1 |
104 |
markom |
/* Target-machine dependent code for the AMD 29000
|
2 |
|
|
Copyright 1990, 1991, 1992, 1993, 1994, 1995
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Cygnus Support. Written by Jim Kingdon.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program; if not, write to the Free Software
|
20 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
21 |
|
|
Boston, MA 02111-1307, USA. */
|
22 |
|
|
|
23 |
|
|
#include "defs.h"
|
24 |
|
|
#include "gdbcore.h"
|
25 |
|
|
#include "frame.h"
|
26 |
|
|
#include "value.h"
|
27 |
|
|
#include "symtab.h"
|
28 |
|
|
#include "inferior.h"
|
29 |
|
|
#include "gdbcmd.h"
|
30 |
|
|
|
31 |
|
|
/* If all these bits in an instruction word are zero, it is a "tag word"
|
32 |
|
|
which precedes a function entry point and gives stack traceback info.
|
33 |
|
|
This used to be defined as 0xff000000, but that treated 0x00000deb as
|
34 |
|
|
a tag word, while it is really used as a breakpoint. */
|
35 |
|
|
#define TAGWORD_ZERO_MASK 0xff00f800
|
36 |
|
|
|
37 |
|
|
extern CORE_ADDR text_start; /* FIXME, kludge... */
|
38 |
|
|
|
39 |
|
|
/* The user-settable top of the register stack in virtual memory. We
|
40 |
|
|
won't attempt to access any stored registers above this address, if set
|
41 |
|
|
nonzero. */
|
42 |
|
|
|
43 |
|
|
static CORE_ADDR rstack_high_address = UINT_MAX;
|
44 |
|
|
|
45 |
|
|
|
46 |
|
|
/* Should call_function allocate stack space for a struct return? */
|
47 |
|
|
/* On the a29k objects over 16 words require the caller to allocate space. */
|
48 |
|
|
int
|
49 |
|
|
a29k_use_struct_convention (gcc_p, type)
|
50 |
|
|
int gcc_p;
|
51 |
|
|
struct type *type;
|
52 |
|
|
{
|
53 |
|
|
return (TYPE_LENGTH (type) > 16 * 4);
|
54 |
|
|
}
|
55 |
|
|
|
56 |
|
|
|
57 |
|
|
/* Structure to hold cached info about function prologues. */
|
58 |
|
|
|
59 |
|
|
struct prologue_info
|
60 |
|
|
{
|
61 |
|
|
CORE_ADDR pc; /* First addr after fn prologue */
|
62 |
|
|
unsigned rsize, msize; /* register stack frame size, mem stack ditto */
|
63 |
|
|
unsigned mfp_used:1; /* memory frame pointer used */
|
64 |
|
|
unsigned rsize_valid:1; /* Validity bits for the above */
|
65 |
|
|
unsigned msize_valid:1;
|
66 |
|
|
unsigned mfp_valid:1;
|
67 |
|
|
};
|
68 |
|
|
|
69 |
|
|
/* Examine the prologue of a function which starts at PC. Return
|
70 |
|
|
the first addess past the prologue. If MSIZE is non-NULL, then
|
71 |
|
|
set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
|
72 |
|
|
then set *RSIZE to the register stack frame size (not including
|
73 |
|
|
incoming arguments and the return address & frame pointer stored
|
74 |
|
|
with them). If no prologue is found, *RSIZE is set to zero.
|
75 |
|
|
If no prologue is found, or a prologue which doesn't involve
|
76 |
|
|
allocating a memory stack frame, then set *MSIZE to zero.
|
77 |
|
|
|
78 |
|
|
Note that both msize and rsize are in bytes. This is not consistent
|
79 |
|
|
with the _User's Manual_ with respect to rsize, but it is much more
|
80 |
|
|
convenient.
|
81 |
|
|
|
82 |
|
|
If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
|
83 |
|
|
frame pointer is being used. */
|
84 |
|
|
|
85 |
|
|
CORE_ADDR
|
86 |
|
|
examine_prologue (pc, rsize, msize, mfp_used)
|
87 |
|
|
CORE_ADDR pc;
|
88 |
|
|
unsigned *msize;
|
89 |
|
|
unsigned *rsize;
|
90 |
|
|
int *mfp_used;
|
91 |
|
|
{
|
92 |
|
|
long insn;
|
93 |
|
|
CORE_ADDR p = pc;
|
94 |
|
|
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
|
95 |
|
|
struct prologue_info *mi = 0;
|
96 |
|
|
|
97 |
|
|
if (msymbol != NULL)
|
98 |
|
|
mi = (struct prologue_info *) msymbol->info;
|
99 |
|
|
|
100 |
|
|
if (mi != 0)
|
101 |
|
|
{
|
102 |
|
|
int valid = 1;
|
103 |
|
|
if (rsize != NULL)
|
104 |
|
|
{
|
105 |
|
|
*rsize = mi->rsize;
|
106 |
|
|
valid &= mi->rsize_valid;
|
107 |
|
|
}
|
108 |
|
|
if (msize != NULL)
|
109 |
|
|
{
|
110 |
|
|
*msize = mi->msize;
|
111 |
|
|
valid &= mi->msize_valid;
|
112 |
|
|
}
|
113 |
|
|
if (mfp_used != NULL)
|
114 |
|
|
{
|
115 |
|
|
*mfp_used = mi->mfp_used;
|
116 |
|
|
valid &= mi->mfp_valid;
|
117 |
|
|
}
|
118 |
|
|
if (valid)
|
119 |
|
|
return mi->pc;
|
120 |
|
|
}
|
121 |
|
|
|
122 |
|
|
if (rsize != NULL)
|
123 |
|
|
*rsize = 0;
|
124 |
|
|
if (msize != NULL)
|
125 |
|
|
*msize = 0;
|
126 |
|
|
if (mfp_used != NULL)
|
127 |
|
|
*mfp_used = 0;
|
128 |
|
|
|
129 |
|
|
/* Prologue must start with subtracting a constant from gr1.
