OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [bfd/] [elf64-sparc.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 104 markom
/* SPARC-specific support for 64-bit ELF
2
   Copyright (C) 1993, 95, 96, 97, 98, 99, 2000
3
   Free Software Foundation, Inc.
4
 
5
This file is part of BFD, the Binary File Descriptor library.
6
 
7
This program is free software; you can redistribute it and/or modify
8
it under the terms of the GNU General Public License as published by
9
the Free Software Foundation; either version 2 of the License, or
10
(at your option) any later version.
11
 
12
This program is distributed in the hope that it will be useful,
13
but WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
GNU General Public License for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with this program; if not, write to the Free Software
19
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20
 
21
#include "bfd.h"
22
#include "sysdep.h"
23
#include "libbfd.h"
24
#include "elf-bfd.h"
25
 
26
/* This is defined if one wants to build upward compatible binaries
27
   with the original sparc64-elf toolchain.  The support is kept in for
28
   now but is turned off by default.  dje 970930  */
29
/*#define SPARC64_OLD_RELOCS*/
30
 
31
#include "elf/sparc.h"
32
 
33
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
34
#define MINUS_ONE (~ (bfd_vma) 0)
35
 
36
static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
37
  PARAMS((bfd *));
38
static reloc_howto_type *sparc64_elf_reloc_type_lookup
39
  PARAMS ((bfd *, bfd_reloc_code_real_type));
40
static void sparc64_elf_info_to_howto
41
  PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
42
 
43
static void sparc64_elf_build_plt
44
  PARAMS((bfd *, unsigned char *, int));
45
static bfd_vma sparc64_elf_plt_entry_offset
46
  PARAMS((int));
47
static bfd_vma sparc64_elf_plt_ptr_offset
48
  PARAMS((int, int));
49
 
50
static boolean sparc64_elf_check_relocs
51
  PARAMS((bfd *, struct bfd_link_info *, asection *sec,
52
          const Elf_Internal_Rela *));
53
static boolean sparc64_elf_adjust_dynamic_symbol
54
  PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *));
55
static boolean sparc64_elf_size_dynamic_sections
56
  PARAMS((bfd *, struct bfd_link_info *));
57
static int sparc64_elf_get_symbol_type
58
  PARAMS (( Elf_Internal_Sym *, int));
59
static boolean sparc64_elf_add_symbol_hook
60
  PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
61
        const char **, flagword *, asection **, bfd_vma *));
62
static void sparc64_elf_symbol_processing
63
  PARAMS ((bfd *, asymbol *));
64
 
65
static boolean sparc64_elf_merge_private_bfd_data
66
  PARAMS ((bfd *, bfd *));
67
 
68
static boolean sparc64_elf_relocate_section
69
  PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
70
           Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
71
static boolean sparc64_elf_object_p PARAMS ((bfd *));
72
static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
73
static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
74
static boolean sparc64_elf_slurp_one_reloc_table
75
  PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, boolean));
76
static boolean sparc64_elf_slurp_reloc_table
77
  PARAMS ((bfd *, asection *, asymbol **, boolean));
78
static long sparc64_elf_canonicalize_dynamic_reloc
79
  PARAMS ((bfd *, arelent **, asymbol **));
80
static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
81
 
82
/* The relocation "howto" table.  */
83
 
84
static bfd_reloc_status_type sparc_elf_notsup_reloc
85
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
86
static bfd_reloc_status_type sparc_elf_wdisp16_reloc
87
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
88
static bfd_reloc_status_type sparc_elf_hix22_reloc
89
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
90
static bfd_reloc_status_type sparc_elf_lox10_reloc
91
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
92
 
93
static reloc_howto_type sparc64_elf_howto_table[] =
94
{
95
  HOWTO(R_SPARC_NONE,      0,0, 0,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_NONE",    false,0,0x00000000,true),
96
  HOWTO(R_SPARC_8,         0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_8",       false,0,0x000000ff,true),
97
  HOWTO(R_SPARC_16,        0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_16",      false,0,0x0000ffff,true),
98
  HOWTO(R_SPARC_32,        0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_32",      false,0,0xffffffff,true),
99
  HOWTO(R_SPARC_DISP8,     0,0, 8,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP8",   false,0,0x000000ff,true),
100
  HOWTO(R_SPARC_DISP16,    0,1,16,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP16",  false,0,0x0000ffff,true),
101
  HOWTO(R_SPARC_DISP32,    0,2,32,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP32",  false,0,0x00ffffff,true),
102
  HOWTO(R_SPARC_WDISP30,   2,2,30,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP30", false,0,0x3fffffff,true),
103
  HOWTO(R_SPARC_WDISP22,   2,2,22,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP22", false,0,0x003fffff,true),
104
  HOWTO(R_SPARC_HI22,     10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_HI22",    false,0,0x003fffff,true),
105
  HOWTO(R_SPARC_22,        0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_22",      false,0,0x003fffff,true),
106
  HOWTO(R_SPARC_13,        0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_13",      false,0,0x00001fff,true),
107
  HOWTO(R_SPARC_LO10,      0,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_LO10",    false,0,0x000003ff,true),
108
  HOWTO(R_SPARC_GOT10,     0,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GOT10",   false,0,0x000003ff,true),
109
  HOWTO(R_SPARC_GOT13,     0,2,13,false,0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_GOT13",   false,0,0x00001fff,true),
110
  HOWTO(R_SPARC_GOT22,    10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GOT22",   false,0,0x003fffff,true),
111
  HOWTO(R_SPARC_PC10,      0,2,10,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC10",    false,0,0x000003ff,true),
112
  HOWTO(R_SPARC_PC22,     10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_PC22",    false,0,0x003fffff,true),
113
  HOWTO(R_SPARC_WPLT30,    2,2,30,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WPLT30",  false,0,0x3fffffff,true),
114
  HOWTO(R_SPARC_COPY,      0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_COPY",    false,0,0x00000000,true),
115
  HOWTO(R_SPARC_GLOB_DAT,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
116
  HOWTO(R_SPARC_JMP_SLOT,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
117
  HOWTO(R_SPARC_RELATIVE,  0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_RELATIVE",false,0,0x00000000,true),
118
  HOWTO(R_SPARC_UA32,      0,0,00,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_UA32",    false,0,0x00000000,true),
119
#ifndef SPARC64_OLD_RELOCS
120
  /* These aren't implemented yet.  */
121
  HOWTO(R_SPARC_PLT32,     0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PLT32",    false,0,0x00000000,true),
122
  HOWTO(R_SPARC_HIPLT22,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_HIPLT22",  false,0,0x00000000,true),
123
  HOWTO(R_SPARC_LOPLT10,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_LOPLT10",  false,0,0x00000000,true),
124
  HOWTO(R_SPARC_PCPLT32,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT32",  false,0,0x00000000,true),
125
  HOWTO(R_SPARC_PCPLT22,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT22",  false,0,0x00000000,true),
126
  HOWTO(R_SPARC_PCPLT10,   0,0,00,false,0,complain_overflow_dont,    sparc_elf_notsup_reloc, "R_SPARC_PCPLT10",  false,0,0x00000000,true),
127
#endif
128
  HOWTO(R_SPARC_10,        0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_10",      false,0,0x000003ff,true),
129
  HOWTO(R_SPARC_11,        0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_11",      false,0,0x000007ff,true),
130
  HOWTO(R_SPARC_64,        0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_64",      false,0,MINUS_ONE, true),
131
  HOWTO(R_SPARC_OLO10,     0,2,13,false,0,complain_overflow_signed,  sparc_elf_notsup_reloc, "R_SPARC_OLO10",   false,0,0x00001fff,true),
132
  HOWTO(R_SPARC_HH22,     42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_HH22",    false,0,0x003fffff,true),
133
  HOWTO(R_SPARC_HM10,     32,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_HM10",    false,0,0x000003ff,true),
134
  HOWTO(R_SPARC_LM22,     10,2,22,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_LM22",    false,0,0x003fffff,true),
135
  HOWTO(R_SPARC_PC_HH22,  42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_PC_HH22",    false,0,0x003fffff,true),
136
  HOWTO(R_SPARC_PC_HM10,  32,2,10,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC_HM10",    false,0,0x000003ff,true),
137
  HOWTO(R_SPARC_PC_LM22,  10,2,22,true, 0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_PC_LM22",    false,0,0x003fffff,true),
138
  HOWTO(R_SPARC_WDISP16,   2,2,16,true, 0,complain_overflow_signed,  sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
139
  HOWTO(R_SPARC_WDISP19,   2,2,19,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_WDISP19", false,0,0x0007ffff,true),
140
  HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_UNUSED_42",false,0,0x00000000,true),
141
  HOWTO(R_SPARC_7,         0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_7",       false,0,0x0000007f,true),
142
  HOWTO(R_SPARC_5,         0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_5",       false,0,0x0000001f,true),
143
  HOWTO(R_SPARC_6,         0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_6",       false,0,0x0000003f,true),
144
  HOWTO(R_SPARC_DISP64,    0,4,64,true, 0,complain_overflow_signed,  bfd_elf_generic_reloc,  "R_SPARC_DISP64",  false,0,MINUS_ONE, true),
145
  HOWTO(R_SPARC_PLT64,     0,4,64,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_PLT64",   false,0,MINUS_ONE, false),
146
  HOWTO(R_SPARC_HIX22,     0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,  "R_SPARC_HIX22",   false,0,MINUS_ONE, false),
147
  HOWTO(R_SPARC_LOX10,     0,4, 0,false,0,complain_overflow_dont,    sparc_elf_lox10_reloc,  "R_SPARC_LOX10",   false,0,MINUS_ONE, false),
148
  HOWTO(R_SPARC_H44,      22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc,  "R_SPARC_H44",     false,0,0x003fffff,false),
149
  HOWTO(R_SPARC_M44,      12,2,10,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_M44",     false,0,0x000003ff,false),
150
  HOWTO(R_SPARC_L44,       0,2,13,false,0,complain_overflow_dont,    bfd_elf_generic_reloc,  "R_SPARC_L44",     false,0,0x00000fff,false),
151
  HOWTO(R_SPARC_REGISTER,  0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
152
  HOWTO(R_SPARC_UA64,        0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA64",      false,0,MINUS_ONE, true),
153
  HOWTO(R_SPARC_UA16,        0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,  "R_SPARC_UA16",      false,0,0x0000ffff,true)
154
};
155
 
156
struct elf_reloc_map {
157
  bfd_reloc_code_real_type bfd_reloc_val;
158
  unsigned char elf_reloc_val;
159
};
160
 
161
static CONST struct elf_reloc_map sparc_reloc_map[] =
162
{
163
  { BFD_RELOC_NONE, R_SPARC_NONE, },
164
  { BFD_RELOC_16, R_SPARC_16, },
165
  { BFD_RELOC_8, R_SPARC_8 },
166
  { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
167
  { BFD_RELOC_CTOR, R_SPARC_64 },
168
  { BFD_RELOC_32, R_SPARC_32 },
169
  { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
170
  { BFD_RELOC_HI22, R_SPARC_HI22 },
171
  { BFD_RELOC_LO10, R_SPARC_LO10, },
172
  { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
173
  { BFD_RELOC_SPARC22, R_SPARC_22 },
174
  { BFD_RELOC_SPARC13, R_SPARC_13 },
175
  { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
176
  { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
177
  { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
178
  { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
179
  { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
180
  { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
181
  { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
182
  { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
183
  { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
184
  { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
185
  { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
186
  /* ??? Doesn't dwarf use this?  */
187
/*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
188
  {BFD_RELOC_SPARC_10, R_SPARC_10},
189
  {BFD_RELOC_SPARC_11, R_SPARC_11},
190
  {BFD_RELOC_SPARC_64, R_SPARC_64},
191
  {BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10},
192
  {BFD_RELOC_SPARC_HH22, R_SPARC_HH22},
193
  {BFD_RELOC_SPARC_HM10, R_SPARC_HM10},
194
  {BFD_RELOC_SPARC_LM22, R_SPARC_LM22},
195
  {BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22},
196
  {BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10},
197
  {BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22},
198
  {BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16},
199
  {BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19},
200
  {BFD_RELOC_SPARC_7, R_SPARC_7},
201
  {BFD_RELOC_SPARC_5, R_SPARC_5},
202
  {BFD_RELOC_SPARC_6, R_SPARC_6},
203
  {BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64},
204
  {BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64},
205
  {BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22},
206
  {BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10},
207
  {BFD_RELOC_SPARC_H44, R_SPARC_H44},
208
  {BFD_RELOC_SPARC_M44, R_SPARC_M44},
209
  {BFD_RELOC_SPARC_L44, R_SPARC_L44},
210
  {BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER}
211
};
212
 
213
static reloc_howto_type *
214
sparc64_elf_reloc_type_lookup (abfd, code)
215
     bfd *abfd;
216
     bfd_reloc_code_real_type code;
217
{
218
  unsigned int i;
219
  for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
220
    {
221
      if (sparc_reloc_map[i].bfd_reloc_val == code)
222
        return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
223
    }
224
  return 0;
225
}
226
 
227
static void
228
sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
229
     bfd *abfd;
230
     arelent *cache_ptr;
231
     Elf64_Internal_Rela *dst;
232
{
233
  BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
234
  cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
235
}
236
 
237
/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
238
   section can represent up to two relocs, we must tell the user to allocate
239
   more space.  */
240
 
241
static long
242
sparc64_elf_get_reloc_upper_bound (abfd, sec)
243
     bfd *abfd;
244
     asection *sec;
245
{
246
  return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
247
}
248
 
249
static long
250
sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
251
     bfd *abfd;
252
{
253
  return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
254
}
255
 
