1 |
104 |
markom |
/* Native-dependent code for Linux running on i386's, for GDB.
|
2 |
|
|
Copyright (C) 1999, 2000 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of GDB.
|
5 |
|
|
|
6 |
|
|
This program is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
9 |
|
|
(at your option) any later version.
|
10 |
|
|
|
11 |
|
|
This program is distributed in the hope that it will be useful,
|
12 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
|
|
GNU General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with this program; if not, write to the Free Software
|
18 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
19 |
|
|
Boston, MA 02111-1307, USA. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "inferior.h"
|
23 |
|
|
#include "gdbcore.h"
|
24 |
|
|
|
25 |
|
|
/* For i386_linux_skip_solib_resolver. */
|
26 |
|
|
#include "symtab.h"
|
27 |
|
|
#include "symfile.h"
|
28 |
|
|
#include "objfiles.h"
|
29 |
|
|
|
30 |
|
|
#include <sys/ptrace.h>
|
31 |
|
|
#include <sys/user.h>
|
32 |
|
|
#include <sys/procfs.h>
|
33 |
|
|
|
34 |
|
|
#ifdef HAVE_SYS_REG_H
|
35 |
|
|
#include <sys/reg.h>
|
36 |
|
|
#endif
|
37 |
|
|
|
38 |
|
|
/* On Linux, threads are implemented as pseudo-processes, in which
|
39 |
|
|
case we may be tracing more than one process at a time. In that
|
40 |
|
|
case, inferior_pid will contain the main process ID and the
|
41 |
|
|
individual thread (process) ID mashed together. These macros are
|
42 |
|
|
used to separate them out. These definitions should be overridden
|
43 |
|
|
if thread support is included. */
|
44 |
|
|
|
45 |
|
|
#if !defined (PIDGET) /* Default definition for PIDGET/TIDGET. */
|
46 |
|
|
#define PIDGET(PID) PID
|
47 |
|
|
#define TIDGET(PID) 0
|
48 |
|
|
#endif
|
49 |
|
|
|
50 |
|
|
|
51 |
|
|
/* The register sets used in Linux ELF core-dumps are identical to the
|
52 |
|
|
register sets in `struct user' that is used for a.out core-dumps,
|
53 |
|
|
and is also used by `ptrace'. The corresponding types are
|
54 |
|
|
`elf_gregset_t' for the general-purpose registers (with
|
55 |
|
|
`elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
|
56 |
|
|
for the floating-point registers.
|
57 |
|
|
|
58 |
|
|
Those types used to be available under the names `gregset_t' and
|
59 |
|
|
`fpregset_t' too, and this file used those names in the past. But
|
60 |
|
|
those names are now used for the register sets used in the
|
61 |
|
|
`mcontext_t' type, and have a different size and layout. */
|
62 |
|
|
|
63 |
|
|
/* Mapping between the general-purpose registers in `struct user'
|
64 |
|
|
format and GDB's register array layout. */
|
65 |
|
|
static int regmap[] =
|
66 |
|
|
{
|
67 |
|
|
EAX, ECX, EDX, EBX,
|
68 |
|
|
UESP, EBP, ESI, EDI,
|
69 |
|
|
EIP, EFL, CS, SS,
|
70 |
|
|
DS, ES, FS, GS
|
71 |
|
|
};
|
72 |
|
|
|
73 |
|
|
/* Which ptrace request retrieves which registers?
|
74 |
|
|
These apply to the corresponding SET requests as well. */
|
75 |
|
|
#define GETREGS_SUPPLIES(regno) \
|
76 |
|
|
(0 <= (regno) && (regno) <= 15)
|
77 |
|
|
#define GETFPREGS_SUPPLIES(regno) \
|
78 |
|
|
(FP0_REGNUM <= (regno) && (regno) <= LAST_FPU_CTRL_REGNUM)
|
79 |
|
|
#define GETXFPREGS_SUPPLIES(regno) \
|
80 |
|
|
(FP0_REGNUM <= (regno) && (regno) <= MXCSR_REGNUM)
|
81 |
|
|
|
82 |
|
|
/* Does the current host support the GETREGS request? */
|
83 |
|
|
int have_ptrace_getregs =
|
84 |
|
|
#ifdef HAVE_PTRACE_GETREGS
|
85 |
|
|
1
|
86 |
|
|
#else
|
87 |
|
|
|
88 |
|
|
#endif
|
89 |
|
|
;
|
90 |
|
|
|
91 |
|
|
/* Does the current host support the GETXFPREGS request? The header
|
92 |
|
|
file may or may not define it, and even if it is defined, the
|
93 |
|
|
kernel will return EIO if it's running on a pre-SSE processor.