|
130 |
|
|
Normally this is sub gr1,gr1,<rsize * 4>. */
|
131 |
|
|
insn = read_memory_integer (p, 4);
|
132 |
|
|
if ((insn & 0xffffff00) != 0x25010100)
|
133 |
|
|
{
|
134 |
|
|
/* If the frame is large, instead of a single instruction it
|
135 |
|
|
might be a pair of instructions:
|
136 |
|
|
const <reg>, <rsize * 4>
|
137 |
|
|
sub gr1,gr1,<reg>
|
138 |
|
|
*/
|
139 |
|
|
int reg;
|
140 |
|
|
/* Possible value for rsize. */
|
141 |
|
|
unsigned int rsize0;
|
142 |
|
|
|
143 |
|
|
if ((insn & 0xff000000) != 0x03000000)
|
144 |
|
|
{
|
145 |
|
|
p = pc;
|
146 |
|
|
goto done;
|
147 |
|
|
}
|
148 |
|
|
reg = (insn >> 8) & 0xff;
|
149 |
|
|
rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
|
150 |
|
|
p += 4;
|
151 |
|
|
insn = read_memory_integer (p, 4);
|
152 |
|
|
if ((insn & 0xffffff00) != 0x24010100
|
153 |
|
|
|| (insn & 0xff) != reg)
|
154 |
|
|
{
|
155 |
|
|
p = pc;
|
156 |
|
|
goto done;
|
157 |
|
|
}
|
158 |
|
|
if (rsize != NULL)
|
159 |
|
|
*rsize = rsize0;
|
160 |
|
|
}
|
161 |
|
|
else
|
162 |
|
|
{
|
163 |
|
|
if (rsize != NULL)
|
164 |
|
|
*rsize = (insn & 0xff);
|
165 |
|
|
}
|
166 |
|
|
p += 4;
|
167 |
|
|
|
168 |
|
|
/* Next instruction ought to be asgeu V_SPILL,gr1,rab.
|
169 |
|
|
* We don't check the vector number to allow for kernel debugging. The
|
170 |
|
|
* kernel will use a different trap number.
|
171 |
|
|
* If this insn is missing, we just keep going; Metaware R2.3u compiler
|
172 |
|
|
* generates prologue that intermixes initializations and puts the asgeu
|
173 |
|
|
* way down.
|
174 |
|
|
*/
|
175 |
|
|
insn = read_memory_integer (p, 4);
|
176 |
|
|
if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM))
|
177 |
|
|
{
|
178 |
|
|
p += 4;
|
179 |
|
|
}
|
180 |
|
|
|
181 |
|
|
/* Next instruction usually sets the frame pointer (lr1) by adding
|
182 |
|
|
<size * 4> from gr1. However, this can (and high C does) be
|
183 |
|
|
deferred until anytime before the first function call. So it is
|
184 |
|
|
OK if we don't see anything which sets lr1.
|
185 |
|
|
To allow for alternate register sets (gcc -mkernel-registers) the msp
|
186 |
|
|
register number is a compile time constant. */
|
187 |
|
|
|
188 |
|
|
/* Normally this is just add lr1,gr1,<size * 4>. */
|
189 |
|
|
insn = read_memory_integer (p, 4);
|
190 |
|
|
if ((insn & 0xffffff00) == 0x15810100)
|
191 |
|
|
p += 4;
|
192 |
|
|
else
|
193 |
|
|
{
|
194 |
|
|
/* However, for large frames it can be
|
195 |
|
|
const <reg>, <size *4>
|
196 |
|
|
add lr1,gr1,<reg>
|
197 |
|
|
*/
|
198 |
|
|
int reg;
|
199 |
|
|
CORE_ADDR q;
|
200 |
|
|
|
201 |
|
|
if ((insn & 0xff000000) == 0x03000000)
|
202 |
|
|
{
|
203 |
|
|
reg = (insn >> 8) & 0xff;
|
204 |
|
|
q = p + 4;
|
205 |
|
|
insn = read_memory_integer (q, 4);
|
206 |
|
|
if ((insn & 0xffffff00) == 0x14810100
|
207 |
|
|
&& (insn & 0xff) == reg)
|
208 |
|
|
p = q;
|
209 |
|
|
}
|
210 |
|
|
}
|
211 |
|
|
|
212 |
|
|
/* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
|
213 |
|
|
frame pointer is in use. We just check for add lr<anything>,msp,0;
|
214 |
|
|
we don't check this rsize against the first instruction, and
|
215 |
|
|
we don't check that the trace-back tag indicates a memory frame pointer
|
216 |
|
|
is in use.
|
217 |
|
|
To allow for alternate register sets (gcc -mkernel-registers) the msp
|
218 |
|
|
register number is a compile time constant.
|
219 |
|
|
|
220 |
|
|
The recommended instruction is actually "sll lr<whatever>,msp,0".
|
221 |
|
|
We check for that, too. Originally Jim Kingdon's code seemed
|
222 |
|
|
to be looking for a "sub" instruction here, but the mask was set
|
223 |
|
|
up to lose all the time. */
|
224 |
|
|
insn = read_memory_integer (p, 4);
|
225 |
|
|
if (((insn & 0xff80ffff) == (0x15800000 | (MSP_HW_REGNUM << 8))) /* add */
|
226 |
|
|
|| ((insn & 0xff80ffff) == (0x81800000 | (MSP_HW_REGNUM << 8)))) /* sll */
|
227 |
|
|
{
|
228 |
|
|
p += 4;
|
229 |
|
|
if (mfp_used != NULL)
|
230 |
|
|
*mfp_used = 1;
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
/* Next comes a subtraction from msp to allocate a memory frame,
|
234 |
|
|
but only if a memory frame is
|
235 |
|
|
being used. We don't check msize against the trace-back tag.
|
236 |
|
|
|
237 |
|
|
To allow for alternate register sets (gcc -mkernel-registers) the msp
|
238 |
|
|
register number is a compile time constant.
|
239 |
|
|
|
240 |
|
|
Normally this is just
|
241 |
|
|
sub msp,msp,<msize>
|
242 |
|
|
*/
|
243 |
|
|
insn = read_memory_integer (p, 4);
|
244 |
|
|
if ((insn & 0xffffff00) ==
|
245 |
|
|
(0x25000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8)))
|
246 |
|
|
{
|
247 |
|
|
p += 4;
|
248 |
|
|
if (msize != NULL)
|
249 |
|
|
*msize = insn & 0xff;
|
250 |
|
|
}
|
251 |
|
|
else
|
252 |
|
|
{
|
253 |
|
|
/* For large frames, instead of a single instruction it might
|
254 |
|
|
be
|
255 |
|
|
|
256 |
|
|
const <reg>, <msize>
|
257 |
|
|
consth <reg>, <msize> ; optional
|
258 |
|
|
sub msp,msp,<reg>
|
259 |
|
|
*/
|
260 |
|
|
int reg;
|
261 |
|
|
unsigned msize0;
|
262 |
|
|
CORE_ADDR q = p;
|
263 |
|
|
|
264 |
|
|
if ((insn & 0xff000000) == 0x03000000)
|
265 |
|
|
{
|
266 |
|
|
reg = (insn >> 8) & 0xff;
|
267 |
|
|
msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
|
268 |
|
|
q += 4;
|
269 |
|
|
insn = read_memory_integer (q, 4);
|
270 |
|
|
/* Check for consth. */
|
271 |
|
|
if ((insn & 0xff000000) == 0x02000000
|
272 |
|
|
&& (insn & 0x0000ff00) == reg)
|
273 |
|
|
{
|
274 |
|
|
msize0 |= (insn << 8) & 0xff000000;
|
275 |
|
|
msize0 |= (insn << 16) & 0x00ff0000;
|
276 |
|
|
q += 4;
|
277 |
|
|
insn = read_memory_integer (q, 4);
|
278 |
|
|
}
|
279 |
|
|
/* Check for sub msp,msp,<reg>. */
|
280 |
|
|
if ((insn & 0xffffff00) ==
|
281 |
|
|
(0x24000000 | (MSP_HW_REGNUM << 16) | (MSP_HW_REGNUM << 8))
|
282 |
|
|
&& (insn & 0xff) == reg)
|
283 |
|
|
{
|
284 |
|
|
p = q + 4;
|
285 |
|
|
if (msize != NULL)
|
286 |
|
|
*msize = msize0;
|
287 |
|
|
}
|
288 |
|
|
}
|
289 |
|
|
}
|
290 |
|
|
|
291 |
|
|
/* Next instruction might be asgeu V_SPILL,gr1,rab.
