OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [config/] [pa/] [tm-hppa.h] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 106 markom
/* Parameters for execution on any Hewlett-Packard PA-RISC machine.
2
   Copyright 1986, 1987, 1989-1993, 1995, 1999, 2000 Free Software Foundation, Inc.
3
 
4
   Contributed by the Center for Software Science at the
5
   University of Utah (pa-gdb-bugs@cs.utah.edu).
6
 
7
   This file is part of GDB.
8
 
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 2 of the License, or
12
   (at your option) any later version.
13
 
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with this program; if not, write to the Free Software
21
   Foundation, Inc., 59 Temple Place - Suite 330,
22
   Boston, MA 02111-1307, USA.  */
23
 
24
/* Forward declarations of some types we use in prototypes */
25
 
26
struct frame_info;
27
struct frame_saved_regs;
28
struct value;
29
struct type;
30
struct inferior_status;
31
 
32
/* Target system byte order. */
33
 
34
#define TARGET_BYTE_ORDER       BIG_ENDIAN
35
 
36
/* By default assume we don't have to worry about software floating point.  */
37
#ifndef SOFT_FLOAT
38
#define SOFT_FLOAT 0
39
#endif
40
 
41
/* Get at various relevent fields of an instruction word. */
42
 
43
#define MASK_5 0x1f
44
#define MASK_11 0x7ff
45
#define MASK_14 0x3fff
46
#define MASK_21 0x1fffff
47
 
48
/* This macro gets bit fields using HP's numbering (MSB = 0) */
49
#ifndef GET_FIELD
50
#define GET_FIELD(X, FROM, TO) \
51
  ((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
52
#endif
53
 
54
/* Watch out for NaNs */
55
 
56
#define IEEE_FLOAT
57
 
58
/* On the PA, any pass-by-value structure > 8 bytes is actually
59
   passed via a pointer regardless of its type or the compiler
60
   used.  */
61
 
62
#define REG_STRUCT_HAS_ADDR(gcc_p,type) \
63
  (TYPE_LENGTH (type) > 8)
64
 
65
/* Offset from address of function to start of its code.
66
   Zero on most machines.  */
67
 
68
#define FUNCTION_START_OFFSET 0
69
 
70
/* Advance PC across any function entry prologue instructions
71
   to reach some "real" code.  */
72
 
73
extern CORE_ADDR hppa_skip_prologue PARAMS ((CORE_ADDR));
74
#define SKIP_PROLOGUE(pc) (hppa_skip_prologue (pc))
75
 
76
/* If PC is in some function-call trampoline code, return the PC
77
   where the function itself actually starts.  If not, return NULL.  */
78
 
79
#define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
80
extern CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR, char *));
81
 
82
/* Return non-zero if we are in an appropriate trampoline. */
83
 
84
#define IN_SOLIB_CALL_TRAMPOLINE(pc, name) \
85
   in_solib_call_trampoline (pc, name)
86
extern int in_solib_call_trampoline PARAMS ((CORE_ADDR, char *));
87
 
88
#define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) \
89
  in_solib_return_trampoline (pc, name)
90
extern int in_solib_return_trampoline PARAMS ((CORE_ADDR, char *));
91
 
92
/* Immediately after a function call, return the saved pc.
93
   Can't go through the frames for this because on some machines
94
   the new frame is not set up until the new function executes
95
   some instructions.  */
96
 
97
#undef  SAVED_PC_AFTER_CALL
98
#define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
99
extern CORE_ADDR saved_pc_after_call PARAMS ((struct frame_info *));
100
 
101
/* Stack grows upward */
102
#define INNER_THAN(lhs,rhs) ((lhs) > (rhs))
103
 
104
/* elz: adjust the quantity to the next highest value which is 64-bit aligned.
105
   This is used in valops.c, when the sp is adjusted.
106
   On hppa the sp must always be kept 64-bit aligned */
107
 
108
#define STACK_ALIGN(arg) ( ((arg)%8) ? (((arg)+7)&-8) : (arg))
109
#define NO_EXTRA_ALIGNMENT_NEEDED 1
110
 
111
/* Sequence of bytes for breakpoint instruction.  */
112
 
113
#define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
114
#define BREAKPOINT32 0x10004
115
 
116
/* Amount PC must be decremented by after a breakpoint.
117
   This is often the number of bytes in BREAKPOINT
118
   but not always.
119
 
120
   Not on the PA-RISC */
121
 
122
#define DECR_PC_AFTER_BREAK 0
123
 
124
/* Sometimes we may pluck out a minimal symbol that has a negative
125
   address.
126
 
