
2691 |
|
|
* smoothed mean difference), then set the retransmit
|
2692 |
|
|
* timer to smoothed rtt + 4 times the smoothed variance.
|
2693 |
|
|
* rttvar is stored as fixed point with 2 bits after the
|
2694 |
|
|
* binary point (scaled by 4). The following is
|
2695 |
|
|
* equivalent to rfc793 smoothing with an alpha of .75
|
2696 |
|
|
* (rttvar = rttvar*3/4 + |delta| / 4). This replaces
|
2697 |
|
|
* rfc793's wired-in beta.
|
2698 |
|
|
*/
|
2699 |
|
|
if (delta < 0)
|
2700 |
|
|
delta = -delta;
|
2701 |
|
|
delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
|
2702 |
|
|
if ((tp->t_rttvar += delta) <= 0)
|
2703 |
|
|
tp->t_rttvar = 1;
|
2704 |
|
|
} else {
|
2705 |
|
|
/*
|
2706 |
|
|
* No rtt measurement yet - use the unsmoothed rtt.
|
2707 |
|
|
* Set the variance to half the rtt (so our first
|
2708 |
|
|
* retransmit happens at 3*rtt).
|
2709 |
|
|
*/
|
2710 |
|
|
tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
|
2711 |
|
|
tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
|
2712 |
|
|
}
|
2713 |
|
|
tp->t_rtt = 0;
|
2714 |
|
|
tp->t_rxtshift = 0;
|
2715 |
|
|
|
2716 |
|
|
/*
|
2717 |
|
|
* the retransmit should happen at rtt + 4 * rttvar.
|
2718 |
|
|
* Because of the way we do the smoothing, srtt and rttvar
|
2719 |
|
|
* will each average +1/2 tick of bias. When we compute
|
2720 |
|
|
* the retransmit timer, we want 1/2 tick of rounding and
|
2721 |
|
|
* 1 extra tick because of +-1/2 tick uncertainty in the
|
2722 |
|
|
* firing of the timer. The bias will give us exactly the
|
2723 |
|
|
* 1.5 tick we need. But, because the bias is
|
2724 |
|
|
* statistical, we have to test that we don't drop below
|
2725 |
|
|
* the minimum feasible timer (which is 2 ticks).
|
2726 |
|
|
*/
|
2727 |
|
|
if (tp->t_rttmin > rtt + 2)
|
2728 |
|
|
rttmin = tp->t_rttmin;
|
2729 |
|
|
else
|
2730 |
|
|
rttmin = rtt + 2;
|
2731 |
|
|
TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
|
2732 |
|
|
|
2733 |
|
|
/*
|
2734 |
|
|
* We received an ack for a packet that wasn't retransmitted;
|
2735 |
|
|
* it is probably safe to discard any error indications we've
|
2736 |
|
|
* received recently. This isn't quite right, but close enough
|
2737 |
|
|
* for now (a route might have failed after we sent a segment,
|
2738 |
|
|
* and the return path might not be symmetrical).
|
2739 |
|
|
*/
|
2740 |
|
|
tp->t_softerror = 0;
|
2741 |
|
|
}
|
2742 |
|
|
|
2743 |
|
|
/*
|
2744 |
|
|
* Determine a reasonable value for maxseg size.
|
2745 |
|
|
* If the route is known, check route for mtu.
|
2746 |
|
|
* If none, use an mss that can be handled on the outgoing
|
2747 |
|
|
* interface without forcing IP to fragment; if bigger than
|
2748 |
|
|
* an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
|
2749 |
|
|
* to utilize large mbufs. If no route is found, route has no mtu,
|
2750 |
|
|
* or the destination isn't local, use a default, hopefully conservative
|
2751 |
|
|
* size (usually 512 or the default IP max size, but no more than the mtu
|
2752 |
|
|
* of the interface), as we can't discover anything about intervening
|
2753 |
|
|
* gateways or networks. We also initialize the congestion/slow start
|
2754 |
|
|
* window to be a single segment if the destination isn't local.
|
2755 |
|
|
* While looking at the routing entry, we also initialize other path-dependent
|
2756 |
|
|
* parameters from pre-set or cached values in the routing entry.
|
2757 |
|
|
*
|
2758 |
|
|
* Also take into account the space needed for options that we
|
2759 |
|
|
* send regularly. Make maxseg shorter by that amount to assure
|
2760 |
|
|
* that we can send maxseg amount of data even when the options
|
2761 |
|
|
* are present. Store the upper limit of the length of options plus
|
2762 |
|
|
* data in maxopd.