|
292 |
|
|
* We don't check the vector number to allow for kernel debugging. The
|
293 |
|
|
* kernel will use a different trap number.
|
294 |
|
|
* Metaware R2.3u compiler
|
295 |
|
|
* generates prologue that intermixes initializations and puts the asgeu
|
296 |
|
|
* way down after everything else.
|
297 |
|
|
*/
|
298 |
|
|
insn = read_memory_integer (p, 4);
|
299 |
|
|
if ((insn & 0xff00ffff) == (0x5e000100 | RAB_HW_REGNUM))
|
300 |
|
|
{
|
301 |
|
|
p += 4;
|
302 |
|
|
}
|
303 |
|
|
|
304 |
|
|
done:
|
305 |
|
|
if (msymbol != NULL)
|
306 |
|
|
{
|
307 |
|
|
if (mi == 0)
|
308 |
|
|
{
|
309 |
|
|
/* Add a new cache entry. */
|
310 |
|
|
mi = (struct prologue_info *) xmalloc (sizeof (struct prologue_info));
|
311 |
|
|
msymbol->info = (char *) mi;
|
312 |
|
|
mi->rsize_valid = 0;
|
313 |
|
|
mi->msize_valid = 0;
|
314 |
|
|
mi->mfp_valid = 0;
|
315 |
|
|
}
|
316 |
|
|
/* else, cache entry exists, but info is incomplete. */
|
317 |
|
|
mi->pc = p;
|
318 |
|
|
if (rsize != NULL)
|
319 |
|
|
{
|
320 |
|
|
mi->rsize = *rsize;
|
321 |
|
|
mi->rsize_valid = 1;
|
322 |
|
|
}
|
323 |
|
|
if (msize != NULL)
|
324 |
|
|
{
|
325 |
|
|
mi->msize = *msize;
|
326 |
|
|
mi->msize_valid = 1;
|
327 |
|
|
}
|
328 |
|
|
if (mfp_used != NULL)
|
329 |
|
|
{
|
330 |
|
|
mi->mfp_used = *mfp_used;
|
331 |
|
|
mi->mfp_valid = 1;
|
332 |
|
|
}
|
333 |
|
|
}
|
334 |
|
|
return p;
|
335 |
|
|
}
|
336 |
|
|
|
337 |
|
|
/* Advance PC across any function entry prologue instructions
|
338 |
|
|
to reach some "real" code. */
|
339 |
|
|
|
340 |
|
|
CORE_ADDR
|
341 |
|
|
a29k_skip_prologue (pc)
|
342 |
|
|
CORE_ADDR pc;
|
343 |
|
|
{
|
344 |
|
|
return examine_prologue (pc, NULL, NULL, NULL);
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
/*
|
348 |
|
|
* Examine the one or two word tag at the beginning of a function.
|
349 |
|
|
* The tag word is expect to be at 'p', if it is not there, we fail
|
350 |
|
|
* by returning 0. The documentation for the tag word was taken from
|
351 |
|
|
* page 7-15 of the 29050 User's Manual. We are assuming that the
|
352 |
|
|
* m bit is in bit 22 of the tag word, which seems to be the agreed upon
|
353 |
|
|
* convention today (1/15/92).
|
354 |
|
|
* msize is return in bytes.
|
355 |
|
|
*/
|
356 |
|
|
|
357 |
|
|
static int /* 0/1 - failure/success of finding the tag word */
|
358 |
|
|
examine_tag (p, is_trans, argcount, msize, mfp_used)
|
359 |
|
|
CORE_ADDR p;
|
360 |
|
|
int *is_trans;
|
361 |
|
|
int *argcount;
|
362 |
|
|
unsigned *msize;
|
363 |
|
|
int *mfp_used;
|
364 |
|
|
{
|
365 |
|
|
unsigned int tag1, tag2;
|
366 |
|
|
|
367 |
|
|
tag1 = read_memory_integer (p, 4);
|
368 |
|
|
if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
|
369 |
|
|
return 0;
|
370 |
|
|
if (tag1 & (1 << 23)) /* A two word tag */
|
371 |
|
|
{
|
372 |
|
|
tag2 = read_memory_integer (p - 4, 4);
|
373 |
|
|
if (msize)
|
374 |
|
|
*msize = tag2 * 2;
|
375 |
|
|
}
|
376 |
|
|
else
|
377 |
|
|
/* A one word tag */
|
378 |
|
|
{
|
379 |
|
|
if (msize)
|
380 |
|
|
*msize = tag1 & 0x7ff;
|
381 |
|
|
}
|
382 |
|
|
if (is_trans)
|
383 |
|
|
*is_trans = ((tag1 & (1 << 21)) ? 1 : 0);
|
384 |
|
|
/* Note that this includes the frame pointer and the return address
|
385 |
|
|
register, so the actual number of registers of arguments is two less.
