1 |
106 |
markom |
/* Target machine definitions for GDB on a Sequent Symmetry under ptx
|
2 |
|
|
with Weitek 1167 and i387 support.
|
3 |
|
|
Copyright 1986, 1987, 1989, 1991, 1992, 1993 Free Software Foundation, Inc.
|
4 |
|
|
Symmetry version by Jay Vosburgh (fubar@sequent.com).
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program; if not, write to the Free Software
|
20 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
21 |
|
|
Boston, MA 02111-1307, USA. */
|
22 |
|
|
|
23 |
|
|
#ifndef TM_PTX_H
|
24 |
|
|
#define TM_PTX_H 1
|
25 |
|
|
|
26 |
|
|
/* I don't know if this will work for cross-debugging, even if you do get
|
27 |
|
|
a copy of the right include file. */
|
28 |
|
|
|
29 |
|
|
#include <sys/reg.h>
|
30 |
|
|
|
31 |
|
|
#ifdef SEQUENT_PTX4
|
32 |
|
|
#include "i386/tm-i386v4.h"
|
33 |
|
|
#else /* !SEQUENT_PTX4 */
|
34 |
|
|
#include "i386/tm-i386v.h"
|
35 |
|
|
#endif
|
36 |
|
|
|
37 |
|
|
/* Number of traps that happen between exec'ing the shell to run an
|
38 |
|
|
inferior, and when we finally get to the inferior code. This is 2
|
39 |
|
|
on most implementations. Here we have to undo what tm-i386v.h gave
|
40 |
|
|
us and restore the default. */
|
41 |
|
|
|
42 |
|
|
#undef START_INFERIOR_TRAPS_EXPECTED
|
43 |
|
|
#define START_INFERIOR_TRAPS_EXPECTED 2
|
44 |
|
|
|
45 |
|
|
/* Amount PC must be decremented by after a breakpoint. This is often the
|
46 |
|
|
number of bytes in BREAKPOINT but not always (such as now). */
|
47 |
|
|
|
48 |
|
|
#undef DECR_PC_AFTER_BREAK
|
49 |
|
|
#define DECR_PC_AFTER_BREAK 0
|
50 |
|
|
|
51 |
|
|
#if 0
|
52 |
|
|
-- -this code can 't be used unless we know we are running native,
|
53 |
|
|
since it uses host specific ptrace calls.
|
54 |
|
|
/* code for 80387 fpu. Functions are from i386-dep.c, copied into
|
55 |
|
|
* symm-dep.c.
|
56 |
|
|
*/
|
57 |
|
|
#define FLOAT_INFO { i386_float_info(); }
|
58 |
|
|
#endif
|
59 |
|
|
|
60 |
|
|
/* Number of machine registers */
|
61 |
|
|
|
62 |
|
|
#undef NUM_REGS
|
63 |
|
|
#define NUM_REGS 49
|
64 |
|
|
|
65 |
|
|
/* Initializer for an array of names of registers. There should be at least
|
66 |
|
|
NUM_REGS strings in this initializer. Any excess ones are simply ignored.
|
67 |
|
|
The order of the first 8 registers must match the compiler's numbering
|
68 |
|
|
scheme (which is the same as the 386 scheme) and also regmap in the various
|
69 |
|
|
*-nat.c files. */
|
70 |
|
|
|
71 |
|
|
#undef REGISTER_NAMES
|
72 |
|
|
#define REGISTER_NAMES { "eax", "ecx", "edx", "ebx", \
|
73 |
|
|
"esp", "ebp", "esi", "edi", \
|
74 |
|
|
"eip", "eflags", "st0", "st1", \
|
75 |
|
|
"st2", "st3", "st4", "st5", \
|
76 |
|
|
"st6", "st7", "fp1", "fp2", \
|
77 |
|
|
"fp3", "fp4", "fp5", "fp6", \
|
78 |
|
|
"fp7", "fp8", "fp9", "fp10", \
|
79 |
|
|
"fp11", "fp12", "fp13", "fp14", \
|
80 |
|
|
"fp15", "fp16", "fp17", "fp18", \
|
81 |
|
|
"fp19", "fp20", "fp21", "fp22", \
|
82 |
|
|
"fp23", "fp24", "fp25", "fp26", \
|
83 |
|
|
"fp27", "fp28", "fp29", "fp30", \
|
84 |
|
|
"fp31" }
|
85 |
|
|
|
86 |
|
|
/* Register numbers of various important registers.