127
   An example of this occurs when an a.out is linked against a foo.sl.
128
   The foo.sl defines a global bar(), and the a.out declares a signature
129
   for bar().  However, the a.out doesn't directly call bar(), but passes
130
   its address in another call.
131
 
132
   If you have this scenario and attempt to "break bar" before running,
133
   gdb will find a minimal symbol for bar() in the a.out.  But that
134
   symbol's address will be negative.  What this appears to denote is
135
   an index backwards from the base of the procedure linkage table (PLT)
136
   into the data linkage table (DLT), the end of which is contiguous
137
   with the start of the PLT.  This is clearly not a valid address for
138
   us to set a breakpoint on.
139
 
140
   Note that one must be careful in how one checks for a negative address.
141
   0xc0000000 is a legitimate address of something in a shared text
142
   segment, for example.  Since I don't know what the possible range
143
   is of these "really, truly negative" addresses that come from the
144
   minimal symbols, I'm resorting to the gross hack of checking the
145
   top byte of the address for all 1's.  Sigh.
146
 */
147
#define PC_REQUIRES_RUN_BEFORE_USE(pc) \
148
  (! target_has_stack && (pc & 0xFF000000))
149
 
150
/* return instruction is bv r0(rp) or bv,n r0(rp) */
151
 
152
#define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
153
 
154
/* Say how long (ordinary) registers are.  This is a piece of bogosity
155
   used in push_word and a few other places; REGISTER_RAW_SIZE is the
156
   real way to know how big a register is.  */
157
 
158
#define REGISTER_SIZE 4
159
 
160
/* Number of machine registers */
161
 
162
#define NUM_REGS 128
163
 
164
/* Initializer for an array of names of registers.
165
   There should be NUM_REGS strings in this initializer.
166
   They are in rows of eight entries  */
167
 
168
#define REGISTER_NAMES  \
169
 {"flags",  "r1",      "rp",      "r3",    "r4",     "r5",      "r6",     "r7",    \
170
  "r8",     "r9",      "r10",     "r11",   "r12",    "r13",     "r14",    "r15",   \
171
  "r16",    "r17",     "r18",     "r19",   "r20",    "r21",     "r22",    "r23",   \
172
  "r24",    "r25",     "r26",     "dp",    "ret0",   "ret1",    "sp",     "r31",   \
173
  "sar",    "pcoqh",   "pcsqh",   "pcoqt", "pcsqt",  "eiem",    "iir",    "isr",   \
174
  "ior",    "ipsw",    "goto",    "sr4",   "sr0",    "sr1",     "sr2",    "sr3",   \
175
  "sr5",    "sr6",     "sr7",     "cr0",   "cr8",    "cr9",     "ccr",    "cr12",  \
176
  "cr13",   "cr24",    "cr25",    "cr26",  "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",\
177
  "fpsr",    "fpe1",   "fpe2",    "fpe3",  "fpe4",   "fpe5",    "fpe6",   "fpe7",  \
178
  "fr4",     "fr4R",   "fr5",     "fr5R",  "fr6",    "fr6R",    "fr7",    "fr7R",  \
179
  "fr8",     "fr8R",   "fr9",     "fr9R",  "fr10",   "fr10R",   "fr11",   "fr11R", \
180
  "fr12",    "fr12R",  "fr13",    "fr13R", "fr14",   "fr14R",   "fr15",   "fr15R", \
181
  "fr16",    "fr16R",  "fr17",    "fr17R", "fr18",   "fr18R",   "fr19",   "fr19R", \
182
  "fr20",    "fr20R",  "fr21",    "fr21R", "fr22",   "fr22R",   "fr23",   "fr23R", \
183
  "fr24",    "fr24R",  "fr25",    "fr25R", "fr26",   "fr26R",   "fr27",   "fr27R", \
184
  "fr28",    "fr28R",  "fr29",    "fr29R", "fr30",   "fr30R",   "fr31",   "fr31R"}
185
 
186
/* Register numbers of various important registers.
187
   Note that some of these values are "real" register numbers,
188
   and correspond to the general registers of the machine,
189
   and some are "phony" register numbers which are too large
190
   to be actual register numbers as far as the user is concerned
191
   but do serve to get the desired values when passed to read_register.  */
192
 