|
2763 |
|
|
*/
|
2764 |
|
|
int
|
2765 |
|
|
tcp_mss(tp, offer)
|
2766 |
|
|
register struct tcpcb *tp;
|
2767 |
|
|
u_int offer;
|
2768 |
|
|
{
|
2769 |
|
|
struct route *ro;
|
2770 |
|
|
register struct rtentry *rt;
|
2771 |
|
|
struct ifnet *ifp;
|
2772 |
|
|
register int rtt, mss;
|
2773 |
|
|
u_long bufsize;
|
2774 |
|
|
struct inpcb *inp;
|
2775 |
|
|
struct socket *so;
|
2776 |
|
|
|
2777 |
|
|
inp = tp->t_inpcb;
|
2778 |
|
|
ro = &inp->inp_route;
|
2779 |
|
|
so = inp->inp_socket;
|
2780 |
|
|
|
2781 |
|
|
if ((rt = ro->ro_rt) == (struct rtentry *)0) {
|
2782 |
|
|
/* No route yet, so try to acquire one */
|
2783 |
|
|
#ifdef INET6
|
2784 |
|
|
/*
|
2785 |
|
|
* Get a new IPv6 route if an IPv6 destination, otherwise, get
|
2786 |
|
|
* and IPv4 route (including those pesky IPv4-mapped addresses).
|
2787 |
|
|
*/
|
2788 |
|
|
bzero(ro,sizeof(struct route_in6));
|
2789 |
|
|
if (sotopf(so) == AF_INET6) {
|
2790 |
|
|
if (IN6_IS_ADDR_V4MAPPED(&inp->inp_faddr6)) {
|
2791 |
|
|
/* Get an IPv4 route. */
|
2792 |
|
|
ro->ro_dst.sa_family = AF_INET;
|
2793 |
|
|
ro->ro_dst.sa_len = sizeof(ro->ro_dst);
|
2794 |
|
|
((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
|
2795 |
|
|
inp->inp_faddr;
|
2796 |
|
|
rtalloc(ro);
|
2797 |
|
|
} else {
|
2798 |
|
|
ro->ro_dst.sa_family = AF_INET6;
|
2799 |
|
|
ro->ro_dst.sa_len = sizeof(struct sockaddr_in6);
|
2800 |
|
|
((struct sockaddr_in6 *) &ro->ro_dst)->sin6_addr =
|
2801 |
|
|
inp->inp_faddr6;
|
2802 |
|
|
rtalloc(ro);
|
2803 |
|
|
}
|
2804 |
|
|
} else
|
2805 |
|
|
#endif /* INET6 */
|
2806 |
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY) {
|
2807 |
|
|
ro->ro_dst.sa_family = AF_INET;
|
2808 |
|
|
ro->ro_dst.sa_len = sizeof(ro->ro_dst);
|
2809 |
|
|
satosin(&ro->ro_dst)->sin_addr = inp->inp_faddr;
|
2810 |
|
|
rtalloc(ro);
|
2811 |
|
|
}
|
2812 |
|
|
if ((rt = ro->ro_rt) == (struct rtentry *)0) {
|
2813 |
|
|
tp->t_maxopd = tp->t_maxseg = tcp_mssdflt;
|
2814 |
|
|
return (tcp_mssdflt);
|
2815 |
|
|
}
|
2816 |
|
|
}
|
2817 |
|
|
ifp = rt->rt_ifp;
|
2818 |
|
|
|
2819 |
|
|
#ifdef RTV_MTU /* if route characteristics exist ... */
|
2820 |
|
|
/*
|
2821 |
|
|
* While we're here, check if there's an initial rtt
|
2822 |
|
|
* or rttvar. Convert from the route-table units
|
2823 |
|
|
* to scaled multiples of the slow timeout timer.
|
2824 |
|
|
*/
|
2825 |
|
|
if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
|
2826 |
|
|
/*
|
2827 |
|
|
* XXX the lock bit for MTU indicates that the value
|
2828 |
|
|
* is also a minimum value; this is subject to time.