|
87 |
|
|
Note that some of these values are "real" register numbers,
|
88 |
|
|
and correspond to the general registers of the machine,
|
89 |
|
|
and some are "phony" register numbers which are too large
|
90 |
|
|
to be actual register numbers as far as the user is concerned
|
91 |
|
|
but do serve to get the desired values when passed to read_register. */
|
92 |
|
|
|
93 |
|
|
#define EAX_REGNUM 0
|
94 |
|
|
#define ECX_REGNUM 1
|
95 |
|
|
#define EDX_REGNUM 2
|
96 |
|
|
#define EBX_REGNUM 3
|
97 |
|
|
|
98 |
|
|
#define ESP_REGNUM 4
|
99 |
|
|
#define EBP_REGNUM 5
|
100 |
|
|
|
101 |
|
|
#define ESI_REGNUM 6
|
102 |
|
|
#define EDI_REGNUM 7
|
103 |
|
|
|
104 |
|
|
#define EIP_REGNUM 8
|
105 |
|
|
#define EFLAGS_REGNUM 9
|
106 |
|
|
|
107 |
|
|
#define ST0_REGNUM 10
|
108 |
|
|
#define ST1_REGNUM 11
|
109 |
|
|
#define ST2_REGNUM 12
|
110 |
|
|
#define ST3_REGNUM 13
|
111 |
|
|
|
112 |
|
|
#define ST4_REGNUM 14
|
113 |
|
|
#define ST5_REGNUM 15
|
114 |
|
|
#define ST6_REGNUM 16
|
115 |
|
|
#define ST7_REGNUM 17
|
116 |
|
|
|
117 |
|
|
#define FP1_REGNUM 18 /* first 1167 register */
|
118 |
|
|
/* Get %fp2 - %fp31 by addition, since they are contiguous */
|
119 |
|
|
|
120 |
|
|
#undef SP_REGNUM
|
121 |
|
|
#define SP_REGNUM ESP_REGNUM /* Contains address of top of stack */
|
122 |
|
|
#undef FP_REGNUM
|
123 |
|
|
#define FP_REGNUM EBP_REGNUM /* Contains address of executing stack frame */
|
124 |
|
|
#undef PC_REGNUM
|
125 |
|
|
#define PC_REGNUM EIP_REGNUM /* Contains program counter */
|
126 |
|
|
#undef PS_REGNUM
|
127 |
|
|
#define PS_REGNUM EFLAGS_REGNUM /* Contains processor status */
|
128 |
|
|
|
129 |
|
|
/*
|
130 |
|
|
* For ptx, this is a little bit bizarre, since the register block
|
131 |
|
|
* is below the u area in memory. This means that blockend here ends
|
132 |
|
|
* up being negative (for the call from coredep.c) since the value in
|
133 |
|
|
* u.u_ar0 will be less than KERNEL_U_ADDR (and coredep.c passes us
|
134 |
|
|
* u.u_ar0 - KERNEL_U_ADDR in blockend). Since we also define
|
135 |
|
|
* FETCH_INFERIOR_REGISTERS (and supply our own functions for that),
|
136 |
|
|
* the core file case will be the only use of this function.
|
137 |
|
|
*/
|
138 |
|
|
|
139 |
|
|
#define REGISTER_U_ADDR(addr, blockend, regno) \
|
140 |
|
|
{ (addr) = ptx_register_u_addr((blockend), (regno)); }
|
141 |
|
|
|
142 |
|
|
extern int
|
143 |
|
|
ptx_register_u_addr PARAMS ((int, int));
|
144 |
|
|
|
145 |
|
|
/* Total amount of space needed to store our copies of the machine's
|
146 |
|
|
register state, the array `registers'. 10 i*86 registers, 8 i387
|
147 |
|
|
registers, and 31 Weitek 1167 registers */
|
148 |
|
|
|
149 |
|
|
#undef REGISTER_BYTES
|
150 |
|
|
#define REGISTER_BYTES ((10 * 4) + (8 * 10) + (31 * 4))
|
151 |
|
|
|
152 |
|
|
/* Index within `registers' of the first byte of the space for register N. */
|
153 |
|
|
|
154 |
|
|
#undef REGISTER_BYTE
|
155 |
|
|
#define REGISTER_BYTE(N) \
|
156 |
|
|
(((N) < ST0_REGNUM) ? ((N) * 4) : \
|
157 |
|
|
((N) < FP1_REGNUM) ? (40 + (((N) - ST0_REGNUM) * 10)) : \
|
158 |
|
|
(40 + 80 + (((N) - FP1_REGNUM) * 4)))
|
159 |
|
|
|
160 |
|
|
/* Number of bytes of storage in the actual machine representation for