256
/* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
257
   them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
258
   has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
259
   for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
260
 
261
static boolean
262
sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
263
     bfd *abfd;
264
     asection *asect;
265
     Elf_Internal_Shdr *rel_hdr;
266
     asymbol **symbols;
267
     boolean dynamic;
268
{
269
  struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
270
  PTR allocated = NULL;
271
  bfd_byte *native_relocs;
272
  arelent *relent;
273
  unsigned int i;
274
  int entsize;
275
  bfd_size_type count;
276
  arelent *relents;
277
 
278
  allocated = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
279
  if (allocated == NULL)
280
    goto error_return;
281
 
282
  if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
283
      || (bfd_read (allocated, 1, rel_hdr->sh_size, abfd)
284
          != rel_hdr->sh_size))
285
    goto error_return;
286
 
287
  native_relocs = (bfd_byte *) allocated;
288
 
289
  relents = asect->relocation + asect->reloc_count;
290
 
291
  entsize = rel_hdr->sh_entsize;
292
  BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
293
 
294
  count = rel_hdr->sh_size / entsize;
295
 
296
  for (i = 0, relent = relents; i < count;
297
       i++, relent++, native_relocs += entsize)
298
    {
299
      Elf_Internal_Rela rela;
300
 
301
      bfd_elf64_swap_reloca_in (abfd, (Elf64_External_Rela *) native_relocs, &rela);
302
 
303
      /* The address of an ELF reloc is section relative for an object
304
         file, and absolute for an executable file or shared library.
305
         The address of a normal BFD reloc is always section relative,
306
         and the address of a dynamic reloc is absolute..  */
307
      if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
308
        relent->address = rela.r_offset;
309
      else
310
        relent->address = rela.r_offset - asect->vma;
311
 
312
      if (ELF64_R_SYM (rela.r_info) == 0)
313
        relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
314
      else
315
        {
316
          asymbol **ps, *s;
317
 
318
          ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
319
          s = *ps;
320
 
321
          /* Canonicalize ELF section symbols.  FIXME: Why?  */
322
          if ((s->flags & BSF_SECTION_SYM) == 0)
323
            relent->sym_ptr_ptr = ps;
324
          else
325
            relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
326
        }
327
 
328
      relent->addend = rela.r_addend;
329
 
330
      BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
331
      if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
332
        {
333
          relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
334
          relent[1].address = relent->address;
335
          relent++;
336
          relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
337
          relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
338
          relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
339
        }
340
      else
341
        relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
342
    }
343
 
344
  asect->reloc_count += relent - relents;
345
 
346
  if (allocated != NULL)
347
    free (allocated);
348
 
349
  return true;
350
 
351
 error_return:
352
  if (allocated != NULL)
353
    free (allocated);
354
  return false;
355
}
356
 
357
/* Read in and swap the external relocs.  */
358
 
359
static boolean
360
sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
361
     bfd *abfd;
362
     asection *asect;
363
     asymbol **symbols;
364
     boolean dynamic;
365
{
366
  struct bfd_elf_section_data * const d = elf_section_data (asect);
367
  Elf_Internal_Shdr *rel_hdr;
368
  Elf_Internal_Shdr *rel_hdr2;
369
 
370
  if (asect->relocation != NULL)
371
    return true;
372
 
373
  if (! dynamic)
374
    {
375
      if ((asect->flags & SEC_RELOC) == 0
376
          || asect->reloc_count == 0)
377
        return true;
378
 
379
      rel_hdr = &d->rel_hdr;
380
      rel_hdr2 = d->rel_hdr2;
381
 
382
      BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
383
                  || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
384
    }
385
  else
386
    {
387
      /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
388
         case because relocations against this section may use the
389
         dynamic symbol table, and in that case bfd_section_from_shdr
390
         in elf.c does not update the RELOC_COUNT.  */
391
      if (asect->_raw_size == 0)
392
        return true;
393
 
394
      rel_hdr = &d->this_hdr;
395
      asect->reloc_count = rel_hdr->sh_size / rel_hdr->sh_entsize;
396
      rel_hdr2 = NULL;
397
    }
398
 
399
  asect->relocation = ((arelent *)
400
                       bfd_alloc (abfd,
401
                                  asect->reloc_count * 2 * sizeof (arelent)));
402
  if (asect->relocation == NULL)
403
    return false;
404
 
405
  /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count.  */
406
  asect->reloc_count = 0;
407
 
408
  if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
409
                                          dynamic))
410
    return false;
411
 
412
  if (rel_hdr2
413
      && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
414
                                             dynamic))
415
    return false;
416
 
417
  return true;
418
}
419
 
420
/* Canonicalize the dynamic relocation entries.  Note that we return
421
   the dynamic relocations as a single block, although they are
422
   actually associated with particular sections; the interface, which
423
   was designed for SunOS style shared libraries, expects that there
424
   is only one set of dynamic relocs.  Any section that was actually
425
   installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
426
   the dynamic symbol table, is considered to be a dynamic reloc
427
   section.  */
428
 
429
static long
430
sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
431
     bfd *abfd;
432
     arelent **storage;
433
     asymbol **syms;
434
{
435
  asection *s;
436
  long ret;
437
 
438
  if (elf_dynsymtab (abfd) == 0)
439
    {
440
      bfd_set_error (bfd_error_invalid_operation);
441
      return -1;
442
    }
443
 
444
  ret = 0;
445
  for (s = abfd->sections; s != NULL; s = s->next)
446
    {
447
      if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
448
          && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
449
        {
450
          arelent *p;
451
          long count, i;
452
 
453
          if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, true))
454
            return -1;
455
          count = s->reloc_count;
456
          p = s->relocation;
457
          for (i = 0; i < count; i++)
458
            *storage++ = p++;
459
          ret += count;
460
        }
461
    }
462
 
463
  *storage = NULL;
464
 
465
  return ret;
466
}
467
 
468
/* Write out the relocs.  */
469
 
470
static void
471
sparc64_elf_write_relocs (abfd, sec, data)
472
     bfd *abfd;
473
     asection *sec;
474
     PTR data;
475
{
476
  boolean *failedp = (boolean *) data;
477
  Elf_Internal_Shdr *rela_hdr;
478
  Elf64_External_Rela *outbound_relocas, *src_rela;
479
  unsigned int idx, count;
480
  asymbol *last_sym = 0;
481
  int last_sym_idx = 0;
482
 
483
  /* If we have already failed, don't do anything.  */
484
  if (*failedp)
485
    return;
486
 
487
  if ((sec->flags & SEC_RELOC) == 0)
488
    return;
489
 
490
  /* The linker backend writes the relocs out itself, and sets the
491
     reloc_count field to zero to inhibit writing them here.  Also,
492
     sometimes the SEC_RELOC flag gets set even when there aren't any
493
     relocs.  */
494
  if (sec->reloc_count == 0)
495
    return;
496
 
497
  /* We can combine two relocs that refer to the same address
498
     into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
499
     latter is R_SPARC_13 with no associated symbol.  */
500
  count = 0;
501
  for (idx = 0; idx < sec->reloc_count; idx++)
502
    {
503
      bfd_vma addr;
504
      unsigned int i;
505
 
506
      ++count;
507
 
508
      addr = sec->orelocation[idx]->address;
509
      if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
510
          && idx < sec->reloc_count - 1)
511
        {
512
          arelent *r = sec->orelocation[idx + 1];
513
 
514
          if (r->howto->type == R_SPARC_13
515
              && r->address == addr
516
              && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
517
              && (*r->sym_ptr_ptr)->value == 0)
518
            ++idx;
519
        }
520
    }
521
 
522
  rela_hdr = &elf_section_data (sec)->rel_hdr;
523
 
524
  rela_hdr->sh_size = rela_hdr->sh_entsize * count;
525
  rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
526
  if (rela_hdr->contents == NULL)
527
    {
528
      *failedp = true;
529
      return;
530
    }
531
 
532
  /* Figure out whether the relocations are RELA or REL relocations.  */
533
  if (rela_hdr->sh_type != SHT_RELA)
534
    abort ();
535
 
536
  /* orelocation has the data, reloc_count has the count... */
537
  outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
538
  src_rela = outbound_relocas;
539
 
540
  for (idx = 0; idx < sec->reloc_count; idx++)
541
    {
542
      Elf_Internal_Rela dst_rela;
543
      arelent *ptr;
544
      asymbol *sym;
545
      int n;
546
 
547
      ptr = sec->orelocation[idx];
548
 
549
      /* The address of an ELF reloc is section relative for an object
550
         file, and absolute for an executable file or shared library.
551
         The address of a BFD reloc is always section relative.  */
552
      if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
553
        dst_rela.r_offset = ptr->address;
554
      else
555
        dst_rela.r_offset = ptr->address + sec->vma;
556
 
557
      sym = *ptr->sym_ptr_ptr;
558
      if (sym == last_sym)
559
        n = last_sym_idx;
560
      else if (bfd_is_abs_section (sym->section) && sym->value == 0)
561
        n = STN_UNDEF;
562
      else
563
        {
564
          last_sym = sym;
565
          n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
566
          if (n < 0)
567
            {
568
              *failedp = true;
569
              return;
570
            }
571
          last_sym_idx = n;
572
        }
573
 
574
      if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
575
          && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
576
          && ! _bfd_elf_validate_reloc (abfd, ptr))
577
        {
578
          *failedp = true;
579
          return;
580
        }
581
 
582
      if (ptr->howto->type == R_SPARC_LO10
583
          && idx < sec->reloc_count - 1)
584
        {
585
          arelent *r = sec->orelocation[idx + 1];
586
 
587
          if (r->howto->type == R_SPARC_13
588
              && r->address == ptr->address
589
              && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
590
              && (*r->sym_ptr_ptr)->value == 0)
591
            {
592
              idx++;
593
              dst_rela.r_info
594
                = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
595
                                                      R_SPARC_OLO10));
596
            }
597
          else
598
            dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
599
        }
600
      else
601
        dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
602
 
603
      dst_rela.r_addend = ptr->addend;
604
      bfd_elf64_swap_reloca_out (abfd, &dst_rela, src_rela);
605
      ++src_rela;
606
    }
607
}
608
 
609
/* Sparc64 ELF linker hash table.  */
610
 
611
struct sparc64_elf_app_reg
612
{
613
  unsigned char bind;
614
  unsigned short shndx;
615
  bfd *abfd;
616
  char *name;
617
};
618
 
619
struct sparc64_elf_link_hash_table
620
{
621
  struct elf_link_hash_table root;
622
 
623
  struct sparc64_elf_app_reg app_regs [4];
624
};
625
 
626
/* Get the Sparc64 ELF linker hash table from a link_info structure.  */
627
 
628
#define sparc64_elf_hash_table(p) \
629
  ((struct sparc64_elf_link_hash_table *) ((p)->hash))
630
 
631
/* Create a Sparc64 ELF linker hash table.  */
632
 
633
static struct bfd_link_hash_table *
634
sparc64_elf_bfd_link_hash_table_create (abfd)
635
     bfd *abfd;
636
{
637
  struct sparc64_elf_link_hash_table *ret;
638
 
639
  ret = ((struct sparc64_elf_link_hash_table *)
640
         bfd_zalloc (abfd, sizeof (struct sparc64_elf_link_hash_table)));
641
  if (ret == (struct sparc64_elf_link_hash_table *) NULL)
642
    return NULL;
643
 
644
  if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
645
                                       _bfd_elf_link_hash_newfunc))
646
    {
647
      bfd_release (abfd, ret);
648
      return NULL;
649
    }
650
 
651
  return &ret->root.root;
652
}
653
 
654
 
655
/* Utility for performing the standard initial work of an instruction
656
   relocation.
657
   *PRELOCATION will contain the relocated item.
658
   *PINSN will contain the instruction from the input stream.
659
   If the result is `bfd_reloc_other' the caller can continue with
660
   performing the relocation.  Otherwise it must stop and return the
661
   value to its caller.  */
662
 
663
static bfd_reloc_status_type
664
init_insn_reloc (abfd,
665
                 reloc_entry,
666
                 symbol,
667
                 data,
668
                 input_section,
669
                 output_bfd,
670
                 prelocation,
671
                 pinsn)
672
     bfd *abfd;
673
     arelent *reloc_entry;
674
     asymbol *symbol;
675
     PTR data;
676
     asection *input_section;
677
     bfd *output_bfd;
678
     bfd_vma *prelocation;
679
     bfd_vma *pinsn;
680
{
681
  bfd_vma relocation;
682
  reloc_howto_type *howto = reloc_entry->howto;
683
 
684
  if (output_bfd != (bfd *) NULL
685
      && (symbol->flags & BSF_SECTION_SYM) == 0
686
      && (! howto->partial_inplace
687
          || reloc_entry->addend == 0))
688
    {
689
      reloc_entry->address += input_section->output_offset;
690
      return bfd_reloc_ok;
691
    }
692
 
693
  /* This works because partial_inplace == false.  */
694
  if (output_bfd != NULL)
695
    return bfd_reloc_continue;
696
 
697
  if (reloc_entry->address > input_section->_cooked_size)
698
    return bfd_reloc_outofrange;
699
 
700
  relocation = (symbol->value
701
                + symbol->section->output_section->vma
702
                + symbol->section->output_offset);
703
  relocation += reloc_entry->addend;
704
  if (howto->pc_relative)
705
    {
706
      relocation -= (input_section->output_section->vma
707
                     + input_section->output_offset);
708
      relocation -= reloc_entry->address;
709
    }
710
 
711
  *prelocation = relocation;
712
  *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
713
  return bfd_reloc_other;
714
}
715
 