193
#define R0_REGNUM 0             /* Doesn't actually exist, used as base for
194
                                   other r registers.  */
195
#define FLAGS_REGNUM 0          /* Various status flags */
196
#define RP_REGNUM 2             /* return pointer */
197
#define FP_REGNUM 3             /* Contains address of executing stack */
198
                                /* frame */
199
#define SP_REGNUM 30            /* Contains address of top of stack */
200
#define SAR_REGNUM 32           /* Shift Amount Register */
201
#define IPSW_REGNUM 41          /* Interrupt Processor Status Word */
202
#define PCOQ_HEAD_REGNUM 33     /* instruction offset queue head */
203
#define PCSQ_HEAD_REGNUM 34     /* instruction space queue head */
204
#define PCOQ_TAIL_REGNUM 35     /* instruction offset queue tail */
205
#define PCSQ_TAIL_REGNUM 36     /* instruction space queue tail */
206
#define EIEM_REGNUM 37          /* External Interrupt Enable Mask */
207
#define IIR_REGNUM 38           /* Interrupt Instruction Register */
208
#define IOR_REGNUM 40           /* Interrupt Offset Register */
209
#define SR4_REGNUM 43           /* space register 4 */
210
#define RCR_REGNUM 51           /* Recover Counter (also known as cr0) */
211
#define CCR_REGNUM 54           /* Coprocessor Configuration Register */
212
#define TR0_REGNUM 57           /* Temporary Registers (cr24 -> cr31) */
213
#define CR27_REGNUM 60          /* Base register for thread-local storage, cr27 */
214
#define FP0_REGNUM 64           /* floating point reg. 0 (fspr) */
215
#define FP4_REGNUM 72
216
 
217
#define ARG0_REGNUM 26          /* The first argument of a callee. */
218
#define ARG1_REGNUM 25          /* The second argument of a callee. */
219
#define ARG2_REGNUM 24          /* The third argument of a callee. */
220
#define ARG3_REGNUM 23          /* The fourth argument of a callee. */
221
 
222
/* compatibility with the rest of gdb. */
223
#define PC_REGNUM PCOQ_HEAD_REGNUM
224
#define NPC_REGNUM PCOQ_TAIL_REGNUM
225
 
226
/*
227
 * Processor Status Word Masks
228
 */
229
 
230
#define PSW_T   0x01000000      /* Taken Branch Trap Enable */
231
#define PSW_H   0x00800000      /* Higher-Privilege Transfer Trap Enable */
232
#define PSW_L   0x00400000      /* Lower-Privilege Transfer Trap Enable */
233
#define PSW_N   0x00200000      /* PC Queue Front Instruction Nullified */
234
#define PSW_X   0x00100000      /* Data Memory Break Disable */
235
#define PSW_B   0x00080000      /* Taken Branch in Previous Cycle */
236
#define PSW_C   0x00040000      /* Code Address Translation Enable */
237
#define PSW_V   0x00020000      /* Divide Step Correction */
238
#define PSW_M   0x00010000      /* High-Priority Machine Check Disable */
239
#define PSW_CB  0x0000ff00      /* Carry/Borrow Bits */
240
#define PSW_R   0x00000010      /* Recovery Counter Enable */
241
#define PSW_Q   0x00000008      /* Interruption State Collection Enable */
242
#define PSW_P   0x00000004      /* Protection ID Validation Enable */
243
#define PSW_D   0x00000002      /* Data Address Translation Enable */
244
#define PSW_I   0x00000001      /* External, Power Failure, Low-Priority */
245
                                /* Machine Check Interruption Enable */
246
 
247
/* When fetching register values from an inferior or a core file,
248
   clean them up using this macro.  BUF is a char pointer to
249
   the raw value of the register in the registers[] array.  */
250
 
251
#define CLEAN_UP_REGISTER_VALUE(regno, buf) \
252
  do {  \
253
    if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
254
      (buf)[sizeof(CORE_ADDR) -1] &= ~0x3; \
255
  } while (0)
256
 
257
/* Define DO_REGISTERS_INFO() to do machine-specific formatting
258
   of register dumps. */
259
 
260
#define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
261
extern void pa_do_registers_info PARAMS ((int, int));
262
 
263
#if 0
264
#define STRCAT_REGISTER(regnum, fpregs, stream, precision) pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
265
extern void pa_do_strcat_registers_info (int, int, struct ui_file *, enum precision_type);
266
#endif
267
 
268
/* PA specific macro to see if the current instruction is nullified. */
269
#ifndef INSTRUCTION_NULLIFIED
270
#define INSTRUCTION_NULLIFIED \
271
    (((int)read_register (IPSW_REGNUM) & 0x00200000) && \
272
     !((int)read_register (FLAGS_REGNUM) & 0x2))
273
#endif
274
 
275
/* Number of bytes of storage in the actual machine representation
276
   for register N.  On the PA-RISC, all regs are 4 bytes, including
277
   the FP registers (they're accessed as two 4 byte halves).  */
278
 