|
386 |
|
|
argcount can be zero, however, sometimes, for strange assembler
|
387 |
|
|
routines. */
|
388 |
|
|
if (argcount)
|
389 |
|
|
*argcount = (tag1 >> 16) & 0x1f;
|
390 |
|
|
if (mfp_used)
|
391 |
|
|
*mfp_used = ((tag1 & (1 << 22)) ? 1 : 0);
|
392 |
|
|
return 1;
|
393 |
|
|
}
|
394 |
|
|
|
395 |
|
|
/* Initialize the frame. In addition to setting "extra" frame info,
|
396 |
|
|
we also set ->frame because we use it in a nonstandard way, and ->pc
|
397 |
|
|
because we need to know it to get the other stuff. See the diagram
|
398 |
|
|
of stacks and the frame cache in tm-a29k.h for more detail. */
|
399 |
|
|
|
400 |
|
|
static void
|
401 |
|
|
init_frame_info (innermost_frame, frame)
|
402 |
|
|
int innermost_frame;
|
403 |
|
|
struct frame_info *frame;
|
404 |
|
|
{
|
405 |
|
|
CORE_ADDR p;
|
406 |
|
|
long insn;
|
407 |
|
|
unsigned rsize;
|
408 |
|
|
unsigned msize;
|
409 |
|
|
int mfp_used, trans;
|
410 |
|
|
struct symbol *func;
|
411 |
|
|
|
412 |
|
|
p = frame->pc;
|
413 |
|
|
|
414 |
|
|
if (innermost_frame)
|
415 |
|
|
frame->frame = read_register (GR1_REGNUM);
|
416 |
|
|
else
|
417 |
|
|
frame->frame = frame->next->frame + frame->next->rsize;
|
418 |
|
|
|
419 |
|
|
#if 0 /* CALL_DUMMY_LOCATION == ON_STACK */
|
420 |
|
|
This wont work;
|
421 |
|
|
#else
|
422 |
|
|
if (PC_IN_CALL_DUMMY (p, 0, 0))
|
423 |
|
|
#endif
|
424 |
|
|
{
|
425 |
|
|
frame->rsize = DUMMY_FRAME_RSIZE;
|
426 |
|
|
/* This doesn't matter since we never try to get locals or args
|
427 |
|
|
from a dummy frame. */
|
428 |
|
|
frame->msize = 0;
|
429 |
|
|
/* Dummy frames always use a memory frame pointer. */
|
430 |
|
|
frame->saved_msp =
|
431 |
|
|
read_register_stack_integer (frame->frame + DUMMY_FRAME_RSIZE - 4, 4);
|
432 |
|
|
frame->flags |= (TRANSPARENT_FRAME | MFP_USED);
|
433 |
|
|
return;
|
434 |
|
|
}
|
435 |
|
|
|
436 |
|
|
func = find_pc_function (p);
|
437 |
|
|
if (func != NULL)
|
438 |
|
|
p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
|
439 |
|
|
else
|
440 |
|
|
{
|
441 |
|
|
/* Search backward to find the trace-back tag. However,
|
442 |
|
|
do not trace back beyond the start of the text segment
|
443 |
|
|
(just as a sanity check to avoid going into never-never land). */
|
444 |
|
|
#if 1
|
445 |
|
|
while (p >= text_start
|
446 |
|
|
&& ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
|
447 |
|
|
p -= 4;
|
448 |
|
|
#else /* 0 */
|
449 |
|
|
char pat[4] =
|
450 |
|
|
{0, 0, 0, 0};
|
451 |
|
|
char mask[4];
|
452 |
|
|
char insn_raw[4];
|
453 |
|
|
store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK);
|
454 |
|
|
/* Enable this once target_search is enabled and tested. */
|
455 |
|
|
target_search (4, pat, mask, p, -4, text_start, p + 1, &p, &insn_raw);
|
456 |
|
|
insn = extract_unsigned_integer (insn_raw, 4);
|
457 |
|
|
#endif /* 0 */
|
458 |
|
|
|
459 |
|
|
if (p < text_start)
|
460 |
|
|
{
|
461 |
|
|
/* Couldn't find the trace-back tag.
|
462 |
|
|
Something strange is going on. */
|
463 |
|
|
frame->saved_msp = 0;
|
464 |
|
|
frame->rsize = 0;
|
465 |
|
|
frame->msize = 0;
|
466 |
|
|
frame->flags = TRANSPARENT_FRAME;
|
467 |
|
|
return;
|
468 |
|
|
}
|
469 |
|
|
else
|
470 |
|
|
/* Advance to the first word of the function, i.e. the word
|
471 |
|
|
after the trace-back tag. */
|
472 |
|
|
p += 4;
|
473 |
|
|
}
|
474 |
|
|
|
475 |
|
|
/* We've found the start of the function.
|
476 |
|
|
Try looking for a tag word that indicates whether there is a
|
477 |
|
|
memory frame pointer and what the memory stack allocation is.
|
478 |
|
|
If one doesn't exist, try using a more exhaustive search of
|
479 |
|
|
the prologue. */
|
480 |
|
|
|
481 |
|
|
if (examine_tag (p - 4, &trans, (int *) NULL, &msize, &mfp_used)) /* Found good tag */
|
482 |
|
|
examine_prologue (p, &rsize, 0, 0);
|
483 |
|
|
else /* No tag try prologue */
|
484 |
|
|
examine_prologue (p, &rsize, &msize, &mfp_used);
|
485 |
|
|
|
486 |
|
|
frame->rsize = rsize;
|
487 |
|
|
frame->msize = msize;
|
488 |
|
|
frame->flags = 0;
|
489 |
|
|
if (mfp_used)
|
490 |
|
|
frame->flags |= MFP_USED;
|
491 |
|
|
if (trans)
|
492 |
|
|
frame->flags |= TRANSPARENT_FRAME;
|
493 |
|
|
if (innermost_frame)
|
494 |
|
|
{
|
495 |
|
|
frame->saved_msp = read_register (MSP_REGNUM) + msize;
|
496 |
|
|
}
|
497 |
|
|
else
|
498 |
|
|
{
|
499 |
|
|
if (mfp_used)
|
500 |
|
|
frame->saved_msp =
|
501 |
|
|
read_register_stack_integer (frame->frame + rsize - 4, 4);
|
502 |
|
|
else
|
503 |
|
|
frame->saved_msp = frame->next->saved_msp + msize;
|
504 |
|
|
}
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
void
|
508 |
|
|
init_extra_frame_info (frame)
|
509 |
|
|
struct frame_info *frame;
|
510 |
|
|
{
|
511 |
|
|
if (frame->next == 0)
|
512 |
|
|
/* Assume innermost frame. May produce strange results for "info frame"
|
513 |
|
|
but there isn't any way to tell the difference. */
|
514 |
|
|
init_frame_info (1, frame);
|
515 |
|
|
else
|
516 |
|
|
{
|
517 |
|
|
/* We're in get_prev_frame.