|
94 |
|
|
|
95 |
|
|
PTRACE_GETXFPREGS is a Cygnus invention, since we wrote our own
|
96 |
|
|
Linux kernel patch for SSE support. That patch may or may not
|
97 |
|
|
actually make it into the official distribution. If you find that
|
98 |
|
|
years have gone by since this stuff was added, and Linux isn't
|
99 |
|
|
using PTRACE_GETXFPREGS, that means that our patch didn't make it,
|
100 |
|
|
and you can delete this, and the related code.
|
101 |
|
|
|
102 |
|
|
My instinct is to attach this to some architecture- or
|
103 |
|
|
target-specific data structure, but really, a particular GDB
|
104 |
|
|
process can only run on top of one kernel at a time. So it's okay
|
105 |
|
|
for this to be a simple variable. */
|
106 |
|
|
int have_ptrace_getxfpregs =
|
107 |
|
|
#ifdef HAVE_PTRACE_GETXFPREGS
|
108 |
|
|
1
|
109 |
|
|
#else
|
110 |
|
|
|
111 |
|
|
#endif
|
112 |
|
|
;
|
113 |
|
|
|
114 |
|
|
|
115 |
|
|
/* Fetching registers directly from the U area, one at a time. */
|
116 |
|
|
|
117 |
|
|
/* FIXME: kettenis/2000-03-05: This duplicates code from `inptrace.c'.
|
118 |
|
|
The problem is that we define FETCH_INFERIOR_REGISTERS since we
|
119 |
|
|
want to use our own versions of {fetch,store}_inferior_registers
|
120 |
|
|
that use the GETREGS request. This means that the code in
|
121 |
|
|
`infptrace.c' is #ifdef'd out. But we need to fall back on that
|
122 |
|
|
code when GDB is running on top of a kernel that doesn't support
|
123 |
|
|
the GETREGS request. I want to avoid changing `infptrace.c' right
|
124 |
|
|
now. */
|
125 |
|
|
|
126 |
|
|
#ifndef PT_READ_U
|
127 |
|
|
#define PT_READ_U PTRACE_PEEKUSR
|
128 |
|
|
#endif
|
129 |
|
|
#ifndef PT_WRITE_U
|
130 |
|
|
#define PT_WRITE_U PTRACE_POKEUSR
|
131 |
|
|
#endif
|
132 |
|
|
|
133 |
|
|
/* Default the type of the ptrace transfer to int. */
|
134 |
|
|
#ifndef PTRACE_XFER_TYPE
|
135 |
|
|
#define PTRACE_XFER_TYPE int
|
136 |
|
|
#endif
|
137 |
|
|
|
138 |
|
|
/* Registers we shouldn't try to fetch. */
|
139 |
|
|
#if !defined (CANNOT_FETCH_REGISTER)
|
140 |
|
|
#define CANNOT_FETCH_REGISTER(regno) 0
|
141 |
|
|
#endif
|
142 |
|
|
|
143 |
|
|
/* Fetch one register. */
|
144 |
|
|
|
145 |
|
|
static void
|
146 |
|
|
fetch_register (regno)
|
147 |
|
|
int regno;
|
148 |
|
|
{
|
149 |
|
|
/* This isn't really an address. But ptrace thinks of it as one. */
|
150 |
|
|
CORE_ADDR regaddr;
|
151 |
|
|
char mess[128]; /* For messages */
|
152 |
|
|
register int i;
|
153 |
|
|
unsigned int offset; /* Offset of registers within the u area. */
|
154 |
|
|
char buf[MAX_REGISTER_RAW_SIZE];
|
155 |
|
|
int tid;
|
156 |
|
|
|
157 |
|
|
if (CANNOT_FETCH_REGISTER (regno))
|
158 |
|
|
{
|
159 |
|
|
memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
|
160 |
|
|
supply_register (regno, buf);
|
161 |
|
|
return;
|
162 |
|
|
}
|
163 |
|
|
|
164 |
|
|
/* Overload thread id onto process id */
|
165 |
|
|
if ((tid = TIDGET (inferior_pid)) == 0)
|
166 |
|
|
tid = inferior_pid; /* no thread id, just use process id */
|
167 |
|
|
|
168 |
|
|
offset = U_REGS_OFFSET;
|
169 |
|
|
|
170 |
|
|
regaddr = register_addr (regno, offset);
|
171 |
|
|
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
|
172 |
|
|
{
|
173 |
|
|
errno = 0;
|
174 |
|
|
*(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
|
175 |
|
|
(PTRACE_ARG3_TYPE) regaddr, 0);
|
176 |
|
|
regaddr += sizeof (PTRACE_XFER_TYPE);
|
177 |
|
|
if (errno != 0)
|
178 |
|
|
{
|
179 |
|
|
sprintf (mess, "reading register %s (#%d)",
|
180 |
|
|
REGISTER_NAME (regno), regno);
|
181 |
|
|
perror_with_name (mess);
|
182 |
|
|
}
|
183 |
|
|
}
|
184 |
|
|
supply_register (regno, buf);
|
185 |
|
|
}
|
186 |
|
|
|
187 |
|
|
/* Fetch register values from the inferior.