716
/* For unsupported relocs.  */
717
 
718
static bfd_reloc_status_type
719
sparc_elf_notsup_reloc (abfd,
720
                        reloc_entry,
721
                        symbol,
722
                        data,
723
                        input_section,
724
                        output_bfd,
725
                        error_message)
726
     bfd *abfd;
727
     arelent *reloc_entry;
728
     asymbol *symbol;
729
     PTR data;
730
     asection *input_section;
731
     bfd *output_bfd;
732
     char **error_message;
733
{
734
  return bfd_reloc_notsupported;
735
}
736
 
737
/* Handle the WDISP16 reloc.  */
738
 
739
static bfd_reloc_status_type
740
sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
741
                         output_bfd, error_message)
742
     bfd *abfd;
743
     arelent *reloc_entry;
744
     asymbol *symbol;
745
     PTR data;
746
     asection *input_section;
747
     bfd *output_bfd;
748
     char **error_message;
749
{
750
  bfd_vma relocation;
751
  bfd_vma insn;
752
  bfd_reloc_status_type status;
753
 
754
  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
755
                            input_section, output_bfd, &relocation, &insn);
756
  if (status != bfd_reloc_other)
757
    return status;
758
 
759
  insn = (insn & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
760
                               | ((relocation >> 2) & 0x3fff));
761
  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
762
 
763
  if ((bfd_signed_vma) relocation < - 0x40000
764
      || (bfd_signed_vma) relocation > 0x3ffff)
765
    return bfd_reloc_overflow;
766
  else
767
    return bfd_reloc_ok;
768
}
769
 
770
/* Handle the HIX22 reloc.  */
771
 
772
static bfd_reloc_status_type
773
sparc_elf_hix22_reloc (abfd,
774
                       reloc_entry,
775
                       symbol,
776
                       data,
777
                       input_section,
778
                       output_bfd,
779
                       error_message)
780
     bfd *abfd;
781
     arelent *reloc_entry;
782
     asymbol *symbol;
783
     PTR data;
784
     asection *input_section;
785
     bfd *output_bfd;
786
     char **error_message;
787
{
788
  bfd_vma relocation;
789
  bfd_vma insn;
790
  bfd_reloc_status_type status;
791
 
792
  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
793
                            input_section, output_bfd, &relocation, &insn);
794
  if (status != bfd_reloc_other)
795
    return status;
796
 
797
  relocation ^= MINUS_ONE;
798
  insn = (insn & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
799
  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
800
 
801
  if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
802
    return bfd_reloc_overflow;
803
  else
804
    return bfd_reloc_ok;
805
}
806
 
807
/* Handle the LOX10 reloc.  */
808
 
809
static bfd_reloc_status_type
810
sparc_elf_lox10_reloc (abfd,
811
                       reloc_entry,
812
                       symbol,
813
                       data,
814
                       input_section,
815
                       output_bfd,
816
                       error_message)
817
     bfd *abfd;
818
     arelent *reloc_entry;
819
     asymbol *symbol;
820
     PTR data;
821
     asection *input_section;
822
     bfd *output_bfd;
823
     char **error_message;
824
{
825
  bfd_vma relocation;
826
  bfd_vma insn;
827
  bfd_reloc_status_type status;
828
 
829
  status = init_insn_reloc (abfd, reloc_entry, symbol, data,
830
                            input_section, output_bfd, &relocation, &insn);
831
  if (status != bfd_reloc_other)
832
    return status;
833
 
834
  insn = (insn & ~0x1fff) | 0x1c00 | (relocation & 0x3ff);
835
  bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
836
 
837
  return bfd_reloc_ok;
838
}
839
 
840
/* PLT/GOT stuff */
841
 
842
/* Both the headers and the entries are icache aligned.  */
843
#define PLT_ENTRY_SIZE          32
844
#define PLT_HEADER_SIZE         (4 * PLT_ENTRY_SIZE)
845
#define LARGE_PLT_THRESHOLD     32768
846
#define GOT_RESERVED_ENTRIES    1
847
 
848
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
849
 
850
 
851
/* Fill in the .plt section.  */
852
 
853
static void
854
sparc64_elf_build_plt (output_bfd, contents, nentries)
855
     bfd *output_bfd;
856
     unsigned char *contents;
857
     int nentries;
858
{
859
  const unsigned int nop = 0x01000000;
860
  int i, j;
861
 
862
  /* The first four entries are reserved, and are initially undefined.
863
     We fill them with `illtrap 0' to force ld.so to do something.  */
864
 
865
  for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
866
    bfd_put_32 (output_bfd, 0, contents+i*4);
867
 
868
  /* The first 32768 entries are close enough to plt1 to get there via
869
     a straight branch.  */
870
 
871
  for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
872
    {
873
      unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
874
      unsigned int sethi, ba;
875
 
876
      /* sethi (. - plt0), %g1 */
877
      sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
878
 
879
      /* ba,a,pt %xcc, plt1 */
880
      ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
881
 
882
      bfd_put_32 (output_bfd, sethi, entry);
883
      bfd_put_32 (output_bfd, ba, entry+4);
884
      bfd_put_32 (output_bfd, nop, entry+8);
885
      bfd_put_32 (output_bfd, nop, entry+12);
886
      bfd_put_32 (output_bfd, nop, entry+16);
887
      bfd_put_32 (output_bfd, nop, entry+20);
888
      bfd_put_32 (output_bfd, nop, entry+24);
889
      bfd_put_32 (output_bfd, nop, entry+28);
890
    }
891
 
892
  /* Now the tricky bit.  Entries 32768 and higher are grouped in blocks of
893
     160: 160 entries and 160 pointers.  This is to separate code from data,
894
     which is much friendlier on the cache.  */
895
 
896
  for (; i < nentries; i += 160)
897
    {
898
      int block = (i + 160 <= nentries ? 160 : nentries - i);
899
      for (j = 0; j < block; ++j)
900
        {
901
          unsigned char *entry, *ptr;
902
          unsigned int ldx;
903
 
904
          entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
905
          ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
906
 
907
          /* ldx [%o7 + ptr - entry+4], %g1 */
908
          ldx = 0xc25be000 | ((ptr - entry+4) & 0x1fff);
909
 
910
          bfd_put_32 (output_bfd, 0x8a10000f, entry);    /* mov %o7,%g5 */
911
          bfd_put_32 (output_bfd, 0x40000002, entry+4);  /* call .+8 */
912
          bfd_put_32 (output_bfd, nop, entry+8);         /* nop */
913
          bfd_put_32 (output_bfd, ldx, entry+12);        /* ldx [%o7+P],%g1 */
914
          bfd_put_32 (output_bfd, 0x83c3c001, entry+16); /* jmpl %o7+%g1,%g1 */
915
          bfd_put_32 (output_bfd, 0x9e100005, entry+20); /* mov %g5,%o7 */
916
 
917
          bfd_put_64 (output_bfd, contents - (entry+4), ptr);
918
        }
919
    }
920
}
921
 
922
/* Return the offset of a particular plt entry within the .plt section.  */
923
 
924
static bfd_vma
925
sparc64_elf_plt_entry_offset (index)
926
     int index;
927
{
928
  int block, ofs;
929
 
930
  if (index < LARGE_PLT_THRESHOLD)
931
    return index * PLT_ENTRY_SIZE;
932
 
933
  /* See above for details.  */
934
 
935
  block = (index - LARGE_PLT_THRESHOLD) / 160;
936
  ofs = (index - LARGE_PLT_THRESHOLD) % 160;
937
 
938
  return ((bfd_vma)(LARGE_PLT_THRESHOLD + block*160) * PLT_ENTRY_SIZE
939
          + ofs * 6*4);
940
}
941
 
942
static bfd_vma
943
sparc64_elf_plt_ptr_offset (index, max)
944
     int index, max;
945
{
946
  int block, ofs, last;
947
 
948
  BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
949
 
950
  /* See above for details.  */
951
 
952
  block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160)
953
          + LARGE_PLT_THRESHOLD;
954
  ofs = index - block;
955
  if (block + 160 > max)
956
    last = (max - LARGE_PLT_THRESHOLD) % 160;
957
  else
958
    last = 160;
959
 
960
  return (block * PLT_ENTRY_SIZE
961
          + last * 6*4
962
          + ofs * 8);
963
}
964
 
965
 
966
 
967
/* Look through the relocs for a section during the first phase, and
968
   allocate space in the global offset table or procedure linkage
969
   table.  */
970
 
971
static boolean
972
sparc64_elf_check_relocs (abfd, info, sec, relocs)
973
     bfd *abfd;
974
     struct bfd_link_info *info;
975
     asection *sec;
976
     const Elf_Internal_Rela *relocs;
977
{
978
  bfd *dynobj;
979
  Elf_Internal_Shdr *symtab_hdr;
980
  struct elf_link_hash_entry **sym_hashes;
981
  bfd_vma *local_got_offsets;
982
  const Elf_Internal_Rela *rel;
983
  const Elf_Internal_Rela *rel_end;
984
  asection *sgot;
985
  asection *srelgot;
986
  asection *sreloc;
987
 
988
  if (info->relocateable || !(sec->flags & SEC_ALLOC))
989
    return true;
990
 
991
  dynobj = elf_hash_table (info)->dynobj;
992
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
993
  sym_hashes = elf_sym_hashes (abfd);
994
  local_got_offsets = elf_local_got_offsets (abfd);
995
 
996
  sgot = NULL;
997
  srelgot = NULL;
998
  sreloc = NULL;
999
 
1000
  rel_end = relocs + sec->reloc_count;
1001
  for (rel = relocs; rel < rel_end; rel++)
1002
    {
1003
      unsigned long r_symndx;
1004
      struct elf_link_hash_entry *h;
1005
 
1006
      r_symndx = ELF64_R_SYM (rel->r_info);
1007
      if (r_symndx < symtab_hdr->sh_info)
1008
        h = NULL;
1009
      else
1010
        h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1011
 
1012
      switch (ELF64_R_TYPE_ID (rel->r_info))
1013
        {
1014
        case R_SPARC_GOT10:
1015
        case R_SPARC_GOT13:
1016
        case R_SPARC_GOT22:
1017
          /* This symbol requires a global offset table entry.  */
1018
 
1019
          if (dynobj == NULL)
1020
            {
1021
              /* Create the .got section.  */
1022
              elf_hash_table (info)->dynobj = dynobj = abfd;
1023
              if (! _bfd_elf_create_got_section (dynobj, info))
1024
                return false;
1025
            }
1026
 
1027
          if (sgot == NULL)
1028
            {
1029
              sgot = bfd_get_section_by_name (dynobj, ".got");
1030
              BFD_ASSERT (sgot != NULL);
1031
            }
1032
 
1033
          if (srelgot == NULL && (h != NULL || info->shared))
1034
            {
1035
              srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1036
              if (srelgot == NULL)
1037
                {
1038
                  srelgot = bfd_make_section (dynobj, ".rela.got");
1039
                  if (srelgot == NULL
1040
                      || ! bfd_set_section_flags (dynobj, srelgot,
1041
                                                  (SEC_ALLOC
1042
                                                   | SEC_LOAD
1043
                                                   | SEC_HAS_CONTENTS
1044
                                                   | SEC_IN_MEMORY
1045
                                                   | SEC_LINKER_CREATED
1046
                                                   | SEC_READONLY))
1047
                      || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1048
                    return false;
1049
                }
1050
            }
1051
 
1052
          if (h != NULL)
1053
            {
1054
              if (h->got.offset != (bfd_vma) -1)
1055
                {
1056
                  /* We have already allocated space in the .got.  */
1057
                  break;
1058
                }
1059
              h->got.offset = sgot->_raw_size;
1060
 
1061
              /* Make sure this symbol is output as a dynamic symbol.  */
1062
              if (h->dynindx == -1)
1063
                {
1064
                  if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1065
                    return false;
1066
                }
1067
 
1068
              srelgot->_raw_size += sizeof (Elf64_External_Rela);
1069
            }
1070
          else
1071
            {
1072
              /* This is a global offset table entry for a local
1073
                 symbol.  */
1074
              if (local_got_offsets == NULL)
1075
                {
1076
                  size_t size;
1077
                  register unsigned int i;
1078
 
1079
                  size = symtab_hdr->sh_info * sizeof (bfd_vma);
1080
                  local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1081
                  if (local_got_offsets == NULL)
1082
                    return false;
1083
                  elf_local_got_offsets (abfd) = local_got_offsets;
1084
                  for (i = 0; i < symtab_hdr->sh_info; i++)
1085
                    local_got_offsets[i] = (bfd_vma) -1;
1086
                }
1087
              if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1088
                {
1089
                  /* We have already allocated space in the .got.  */
1090
                  break;
1091
                }
1092
              local_got_offsets[r_symndx] = sgot->_raw_size;
1093
 
1094
              if (info->shared)
1095
                {
1096
                  /* If we are generating a shared object, we need to
1097
                     output a R_SPARC_RELATIVE reloc so that the
1098
                     dynamic linker can adjust this GOT entry.  */
1099
                  srelgot->_raw_size += sizeof (Elf64_External_Rela);
1100
                }
1101
            }
1102
 
1103
          sgot->_raw_size += 8;
1104
 
1105
#if 0
1106
          /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1107
             unsigned numbers.  If we permit ourselves to modify
1108
             code so we get sethi/xor, this could work.
1109
             Question: do we consider conditionally re-enabling
1110
             this for -fpic, once we know about object code models?  */
1111
          /* If the .got section is more than 0x1000 bytes, we add
1112
             0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1113
             bit relocations have a greater chance of working.  */
1114
          if (sgot->_raw_size >= 0x1000
1115
              && elf_hash_table (info)->hgot->root.u.def.value == 0)
1116
            elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1117
#endif
1118
 