|
518 |
|
|
Take care of everything in init_frame_pc. */
|
519 |
|
|
;
|
520 |
|
|
}
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
void
|
524 |
|
|
init_frame_pc (fromleaf, frame)
|
525 |
|
|
int fromleaf;
|
526 |
|
|
struct frame_info *frame;
|
527 |
|
|
{
|
528 |
|
|
frame->pc = (fromleaf ? SAVED_PC_AFTER_CALL (frame->next) :
|
529 |
|
|
frame->next ? FRAME_SAVED_PC (frame->next) : read_pc ());
|
530 |
|
|
init_frame_info (fromleaf, frame);
|
531 |
|
|
}
|
532 |
|
|
|
533 |
|
|
/* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
|
534 |
|
|
offsets being relative to the memory stack pointer (high C) or
|
535 |
|
|
saved_msp (gcc). */
|
536 |
|
|
|
537 |
|
|
CORE_ADDR
|
538 |
|
|
frame_locals_address (fi)
|
539 |
|
|
struct frame_info *fi;
|
540 |
|
|
{
|
541 |
|
|
if (fi->flags & MFP_USED)
|
542 |
|
|
return fi->saved_msp;
|
543 |
|
|
else
|
544 |
|
|
return fi->saved_msp - fi->msize;
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
/* Routines for reading the register stack. The caller gets to treat
|
548 |
|
|
the register stack as a uniform stack in memory, from address $gr1
|
549 |
|
|
straight through $rfb and beyond. */
|
550 |
|
|
|
551 |
|
|
/* Analogous to read_memory except the length is understood to be 4.
|
552 |
|
|
Also, myaddr can be NULL (meaning don't bother to read), and
|
553 |
|
|
if actual_mem_addr is non-NULL, store there the address that it
|
554 |
|
|
was fetched from (or if from a register the offset within
|
555 |
|
|
registers). Set *LVAL to lval_memory or lval_register, depending
|
556 |
|
|
on where it came from. The contents written into MYADDR are in
|
557 |
|
|
target format. */
|
558 |
|
|
void
|
559 |
|
|
read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
|
560 |
|
|
CORE_ADDR memaddr;
|
561 |
|
|
char *myaddr;
|
562 |
|
|
CORE_ADDR *actual_mem_addr;
|
563 |
|
|
enum lval_type *lval;
|
564 |
|
|
{
|
565 |
|
|
long rfb = read_register (RFB_REGNUM);
|
566 |
|
|
long rsp = read_register (RSP_REGNUM);
|
567 |
|
|
|
568 |
|
|
/* If we don't do this 'info register' stops in the middle. */
|
569 |
|
|
if (memaddr >= rstack_high_address)
|
570 |
|
|
{
|
571 |
|
|
/* a bogus value */
|
572 |
|
|
static char val[] =
|
573 |
|
|
{~0, ~0, ~0, ~0};
|
574 |
|
|
/* It's in a local register, but off the end of the stack. */
|
575 |
|
|
int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
|
576 |
|
|
if (myaddr != NULL)
|
577 |
|
|
{
|
578 |
|
|
/* Provide bogusness */
|
579 |
|
|
memcpy (myaddr, val, 4);
|
580 |
|
|
}
|
581 |
|
|
supply_register (regnum, val); /* More bogusness */
|
582 |
|
|
if (lval != NULL)
|
583 |
|
|
*lval = lval_register;
|
584 |
|
|
if (actual_mem_addr != NULL)
|
585 |
|
|
*actual_mem_addr = REGISTER_BYTE (regnum);
|
586 |
|
|
}
|
587 |
|
|
/* If it's in the part of the register stack that's in real registers,
|
588 |
|
|
get the value from the registers. If it's anywhere else in memory
|
589 |
|
|
(e.g. in another thread's saved stack), skip this part and get
|
590 |
|
|
it from real live memory. */
|
591 |
|
|
else if (memaddr < rfb && memaddr >= rsp)
|
592 |
|
|
{
|
593 |
|
|
/* It's in a register. */
|
594 |
|
|
int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
|
595 |
|
|
if (regnum > LR0_REGNUM + 127)
|
596 |
|
|
error ("Attempt to read register stack out of range.");
|
597 |
|
|
if (myaddr != NULL)
|
598 |
|
|
read_register_gen (regnum, myaddr);
|
599 |
|
|
if (lval != NULL)
|
600 |
|
|
*lval = lval_register;
|
601 |
|
|
if (actual_mem_addr != NULL)
|
602 |
|
|
*actual_mem_addr = REGISTER_BYTE (regnum);
|
603 |
|
|
}
|
604 |
|
|
else
|
605 |
|
|
{
|
606 |
|
|
/* It's in the memory portion of the register stack. */
|
607 |
|
|
if (myaddr != NULL)
|
608 |
|
|
read_memory (memaddr, myaddr, 4);
|
609 |
|
|
if (lval != NULL)
|
610 |
|
|
*lval = lval_memory;
|
611 |
|
|
if (actual_mem_addr != NULL)
|
612 |
|
|
*actual_mem_addr = memaddr;
|
613 |
|
|
}
|
614 |
|
|
}
|
615 |
|
|
|
616 |
|
|
/* Analogous to read_memory_integer
|
617 |
|
|
except the length is understood to be 4. */
|
618 |
|
|
long
|
619 |
|
|
read_register_stack_integer (memaddr, len)
|
620 |
|
|
CORE_ADDR memaddr;
|
621 |
|
|
int len;
|
622 |
|
|
{
|
623 |
|
|
char buf[4];
|
624 |
|
|
read_register_stack (memaddr, buf, NULL, NULL);
|
625 |
|
|
return extract_signed_integer (buf, 4);
|
626 |
|
|
}
|
627 |
|
|
|
628 |
|
|
/* Copy 4 bytes from GDB memory at MYADDR into inferior memory
|
629 |
|
|
at MEMADDR and put the actual address written into in
|
630 |
|
|
*ACTUAL_MEM_ADDR. */
|
631 |
|
|
static void
|
632 |
|
|
write_register_stack (memaddr, myaddr, actual_mem_addr)
|
633 |
|
|
CORE_ADDR memaddr;
|
634 |
|
|
char *myaddr;
|
635 |
|
|
CORE_ADDR *actual_mem_addr;
|
636 |
|
|
{
|
637 |
|
|
long rfb = read_register (RFB_REGNUM);
|
638 |
|
|
long rsp = read_register (RSP_REGNUM);
|
639 |
|
|
/* If we don't do this 'info register' stops in the middle. */
|
640 |
|
|
if (memaddr >= rstack_high_address)
|
641 |
|
|
{
|
642 |
|
|
/* It's in a register, but off the end of the stack. */
|
643 |
|
|
if (actual_mem_addr != NULL)
|
644 |
|
|
*actual_mem_addr = 0;
|
645 |
|
|
}
|
646 |
|
|
else if (memaddr < rfb)
|
647 |
|
|
{
|
648 |
|
|
/* It's in a register. */
|
649 |
|
|
int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
|
650 |
|
|
if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
|
651 |
|
|
error ("Attempt to read register stack out of range.");
|
652 |
|
|
if (myaddr != NULL)
|
653 |
|
|
write_register (regnum, *(long *) myaddr);
|
654 |
|
|
if (actual_mem_addr != NULL)
|
655 |
|
|
*actual_mem_addr = 0;
|
656 |
|
|
}
|
657 |
|
|
else
|
658 |
|
|
{
|
659 |
|
|
/* It's in the memory portion of the register stack. */
|
660 |
|
|
if (myaddr != NULL)
|
661 |
|
|
write_memory (memaddr, myaddr, 4);
|
662 |
|
|
if (actual_mem_addr != NULL)
|
663 |
|
|
*actual_mem_addr = memaddr;
|
664 |
|
|
}
|
665 |
|
|
}
|
666 |
|
|
|
667 |
|
|
/* Find register number REGNUM relative to FRAME and put its
|
668 |
|
|
(raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
|
669 |
|
|
was optimized out (and thus can't be fetched). If the variable
|
670 |
|
|
was fetched from memory, set *ADDRP to where it was fetched from,
|
671 |
|
|
otherwise it was fetched from a register.