279
#define REGISTER_RAW_SIZE(N) 4
280
 
281
/* Total amount of space needed to store our copies of the machine's
282
   register state, the array `registers'.  */
283
#define REGISTER_BYTES (NUM_REGS * 4)
284
 
285
/* Index within `registers' of the first byte of the space for
286
   register N.  */
287
 
288
#define REGISTER_BYTE(N) (N) * 4
289
 
290
/* Number of bytes of storage in the program's representation
291
   for register N. */
292
 
293
#define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
294
 
295
/* Largest value REGISTER_RAW_SIZE can have.  */
296
 
297
#define MAX_REGISTER_RAW_SIZE 4
298
 
299
/* Largest value REGISTER_VIRTUAL_SIZE can have.  */
300
 
301
#define MAX_REGISTER_VIRTUAL_SIZE 8
302
 
303
/* Return the GDB type object for the "standard" data type
304
   of data in register N.  */
305
 
306
#define REGISTER_VIRTUAL_TYPE(N) \
307
 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_float)
308
 
309
/* Store the address of the place in which to copy the structure the
310
   subroutine will return.  This is called from call_function. */
311
 
312
#define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
313
 
314
/* Extract from an array REGBUF containing the (raw) register state
315
   a function return value of type TYPE, and copy that, in virtual format,
316
   into VALBUF.
317
 
318
   elz: changed what to return when length is > 4: the stored result is
319
   in register 28 and in register 29, with the lower order word being in reg 29,
320
   so we must start reading it from somehere in the middle of reg28
321
 
322
   FIXME: Not sure what to do for soft float here.  */
323
 
324
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
325
  { \
326
    if (TYPE_CODE (TYPE) == TYPE_CODE_FLT && !SOFT_FLOAT) \
327
      memcpy ((VALBUF), \
328
              ((char *)(REGBUF)) + REGISTER_BYTE (FP4_REGNUM), \
329
              TYPE_LENGTH (TYPE)); \
330
    else \
331
      memcpy ((VALBUF), \
332
              (char *)(REGBUF) + REGISTER_BYTE (28) + \
333
              (TYPE_LENGTH (TYPE) > 4 ? (8 - TYPE_LENGTH (TYPE)) : (4 - TYPE_LENGTH (TYPE))), \
334
              TYPE_LENGTH (TYPE)); \
335
  }
336
 
337
 
338
 /* elz: decide whether the function returning a value of type type
339
    will put it on the stack or in the registers.
340
    The pa calling convention says that:
341
    register 28 (called ret0 by gdb) contains any ASCII char,
342
    and any non_floating point value up to 32-bits.
343
    reg 28 and 29 contain non-floating point up tp 64 bits and larger
344
    than 32 bits. (higer order word in reg 28).
345
    fr4: floating point up to 64 bits
346
    sr1: space identifier (32-bit)
347
    stack: any lager than 64-bit, with the address in r28
348
  */
349
extern use_struct_convention_fn hppa_use_struct_convention;
350
#define USE_STRUCT_CONVENTION(gcc_p,type) hppa_use_struct_convention (gcc_p,type)
351
 
352
/* Write into appropriate registers a function return value
353
   of type TYPE, given in virtual format.
354
 
355
   For software floating point the return value goes into the integer
356
   registers.  But we don't have any flag to key this on, so we always
357
   store the value into the integer registers, and if it's a float value,
358
   then we put it in the float registers too.  */
359
 
360
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
361
  write_register_bytes (REGISTER_BYTE (28),(VALBUF), TYPE_LENGTH (TYPE)) ; \
362
  if (!SOFT_FLOAT) \
363
    write_register_bytes ((TYPE_CODE(TYPE) == TYPE_CODE_FLT \
364
                           ? REGISTER_BYTE (FP4_REGNUM) \
365
                           : REGISTER_BYTE (28)),               \
366
                          (VALBUF), TYPE_LENGTH (TYPE))
367
 
368
/* Extract from an array REGBUF containing the (raw) register state
369
   the address in which a function should return its structure value,
370
   as a CORE_ADDR (or an expression that can be used as one).  */
371
 
372
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
373
  (*(int *)((REGBUF) + REGISTER_BYTE (28)))
374
 
375
/* elz: Return a large value, which is stored on the stack at addr.
376
   This is defined only for the hppa, at this moment.
377
   The above macro EXTRACT_STRUCT_VALUE_ADDRESS is not called anymore,
378
   because it assumes that on exit from a called function which returns
379
   a large structure on the stack, the address of the ret structure is
380
   still in register 28. Unfortunately this register is usually overwritten
381
   by the called function itself, on hppa. This is specified in the calling
382
   convention doc. As far as I know, the only way to get the return value
383
   is to have the caller tell us where it told the callee to put it, rather
384
   than have the callee tell us.
385
 */
386
#define VALUE_RETURNED_FROM_STACK(valtype,addr) \
387
  hppa_value_returned_from_stack (valtype, addr)
388
 