1119
          break;
1120
 
1121
        case R_SPARC_WPLT30:
1122
        case R_SPARC_PLT32:
1123
        case R_SPARC_HIPLT22:
1124
        case R_SPARC_LOPLT10:
1125
        case R_SPARC_PCPLT32:
1126
        case R_SPARC_PCPLT22:
1127
        case R_SPARC_PCPLT10:
1128
        case R_SPARC_PLT64:
1129
          /* This symbol requires a procedure linkage table entry.  We
1130
             actually build the entry in adjust_dynamic_symbol,
1131
             because this might be a case of linking PIC code without
1132
             linking in any dynamic objects, in which case we don't
1133
             need to generate a procedure linkage table after all.  */
1134
 
1135
          if (h == NULL)
1136
            {
1137
              /* It does not make sense to have a procedure linkage
1138
                 table entry for a local symbol.  */
1139
              bfd_set_error (bfd_error_bad_value);
1140
              return false;
1141
            }
1142
 
1143
          /* Make sure this symbol is output as a dynamic symbol.  */
1144
          if (h->dynindx == -1)
1145
            {
1146
              if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1147
                return false;
1148
            }
1149
 
1150
          h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1151
          break;
1152
 
1153
        case R_SPARC_PC10:
1154
        case R_SPARC_PC22:
1155
        case R_SPARC_PC_HH22:
1156
        case R_SPARC_PC_HM10:
1157
        case R_SPARC_PC_LM22:
1158
          if (h != NULL
1159
              && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1160
            break;
1161
          /* Fall through.  */
1162
        case R_SPARC_DISP8:
1163
        case R_SPARC_DISP16:
1164
        case R_SPARC_DISP32:
1165
        case R_SPARC_DISP64:
1166
        case R_SPARC_WDISP30:
1167
        case R_SPARC_WDISP22:
1168
        case R_SPARC_WDISP19:
1169
        case R_SPARC_WDISP16:
1170
          if (h == NULL)
1171
            break;
1172
          /* Fall through.  */
1173
        case R_SPARC_8:
1174
        case R_SPARC_16:
1175
        case R_SPARC_32:
1176
        case R_SPARC_HI22:
1177
        case R_SPARC_22:
1178
        case R_SPARC_13:
1179
        case R_SPARC_LO10:
1180
        case R_SPARC_UA32:
1181
        case R_SPARC_10:
1182
        case R_SPARC_11:
1183
        case R_SPARC_64:
1184
        case R_SPARC_OLO10:
1185
        case R_SPARC_HH22:
1186
        case R_SPARC_HM10:
1187
        case R_SPARC_LM22:
1188
        case R_SPARC_7:
1189
        case R_SPARC_5:
1190
        case R_SPARC_6:
1191
        case R_SPARC_HIX22:
1192
        case R_SPARC_LOX10:
1193
        case R_SPARC_H44:
1194
        case R_SPARC_M44:
1195
        case R_SPARC_L44:
1196
        case R_SPARC_UA64:
1197
        case R_SPARC_UA16:
1198
          /* When creating a shared object, we must copy these relocs
1199
             into the output file.  We create a reloc section in
1200
             dynobj and make room for the reloc.
1201
 
1202
             But don't do this for debugging sections -- this shows up
1203
             with DWARF2 -- first because they are not loaded, and
1204
             second because DWARF sez the debug info is not to be
1205
             biased by the load address.  */
1206
          if (info->shared && (sec->flags & SEC_ALLOC))
1207
            {
1208
              if (sreloc == NULL)
1209
                {
1210
                  const char *name;
1211
 
1212
                  name = (bfd_elf_string_from_elf_section
1213
                          (abfd,
1214
                           elf_elfheader (abfd)->e_shstrndx,
1215
                           elf_section_data (sec)->rel_hdr.sh_name));
1216
                  if (name == NULL)
1217
                    return false;
1218
 
1219
                  BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1220
                              && strcmp (bfd_get_section_name (abfd, sec),
1221
                                         name + 5) == 0);
1222
 
1223
                  sreloc = bfd_get_section_by_name (dynobj, name);
1224
                  if (sreloc == NULL)
1225
                    {
1226
                      flagword flags;
1227
 
1228
                      sreloc = bfd_make_section (dynobj, name);
1229
                      flags = (SEC_HAS_CONTENTS | SEC_READONLY
1230
                               | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1231
                      if ((sec->flags & SEC_ALLOC) != 0)
1232
                        flags |= SEC_ALLOC | SEC_LOAD;
1233
                      if (sreloc == NULL
1234
                          || ! bfd_set_section_flags (dynobj, sreloc, flags)
1235
                          || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1236
                        return false;
1237
                    }
1238
                }
1239
 
1240
              sreloc->_raw_size += sizeof (Elf64_External_Rela);
1241
            }
1242
          break;
1243
 
1244
        case R_SPARC_REGISTER:
1245
          /* Nothing to do.  */
1246
          break;
1247
 
1248
        default:
1249
          (*_bfd_error_handler)(_("%s: check_relocs: unhandled reloc type %d"),
1250
                                bfd_get_filename(abfd),
1251
                                ELF64_R_TYPE_ID (rel->r_info));
1252
          return false;
1253
        }
1254
    }
1255
 
1256
  return true;
1257
}
1258
 
1259
/* Hook called by the linker routine which adds symbols from an object
1260
   file.  We use it for STT_REGISTER symbols.  */
1261
 
1262
static boolean
1263
sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1264
     bfd *abfd;
1265
     struct bfd_link_info *info;
1266
     const Elf_Internal_Sym *sym;
1267
     const char **namep;
1268
     flagword *flagsp;
1269
     asection **secp;
1270
     bfd_vma *valp;
1271
{
1272
  static char *stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1273
 
1274
  if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1275
    {
1276
      int reg;
1277
      struct sparc64_elf_app_reg *p;
1278
 
1279
      reg = (int)sym->st_value;
1280
      switch (reg & ~1)
1281
        {
1282
        case 2: reg -= 2; break;
1283
        case 6: reg -= 4; break;
1284
        default:
1285
          (*_bfd_error_handler)
1286
            (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1287
             bfd_get_filename (abfd));
1288
          return false;
1289
        }
1290
 
1291
      if (info->hash->creator != abfd->xvec
1292
          || (abfd->flags & DYNAMIC) != 0)
1293
        {
1294
          /* STT_REGISTER only works when linking an elf64_sparc object.
1295
             If STT_REGISTER comes from a dynamic object, don't put it into
1296
             the output bfd.  The dynamic linker will recheck it.  */
1297
          *namep = NULL;
1298
          return true;
1299
        }
1300
 
1301
      p = sparc64_elf_hash_table(info)->app_regs + reg;
1302
 
1303
      if (p->name != NULL && strcmp (p->name, *namep))
1304
        {
1305
          (*_bfd_error_handler)
1306
            (_("Register %%g%d used incompatibly: "
1307
               "previously declared in %s to %s, in %s redefined to %s"),
1308
             (int)sym->st_value,
1309
             bfd_get_filename (p->abfd), *p->name ? p->name : "#scratch",
1310
             bfd_get_filename (abfd), **namep ? *namep : "#scratch");
1311
          return false;
1312
        }
1313
 
1314
      if (p->name == NULL)
1315
        {
1316
          if (**namep)
1317
            {
1318
              struct elf_link_hash_entry *h;
1319
 
1320
              h = (struct elf_link_hash_entry *)
1321
                bfd_link_hash_lookup (info->hash, *namep, false, false, false);
1322
 
1323
              if (h != NULL)
1324
                {
1325
                  unsigned char type = h->type;
1326
 
1327
                  if (type > STT_FUNC) type = 0;
1328
                  (*_bfd_error_handler)
1329
                    (_("Symbol `%s' has differing types: "
1330
                       "previously %s, REGISTER in %s"),
1331
                     *namep, stt_types [type], bfd_get_filename (abfd));
1332
                  return false;
1333
                }
1334
 
1335
              p->name = bfd_hash_allocate (&info->hash->table,
1336
                                           strlen (*namep) + 1);
1337
              if (!p->name)
1338
                return false;
1339
 
1340
              strcpy (p->name, *namep);
1341
            }
1342
          else
1343
            p->name = "";
1344
          p->bind = ELF_ST_BIND (sym->st_info);
1345
          p->abfd = abfd;
1346
          p->shndx = sym->st_shndx;
1347
        }
1348
      else
1349
        {
1350
          if (p->bind == STB_WEAK
1351
              && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1352
            {
1353
              p->bind = STB_GLOBAL;
1354
              p->abfd = abfd;
1355
            }
1356
        }
1357
      *namep = NULL;
1358
      return true;
1359
    }
1360
  else if (! *namep || ! **namep)
1361
    return true;
1362
  else
1363
    {
1364
      int i;
1365
      struct sparc64_elf_app_reg *p;
1366
 
1367
      p = sparc64_elf_hash_table(info)->app_regs;
1368
      for (i = 0; i < 4; i++, p++)
1369
        if (p->name != NULL && ! strcmp (p->name, *namep))
1370
          {
1371
            unsigned char type = ELF_ST_TYPE (sym->st_info);
1372
 
1373
            if (type > STT_FUNC) type = 0;
1374
            (*_bfd_error_handler)
1375
              (_("Symbol `%s' has differing types: "
1376
                 "REGISTER in %s, %s in %s"),
1377
               *namep, bfd_get_filename (p->abfd), stt_types [type],
1378
               bfd_get_filename (abfd));
1379
            return false;
1380
          }
1381
    }
1382
  return true;
1383
}
1384
 
1385
/* This function takes care of emiting STT_REGISTER symbols
1386
   which we cannot easily keep in the symbol hash table.  */
1387
 
1388
static boolean
1389
sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1390
     bfd *output_bfd;
1391
     struct bfd_link_info *info;
1392
     PTR finfo;
1393
     boolean (*func) PARAMS ((PTR, const char *,
1394
                              Elf_Internal_Sym *, asection *));
1395
{
1396
  int reg;
1397
  struct sparc64_elf_app_reg *app_regs =
1398
    sparc64_elf_hash_table(info)->app_regs;
1399
  Elf_Internal_Sym sym;
1400
 
1401
  /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1402
     at the end of the dynlocal list, so they came at the end of the local
1403
     symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
1404
     to back up symtab->sh_info.  */
1405
  if (elf_hash_table (info)->dynlocal)
1406
    {
1407
      bfd * dynobj = elf_hash_table (info)->dynobj;
1408
      asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1409
      struct elf_link_local_dynamic_entry *e;
1410
 
1411
      for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1412
        if (e->input_indx == -1)
1413
          break;
1414
      if (e)
1415
        {
1416
          elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1417
            = e->dynindx;
1418
        }
1419
    }
1420
 
1421
  if (info->strip == strip_all)
1422
    return true;
1423
 
1424
  for (reg = 0; reg < 4; reg++)
1425
    if (app_regs [reg].name != NULL)
1426
      {
1427
        if (info->strip == strip_some
1428
            && bfd_hash_lookup (info->keep_hash,
1429
                                app_regs [reg].name,
1430
                                false, false) == NULL)
1431
          continue;
1432
 
1433
        sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1434
        sym.st_size = 0;
1435
        sym.st_other = 0;
1436
        sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1437
        sym.st_shndx = app_regs [reg].shndx;
1438
        if (! (*func) (finfo, app_regs [reg].name, &sym,
1439
                       sym.st_shndx == SHN_ABS
1440
                         ? bfd_abs_section_ptr : bfd_und_section_ptr))
1441
          return false;
1442
      }
1443
 
1444
  return true;
1445
}
1446
 
1447
static int
1448
sparc64_elf_get_symbol_type (elf_sym, type)
1449
     Elf_Internal_Sym * elf_sym;
1450
     int type;
1451
{
1452
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1453
    return STT_REGISTER;
1454
  else
1455
    return type;
1456
}
1457
 
1458
/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1459
   even in SHN_UNDEF section.  */
1460
 
1461
static void
1462
sparc64_elf_symbol_processing (abfd, asym)
1463
     bfd *abfd;
1464
     asymbol *asym;
1465
{
1466
  elf_symbol_type *elfsym;
1467
 
1468
  elfsym = (elf_symbol_type *) asym;
1469
  if (elfsym->internal_elf_sym.st_info
1470
      == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1471
    {
1472
      asym->flags |= BSF_GLOBAL;
1473
    }
1474
}
1475
 
1476
/* Adjust a symbol defined by a dynamic object and referenced by a
1477
   regular object.  The current definition is in some section of the
1478
   dynamic object, but we're not including those sections.  We have to
1479
   change the definition to something the rest of the link can
1480
   understand.  */
1481
 
1482
static boolean
1483
sparc64_elf_adjust_dynamic_symbol (info, h)
1484
     struct bfd_link_info *info;
1485
     struct elf_link_hash_entry *h;
1486
{
1487
  bfd *dynobj;
1488
  asection *s;
1489
  unsigned int power_of_two;
1490
 
1491
  dynobj = elf_hash_table (info)->dynobj;
1492
 
1493
  /* Make sure we know what is going on here.  */
1494
  BFD_ASSERT (dynobj != NULL
1495
              && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1496
                  || h->weakdef != NULL
1497
                  || ((h->elf_link_hash_flags
1498
                       & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1499
                      && (h->elf_link_hash_flags
1500
                          & ELF_LINK_HASH_REF_REGULAR) != 0
1501
                      && (h->elf_link_hash_flags
1502
                          & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1503
 