|
2829 |
|
|
*/
|
2830 |
|
|
if (rt->rt_rmx.rmx_locks & RTV_RTT)
|
2831 |
|
|
TCPT_RANGESET(tp->t_rttmin,
|
2832 |
|
|
rtt / (RTM_RTTUNIT / PR_SLOWHZ),
|
2833 |
|
|
TCPTV_MIN, TCPTV_REXMTMAX);
|
2834 |
|
|
tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
|
2835 |
|
|
if (rt->rt_rmx.rmx_rttvar)
|
2836 |
|
|
tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
|
2837 |
|
|
(RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
|
2838 |
|
|
else
|
2839 |
|
|
/* default variation is +- 1 rtt */
|
2840 |
|
|
tp->t_rttvar =
|
2841 |
|
|
tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
|
2842 |
|
|
TCPT_RANGESET((long) tp->t_rxtcur,
|
2843 |
|
|
((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
|
2844 |
|
|
tp->t_rttmin, TCPTV_REXMTMAX);
|
2845 |
|
|
}
|
2846 |
|
|
/*
|
2847 |
|
|
* if there's an mtu associated with the route, use it
|
2848 |
|
|
*/
|
2849 |
|
|
if (rt->rt_rmx.rmx_mtu)
|
2850 |
|
|
#ifdef INET6
|
2851 |
|
|
{
|
2852 |
|
|
/*
|
2853 |
|
|
* One may wish to lower MSS to take into account options,
|
2854 |
|
|
* especially security-related options.
|
2855 |
|
|
*/
|
2856 |
|
|
if (tp->pf == AF_INET6)
|
2857 |
|
|
mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpipv6hdr);
|
2858 |
|
|
else
|
2859 |
|
|
#endif /* INET6 */
|
2860 |
|
|
mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
|
2861 |
|
|
#ifdef INET6
|
2862 |
|
|
}
|
2863 |
|
|
#endif /* INET6 */
|
2864 |
|
|
else
|
2865 |
|
|
#endif /* RTV_MTU */
|
2866 |
|
|
{
|
2867 |
|
|
/*
|
2868 |
|
|
* ifp may be null and rmx_mtu may be zero in certain
|
2869 |
|
|
* v6 cases (e.g., if ND wasn't able to resolve the
|
2870 |
|
|
* destination host.
|
2871 |
|
|
*/
|
2872 |
|
|
mss = ifp ? ifp->if_mtu - sizeof(struct tcpiphdr) : 0;
|
2873 |
|
|
#ifdef INET6
|
2874 |
|
|
if (tp->pf == AF_INET)
|
2875 |
|
|
#endif /* INET6 */
|
2876 |
|
|
if (!in_localaddr(inp->inp_faddr))
|
2877 |
|
|
mss = min(mss, tcp_mssdflt);
|
2878 |
|
|
}
|
2879 |
|
|
/*
|
2880 |
|
|
* The current mss, t_maxseg, is initialized to the default value.
|
2881 |
|
|
* If we compute a smaller value, reduce the current mss.
|
2882 |
|
|
* If we compute a larger value, return it for use in sending
|
2883 |
|
|
* a max seg size option, but don't store it for use
|
2884 |
|
|
* unless we received an offer at least that large from peer.
|
2885 |
|
|
* However, do not accept offers under 32 bytes.
|
2886 |
|
|
*/
|
2887 |
|
|
if (offer)
|
2888 |
|
|
mss = min(mss, offer);
|
2889 |
|
|
mss = max(mss, 64); /* sanity - at least max opt. space */
|
2890 |
|
|
/*
|
2891 |
|
|
* maxopd stores the maximum length of data AND options
|
2892 |
|
|
* in a segment; maxseg is the amount of data in a normal
|
2893 |
|
|
* segment. We need to store this value (maxopd) apart
|
2894 |
|
|
* from maxseg, because now every segment carries options
|
2895 |
|
|
* and thus we normally have somewhat less data in segments.
|
2896 |
|
|
*/
|
2897 |
|
|
tp->t_maxopd = mss;
|
2898 |
|
|
|
2899 |
|
|
if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
|
2900 |
|
|
(tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
|
2901 |
|
|
mss -= TCPOLEN_TSTAMP_APPA;
|
2902 |
|
|
|
2903 |
|
|
#if (MCLBYTES & (MCLBYTES - 1)) == 0
|
2904 |
|
|
if (mss > MCLBYTES)
|
2905 |
|
|
mss &= ~(MCLBYTES-1);
|
2906 |
|
|
#else
|
2907 |
|
|
if (mss > MCLBYTES)
|
2908 |
|
|
mss = mss / MCLBYTES * MCLBYTES;
|
2909 |
|
|
#endif
|
2910 |
|
|
/*
|
2911 |
|
|
* If there's a pipesize, change the socket buffer
|
2912 |
|
|
* to that size. Make the socket buffers an integral
|
2913 |
|
|
* number of mss units; if the mss is larger than
|
2914 |
|
|
* the socket buffer, decrease the mss.