389
/*
390
 * This macro defines the register numbers (from REGISTER_NAMES) that
391
 * are effectively unavailable to the user through ptrace().  It allows
392
 * us to include the whole register set in REGISTER_NAMES (inorder to
393
 * better support remote debugging).  If it is used in
394
 * fetch/store_inferior_registers() gdb will not complain about I/O errors
395
 * on fetching these registers.  If all registers in REGISTER_NAMES
396
 * are available, then return false (0).
397
 */
398
 
399
#define CANNOT_STORE_REGISTER(regno)            \
400
                   ((regno) == 0) ||     \
401
                   ((regno) == PCSQ_HEAD_REGNUM) || \
402
                   ((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) ||  \
403
                   ((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
404
 
405
#define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
406
extern void init_extra_frame_info PARAMS ((int, struct frame_info *));
407
 
408
/* Describe the pointer in each stack frame to the previous stack frame
409
   (its caller).  */
410
 
411
/* FRAME_CHAIN takes a frame's nominal address
412
   and produces the frame's chain-pointer.
413
 
414
   FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
415
   and produces the nominal address of the caller frame.
416
 
417
   However, if FRAME_CHAIN_VALID returns zero,
418
   it means the given frame is the outermost one and has no caller.
419
   In that case, FRAME_CHAIN_COMBINE is not used.  */
420
 
421
/* In the case of the PA-RISC, the frame's nominal address
422
   is the address of a 4-byte word containing the calling frame's
423
   address (previous FP).  */
424
 
425
#define FRAME_CHAIN(thisframe) frame_chain (thisframe)
426
extern CORE_ADDR frame_chain PARAMS ((struct frame_info *));
427
 
428
extern int hppa_frame_chain_valid PARAMS ((CORE_ADDR, struct frame_info *));
429
#define FRAME_CHAIN_VALID(chain, thisframe) hppa_frame_chain_valid (chain, thisframe)
430
 
431
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
432
 
433
/* Define other aspects of the stack frame.  */
434
 
435
/* A macro that tells us whether the function invocation represented
436
   by FI does not have a frame on the stack associated with it.  If it
437
   does not, FRAMELESS is set to 1, else 0.  */
438
#define FRAMELESS_FUNCTION_INVOCATION(FI) \
439
  (frameless_function_invocation (FI))
440
extern int frameless_function_invocation PARAMS ((struct frame_info *));
441
 
442
extern CORE_ADDR hppa_frame_saved_pc PARAMS ((struct frame_info * frame));
443
#define FRAME_SAVED_PC(FRAME) hppa_frame_saved_pc (FRAME)
444
 
445
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
446
 
447
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
448
/* Set VAL to the number of args passed to frame described by FI.
449
   Can set VAL to -1, meaning no way to tell.  */
450
 
451
/* We can't tell how many args there are
452
   now that the C compiler delays popping them.  */
453
#define FRAME_NUM_ARGS(fi) (-1)
454
 
455
/* Return number of bytes at start of arglist that are not really args.  */
456
 
457
#define FRAME_ARGS_SKIP 0
458
 
459
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
460
  hppa_frame_find_saved_regs (frame_info, &frame_saved_regs)
461
extern void
462
hppa_frame_find_saved_regs PARAMS ((struct frame_info *,
463
                                    struct frame_saved_regs *));
464
 
465
 
466
/* Things needed for making the inferior call functions.  */
467
 
468
/* Push an empty stack frame, to record the current PC, etc. */
469
 
470
#define PUSH_DUMMY_FRAME push_dummy_frame (inf_status)
471
extern void push_dummy_frame PARAMS ((struct inferior_status *));
472
 
473
/* Discard from the stack the innermost frame,
474
   restoring all saved registers.  */
475
#define POP_FRAME  hppa_pop_frame ()
476
extern void hppa_pop_frame PARAMS ((void));
477
 
478
#define INSTRUCTION_SIZE 4
479
 
480
#ifndef PA_LEVEL_0
481
 
482
/* Non-level zero PA's have space registers (but they don't always have
483
   floating-point, do they????  */
484
 