1504
  /* If this is a function, put it in the procedure linkage table.  We
1505
     will fill in the contents of the procedure linkage table later
1506
     (although we could actually do it here).  The STT_NOTYPE
1507
     condition is a hack specifically for the Oracle libraries
1508
     delivered for Solaris; for some inexplicable reason, they define
1509
     some of their functions as STT_NOTYPE when they really should be
1510
     STT_FUNC.  */
1511
  if (h->type == STT_FUNC
1512
      || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1513
      || (h->type == STT_NOTYPE
1514
          && (h->root.type == bfd_link_hash_defined
1515
              || h->root.type == bfd_link_hash_defweak)
1516
          && (h->root.u.def.section->flags & SEC_CODE) != 0))
1517
    {
1518
      if (! elf_hash_table (info)->dynamic_sections_created)
1519
        {
1520
          /* This case can occur if we saw a WPLT30 reloc in an input
1521
             file, but none of the input files were dynamic objects.
1522
             In such a case, we don't actually need to build a
1523
             procedure linkage table, and we can just do a WDISP30
1524
             reloc instead.  */
1525
          BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1526
          return true;
1527
        }
1528
 
1529
      s = bfd_get_section_by_name (dynobj, ".plt");
1530
      BFD_ASSERT (s != NULL);
1531
 
1532
      /* The first four bit in .plt is reserved.  */
1533
      if (s->_raw_size == 0)
1534
        s->_raw_size = PLT_HEADER_SIZE;
1535
 
1536
      /* If this symbol is not defined in a regular file, and we are
1537
         not generating a shared library, then set the symbol to this
1538
         location in the .plt.  This is required to make function
1539
         pointers compare as equal between the normal executable and
1540
         the shared library.  */
1541
      if (! info->shared
1542
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1543
        {
1544
          h->root.u.def.section = s;
1545
          h->root.u.def.value = s->_raw_size;
1546
        }
1547
 
1548
      /* To simplify matters later, just store the plt index here.  */
1549
      h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1550
 
1551
      /* Make room for this entry.  */
1552
      s->_raw_size += PLT_ENTRY_SIZE;
1553
 
1554
      /* We also need to make an entry in the .rela.plt section.  */
1555
 
1556
      s = bfd_get_section_by_name (dynobj, ".rela.plt");
1557
      BFD_ASSERT (s != NULL);
1558
 
1559
      /* The first plt entries are reserved, and the relocations must
1560
         pair up exactly.  */
1561
      if (s->_raw_size == 0)
1562
        s->_raw_size += (PLT_HEADER_SIZE/PLT_ENTRY_SIZE
1563
                         * sizeof (Elf64_External_Rela));
1564
 
1565
      s->_raw_size += sizeof (Elf64_External_Rela);
1566
 
1567
      /* The procedure linkage table size is bounded by the magnitude
1568
         of the offset we can describe in the entry.  */
1569
      if (s->_raw_size >= (bfd_vma)1 << 32)
1570
        {
1571
          bfd_set_error (bfd_error_bad_value);
1572
          return false;
1573
        }
1574
 
1575
      return true;
1576
    }
1577
 
1578
  /* If this is a weak symbol, and there is a real definition, the
1579
     processor independent code will have arranged for us to see the
1580
     real definition first, and we can just use the same value.  */
1581
  if (h->weakdef != NULL)
1582
    {
1583
      BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1584
                  || h->weakdef->root.type == bfd_link_hash_defweak);
1585
      h->root.u.def.section = h->weakdef->root.u.def.section;
1586
      h->root.u.def.value = h->weakdef->root.u.def.value;
1587
      return true;
1588
    }
1589
 
1590
  /* This is a reference to a symbol defined by a dynamic object which
1591
     is not a function.  */
1592
 
1593
  /* If we are creating a shared library, we must presume that the
1594
     only references to the symbol are via the global offset table.
1595
     For such cases we need not do anything here; the relocations will
1596
     be handled correctly by relocate_section.  */
1597
  if (info->shared)
1598
    return true;
1599
 
1600
  /* We must allocate the symbol in our .dynbss section, which will
1601
     become part of the .bss section of the executable.  There will be
1602
     an entry for this symbol in the .dynsym section.  The dynamic
1603
     object will contain position independent code, so all references
1604
     from the dynamic object to this symbol will go through the global
1605
     offset table.  The dynamic linker will use the .dynsym entry to
1606
     determine the address it must put in the global offset table, so
1607
     both the dynamic object and the regular object will refer to the
1608
     same memory location for the variable.  */
1609
 
1610
  s = bfd_get_section_by_name (dynobj, ".dynbss");
1611
  BFD_ASSERT (s != NULL);
1612
 
1613
  /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1614
     to copy the initial value out of the dynamic object and into the
1615
     runtime process image.  We need to remember the offset into the
1616
     .rel.bss section we are going to use.  */
1617
  if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1618
    {
1619
      asection *srel;
1620
 
1621
      srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1622
      BFD_ASSERT (srel != NULL);
1623
      srel->_raw_size += sizeof (Elf64_External_Rela);
1624
      h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1625
    }
1626
 
1627
  /* We need to figure out the alignment required for this symbol.  I
1628
     have no idea how ELF linkers handle this.  16-bytes is the size
1629
     of the largest type that requires hard alignment -- long double.  */
1630
  power_of_two = bfd_log2 (h->size);
1631
  if (power_of_two > 4)
1632
    power_of_two = 4;
1633
 
1634
  /* Apply the required alignment.  */
1635
  s->_raw_size = BFD_ALIGN (s->_raw_size,
1636
                            (bfd_size_type) (1 << power_of_two));
1637
  if (power_of_two > bfd_get_section_alignment (dynobj, s))
1638
    {
1639
      if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1640
        return false;
1641
    }
1642
 
1643
  /* Define the symbol as being at this point in the section.  */
1644
  h->root.u.def.section = s;
1645
  h->root.u.def.value = s->_raw_size;
1646
 
1647
  /* Increment the section size to make room for the symbol.  */
1648
  s->_raw_size += h->size;
1649
 
1650
  return true;
1651
}
1652
 
1653
/* Set the sizes of the dynamic sections.  */
1654
 
1655
static boolean
1656
sparc64_elf_size_dynamic_sections (output_bfd, info)
1657
     bfd *output_bfd;
1658
     struct bfd_link_info *info;
1659
{
1660
  bfd *dynobj;
1661
  asection *s;
1662
  boolean reltext;
1663
  boolean relplt;
1664
 
1665
  dynobj = elf_hash_table (info)->dynobj;
1666
  BFD_ASSERT (dynobj != NULL);
1667
 
1668
  if (elf_hash_table (info)->dynamic_sections_created)
1669
    {
1670
      /* Set the contents of the .interp section to the interpreter.  */
1671
      if (! info->shared)
1672
        {
1673
          s = bfd_get_section_by_name (dynobj, ".interp");
1674
          BFD_ASSERT (s != NULL);
1675
          s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1676
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1677
        }
1678
    }
1679
  else
1680
    {
1681
      /* We may have created entries in the .rela.got section.
1682
         However, if we are not creating the dynamic sections, we will
1683
         not actually use these entries.  Reset the size of .rela.got,
1684
         which will cause it to get stripped from the output file
1685
         below.  */
1686
      s = bfd_get_section_by_name (dynobj, ".rela.got");
1687
      if (s != NULL)
1688
        s->_raw_size = 0;
1689
    }
1690
 
1691
  /* The check_relocs and adjust_dynamic_symbol entry points have
1692
     determined the sizes of the various dynamic sections.  Allocate
1693
     memory for them.  */
1694
  reltext = false;
1695
  relplt = false;
1696
  for (s = dynobj->sections; s != NULL; s = s->next)
1697
    {
1698
      const char *name;
1699
      boolean strip;
1700
 
1701
      if ((s->flags & SEC_LINKER_CREATED) == 0)
1702
        continue;
1703
 
1704
      /* It's OK to base decisions on the section name, because none
1705
         of the dynobj section names depend upon the input files.  */
1706
      name = bfd_get_section_name (dynobj, s);
1707
 
1708
      strip = false;
1709
 
1710
      if (strncmp (name, ".rela", 5) == 0)
1711
        {
1712
          if (s->_raw_size == 0)
1713
            {
1714
              /* If we don't need this section, strip it from the
1715
                 output file.  This is to handle .rela.bss and
1716
                 .rel.plt.  We must create it in
1717
                 create_dynamic_sections, because it must be created
1718
                 before the linker maps input sections to output
1719
                 sections.  The linker does that before
1720
                 adjust_dynamic_symbol is called, and it is that
1721
                 function which decides whether anything needs to go
1722
                 into these sections.  */
1723
              strip = true;
1724
            }
1725
          else
1726
            {
1727
              const char *outname;
1728
              asection *target;
1729
 
1730
              /* If this relocation section applies to a read only
1731
                 section, then we probably need a DT_TEXTREL entry.  */
1732
              outname = bfd_get_section_name (output_bfd,
1733
                                              s->output_section);
1734
              target = bfd_get_section_by_name (output_bfd, outname + 5);
1735
              if (target != NULL
1736
                  && (target->flags & SEC_READONLY) != 0)
1737
                reltext = true;
1738
 
1739
              if (strcmp (name, ".rela.plt") == 0)
1740
                relplt = true;
1741
 
1742
              /* We use the reloc_count field as a counter if we need
1743
                 to copy relocs into the output file.  */
1744
              s->reloc_count = 0;
1745
            }
1746
        }
1747
      else if (strcmp (name, ".plt") != 0
1748
               && strncmp (name, ".got", 4) != 0)
1749
        {
1750
          /* It's not one of our sections, so don't allocate space.  */
1751
          continue;
1752
        }
1753
 
1754
      if (strip)
1755
        {
1756
          _bfd_strip_section_from_output (info, s);
1757
          continue;
1758
        }
1759
 
1760
      /* Allocate memory for the section contents.  Zero the memory
1761
         for the benefit of .rela.plt, which has 4 unused entries
1762
         at the beginning, and we don't want garbage.  */
1763
      s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1764
      if (s->contents == NULL && s->_raw_size != 0)
1765
        return false;
1766
    }
1767
 
1768
  if (elf_hash_table (info)->dynamic_sections_created)
1769
    {
1770
      /* Add some entries to the .dynamic section.  We fill in the
1771
         values later, in sparc64_elf_finish_dynamic_sections, but we
1772
         must add the entries now so that we get the correct size for
1773
         the .dynamic section.  The DT_DEBUG entry is filled in by the
1774
         dynamic linker and used by the debugger.  */
1775
      int reg;
1776
      struct sparc64_elf_app_reg * app_regs;
1777
      struct bfd_strtab_hash *dynstr;
1778
      struct elf_link_hash_table *eht = elf_hash_table (info);
1779
 
1780
      if (! info->shared)
1781
        {
1782
          if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0))
1783
            return false;
1784
        }
1785
 
1786
      if (relplt)
1787
        {
1788
          if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)
1789
              || ! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1790
              || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
1791
              || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
1792
            return false;
1793
        }
1794
 
1795
      if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
1796
          || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
1797
          || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
1798
                                            sizeof (Elf64_External_Rela)))
1799
        return false;
1800
 
1801
      if (reltext)
1802
        {
1803
          if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
1804
            return false;
1805
        }
1806
 
1807
      /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1808
         entries if needed.  */
1809
      app_regs = sparc64_elf_hash_table (info)->app_regs;
1810
      dynstr = eht->dynstr;
1811
 
1812
      for (reg = 0; reg < 4; reg++)
1813
        if (app_regs [reg].name != NULL)
1814
          {
1815
            struct elf_link_local_dynamic_entry *entry, *e;
1816
 
1817
            if (! bfd_elf64_add_dynamic_entry (info, DT_SPARC_REGISTER, 0))
1818
              return false;
1819
 
1820
            entry = (struct elf_link_local_dynamic_entry *)
1821
              bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1822
            if (entry == NULL)
1823
              return false;
1824
 
1825
            /* We cheat here a little bit: the symbol will not be local, so we
1826
               put it at the end of the dynlocal linked list.  We will fix it
1827
               later on, as we have to fix other fields anyway.  */
1828
            entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1829
            entry->isym.st_size = 0;
1830
            if (*app_regs [reg].name != '\0')
1831
              entry->isym.st_name
1832
                = _bfd_stringtab_add (dynstr, app_regs[reg].name, true, false);
1833
            else
1834
              entry->isym.st_name = 0;
1835
            entry->isym.st_other = 0;
1836
            entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1837
                                               STT_REGISTER);
1838
            entry->isym.st_shndx = app_regs [reg].shndx;
1839
            entry->next = NULL;
1840
            entry->input_bfd = output_bfd;
1841
            entry->input_indx = -1;
1842
 
1843
            if (eht->dynlocal == NULL)
1844
              eht->dynlocal = entry;
1845
            else
1846
              {
1847
                for (e = eht->dynlocal; e->next; e = e->next)
1848
                  ;
1849
                e->next = entry;
1850
              }
1851
            eht->dynsymcount++;
1852
          }
1853
    }
1854
 
1855
  return true;
1856
}
1857
 
1858
/* Relocate a SPARC64 ELF section.  */
1859
 
1860
static boolean
1861
sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1862
                              contents, relocs, local_syms, local_sections)
1863
     bfd *output_bfd;
1864
     struct bfd_link_info *info;
1865
     bfd *input_bfd;
1866
     asection *input_section;
1867
     bfd_byte *contents;
1868
     Elf_Internal_Rela *relocs;
1869
     Elf_Internal_Sym *local_syms;
1870
     asection **local_sections;
1871
{
1872
  bfd *dynobj;
1873
  Elf_Internal_Shdr *symtab_hdr;
1874
  struct elf_link_hash_entry **sym_hashes;
1875
  bfd_vma *local_got_offsets;
1876
  bfd_vma got_base;
1877
  asection *sgot;
1878
  asection *splt;
1879
  asection *sreloc;
1880
  Elf_Internal_Rela *rel;
1881
  Elf_Internal_Rela *relend;
1882
 