|
161 |
|
|
register N. All registers are 4 bytes, except 387 st(0) - st(7),
|
162 |
|
|
which are 80 bits each. */
|
163 |
|
|
|
164 |
|
|
#undef REGISTER_RAW_SIZE
|
165 |
|
|
#define REGISTER_RAW_SIZE(N) \
|
166 |
|
|
(((N) < ST0_REGNUM) ? 4 : \
|
167 |
|
|
((N) < FP1_REGNUM) ? 10 : \
|
168 |
|
|
4)
|
169 |
|
|
|
170 |
|
|
/* Largest value REGISTER_RAW_SIZE can have. */
|
171 |
|
|
|
172 |
|
|
#undef MAX_REGISTER_RAW_SIZE
|
173 |
|
|
#define MAX_REGISTER_RAW_SIZE 10
|
174 |
|
|
|
175 |
|
|
/* Nonzero if register N requires conversion
|
176 |
|
|
from raw format to virtual format. */
|
177 |
|
|
|
178 |
|
|
#undef REGISTER_CONVERTIBLE
|
179 |
|
|
#define REGISTER_CONVERTIBLE(N) \
|
180 |
|
|
((N < ST0_REGNUM) ? 0 : \
|
181 |
|
|
(N < FP1_REGNUM) ? 1 : \
|
182 |
|
|
0)
|
183 |
|
|
|
184 |
|
|
/* Convert data from raw format for register REGNUM
|
185 |
|
|
to virtual format for register REGNUM. */
|
186 |
|
|
extern const struct floatformat floatformat_i387_ext; /* from floatformat.h */
|
187 |
|
|
|
188 |
|
|
#undef REGISTER_CONVERT_TO_VIRTUAL
|
189 |
|
|
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
|
190 |
|
|
((REGNUM < ST0_REGNUM) ? (void)memcpy ((TO), (FROM), 4) : \
|
191 |
|
|
(REGNUM < FP1_REGNUM) ? (void)floatformat_to_double(&floatformat_i387_ext, \
|
192 |
|
|
(FROM),(TO)) : \
|
193 |
|
|
(void)memcpy ((TO), (FROM), 4))
|
194 |
|
|
|
195 |
|
|
/* Convert data from virtual format for register REGNUM
|
196 |
|
|
to raw format for register REGNUM. */
|
197 |
|
|
|
198 |
|
|
#undef REGISTER_CONVERT_TO_RAW
|
199 |
|
|
#define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
|
200 |
|
|
((REGNUM < ST0_REGNUM) ? (void)memcpy ((TO), (FROM), 4) : \
|
201 |
|
|
(REGNUM < FP1_REGNUM) ? (void)floatformat_from_double(&floatformat_i387_ext, \
|
202 |
|
|
(FROM),(TO)) : \
|
203 |
|
|
(void)memcpy ((TO), (FROM), 4))
|
204 |
|
|
|
205 |
|
|
/* Return the GDB type object for the "standard" data type
|
206 |
|
|
of data in register N. */
|
207 |
|
|
/*
|
208 |
|
|
* Note: the 1167 registers (the last line, builtin_type_float) are
|
209 |
|
|
* generally used in pairs, with each pair being treated as a double.
|
210 |
|
|
* It it also possible to use them singly as floats. I'm not sure how
|
211 |
|
|
* in gdb to treat the register pair pseudo-doubles. -fubar
|
212 |
|
|
*/
|
213 |
|
|
#undef REGISTER_VIRTUAL_TYPE
|
214 |
|
|
#define REGISTER_VIRTUAL_TYPE(N) \
|
215 |
|
|
((N < ST0_REGNUM) ? builtin_type_int : \
|
216 |
|
|
(N < FP1_REGNUM) ? builtin_type_double : \
|
217 |
|
|
builtin_type_float)
|
218 |
|
|
|
219 |
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
220 |
|
|
a function return value of type TYPE, and copy that, in virtual format,
|
221 |
|
|
into VALBUF. */
|
222 |
|
|
|
223 |
|
|
#undef EXTRACT_RETURN_VALUE
|
224 |
|
|
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
225 |
|
|
symmetry_extract_return_value(TYPE, REGBUF, VALBUF)
|
226 |
|
|
|
227 |
|
|
/*
|
228 |
|
|
#undef FRAME_FIND_SAVED_REGS
|
229 |
|
|
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
230 |
|
|
{ ptx_frame_find_saved_regs((frame_info), &(frame_saved_regs)); }
|
231 |
|
|
*/
|
232 |
|
|
|
233 |
|
|
#endif /* ifndef TM_PTX_H */
|