485
/* This sequence of words is the instructions
486
 
487
   ; Call stack frame has already been built by gdb. Since we could be calling
488
   ; a varargs function, and we do not have the benefit of a stub to put things in
489
   ; the right place, we load the first 4 word of arguments into both the general
490
   ; and fp registers.
491
   call_dummy
492
   ldw -36(sp), arg0
493
   ldw -40(sp), arg1
494
   ldw -44(sp), arg2
495
   ldw -48(sp), arg3
496
   ldo -36(sp), r1
497
   fldws 0(0, r1), fr4
498
   fldds -4(0, r1), fr5
499
   fldws -8(0, r1), fr6
500
   fldds -12(0, r1), fr7
501
   ldil 0, r22                  ; FUNC_LDIL_OFFSET must point here
502
   ldo 0(r22), r22                      ; FUNC_LDO_OFFSET must point here
503
   ldsid (0,r22), r4
504
   ldil 0, r1                   ; SR4EXPORT_LDIL_OFFSET must point here
505
   ldo 0(r1), r1                        ; SR4EXPORT_LDO_OFFSET must point here
506
   ldsid (0,r1), r20
507
   combt,=,n r4, r20, text_space        ; If target is in data space, do a
508
   ble 0(sr5, r22)                      ; "normal" procedure call
509
   copy r31, r2
510
   break 4, 8
511
   mtsp r21, sr0
512
   ble,n 0(sr0, r22)
513
   text_space                           ; Otherwise, go through _sr4export,
514
   ble (sr4, r1)                        ; which will return back here.
515
   stw r31,-24(r30)
516
   break 4, 8
517
   mtsp r21, sr0
518
   ble,n 0(sr0, r22)
519
   nop                          ; To avoid kernel bugs
520
   nop                          ; and keep the dummy 8 byte aligned
521
 
522
   The dummy decides if the target is in text space or data space. If
523
   it's in data space, there's no problem because the target can
524
   return back to the dummy. However, if the target is in text space,
525
   the dummy calls the secret, undocumented routine _sr4export, which
526
   calls a function in text space and can return to any space. Instead
527
   of including fake instructions to represent saved registers, we
528
   know that the frame is associated with the call dummy and treat it
529
   specially.
530
 
531
   The trailing NOPs are needed to avoid a bug in HPUX, BSD and OSF1
532
   kernels.   If the memory at the location pointed to by the PC is
533
   0xffffffff then a ptrace step call will fail (even if the instruction
534
   is nullified).
535
 
536
   The code to pop a dummy frame single steps three instructions
537
   starting with the last mtsp.  This includes the nullified "instruction"
538
   following the ble (which is uninitialized junk).  If the
539
   "instruction" following the last BLE is 0xffffffff, then the ptrace
540
   will fail and the dummy frame is not correctly popped.
541
 
542
   By placing a NOP in the delay slot of the BLE instruction we can be
543
   sure that we never try to execute a 0xffffffff instruction and
544
   avoid the kernel bug.  The second NOP is needed to keep the call
545
   dummy 8 byte aligned.  */
546
 
547
/* Define offsets into the call dummy for the target function address */
548
#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
549
#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
550
 
551
/* Define offsets into the call dummy for the _sr4export address */
552
#define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
553
#define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
554
 
555
#define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
556
                    0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
557
                    0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A4,\
558
                    0x20200000, 0x34210000, 0x002010b4, 0x82842022,\
559
                    0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
560
                    0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
561
                    0x00151820, 0xe6c00002, 0x08000240, 0x08000240}
562
 
563
#define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 28)
564
#define REG_PARM_STACK_SPACE 16
565
 
566
#else /* defined PA_LEVEL_0 */
567
 
568
/* This is the call dummy for a level 0 PA.  Level 0's don't have space
569
   registers (or floating point??), so we skip all that inter-space call stuff,
570
   and avoid touching the fp regs.
571
 
572
   call_dummy
573
 
574
   ldw -36(%sp), %arg0
575
   ldw -40(%sp), %arg1
576
   ldw -44(%sp), %arg2
577
   ldw -48(%sp), %arg3
578
   ldil 0, %r31                 ; FUNC_LDIL_OFFSET must point here
579
   ldo 0(%r31), %r31            ; FUNC_LDO_OFFSET must point here
580
   ble 0(%sr0, %r31)
581
   copy %r31, %r2
582
   break 4, 8
583
   nop                          ; restore_pc_queue expects these
584
   bv,n 0(%r22)                 ; instructions to be here...
585
   nop
586
 */
587
 
588
/* Define offsets into the call dummy for the target function address */
589
#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 4)
590
#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 5)
591
 
592
#define CALL_DUMMY {0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1,\
593
                    0x23e00000, 0x37ff0000, 0xe7e00000, 0x081f0242,\
594
                    0x00010004, 0x08000240, 0xeac0c002, 0x08000240}
595
 