|
672 |
|
|
|
673 |
|
|
The argument RAW_BUFFER must point to aligned memory. */
|
674 |
|
|
|
675 |
|
|
void
|
676 |
|
|
a29k_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
|
677 |
|
|
char *raw_buffer;
|
678 |
|
|
int *optimized;
|
679 |
|
|
CORE_ADDR *addrp;
|
680 |
|
|
struct frame_info *frame;
|
681 |
|
|
int regnum;
|
682 |
|
|
enum lval_type *lvalp;
|
683 |
|
|
{
|
684 |
|
|
struct frame_info *fi;
|
685 |
|
|
CORE_ADDR addr;
|
686 |
|
|
enum lval_type lval;
|
687 |
|
|
|
688 |
|
|
if (!target_has_registers)
|
689 |
|
|
error ("No registers.");
|
690 |
|
|
|
691 |
|
|
/* Probably now redundant with the target_has_registers check. */
|
692 |
|
|
if (frame == 0)
|
693 |
|
|
return;
|
694 |
|
|
|
695 |
|
|
/* Once something has a register number, it doesn't get optimized out. */
|
696 |
|
|
if (optimized != NULL)
|
697 |
|
|
*optimized = 0;
|
698 |
|
|
if (regnum == RSP_REGNUM)
|
699 |
|
|
{
|
700 |
|
|
if (raw_buffer != NULL)
|
701 |
|
|
{
|
702 |
|
|
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame);
|
703 |
|
|
}
|
704 |
|
|
if (lvalp != NULL)
|
705 |
|
|
*lvalp = not_lval;
|
706 |
|
|
return;
|
707 |
|
|
}
|
708 |
|
|
else if (regnum == PC_REGNUM && frame->next != NULL)
|
709 |
|
|
{
|
710 |
|
|
if (raw_buffer != NULL)
|
711 |
|
|
{
|
712 |
|
|
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
|
713 |
|
|
}
|
714 |
|
|
|
715 |
|
|
/* Not sure we have to do this. */
|
716 |
|
|
if (lvalp != NULL)
|
717 |
|
|
*lvalp = not_lval;
|
718 |
|
|
|
719 |
|
|
return;
|
720 |
|
|
}
|
721 |
|
|
else if (regnum == MSP_REGNUM)
|
722 |
|
|
{
|
723 |
|
|
if (raw_buffer != NULL)
|
724 |
|
|
{
|
725 |
|
|
if (frame->next != NULL)
|
726 |
|
|
{
|
727 |
|
|
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
|
728 |
|
|
frame->next->saved_msp);
|
729 |
|
|
}
|
730 |
|
|
else
|
731 |
|
|
read_register_gen (MSP_REGNUM, raw_buffer);
|
732 |
|
|
}
|
733 |
|
|
/* The value may have been computed, not fetched. */
|
734 |
|
|
if (lvalp != NULL)
|
735 |
|
|
*lvalp = not_lval;
|
736 |
|
|
return;
|
737 |
|
|
}
|
738 |
|
|
else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
|
739 |
|
|
{
|
740 |
|
|
/* These registers are not saved over procedure calls,
|
741 |
|
|
so just print out the current values. */
|
742 |
|
|
if (raw_buffer != NULL)
|
743 |
|
|
read_register_gen (regnum, raw_buffer);
|
744 |
|
|
if (lvalp != NULL)
|
745 |
|
|
*lvalp = lval_register;
|
746 |
|
|
if (addrp != NULL)
|
747 |
|
|
*addrp = REGISTER_BYTE (regnum);
|
748 |
|
|
return;
|
749 |
|
|
}
|
750 |
|
|
|
751 |
|
|
addr = frame->frame + (regnum - LR0_REGNUM) * 4;
|
752 |
|
|
if (raw_buffer != NULL)
|
753 |
|
|
read_register_stack (addr, raw_buffer, &addr, &lval);
|
754 |
|
|
if (lvalp != NULL)
|
755 |
|
|
*lvalp = lval;
|
756 |
|
|
if (addrp != NULL)
|
757 |
|
|
*addrp = addr;
|
758 |
|
|
}
|
759 |
|
|
|
760 |
|
|
|
761 |
|
|
/* Discard from the stack the innermost frame,
|
762 |
|
|
restoring all saved registers. */
|
763 |
|
|
|
764 |
|
|
void
|
765 |
|
|
pop_frame ()
|
766 |
|
|
{
|
767 |
|
|
struct frame_info *frame = get_current_frame ();
|
768 |
|
|
CORE_ADDR rfb = read_register (RFB_REGNUM);
|
769 |
|
|
CORE_ADDR gr1 = frame->frame + frame->rsize;
|
770 |
|
|
CORE_ADDR lr1;
|
771 |
|
|
CORE_ADDR original_lr0;
|
772 |
|
|
int must_fix_lr0 = 0;
|
773 |
|
|
int i;
|
774 |
|
|
|
775 |
|
|
/* If popping a dummy frame, need to restore registers. */
|
776 |
|
|
if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
|
777 |
|
|
read_register (SP_REGNUM),
|
778 |
|
|
FRAME_FP (frame)))
|
779 |
|
|
{
|
780 |
|
|
int lrnum = LR0_REGNUM + DUMMY_ARG / 4;
|
781 |
|
|
for (i = 0; i < DUMMY_SAVE_SR128; ++i)
|
782 |
|
|
write_register (SR_REGNUM (i + 128), read_register (lrnum++));
|
783 |
|
|
for (i = 0; i < DUMMY_SAVE_SR160; ++i)
|
784 |
|
|
write_register (SR_REGNUM (i + 160), read_register (lrnum++));
|
785 |
|
|
for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
|
786 |
|
|
write_register (RETURN_REGNUM + i, read_register (lrnum++));
|
787 |
|
|
/* Restore the PCs and prepare to restore LR0. */
|
788 |
|
|
write_register (PC_REGNUM, read_register (lrnum++));
|
789 |
|
|
write_register (NPC_REGNUM, read_register (lrnum++));
|
790 |
|
|
write_register (PC2_REGNUM, read_register (lrnum++));
|
791 |
|
|
original_lr0 = read_register (lrnum++);
|
792 |
|
|
must_fix_lr0 = 1;
|
793 |
|
|
}
|
794 |
|
|
|
795 |
|
|
/* Restore the memory stack pointer. */
|
796 |
|
|
write_register (MSP_REGNUM, frame->saved_msp);
|
797 |
|
|
/* Restore the register stack pointer. */
|
798 |
|
|
write_register (GR1_REGNUM, gr1);
|
799 |
|
|
|
800 |
|
|
/* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
|
801 |
|
|
if (must_fix_lr0)
|
802 |
|
|
write_register (LR0_REGNUM, original_lr0);
|
803 |
|
|
|
804 |
|
|
/* Check whether we need to fill registers. */