|
2915 |
|
|
*/
|
2916 |
|
|
#ifdef RTV_SPIPE
|
2917 |
|
|
if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
|
2918 |
|
|
#endif
|
2919 |
|
|
bufsize = so->so_snd.sb_hiwat;
|
2920 |
|
|
if (bufsize < mss)
|
2921 |
|
|
mss = bufsize;
|
2922 |
|
|
else {
|
2923 |
|
|
bufsize = roundup(bufsize, mss);
|
2924 |
|
|
if (bufsize > sb_max)
|
2925 |
|
|
bufsize = sb_max;
|
2926 |
|
|
(void)sbreserve(&so->so_snd, bufsize);
|
2927 |
|
|
}
|
2928 |
|
|
tp->t_maxseg = mss;
|
2929 |
|
|
|
2930 |
|
|
#ifdef RTV_RPIPE
|
2931 |
|
|
if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
|
2932 |
|
|
#endif
|
2933 |
|
|
bufsize = so->so_rcv.sb_hiwat;
|
2934 |
|
|
if (bufsize > mss) {
|
2935 |
|
|
bufsize = roundup(bufsize, mss);
|
2936 |
|
|
if (bufsize > sb_max)
|
2937 |
|
|
bufsize = sb_max;
|
2938 |
|
|
(void)sbreserve(&so->so_rcv, bufsize);
|
2939 |
|
|
}
|
2940 |
|
|
tp->snd_cwnd = mss;
|
2941 |
|
|
|
2942 |
|
|
#ifdef RTV_SSTHRESH
|
2943 |
|
|
if (rt->rt_rmx.rmx_ssthresh) {
|
2944 |
|
|
/*
|
2945 |
|
|
* There's some sort of gateway or interface
|
2946 |
|
|
* buffer limit on the path. Use this to set
|
2947 |
|
|
* the slow start threshhold, but set the
|
2948 |
|
|
* threshold to no less than 2*mss.
|
2949 |
|
|
*/
|
2950 |
|
|
tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
|
2951 |
|
|
}
|
2952 |
|
|
#endif /* RTV_MTU */
|
2953 |
|
|
return (mss);
|
2954 |
|
|
}
|
2955 |
|
|
#endif /* TUBA_INCLUDE */
|
2956 |
|
|
|
2957 |
|
|
#if defined(TCP_NEWRENO) || defined (TCP_SACK)
|
2958 |
|
|
/*
|
2959 |
|
|
* Checks for partial ack. If partial ack arrives, force the retransmission
|
2960 |
|
|
* of the next unacknowledged segment, do not clear tp->t_dupacks, and return
|
2961 |
|
|
* 1. By setting snd_nxt to ti_ack, this forces retransmission timer to
|
2962 |
|
|
* be started again. If the ack advances at least to tp->snd_last, return 0.
|
2963 |
|
|
*/
|
2964 |
|
|
int
|
2965 |
|
|
tcp_newreno(tp, th)
|
2966 |
|
|
struct tcpcb *tp;
|
2967 |
|
|
struct tcphdr *th;
|
2968 |
|
|
{
|
2969 |
|
|
if (SEQ_LT(th->th_ack, tp->snd_last)) {
|
2970 |
|
|
/*
|
2971 |
|
|
* snd_una has not been updated and the socket send buffer
|
2972 |
|
|
* not yet drained of the acked data, so we have to leave
|
2973 |
|
|
* snd_una as it was to get the correct data offset in
|
2974 |
|
|
* tcp_output().
|
2975 |
|
|
*/
|
2976 |
|
|
tcp_seq onxt = tp->snd_nxt;
|
2977 |
|
|
u_long ocwnd = tp->snd_cwnd;
|
2978 |
|
|
tp->t_timer[TCPT_REXMT] = 0;
|
2979 |
|
|
tp->t_rtt = 0;
|
2980 |
|
|
tp->snd_nxt = th->th_ack;
|
2981 |
|
|
/*
|
2982 |
|
|
* Set snd_cwnd to one segment beyond acknowledged offset
|
2983 |
|
|
* (tp->snd_una not yet updated when this function is called)
|
2984 |
|
|
*/
|
2985 |
|
|
tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
|
2986 |
|
|
(void) tcp_output(tp);
|
2987 |
|
|
tp->snd_cwnd = ocwnd;
|
2988 |
|
|
if (SEQ_GT(onxt, tp->snd_nxt))
|
2989 |
|
|
tp->snd_nxt = onxt;
|
2990 |
|
|
/*
|
2991 |
|
|
* Partial window deflation. Relies on fact that tp->snd_una
|
2992 |
|
|
* not updated yet.
|
2993 |
|
|
*/
|
2994 |
|
|
tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
|
2995 |
|
|
return 1;
|
2996 |
|
|
}
|
2997 |
|
|
return 0;
|
2998 |
|
|
}
|
2999 |
|
|
#endif /* TCP_NEWRENO || TCP_SACK */
|