596
#define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 12)
597
 
598
#endif
599
 
600
#define CALL_DUMMY_START_OFFSET 0
601
 
602
/* If we've reached a trap instruction within the call dummy, then
603
   we'll consider that to mean that we've reached the call dummy's
604
   end after its successful completion. */
605
#define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
606
  (PC_IN_CALL_DUMMY((pc), (sp), (frame_address)) && \
607
   (read_memory_integer((pc), 4) == BREAKPOINT32))
608
 
609
/*
610
 * Insert the specified number of args and function address
611
 * into a call sequence of the above form stored at DUMMYNAME.
612
 *
613
 * On the hppa we need to call the stack dummy through $$dyncall.
614
 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
615
 * real_pc, which is the location where gdb should start up the
616
 * inferior to do the function call.
617
 */
618
 
619
#define FIX_CALL_DUMMY hppa_fix_call_dummy
620
 
621
extern CORE_ADDR
622
  hppa_fix_call_dummy PARAMS ((char *, CORE_ADDR, CORE_ADDR, int,
623
                               struct value **, struct type *, int));
624
 
625
#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
626
  (hppa_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
627
extern CORE_ADDR
628
  hppa_push_arguments PARAMS ((int, struct value **, CORE_ADDR, int,
629
                               CORE_ADDR));
630
 
631
/* The low two bits of the PC on the PA contain the privilege level.  Some
632
   genius implementing a (non-GCC) compiler apparently decided this means
633
   that "addresses" in a text section therefore include a privilege level,
634
   and thus symbol tables should contain these bits.  This seems like a
635
   bonehead thing to do--anyway, it seems to work for our purposes to just
636
   ignore those bits.  */
637
#define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x3)
638
 
639
#define GDB_TARGET_IS_HPPA
640
 
641
#define BELIEVE_PCC_PROMOTION 1
642
 
643
/*
644
 * Unwind table and descriptor.
645
 */
646
 
647
struct unwind_table_entry
648
  {
649
    CORE_ADDR region_start;
650
    CORE_ADDR region_end;
651
 
652
    unsigned int Cannot_unwind:1;       /* 0 */
653
    unsigned int Millicode:1;   /* 1 */
654
    unsigned int Millicode_save_sr0:1;  /* 2 */
655
    unsigned int Region_description:2;  /* 3..4 */
656
    unsigned int reserved1:1;   /* 5 */
657
    unsigned int Entry_SR:1;    /* 6 */
658
    unsigned int Entry_FR:4;    /* number saved *//* 7..10 */
659
    unsigned int Entry_GR:5;    /* number saved *//* 11..15 */
660
    unsigned int Args_stored:1; /* 16 */
661
    unsigned int Variable_Frame:1;      /* 17 */
662
    unsigned int Separate_Package_Body:1;       /* 18 */
663
    unsigned int Frame_Extension_Millicode:1;   /* 19 */
664
    unsigned int Stack_Overflow_Check:1;        /* 20 */
665
    unsigned int Two_Instruction_SP_Increment:1;        /* 21 */
666
    unsigned int Ada_Region:1;  /* 22 */
667
    unsigned int cxx_info:1;    /* 23 */
668
    unsigned int cxx_try_catch:1;       /* 24 */
669
    unsigned int sched_entry_seq:1;     /* 25 */
670
    unsigned int reserved2:1;   /* 26 */
671
    unsigned int Save_SP:1;     /* 27 */
672
    unsigned int Save_RP:1;     /* 28 */
673
    unsigned int Save_MRP_in_frame:1;   /* 29 */
674
    unsigned int extn_ptr_defined:1;    /* 30 */
675
    unsigned int Cleanup_defined:1;     /* 31 */
676
 
677
    unsigned int MPE_XL_interrupt_marker:1;     /* 0 */
678
    unsigned int HP_UX_interrupt_marker:1;      /* 1 */
679
    unsigned int Large_frame:1; /* 2 */
680
    unsigned int Pseudo_SP_Set:1;       /* 3 */
681
    unsigned int reserved4:1;   /* 4 */
682
    unsigned int Total_frame_size:27;   /* 5..31 */
683
 
684
    /* This is *NOT* part of an actual unwind_descriptor in an object
685
       file.  It is *ONLY* part of the "internalized" descriptors that
686
       we create from those in a file.
687
     */
688
    struct
689
      {
690
        unsigned int stub_type:4;       /* 0..3 */
691
        unsigned int padding:28;        /* 4..31 */
692
      }
693
    stub_unwind;
694
  };
695
 
696
/* HP linkers also generate unwinds for various linker-generated stubs.
697
   GDB reads in the stubs from the $UNWIND_END$ subspace, then
698
   "converts" them into normal unwind entries using some of the reserved
699
   fields to store the stub type.  */
700
 