|
805 |
|
|
lr1 = read_register (LR0_REGNUM + 1);
|
806 |
|
|
if (lr1 > rfb)
|
807 |
|
|
{
|
808 |
|
|
/* Fill. */
|
809 |
|
|
int num_bytes = lr1 - rfb;
|
810 |
|
|
int i;
|
811 |
|
|
long word;
|
812 |
|
|
|
813 |
|
|
write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
|
814 |
|
|
write_register (RFB_REGNUM, lr1);
|
815 |
|
|
for (i = 0; i < num_bytes; i += 4)
|
816 |
|
|
{
|
817 |
|
|
/* Note: word is in host byte order. */
|
818 |
|
|
word = read_memory_integer (rfb + i, 4);
|
819 |
|
|
write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
|
820 |
|
|
}
|
821 |
|
|
}
|
822 |
|
|
flush_cached_frames ();
|
823 |
|
|
}
|
824 |
|
|
|
825 |
|
|
/* Push an empty stack frame, to record the current PC, etc. */
|
826 |
|
|
|
827 |
|
|
void
|
828 |
|
|
push_dummy_frame ()
|
829 |
|
|
{
|
830 |
|
|
long w;
|
831 |
|
|
CORE_ADDR rab, gr1;
|
832 |
|
|
CORE_ADDR msp = read_register (MSP_REGNUM);
|
833 |
|
|
int lrnum, i;
|
834 |
|
|
CORE_ADDR original_lr0;
|
835 |
|
|
|
836 |
|
|
/* Read original lr0 before changing gr1. This order isn't really needed
|
837 |
|
|
since GDB happens to have a snapshot of all the regs and doesn't toss
|
838 |
|
|
it when gr1 is changed. But it's The Right Thing To Do. */
|
839 |
|
|
original_lr0 = read_register (LR0_REGNUM);
|
840 |
|
|
|
841 |
|
|
/* Allocate the new frame. */
|
842 |
|
|
gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
|
843 |
|
|
write_register (GR1_REGNUM, gr1);
|
844 |
|
|
|
845 |
|
|
#ifdef VXWORKS_TARGET
|
846 |
|
|
/* We force re-reading all registers to get the new local registers set
|
847 |
|
|
after gr1 has been modified. This fix is due to the lack of single
|
848 |
|
|
register read/write operation in the RPC interface between VxGDB and
|
849 |
|
|
VxWorks. This really must be changed ! */
|
850 |
|
|
|
851 |
|
|
vx_read_register (-1);
|
852 |
|
|
|
853 |
|
|
#endif /* VXWORK_TARGET */
|
854 |
|
|
|
855 |
|
|
rab = read_register (RAB_REGNUM);
|
856 |
|
|
if (gr1 < rab)
|
857 |
|
|
{
|
858 |
|
|
/* We need to spill registers. */
|
859 |
|
|
int num_bytes = rab - gr1;
|
860 |
|
|
CORE_ADDR rfb = read_register (RFB_REGNUM);
|
861 |
|
|
int i;
|
862 |
|
|
long word;
|
863 |
|
|
|
864 |
|
|
write_register (RFB_REGNUM, rfb - num_bytes);
|
865 |
|
|
write_register (RAB_REGNUM, gr1);
|
866 |
|
|
for (i = 0; i < num_bytes; i += 4)
|
867 |
|
|
{
|
868 |
|
|
/* Note: word is in target byte order. */
|
869 |
|
|
read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
|
870 |
|
|
write_memory (rfb - num_bytes + i, (char *) &word, 4);
|
871 |
|
|
}
|
872 |
|
|
}
|
873 |
|
|
|
874 |
|
|
/* There are no arguments in to the dummy frame, so we don't need
|
875 |
|
|
more than rsize plus the return address and lr1. */
|
876 |
|
|
write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
|
877 |
|
|
|
878 |
|
|
/* Set the memory frame pointer. */
|
879 |
|
|
write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
|
880 |
|
|
|
881 |
|
|
/* Allocate arg_slop. */
|
882 |
|
|
write_register (MSP_REGNUM, msp - 16 * 4);
|
883 |
|
|
|
884 |
|
|
/* Save registers. */
|
885 |
|
|
lrnum = LR0_REGNUM + DUMMY_ARG / 4;
|
886 |
|
|
for (i = 0; i < DUMMY_SAVE_SR128; ++i)
|
887 |
|
|
write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
|
888 |
|
|
for (i = 0; i < DUMMY_SAVE_SR160; ++i)
|
889 |
|
|
write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
|
890 |
|
|
for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
|
891 |
|
|
write_register (lrnum++, read_register (RETURN_REGNUM + i));
|
892 |
|
|
/* Save the PCs and LR0. */
|
893 |
|
|
write_register (lrnum++, read_register (PC_REGNUM));
|
894 |
|
|
write_register (lrnum++, read_register (NPC_REGNUM));
|
895 |
|
|
write_register (lrnum++, read_register (PC2_REGNUM));
|
896 |
|
|
|
897 |
|
|
/* Why are we saving LR0? What would clobber it? (the dummy frame should
|
898 |
|
|
be below it on the register stack, no?). */
|
899 |
|
|
write_register (lrnum++, original_lr0);
|
900 |
|
|
}
|
901 |
|
|
|
902 |
|
|
|
903 |
|
|
|
904 |
|
|
/*
|
905 |
|
|
This routine takes three arguments and makes the cached frames look
|
906 |
|
|
as if these arguments defined a frame on the cache. This allows the
|
907 |
|
|
rest of `info frame' to extract the important arguments without much
|
908 |
|
|
difficulty. Since an individual frame on the 29K is determined by
|
909 |
|
|
three values (FP, PC, and MSP), we really need all three to do a
|
910 |
|
|
good job. */
|
911 |
|
|
|
912 |
|
|
struct frame_info *
|
913 |
|
|
setup_arbitrary_frame (argc, argv)
|
914 |
|
|
int argc;
|
915 |
|
|
CORE_ADDR *argv;
|
916 |
|
|
{
|
917 |
|
|
struct frame_info *frame;
|
918 |
|
|
|
919 |
|
|
if (argc != 3)
|
920 |
|
|
error ("AMD 29k frame specifications require three arguments: rsp pc msp");
|
921 |
|
|
|
922 |
|
|