1883
  dynobj = elf_hash_table (info)->dynobj;
1884
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1885
  sym_hashes = elf_sym_hashes (input_bfd);
1886
  local_got_offsets = elf_local_got_offsets (input_bfd);
1887
 
1888
  if (elf_hash_table(info)->hgot == NULL)
1889
    got_base = 0;
1890
  else
1891
    got_base = elf_hash_table (info)->hgot->root.u.def.value;
1892
 
1893
  sgot = splt = sreloc = NULL;
1894
 
1895
  rel = relocs;
1896
  relend = relocs + input_section->reloc_count;
1897
  for (; rel < relend; rel++)
1898
    {
1899
      int r_type;
1900
      reloc_howto_type *howto;
1901
      long r_symndx;
1902
      struct elf_link_hash_entry *h;
1903
      Elf_Internal_Sym *sym;
1904
      asection *sec;
1905
      bfd_vma relocation;
1906
      bfd_reloc_status_type r;
1907
 
1908
      r_type = ELF64_R_TYPE_ID (rel->r_info);
1909
      if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
1910
        {
1911
          bfd_set_error (bfd_error_bad_value);
1912
          return false;
1913
        }
1914
      howto = sparc64_elf_howto_table + r_type;
1915
 
1916
      r_symndx = ELF64_R_SYM (rel->r_info);
1917
 
1918
      if (info->relocateable)
1919
        {
1920
          /* This is a relocateable link.  We don't have to change
1921
             anything, unless the reloc is against a section symbol,
1922
             in which case we have to adjust according to where the
1923
             section symbol winds up in the output section.  */
1924
          if (r_symndx < symtab_hdr->sh_info)
1925
            {
1926
              sym = local_syms + r_symndx;
1927
              if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1928
                {
1929
                  sec = local_sections[r_symndx];
1930
                  rel->r_addend += sec->output_offset + sym->st_value;
1931
                }
1932
            }
1933
 
1934
          continue;
1935
        }
1936
 
1937
      /* This is a final link.  */
1938
      h = NULL;
1939
      sym = NULL;
1940
      sec = NULL;
1941
      if (r_symndx < symtab_hdr->sh_info)
1942
        {
1943
          sym = local_syms + r_symndx;
1944
          sec = local_sections[r_symndx];
1945
          relocation = (sec->output_section->vma
1946
                        + sec->output_offset
1947
                        + sym->st_value);
1948
        }
1949
      else
1950
        {
1951
          h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1952
          while (h->root.type == bfd_link_hash_indirect
1953
                 || h->root.type == bfd_link_hash_warning)
1954
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
1955
          if (h->root.type == bfd_link_hash_defined
1956
              || h->root.type == bfd_link_hash_defweak)
1957
            {
1958
              boolean skip_it = false;
1959
              sec = h->root.u.def.section;
1960
 
1961
              switch (r_type)
1962
                {
1963
                case R_SPARC_WPLT30:
1964
                case R_SPARC_PLT32:
1965
                case R_SPARC_HIPLT22:
1966
                case R_SPARC_LOPLT10:
1967
                case R_SPARC_PCPLT32:
1968
                case R_SPARC_PCPLT22:
1969
                case R_SPARC_PCPLT10:
1970
                case R_SPARC_PLT64:
1971
                  if (h->plt.offset != (bfd_vma) -1)
1972
                    skip_it = true;
1973
                  break;
1974
 
1975
                case R_SPARC_GOT10:
1976
                case R_SPARC_GOT13:
1977
                case R_SPARC_GOT22:
1978
                  if (elf_hash_table(info)->dynamic_sections_created
1979
                      && (!info->shared
1980
                          || (!info->symbolic && h->dynindx != -1)
1981
                          || !(h->elf_link_hash_flags
1982
                               & ELF_LINK_HASH_DEF_REGULAR)))
1983
                    skip_it = true;
1984
                  break;
1985
 
1986
                case R_SPARC_PC10:
1987
                case R_SPARC_PC22:
1988
                case R_SPARC_PC_HH22:
1989
                case R_SPARC_PC_HM10:
1990
                case R_SPARC_PC_LM22:
1991
                  if (!strcmp(h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
1992
                    break;
1993
                  /* FALLTHRU */
1994
 
1995
                case R_SPARC_8:
1996
                case R_SPARC_16:
1997
                case R_SPARC_32:
1998
                case R_SPARC_DISP8:
1999
                case R_SPARC_DISP16:
2000
                case R_SPARC_DISP32:
2001
                case R_SPARC_WDISP30:
2002
                case R_SPARC_WDISP22:
2003
                case R_SPARC_HI22:
2004
                case R_SPARC_22:
2005
                case R_SPARC_13:
2006
                case R_SPARC_LO10:
2007
                case R_SPARC_UA32:
2008
                case R_SPARC_10:
2009
                case R_SPARC_11:
2010
                case R_SPARC_64:
2011
                case R_SPARC_OLO10:
2012
                case R_SPARC_HH22:
2013
                case R_SPARC_HM10:
2014
                case R_SPARC_LM22:
2015
                case R_SPARC_WDISP19:
2016
                case R_SPARC_WDISP16:
2017
                case R_SPARC_7:
2018
                case R_SPARC_5:
2019
                case R_SPARC_6:
2020
                case R_SPARC_DISP64:
2021
                case R_SPARC_HIX22:
2022
                case R_SPARC_LOX10:
2023
                case R_SPARC_H44:
2024
                case R_SPARC_M44:
2025
                case R_SPARC_L44:
2026
                case R_SPARC_UA64:
2027
                case R_SPARC_UA16:
2028
                  if (info->shared
2029
                      && ((!info->symbolic && h->dynindx != -1)
2030
                          || !(h->elf_link_hash_flags
2031
                               & ELF_LINK_HASH_DEF_REGULAR)))
2032
                    skip_it = true;
2033
                  break;
2034
                }
2035
 
2036
              if (skip_it)
2037
                {
2038
                  /* In these cases, we don't need the relocation
2039
                     value.  We check specially because in some
2040
                     obscure cases sec->output_section will be NULL.  */
2041
                  relocation = 0;
2042
                }
2043
              else
2044
                {
2045
                  relocation = (h->root.u.def.value
2046
                                + sec->output_section->vma
2047
                                + sec->output_offset);
2048
                }
2049
            }
2050
          else if (h->root.type == bfd_link_hash_undefweak)
2051
            relocation = 0;
2052
          else if (info->shared && !info->symbolic && !info->no_undefined)
2053
            relocation = 0;
2054
          else
2055
            {
2056
              if (! ((*info->callbacks->undefined_symbol)
2057
                     (info, h->root.root.string, input_bfd,
2058
                      input_section, rel->r_offset,
2059
                      (!info->shared || info->no_undefined))))
2060
                return false;
2061
              relocation = 0;
2062
            }
2063
        }
2064
 
2065
      /* When generating a shared object, these relocations are copied
2066
         into the output file to be resolved at run time.  */
2067
      if (info->shared && (input_section->flags & SEC_ALLOC))
2068
        {
2069
          switch (r_type)
2070
            {
2071
            case R_SPARC_PC10:
2072
            case R_SPARC_PC22:
2073
            case R_SPARC_PC_HH22:
2074
            case R_SPARC_PC_HM10:
2075
            case R_SPARC_PC_LM22:
2076
              if (h != NULL
2077
                  && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2078
                break;
2079
              /* Fall through.  */
2080
            case R_SPARC_DISP8:
2081
            case R_SPARC_DISP16:
2082
            case R_SPARC_DISP32:
2083
            case R_SPARC_WDISP30:
2084
            case R_SPARC_WDISP22:
2085
            case R_SPARC_WDISP19:
2086
            case R_SPARC_WDISP16:
2087
            case R_SPARC_DISP64:
2088
              if (h == NULL)
2089
                break;
2090
              /* Fall through.  */
2091
            case R_SPARC_8:
2092
            case R_SPARC_16:
2093
            case R_SPARC_32:
2094
            case R_SPARC_HI22:
2095
            case R_SPARC_22:
2096
            case R_SPARC_13:
2097
            case R_SPARC_LO10:
2098
            case R_SPARC_UA32:
2099
            case R_SPARC_10:
2100
            case R_SPARC_11:
2101
            case R_SPARC_64:
2102
            case R_SPARC_OLO10:
2103
            case R_SPARC_HH22:
2104
            case R_SPARC_HM10:
2105
            case R_SPARC_LM22:
2106
            case R_SPARC_7:
2107
            case R_SPARC_5:
2108
            case R_SPARC_6:
2109
            case R_SPARC_HIX22:
2110
            case R_SPARC_LOX10:
2111
            case R_SPARC_H44:
2112
            case R_SPARC_M44:
2113
            case R_SPARC_L44:
2114
            case R_SPARC_UA64:
2115
            case R_SPARC_UA16:
2116
              {
2117
                Elf_Internal_Rela outrel;
2118
                boolean skip;
2119
 
2120
                if (sreloc == NULL)
2121
                  {
2122
                    const char *name =
2123
                      (bfd_elf_string_from_elf_section
2124
                       (input_bfd,
2125
                        elf_elfheader (input_bfd)->e_shstrndx,
2126
                        elf_section_data (input_section)->rel_hdr.sh_name));
2127
 
2128
                    if (name == NULL)
2129
                      return false;
2130
 
2131
                    BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2132
                                && strcmp (bfd_get_section_name(input_bfd,
2133
                                                                input_section),
2134
                                           name + 5) == 0);
2135
 
2136
                    sreloc = bfd_get_section_by_name (dynobj, name);
2137
                    BFD_ASSERT (sreloc != NULL);
2138
                  }
2139
 
2140
                skip = false;
2141
 
2142
                if (elf_section_data (input_section)->stab_info == NULL)
2143
                  outrel.r_offset = rel->r_offset;
2144
                else
2145
                  {
2146
                    bfd_vma off;
2147
 
2148
                    off = (_bfd_stab_section_offset
2149
                           (output_bfd, &elf_hash_table (info)->stab_info,
2150
                            input_section,
2151
                            &elf_section_data (input_section)->stab_info,
2152
                            rel->r_offset));
2153
                    if (off == MINUS_ONE)
2154
                      skip = true;
2155
                    outrel.r_offset = off;
2156
                  }
2157
 
2158
                outrel.r_offset += (input_section->output_section->vma
2159
                                    + input_section->output_offset);
2160
 
2161
                /* Optimize unaligned reloc usage now that we know where
2162
                   it finally resides.  */
2163
                switch (r_type)
2164
                  {
2165
                  case R_SPARC_16:
2166
                    if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2167
                    break;
2168
                  case R_SPARC_UA16:
2169
                    if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2170
                    break;
2171
                  case R_SPARC_32:
2172
                    if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2173
                    break;
2174
                  case R_SPARC_UA32:
2175
                    if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2176
                    break;
2177
                  case R_SPARC_64:
2178
                    if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2179
                    break;
2180
                  case R_SPARC_UA64:
2181
                    if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2182
                    break;
2183
                  }
2184
 
2185
                if (skip)
2186
                  memset (&outrel, 0, sizeof outrel);
2187
                /* h->dynindx may be -1 if the symbol was marked to
2188
                   become local.  */
2189
                else if (h != NULL
2190
                         && ((! info->symbolic && h->dynindx != -1)
2191
                             || (h->elf_link_hash_flags
2192
                                 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2193
                  {
2194
                    BFD_ASSERT (h->dynindx != -1);
2195
                    outrel.r_info
2196
                      = ELF64_R_INFO (h->dynindx,
2197
                                      ELF64_R_TYPE_INFO (
2198
                                        ELF64_R_TYPE_DATA (rel->r_info),
2199
                                                           r_type));
2200
                    outrel.r_addend = rel->r_addend;
2201
                  }
2202
                else
2203
                  {
2204
                    if (r_type == R_SPARC_64)
2205
                      {
2206
                        outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2207
                        outrel.r_addend = relocation + rel->r_addend;
2208
                      }
2209
                    else
2210
                      {
2211
                        long indx;
2212
 
2213
                        if (h == NULL)
2214
                          sec = local_sections[r_symndx];
2215
                        else
2216
                          {
2217
                            BFD_ASSERT (h->root.type == bfd_link_hash_defined
2218
                                        || (h->root.type
2219
                                            == bfd_link_hash_defweak));
2220
                            sec = h->root.u.def.section;
2221
                          }
2222
                        if (sec != NULL && bfd_is_abs_section (sec))
2223
                          indx = 0;
2224
                        else if (sec == NULL || sec->owner == NULL)
2225
                          {
2226
                            bfd_set_error (bfd_error_bad_value);
2227
                            return false;
2228
                          }
2229
                        else
2230
                          {
2231
                            asection *osec;
2232
 
2233
                            osec = sec->output_section;
2234
                            indx = elf_section_data (osec)->dynindx;
2235
 
2236
                            /* FIXME: we really should be able to link non-pic
2237
                               shared libraries.  */
2238
                            if (indx == 0)
2239
                              {
2240
                                BFD_FAIL ();
2241
                                (*_bfd_error_handler)
2242
                                  (_("%s: probably compiled without -fPIC?"),
2243
                                   bfd_get_filename (input_bfd));
2244
                                bfd_set_error (bfd_error_bad_value);
2245
                                return false;
2246
                              }
2247
                          }
2248
 