701
struct stub_unwind_entry
702
  {
703
    /* The offset within the executable for the associated stub.  */
704
    unsigned stub_offset;
705
 
706
    /* The type of stub this unwind entry describes.  */
707
    char type;
708
 
709
    /* Unknown.  Not needed by GDB at this time.  */
710
    char prs_info;
711
 
712
    /* Length (in instructions) of the associated stub.  */
713
    short stub_length;
714
  };
715
 
716
/* Sizes (in bytes) of the native unwind entries.  */
717
#define UNWIND_ENTRY_SIZE 16
718
#define STUB_UNWIND_ENTRY_SIZE 8
719
 
720
/* The gaps represent linker stubs used in MPE and space for future
721
   expansion.  */
722
enum unwind_stub_types
723
  {
724
    LONG_BRANCH = 1,
725
    PARAMETER_RELOCATION = 2,
726
    EXPORT = 10,
727
    IMPORT = 11,
728
    IMPORT_SHLIB = 12,
729
  };
730
 
731
/* We use the objfile->obj_private pointer for two things:
732
 
733
 * 1.  An unwind table;
734
 *
735
 * 2.  A pointer to any associated shared library object.
736
 *
737
 * #defines are used to help refer to these objects.
738
 */
739
 
740
/* Info about the unwind table associated with an object file.
741
 
742
 * This is hung off of the "objfile->obj_private" pointer, and
743
 * is allocated in the objfile's psymbol obstack.  This allows
744
 * us to have unique unwind info for each executable and shared
745
 * library that we are debugging.
746
 */
747
struct obj_unwind_info
748
  {
749
    struct unwind_table_entry *table;   /* Pointer to unwind info */
750
    struct unwind_table_entry *cache;   /* Pointer to last entry we found */
751
    int last;                   /* Index of last entry */
752
  };
753
 
754
typedef struct obj_private_struct
755
  {
756
    struct obj_unwind_info *unwind_info;        /* a pointer */
757
    struct so_list *so_info;    /* a pointer  */
758
    CORE_ADDR dp;
759
  }
760
obj_private_data_t;
761
 
762
#if 0
763
extern void target_write_pc
764
PARAMS ((CORE_ADDR, int))
765
     extern CORE_ADDR target_read_pc PARAMS ((int));
766
     extern CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR, char *));
767
#endif
768
 
769
#define TARGET_READ_PC(pid) target_read_pc (pid)
770
     extern CORE_ADDR target_read_pc PARAMS ((int));
771
 
772
#define TARGET_WRITE_PC(v,pid) target_write_pc (v,pid)
773
     extern void target_write_pc PARAMS ((CORE_ADDR, int));
774
 
775
#define TARGET_READ_FP() target_read_fp (inferior_pid)
776
     extern CORE_ADDR target_read_fp PARAMS ((int));
777
 
778
/* For a number of horrible reasons we may have to adjust the location
779
   of variables on the stack.  Ugh.  */
780
#define HPREAD_ADJUST_STACK_ADDRESS(ADDR) hpread_adjust_stack_address(ADDR)
781
 
782
     extern int hpread_adjust_stack_address PARAMS ((CORE_ADDR));
783
 
784
/* If the current gcc for for this target does not produce correct debugging
785
   information for float parameters, both prototyped and unprototyped, then
786
   define this macro.  This forces gdb to  always assume that floats are
787
   passed as doubles and then converted in the callee.
788
 
789
   For the pa, it appears that the debug info marks the parameters as
790
   floats regardless of whether the function is prototyped, but the actual
791
   values are passed as doubles for the non-prototyped case and floats for
792
   the prototyped case.  Thus we choose to make the non-prototyped case work
793
   for C and break the prototyped case, since the non-prototyped case is
794
   probably much more common.  (FIXME). */
795
 
796
#define COERCE_FLOAT_TO_DOUBLE(formal, actual) (current_language -> la_language == language_c)
797
 
798
/* Here's how to step off a permanent breakpoint.  */
799
#define SKIP_PERMANENT_BREAKPOINT (hppa_skip_permanent_breakpoint)
800
extern void hppa_skip_permanent_breakpoint (void);
801
 
802
/* On HP-UX, certain system routines (millicode) have names beginning
803
   with $ or $$, e.g. $$dyncall, which handles inter-space procedure
804
   calls on PA-RISC.  Tell the expression parser to check for those
805
   when parsing tokens that begin with "$".  */
806
#define SYMBOLS_CAN_START_WITH_DOLLAR (1)

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.