frame = create_new_frame (argv[0], argv[1]);
|
923 |
|
|
|
924 |
|
|
if (!frame)
|
925 |
|
|
internal_error ("create_new_frame returned invalid frame id");
|
926 |
|
|
|
927 |
|
|
/* Creating a new frame munges the `frame' value from the current
|
928 |
|
|
GR1, so we restore it again here. FIXME, untangle all this
|
929 |
|
|
29K frame stuff... */
|
930 |
|
|
frame->frame = argv[0];
|
931 |
|
|
|
932 |
|
|
/* Our MSP is in argv[2]. It'd be intelligent if we could just
|
933 |
|
|
save this value in the FRAME. But the way it's set up (FIXME),
|
934 |
|
|
we must save our caller's MSP. We compute that by adding our
|
935 |
|
|
memory stack frame size to our MSP. */
|
936 |
|
|
frame->saved_msp = argv[2] + frame->msize;
|
937 |
|
|
|
938 |
|
|
return frame;
|
939 |
|
|
}
|
940 |
|
|
|
941 |
|
|
int
|
942 |
|
|
gdb_print_insn_a29k (memaddr, info)
|
943 |
|
|
bfd_vma memaddr;
|
944 |
|
|
disassemble_info *info;
|
945 |
|
|
{
|
946 |
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
947 |
|
|
return print_insn_big_a29k (memaddr, info);
|
948 |
|
|
else
|
949 |
|
|
return print_insn_little_a29k (memaddr, info);
|
950 |
|
|
}
|
951 |
|
|
|
952 |
|
|
enum a29k_processor_types processor_type = a29k_unknown;
|
953 |
|
|
|
954 |
|
|
void
|
955 |
|
|
a29k_get_processor_type ()
|
956 |
|
|
{
|
957 |
|
|
unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
|
958 |
|
|
|
959 |
|
|
/* Most of these don't have freeze mode. */
|
960 |
|
|
processor_type = a29k_no_freeze_mode;
|
961 |
|
|
|
962 |
|
|
switch ((cfg_reg >> 28) & 0xf)
|
963 |
|
|
{
|
964 |
|
|
case 0:
|
965 |
|
|
fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
|
966 |
|
|
break;
|
967 |
|
|
case 1:
|
968 |
|
|
fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
|
969 |
|
|
break;
|
970 |
|
|
case 2:
|
971 |
|
|
fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
|
972 |
|
|
processor_type = a29k_freeze_mode;
|
973 |
|
|
break;
|
974 |
|
|
case 3:
|
975 |
|
|
fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
|
976 |
|
|
break;
|
977 |
|
|
case 4:
|
978 |
|
|
fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
|
979 |
|
|
break;
|
980 |
|
|
case 5:
|
981 |
|
|
fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
|
982 |
|
|
break;
|
983 |
|
|
case 6:
|
984 |
|
|
fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
|
985 |
|
|
break;
|
986 |
|
|
case 7:
|
987 |
|
|
fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
|
988 |
|
|
break;
|
989 |
|
|
default:
|
990 |
|
|
fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
|
991 |
|
|
/* Don't bother to print the revision. */
|
992 |
|
|
return;
|
993 |
|
|
}
|
994 |
|
|
fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
|
995 |
|
|
}
|
996 |
|
|
|
997 |
|
|
#ifdef GET_LONGJMP_TARGET
|
998 |
|
|
/* Figure out where the longjmp will land. We expect that we have just entered
|
999 |
|
|
longjmp and haven't yet setup the stack frame, so the args are still in the
|
1000 |
|
|
output regs. lr2 (LR2_REGNUM) points at the jmp_buf structure from which we
|
1001 |
|
|
extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
|
1002 |
|
|
This routine returns true on success */
|
1003 |
|
|
|
1004 |
|
|
int
|
1005 |
|
|
get_longjmp_target (pc)
|
1006 |
|
|
CORE_ADDR *pc;
|
1007 |
|
|
{
|
1008 |
|
|
CORE_ADDR jb_addr;
|
1009 |
|
|
char buf[sizeof (CORE_ADDR)];
|
1010 |
|
|
|
1011 |
|
|
jb_addr = read_register (LR2_REGNUM);
|
1012 |
|
|
|
1013 |
|
|
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) buf,
|
1014 |
|
|
sizeof (CORE_ADDR)))
|
1015 |
|
|
return 0;
|
1016 |
|
|
|
1017 |
|
|
*pc = extract_address ((PTR) buf, sizeof (CORE_ADDR));
|
1018 |
|
|
return 1;
|
1019 |
|
|
}
|
1020 |
|
|
#endif /* GET_LONGJMP_TARGET */
|
1021 |
|
|
|
1022 |
|
|
void
|
1023 |
|
|
_initialize_a29k_tdep ()
|
1024 |
|
|
{
|
1025 |
|
|
extern CORE_ADDR text_end;
|
1026 |
|
|
|
1027 |
|
|
tm_print_insn = gdb_print_insn_a29k;
|
1028 |
|
|
|
1029 |
|
|
/* FIXME, there should be a way to make a CORE_ADDR variable settable. */
|
1030 |
|
|
add_show_from_set
|
1031 |
|
|
(add_set_cmd ("rstack_high_address", class_support, var_uinteger,
|
1032 |
|
|
(char *) &rstack_high_address,
|
1033 |
|
|
"Set top address in memory of the register stack.\n\
|
1034 |
|
|
Attempts to access registers saved above this address will be ignored\n\
|
1035 |
|
|
or will produce the value -1.", &setlist),
|
1036 |
|
|
&showlist);
|
1037 |
|
|
|
1038 |
|
|
/* FIXME, there should be a way to make a CORE_ADDR variable settable. */
|
1039 |
|
|
add_show_from_set
|
1040 |
|
|
(add_set_cmd ("call_scratch_address", class_support, var_uinteger,
|
1041 |
|
|
(char *) &text_end,
|
1042 |
|
|
"Set address in memory where small amounts of RAM can be used\n\
|
1043 |
|
|
when making function calls into the inferior.", &setlist),
|
1044 |
|
|
&showlist);
|
1045 |
|
|
}
|