2249
                        outrel.r_info
2250
                          = ELF64_R_INFO (indx,
2251
                                          ELF64_R_TYPE_INFO (
2252
                                            ELF64_R_TYPE_DATA (rel->r_info),
2253
                                                               r_type));
2254
                        outrel.r_addend = relocation + rel->r_addend;
2255
                      }
2256
                  }
2257
 
2258
                bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2259
                                           (((Elf64_External_Rela *)
2260
                                             sreloc->contents)
2261
                                            + sreloc->reloc_count));
2262
                ++sreloc->reloc_count;
2263
 
2264
                /* This reloc will be computed at runtime, so there's no
2265
                   need to do anything now, unless this is a RELATIVE
2266
                   reloc in an unallocated section.  */
2267
                if (skip
2268
                    || (input_section->flags & SEC_ALLOC) != 0
2269
                    || ELF64_R_TYPE_ID (outrel.r_info) != R_SPARC_RELATIVE)
2270
                  continue;
2271
              }
2272
            break;
2273
            }
2274
        }
2275
 
2276
      switch (r_type)
2277
        {
2278
        case R_SPARC_GOT10:
2279
        case R_SPARC_GOT13:
2280
        case R_SPARC_GOT22:
2281
          /* Relocation is to the entry for this symbol in the global
2282
             offset table.  */
2283
          if (sgot == NULL)
2284
            {
2285
              sgot = bfd_get_section_by_name (dynobj, ".got");
2286
              BFD_ASSERT (sgot != NULL);
2287
            }
2288
 
2289
          if (h != NULL)
2290
            {
2291
              bfd_vma off = h->got.offset;
2292
              BFD_ASSERT (off != (bfd_vma) -1);
2293
 
2294
              if (! elf_hash_table (info)->dynamic_sections_created
2295
                  || (info->shared
2296
                      && (info->symbolic || h->dynindx == -1)
2297
                      && (h->elf_link_hash_flags
2298
                          & ELF_LINK_HASH_DEF_REGULAR)))
2299
                {
2300
                  /* This is actually a static link, or it is a -Bsymbolic
2301
                     link and the symbol is defined locally, or the symbol
2302
                     was forced to be local because of a version file.  We
2303
                     must initialize this entry in the global offset table.
2304
                     Since the offset must always be a multiple of 8, we
2305
                     use the least significant bit to record whether we
2306
                     have initialized it already.
2307
 
2308
                     When doing a dynamic link, we create a .rela.got
2309
                     relocation entry to initialize the value.  This is
2310
                     done in the finish_dynamic_symbol routine.  */
2311
 
2312
                  if ((off & 1) != 0)
2313
                    off &= ~1;
2314
                  else
2315
                    {
2316
                      bfd_put_64 (output_bfd, relocation,
2317
                                  sgot->contents + off);
2318
                      h->got.offset |= 1;
2319
                    }
2320
                }
2321
              relocation = sgot->output_offset + off - got_base;
2322
            }
2323
          else
2324
            {
2325
              bfd_vma off;
2326
 
2327
              BFD_ASSERT (local_got_offsets != NULL);
2328
              off = local_got_offsets[r_symndx];
2329
              BFD_ASSERT (off != (bfd_vma) -1);
2330
 
2331
              /* The offset must always be a multiple of 8.  We use
2332
                 the least significant bit to record whether we have
2333
                 already processed this entry.  */
2334
              if ((off & 1) != 0)
2335
                off &= ~1;
2336
              else
2337
                {
2338
                  bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2339
                  local_got_offsets[r_symndx] |= 1;
2340
 
2341
                  if (info->shared)
2342
                    {
2343
                      asection *srelgot;
2344
                      Elf_Internal_Rela outrel;
2345
 
2346
                      /* We need to generate a R_SPARC_RELATIVE reloc
2347
                         for the dynamic linker.  */
2348
                      srelgot = bfd_get_section_by_name(dynobj, ".rela.got");
2349
                      BFD_ASSERT (srelgot != NULL);
2350
 
2351
                      outrel.r_offset = (sgot->output_section->vma
2352
                                         + sgot->output_offset
2353
                                         + off);
2354
                      outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2355
                      outrel.r_addend = relocation;
2356
                      bfd_elf64_swap_reloca_out (output_bfd, &outrel,
2357
                                                 (((Elf64_External_Rela *)
2358
                                                   srelgot->contents)
2359
                                                  + srelgot->reloc_count));
2360
                      ++srelgot->reloc_count;
2361
                    }
2362
                }
2363
              relocation = sgot->output_offset + off - got_base;
2364
            }
2365
          goto do_default;
2366
 
2367
        case R_SPARC_WPLT30:
2368
        case R_SPARC_PLT32:
2369
        case R_SPARC_HIPLT22:
2370
        case R_SPARC_LOPLT10:
2371
        case R_SPARC_PCPLT32:
2372
        case R_SPARC_PCPLT22:
2373
        case R_SPARC_PCPLT10:
2374
        case R_SPARC_PLT64:
2375
          /* Relocation is to the entry for this symbol in the
2376
             procedure linkage table.  */
2377
          BFD_ASSERT (h != NULL);
2378
 
2379
          if (h->plt.offset == (bfd_vma) -1)
2380
            {
2381
              /* We didn't make a PLT entry for this symbol.  This
2382
                 happens when statically linking PIC code, or when
2383
                 using -Bsymbolic.  */
2384
              goto do_default;
2385
            }
2386
 
2387
          if (splt == NULL)
2388
            {
2389
              splt = bfd_get_section_by_name (dynobj, ".plt");
2390
              BFD_ASSERT (splt != NULL);
2391
            }
2392
 
2393
          relocation = (splt->output_section->vma
2394
                        + splt->output_offset
2395
                        + sparc64_elf_plt_entry_offset (h->plt.offset));
2396
          goto do_default;
2397
 
2398
        case R_SPARC_OLO10:
2399
          {
2400
            bfd_vma x;
2401
 
2402
            relocation += rel->r_addend;
2403
            relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2404
 
2405
            x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2406
            x = (x & ~0x1fff) | (relocation & 0x1fff);
2407
            bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2408
 
2409
            r = bfd_check_overflow (howto->complain_on_overflow,
2410
                                    howto->bitsize, howto->rightshift,
2411
                                    bfd_arch_bits_per_address (input_bfd),
2412
                                    relocation);
2413
          }
2414
          break;
2415
 
2416
        case R_SPARC_WDISP16:
2417
          {
2418
            bfd_vma x;
2419
 
2420
            relocation += rel->r_addend;
2421
            /* Adjust for pc-relative-ness.  */
2422
            relocation -= (input_section->output_section->vma
2423
                           + input_section->output_offset);
2424
            relocation -= rel->r_offset;
2425
 
2426
            x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2427
            x = (x & ~0x303fff) | ((((relocation >> 2) & 0xc000) << 6)
2428
                                   | ((relocation >> 2) & 0x3fff));
2429
            bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2430
 
2431
            r = bfd_check_overflow (howto->complain_on_overflow,
2432
                                    howto->bitsize, howto->rightshift,
2433
                                    bfd_arch_bits_per_address (input_bfd),
2434
                                    relocation);
2435
          }
2436
          break;
2437
 
2438
        case R_SPARC_HIX22:
2439
          {
2440
            bfd_vma x;
2441
 
2442
            relocation += rel->r_addend;
2443
            relocation = relocation ^ MINUS_ONE;
2444
 
2445
            x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2446
            x = (x & ~0x3fffff) | ((relocation >> 10) & 0x3fffff);
2447
            bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2448
 
2449
            r = bfd_check_overflow (howto->complain_on_overflow,
2450
                                    howto->bitsize, howto->rightshift,
2451
                                    bfd_arch_bits_per_address (input_bfd),
2452
                                    relocation);
2453
          }
2454
          break;
2455
 
2456
        case R_SPARC_LOX10:
2457
          {
2458
            bfd_vma x;
2459
 
2460
            relocation += rel->r_addend;
2461
            relocation = (relocation & 0x3ff) | 0x1c00;
2462
 
2463
            x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2464
            x = (x & ~0x1fff) | relocation;
2465
            bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2466
 
2467
            r = bfd_reloc_ok;
2468
          }
2469
          break;
2470
 
2471
        default:
2472
        do_default:
2473
          r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2474
                                        contents, rel->r_offset,
2475
                                        relocation, rel->r_addend);
2476
          break;
2477
        }
2478
 
2479
      switch (r)
2480
        {
2481
        case bfd_reloc_ok:
2482
          break;
2483
 
2484
        default:
2485
        case bfd_reloc_outofrange:
2486
          abort ();
2487
 
2488
        case bfd_reloc_overflow:
2489
          {
2490
            const char *name;
2491
 
2492
            if (h != NULL)
2493
              {
2494
                if (h->root.type == bfd_link_hash_undefweak
2495
                    && howto->pc_relative)
2496
                  {
2497
                    /* Assume this is a call protected by other code that
2498
                       detect the symbol is undefined.  If this is the case,
2499
                       we can safely ignore the overflow.  If not, the
2500
                       program is hosed anyway, and a little warning isn't
2501
                       going to help.  */
2502
                    break;
2503
                  }
2504
 
2505
                name = h->root.root.string;
2506
              }
2507
            else
2508
              {
2509
                name = (bfd_elf_string_from_elf_section
2510
                        (input_bfd,
2511
                         symtab_hdr->sh_link,
2512
                         sym->st_name));
2513
                if (name == NULL)
2514
                  return false;
2515
                if (*name == '\0')
2516
                  name = bfd_section_name (input_bfd, sec);
2517
              }
2518
            if (! ((*info->callbacks->reloc_overflow)
2519
                   (info, name, howto->name, (bfd_vma) 0,
2520
                    input_bfd, input_section, rel->r_offset)))
2521
              return false;
2522
          }
2523
        break;
2524
        }
2525
    }
2526
 
2527
  return true;
2528
}
2529
 
2530
/* Finish up dynamic symbol handling.  We set the contents of various
2531
   dynamic sections here.  */
2532
 
2533
static boolean
2534
sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2535
     bfd *output_bfd;
2536
     struct bfd_link_info *info;
2537
     struct elf_link_hash_entry *h;
2538
     Elf_Internal_Sym *sym;
2539
{
2540
  bfd *dynobj;
2541
 
2542
  dynobj = elf_hash_table (info)->dynobj;
2543
 
2544
  if (h->plt.offset != (bfd_vma) -1)
2545
    {
2546
      asection *splt;
2547
      asection *srela;
2548
      Elf_Internal_Rela rela;
2549
 
2550
      /* This symbol has an entry in the PLT.  Set it up. */
2551
 
2552
      BFD_ASSERT (h->dynindx != -1);
2553
 
2554
      splt = bfd_get_section_by_name (dynobj, ".plt");
2555
      srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2556
      BFD_ASSERT (splt != NULL && srela != NULL);
2557
 
2558
      /* Fill in the entry in the .rela.plt section.  */
2559
 
2560
      if (h->plt.offset < LARGE_PLT_THRESHOLD)
2561
        {
2562
          rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2563
          rela.r_addend = 0;
2564
        }
2565
      else
2566
        {
2567
          int max = splt->_raw_size / PLT_ENTRY_SIZE;
2568
          rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2569
          rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2570
                          -(splt->output_section->vma + splt->output_offset);
2571
        }
2572
      rela.r_offset += (splt->output_section->vma + splt->output_offset);
2573
      rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2574
 
2575
      bfd_elf64_swap_reloca_out (output_bfd, &rela,
2576
                                 ((Elf64_External_Rela *) srela->contents
2577
                                  + h->plt.offset));
2578
 
2579
      if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2580
        {
2581
          /* Mark the symbol as undefined, rather than as defined in
2582
             the .plt section.  Leave the value alone.  */
2583
          sym->st_shndx = SHN_UNDEF;
2584
        }
2585
    }
2586
 
2587
  if (h->got.offset != (bfd_vma) -1)
2588
    {
2589
      asection *sgot;
2590
      asection *srela;
2591
      Elf_Internal_Rela rela;
2592
 
2593
      /* This symbol has an entry in the GOT.  Set it up.  */
2594
 
2595
      sgot = bfd_get_section_by_name (dynobj, ".got");
2596
      srela = bfd_get_section_by_name (dynobj, ".rela.got");
2597
      BFD_ASSERT (sgot != NULL && srela != NULL);
2598
 
2599
      rela.r_offset = (sgot->output_section->vma
2600
                       + sgot->output_offset
2601
                       + (h->got.offset &~ 1));
2602
 
2603
      /* If this is a -Bsymbolic link, and the symbol is defined
2604
         locally, we just want to emit a RELATIVE reloc.  Likewise if
2605
         the symbol was forced to be local because of a version file.
2606
         The entry in the global offset table will already have been
2607
         initialized in the relocate_section function.  */
2608
      if (info->shared
2609
          && (info->symbolic || h->dynindx == -1)
2610
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2611
        {
2612
          asection *sec = h->root.u.def.section;
2613
          rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2614
          rela.r_addend = (h->root.u.def.value
2615
                           + sec->output_section->vma
2616
                           + sec->output_offset);
2617
        }
2618
      else
2619
        {
2620
          bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
2621
          rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2622
          rela.r_addend = 0;
2623
        }
2624
 
2625
      bfd_elf64_swap_reloca_out (output_bfd, &rela,
2626
                                 ((Elf64_External_Rela *) srela->contents
2627
                                  + srela->reloc_count));
2628
      ++srela->reloc_count;
2629
    }
2630
 
2631
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2632
    {
2633
      asection *s;
2634
      Elf_Internal_Rela rela;
2635
 
2636
      /* This symbols needs a copy reloc.  Set it up.  */
2637
 
2638
      BFD_ASSERT (h->dynindx != -1);
2639
 
2640
      s = bfd_get_section_by_name (h->root.u.def.section->owner,
2641
                                   ".rela.bss");
2642
      BFD_ASSERT (s != NULL);
2643
 
