OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [gdbserver/] [README] - Blame information for rev 1774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 106 markom
                   README for GDBserver & GDBreplay
2
                    by Stu Grossman and Fred Fish
3
 
4
Introduction:
5
 
6
This is GDBserver, a remote server for Un*x-like systems.  It can be used to
7
control the execution of a program on a target system from a GDB on a different
8
host.  GDB and GDBserver communicate using the standard remote serial protocol
9
implemented in remote.c, and various *-stub.c files.  They communicate via
10
either a serial line or a TCP connection.
11
 
12
Usage (server (target) side):
13
 
14
First, you need to have a copy of the program you want to debug put onto
15
the target system.  The program can be stripped to save space if needed, as
16
GDBserver doesn't care about symbols.  All symbol handling is taken care of by
17
the GDB running on the host system.
18
 
19
To use the server, you log on to the target system, and run the `gdbserver'
20
program.  You must tell it (a) how to communicate with GDB, (b) the name of
21
your program, and (c) its arguments.  The general syntax is:
22
 
23
        target> gdbserver COMM PROGRAM [ARGS ...]
24
 
25
For example, using a serial port, you might say:
26
 
27
        target> gdbserver /dev/com1 emacs foo.txt
28
 
29
This tells gdbserver to debug emacs with an argument of foo.txt, and to
30
communicate with GDB via /dev/com1.  Gdbserver now waits patiently for the
31
host GDB to communicate with it.
32
 
33
To use a TCP connection, you could say:
34
 
35
        target> gdbserver host:2345 emacs foo.txt
36
 
37
This says pretty much the same thing as the last example, except that we are
38
going to communicate with the host GDB via TCP.  The `host:2345' argument means
39
that we are expecting to see a TCP connection from `host' to local TCP port
40
2345.  (Currently, the `host' part is ignored.)  You can choose any number you
41
want for the port number as long as it does not conflict with any existing TCP
42
ports on the target system.  This same port number must be used in the host
43
GDBs `target remote' command, which will be described shortly.  Note that if
44
you chose a port number that conflicts with another service, gdbserver will
45
print an error message and exit.
46
 
47
Usage (host side):
48
 
49
You need an unstripped copy of the target program on your host system, since
50
GDB needs to examine it's symbol tables and such.  Start up GDB as you normally
51
would, with the target program as the first argument.  (You may need to use the
52
--baud option if the serial line is running at anything except 9600 baud.)
53
Ie: `gdb TARGET-PROG', or `gdb --baud BAUD TARGET-PROG'.  After that, the only
54
new command you need to know about is `target remote'.  It's argument is either
55
a device name (usually a serial device, like `/dev/ttyb'), or a HOST:PORT
56
descriptor.  For example:
57
 
58
        (gdb) target remote /dev/ttyb
59
 
60
communicates with the server via serial line /dev/ttyb, and:
61
 
62
        (gdb) target remote the-target:2345
63
 
64
communicates via a TCP connection to port 2345 on host `the-target', where
65
you previously started up gdbserver with the same port number.  Note that for
66
TCP connections, you must start up gdbserver prior to using the `target remote'
67
command, otherwise you may get an error that looks something like
68
`Connection refused'.
69
 
70
Building:
71
 
72
Configuring gdbserver you should specify the same machine for host and
73
target (which are the machine that gdbserver is going to run on.  This
74
is not the same as the machine that gdb is going to run on; building
75
gdbserver automatically as part of building a whole tree of tools does
76
not currently work if cross-compilation is involved (we don't get the
77
right CC in the Makefile, to start with)).
78
 
79
gdbserver should work on sparc-sun-sunos4* or Lynx.  The following
80
instructions pertain to Lynx.  To build the server for Lynx, make a
81
new copy of the distribution onto a disk that is NFS shared with the
82
Lynx system.  Lets say that's in a directory called xyzzy.  Then,
83
follow these steps under the host system:
84
 
85
        1) cd xyzzy/gdb/gdbserver
86
        2) ../../configure i386-none-lynx
87
 
88
When that completes, do the following on the Lynx system:
89
 
90
        3) cd xyzzy/gdb/gdbserver
91
        4) make CC=gcc
92
 
93
It should build with only a minor complaint about NULL being redefined.  That's
94
a LynxOS problem, and can be ignored.
95
 
96
It's also possible that you may have a cross-compiler to Lynx.  In that case,
97
you can skip the stuff about NFS.  You would replace steps 3 & 4 with:
98
 
99
        make CC=lynx-target-compiler...
100
 
101
Using GDBreplay:
102
 
103
A special hacked down version of gdbserver can be used to replay remote
104
debug log files created by gdb.  Before using the gdb "target" command to
105
initiate a remote debug session, use "set remotelogfile " to tell
106
gdb that you want to make a recording of the serial or tcp session.  Note
107
that when replaying the session, gdb communicates with gdbreplay via tcp,
108
regardless of whether the original session was via a serial link or tcp.
109
 
110
Once you are done with the remote debug session, start gdbreplay and
111
tell it the name of the log file and the host and port number that gdb
112
should connect to (typically the same as the host running gdb):
113
 
114
        $ gdbreplay logfile host:port
115
 
116
Then start gdb (preferably in a different screen or window) and use the
117
"target" command to connect to gdbreplay:
118
 
119
        (gdb) target remote host:port
120
 
121
Repeat the same sequence of user commands to gdb that you gave in the
122
original debug session.  Gdb should not be able to tell that it is talking
123
to gdbreplay rather than a real target, all other things being equal.  Note
124
that gdbreplay echos the command lines to stderr, as well as the contents of
125
the packets it sends and receives.  The last command echoed by gdbreplay is
126
the next command that needs to be typed to gdb to continue the session in
127
sync with the original session.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.