2644
      rela.r_offset = (h->root.u.def.value
2645
                       + h->root.u.def.section->output_section->vma
2646
                       + h->root.u.def.section->output_offset);
2647
      rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2648
      rela.r_addend = 0;
2649
      bfd_elf64_swap_reloca_out (output_bfd, &rela,
2650
                                 ((Elf64_External_Rela *) s->contents
2651
                                  + s->reloc_count));
2652
      ++s->reloc_count;
2653
    }
2654
 
2655
  /* Mark some specially defined symbols as absolute.  */
2656
  if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2657
      || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2658
      || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2659
    sym->st_shndx = SHN_ABS;
2660
 
2661
  return true;
2662
}
2663
 
2664
/* Finish up the dynamic sections.  */
2665
 
2666
static boolean
2667
sparc64_elf_finish_dynamic_sections (output_bfd, info)
2668
     bfd *output_bfd;
2669
     struct bfd_link_info *info;
2670
{
2671
  bfd *dynobj;
2672
  int stt_regidx = -1;
2673
  asection *sdyn;
2674
  asection *sgot;
2675
 
2676
  dynobj = elf_hash_table (info)->dynobj;
2677
 
2678
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2679
 
2680
  if (elf_hash_table (info)->dynamic_sections_created)
2681
    {
2682
      asection *splt;
2683
      Elf64_External_Dyn *dyncon, *dynconend;
2684
 
2685
      splt = bfd_get_section_by_name (dynobj, ".plt");
2686
      BFD_ASSERT (splt != NULL && sdyn != NULL);
2687
 
2688
      dyncon = (Elf64_External_Dyn *) sdyn->contents;
2689
      dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2690
      for (; dyncon < dynconend; dyncon++)
2691
        {
2692
          Elf_Internal_Dyn dyn;
2693
          const char *name;
2694
          boolean size;
2695
 
2696
          bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2697
 
2698
          switch (dyn.d_tag)
2699
            {
2700
            case DT_PLTGOT:   name = ".plt"; size = false; break;
2701
            case DT_PLTRELSZ: name = ".rela.plt"; size = true; break;
2702
            case DT_JMPREL:   name = ".rela.plt"; size = false; break;
2703
            case DT_SPARC_REGISTER:
2704
              if (stt_regidx == -1)
2705
                {
2706
                  stt_regidx =
2707
                    _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2708
                  if (stt_regidx == -1)
2709
                    return false;
2710
                }
2711
              dyn.d_un.d_val = stt_regidx++;
2712
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2713
              /* fallthrough */
2714
            default:          name = NULL; size = false; break;
2715
            }
2716
 
2717
          if (name != NULL)
2718
            {
2719
              asection *s;
2720
 
2721
              s = bfd_get_section_by_name (output_bfd, name);
2722
              if (s == NULL)
2723
                dyn.d_un.d_val = 0;
2724
              else
2725
                {
2726
                  if (! size)
2727
                    dyn.d_un.d_ptr = s->vma;
2728
                  else
2729
                    {
2730
                      if (s->_cooked_size != 0)
2731
                        dyn.d_un.d_val = s->_cooked_size;
2732
                      else
2733
                        dyn.d_un.d_val = s->_raw_size;
2734
                    }
2735
                }
2736
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2737
            }
2738
        }
2739
 
2740
      /* Initialize the contents of the .plt section.  */
2741
      if (splt->_raw_size > 0)
2742
        {
2743
          sparc64_elf_build_plt(output_bfd, splt->contents,
2744
                                splt->_raw_size / PLT_ENTRY_SIZE);
2745
        }
2746
 
2747
      elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2748
        PLT_ENTRY_SIZE;
2749
    }
2750
 
2751
  /* Set the first entry in the global offset table to the address of
2752
     the dynamic section.  */
2753
  sgot = bfd_get_section_by_name (dynobj, ".got");
2754
  BFD_ASSERT (sgot != NULL);
2755
  if (sgot->_raw_size > 0)
2756
    {
2757
      if (sdyn == NULL)
2758
        bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2759
      else
2760
        bfd_put_64 (output_bfd,
2761
                    sdyn->output_section->vma + sdyn->output_offset,
2762
                    sgot->contents);
2763
    }
2764
 
2765
  elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2766
 
2767
  return true;
2768
}
2769
 
2770
/* Functions for dealing with the e_flags field. */
2771
 
2772
/* Merge backend specific data from an object file to the output
2773
   object file when linking.  */
2774
 
2775
static boolean
2776
sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2777
     bfd *ibfd;
2778
     bfd *obfd;
2779
{
2780
  boolean error;
2781
  flagword new_flags, old_flags;
2782
  int new_mm, old_mm;
2783
 
2784
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2785
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2786
    return true;
2787
 
2788
  new_flags = elf_elfheader (ibfd)->e_flags;
2789
  old_flags = elf_elfheader (obfd)->e_flags;
2790
 
2791
  if (!elf_flags_init (obfd))   /* First call, no flags set */
2792
    {
2793
      elf_flags_init (obfd) = true;
2794
      elf_elfheader (obfd)->e_flags = new_flags;
2795
    }
2796
 
2797
  else if (new_flags == old_flags)      /* Compatible flags are ok */
2798
    ;
2799
 
2800
  else                                  /* Incompatible flags */
2801
    {
2802
      error = false;
2803
 
2804
      if ((ibfd->flags & DYNAMIC) != 0)
2805
        {
2806
          /* We don't want dynamic objects memory ordering and
2807
             architecture to have any role. That's what dynamic linker
2808
             should do.  */
2809
          old_flags &= ~(EF_SPARCV9_MM | EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1);
2810
          old_flags |= (new_flags
2811
                        & (EF_SPARCV9_MM
2812
                           | EF_SPARC_SUN_US1
2813
                           | EF_SPARC_HAL_R1));
2814
        }
2815
      else
2816
        {
2817
          /* Choose the highest architecture requirements.  */
2818
          old_flags |= (new_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1));
2819
          new_flags |= (old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1));
2820
          if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1))
2821
              == (EF_SPARC_SUN_US1 | EF_SPARC_HAL_R1))
2822
            {
2823
              error = true;
2824
              (*_bfd_error_handler)
2825
                (_("%s: linking UltraSPARC specific with HAL specific code"),
2826
                 bfd_get_filename (ibfd));
2827
            }
2828
          /* Choose the most restrictive memory ordering.  */
2829
          old_mm = (old_flags & EF_SPARCV9_MM);
2830
          new_mm = (new_flags & EF_SPARCV9_MM);
2831
          old_flags &= ~EF_SPARCV9_MM;
2832
          new_flags &= ~EF_SPARCV9_MM;
2833
          if (new_mm < old_mm)
2834
            old_mm = new_mm;
2835
          old_flags |= old_mm;
2836
          new_flags |= old_mm;
2837
        }
2838
 
2839
      /* Warn about any other mismatches */
2840
      if (new_flags != old_flags)
2841
        {
2842
          error = true;
2843
          (*_bfd_error_handler)
2844
            (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2845
             bfd_get_filename (ibfd), (long)new_flags, (long)old_flags);
2846
        }
2847
 
2848
      elf_elfheader (obfd)->e_flags = old_flags;
2849
 
2850
      if (error)
2851
        {
2852
          bfd_set_error (bfd_error_bad_value);
2853
          return false;
2854
        }
2855
    }
2856
  return true;
2857
}
2858
 
2859
/* Print a STT_REGISTER symbol to file FILE.  */
2860
 
2861
static const char *
2862
sparc64_elf_print_symbol_all (abfd, filep, symbol)
2863
     bfd *abfd;
2864
     PTR filep;
2865
     asymbol *symbol;
2866
{
2867
  FILE *file = (FILE *) filep;
2868
  int reg, type;
2869
 
2870
  if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
2871
      != STT_REGISTER)
2872
    return NULL;
2873
 
2874
  reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2875
  type = symbol->flags;
2876
  fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
2877
                 ((type & BSF_LOCAL)
2878
                  ? (type & BSF_GLOBAL) ? '!' : 'l'
2879
                  : (type & BSF_GLOBAL) ? 'g' : ' '),
2880
                 (type & BSF_WEAK) ? 'w' : ' ');
2881
  if (symbol->name == NULL || symbol->name [0] == '\0')
2882
    return "#scratch";
2883
  else
2884
    return symbol->name;
2885
}
2886
 
2887
/* Set the right machine number for a SPARC64 ELF file.  */
2888
 
2889
static boolean
2890
sparc64_elf_object_p (abfd)
2891
     bfd *abfd;
2892
{
2893
  unsigned long mach = bfd_mach_sparc_v9;
2894
 
2895
  if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
2896
    mach = bfd_mach_sparc_v9a;
2897
  return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
2898
}
2899
 
2900
/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
2901
   standard ELF, because R_SPARC_OLO10 has secondary addend in
2902
   ELF64_R_TYPE_DATA field.  This structure is used to redirect the
2903
   relocation handling routines.  */
2904
 
2905
const struct elf_size_info sparc64_elf_size_info =
2906
{
2907
  sizeof (Elf64_External_Ehdr),
2908
  sizeof (Elf64_External_Phdr),
2909
  sizeof (Elf64_External_Shdr),
2910
  sizeof (Elf64_External_Rel),
2911
  sizeof (Elf64_External_Rela),
2912
  sizeof (Elf64_External_Sym),
2913
  sizeof (Elf64_External_Dyn),
2914
  sizeof (Elf_External_Note),
2915
  4,            /* hash-table entry size */
2916
  /* internal relocations per external relocations.
2917
     For link purposes we use just 1 internal per
2918
     1 external, for assembly and slurp symbol table
2919
     we use 2. */
2920
  1,
2921
  64,           /* arch_size */
2922
  8,            /* file_align */
2923
  ELFCLASS64,
2924
  EV_CURRENT,
2925
  bfd_elf64_write_out_phdrs,
2926
  bfd_elf64_write_shdrs_and_ehdr,
2927
  sparc64_elf_write_relocs,
2928
  bfd_elf64_swap_symbol_out,
2929
  sparc64_elf_slurp_reloc_table,
2930
  bfd_elf64_slurp_symbol_table,
2931
  bfd_elf64_swap_dyn_in,
2932
  bfd_elf64_swap_dyn_out,
2933
  NULL,
2934
  NULL,
2935
  NULL,
2936
  NULL
2937
};
2938
 
2939
#define TARGET_BIG_SYM  bfd_elf64_sparc_vec
2940
#define TARGET_BIG_NAME "elf64-sparc"
2941
#define ELF_ARCH        bfd_arch_sparc
2942
#define ELF_MAXPAGESIZE 0x100000
2943
 
2944
/* This is the official ABI value.  */
2945
#define ELF_MACHINE_CODE EM_SPARCV9
2946
 
2947
/* This is the value that we used before the ABI was released.  */
2948
#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
2949
 
2950
#define bfd_elf64_bfd_link_hash_table_create \
2951
  sparc64_elf_bfd_link_hash_table_create
2952
 
2953
#define elf_info_to_howto \
2954
  sparc64_elf_info_to_howto
2955
#define bfd_elf64_get_reloc_upper_bound \
2956
  sparc64_elf_get_reloc_upper_bound
2957
#define bfd_elf64_get_dynamic_reloc_upper_bound \
2958
  sparc64_elf_get_dynamic_reloc_upper_bound
2959
#define bfd_elf64_canonicalize_dynamic_reloc \
2960
  sparc64_elf_canonicalize_dynamic_reloc
2961
#define bfd_elf64_bfd_reloc_type_lookup \
2962
  sparc64_elf_reloc_type_lookup
2963
 
2964
#define elf_backend_create_dynamic_sections \
2965
  _bfd_elf_create_dynamic_sections
2966
#define elf_backend_add_symbol_hook \
2967
  sparc64_elf_add_symbol_hook
2968
#define elf_backend_get_symbol_type \
2969
  sparc64_elf_get_symbol_type
2970
#define elf_backend_symbol_processing \
2971
  sparc64_elf_symbol_processing
2972
#define elf_backend_check_relocs \
2973
  sparc64_elf_check_relocs
2974
#define elf_backend_adjust_dynamic_symbol \
2975
  sparc64_elf_adjust_dynamic_symbol
2976
#define elf_backend_size_dynamic_sections \
2977
  sparc64_elf_size_dynamic_sections
2978
#define elf_backend_relocate_section \
2979
  sparc64_elf_relocate_section
2980
#define elf_backend_finish_dynamic_symbol \
2981
  sparc64_elf_finish_dynamic_symbol
2982
#define elf_backend_finish_dynamic_sections \
2983
  sparc64_elf_finish_dynamic_sections
2984
#define elf_backend_print_symbol_all \
2985
  sparc64_elf_print_symbol_all
2986
#define elf_backend_output_arch_syms \
2987
  sparc64_elf_output_arch_syms
2988
 
2989
#define bfd_elf64_bfd_merge_private_bfd_data \
2990
  sparc64_elf_merge_private_bfd_data
2991
 
2992
#define elf_backend_size_info \
2993
  sparc64_elf_size_info
2994
#define elf_backend_object_p \
2995
  sparc64_elf_object_p
2996
 
2997
#define elf_backend_want_got_plt 0
2998
#define elf_backend_plt_readonly 0
2999
#define elf_backend_want_plt_sym 1
3000
 
3001
/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
3002
#define elf_backend_plt_alignment 8
3003
 
3004
#define elf_backend_got_header_size 8
3005
#define elf_backend_plt_header_size PLT_HEADER_SIZE
3006
 
3007
#include "elf64-target.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.