|
188 |
|
|
If REGNO is negative, do this for all registers.
|
189 |
|
|
Otherwise, REGNO specifies which register (so we can save time). */
|
190 |
|
|
|
191 |
|
|
void
|
192 |
|
|
old_fetch_inferior_registers (regno)
|
193 |
|
|
int regno;
|
194 |
|
|
{
|
195 |
|
|
if (regno >= 0)
|
196 |
|
|
{
|
197 |
|
|
fetch_register (regno);
|
198 |
|
|
}
|
199 |
|
|
else
|
200 |
|
|
{
|
201 |
|
|
for (regno = 0; regno < ARCH_NUM_REGS; regno++)
|
202 |
|
|
{
|
203 |
|
|
fetch_register (regno);
|
204 |
|
|
}
|
205 |
|
|
}
|
206 |
|
|
}
|
207 |
|
|
|
208 |
|
|
/* Registers we shouldn't try to store. */
|
209 |
|
|
#if !defined (CANNOT_STORE_REGISTER)
|
210 |
|
|
#define CANNOT_STORE_REGISTER(regno) 0
|
211 |
|
|
#endif
|
212 |
|
|
|
213 |
|
|
/* Store one register. */
|
214 |
|
|
|
215 |
|
|
static void
|
216 |
|
|
store_register (regno)
|
217 |
|
|
int regno;
|
218 |
|
|
{
|
219 |
|
|
/* This isn't really an address. But ptrace thinks of it as one. */
|
220 |
|
|
CORE_ADDR regaddr;
|
221 |
|
|
char mess[128]; /* For messages */
|
222 |
|
|
register int i;
|
223 |
|
|
unsigned int offset; /* Offset of registers within the u area. */
|
224 |
|
|
int tid;
|
225 |
|
|
|
226 |
|
|
if (CANNOT_STORE_REGISTER (regno))
|
227 |
|
|
{
|
228 |
|
|
return;
|
229 |
|
|
}
|
230 |
|
|
|
231 |
|
|
/* Overload thread id onto process id */
|
232 |
|
|
if ((tid = TIDGET (inferior_pid)) == 0)
|
233 |
|
|
tid = inferior_pid; /* no thread id, just use process id */
|
234 |
|
|
|
235 |
|
|
offset = U_REGS_OFFSET;
|
236 |
|
|
|
237 |
|
|
regaddr = register_addr (regno, offset);
|
238 |
|
|
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
|
239 |
|
|
{
|
240 |
|
|
errno = 0;
|
241 |
|
|
ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
|
242 |
|
|
*(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
|
243 |
|
|
regaddr += sizeof (PTRACE_XFER_TYPE);
|
244 |
|
|
if (errno != 0)
|
245 |
|
|
{
|
246 |
|
|
sprintf (mess, "writing register %s (#%d)",
|
247 |
|
|
REGISTER_NAME (regno), regno);
|
248 |
|
|
perror_with_name (mess);
|
249 |
|
|
}
|
250 |
|
|
}
|
251 |
|
|
}
|
252 |
|
|
|
253 |
|
|
/* Store our register values back into the inferior.
|
254 |
|
|
If REGNO is negative, do this for all registers.
|
255 |
|
|
Otherwise, REGNO specifies which register (so we can save time). */
|
256 |
|
|
|
257 |
|
|
void
|
258 |
|
|
old_store_inferior_registers (regno)
|
259 |
|
|
int regno;
|
260 |
|
|
{
|
261 |
|
|
if (regno >= 0)
|
262 |
|
|
{
|
263 |
|
|
store_register (regno);
|
264 |
|
|
}
|
265 |
|
|
else
|
266 |
|
|
{
|
267 |
|
|
for (regno = 0; regno < ARCH_NUM_REGS; regno++)
|
268 |
|
|
{
|
269 |
|
|
store_register (regno);
|
270 |
|
|
}
|
271 |
|
|
}
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
|
275 |
|
|
/* Transfering the general-purpose registers between GDB, inferiors
|
276 |
|
|
and core files. */
|
277 |
|
|
|
278 |
|
|
/* Fill GDB's register array with the genereal-purpose register values
|
279 |
|
|
in *GREGSETP. */
|
280 |
|
|
|
281 |
|
|
void
|
282 |
|
|
supply_gregset (elf_gregset_t *gregsetp)
|
283 |
|
|
{
|
284 |
|
|
elf_greg_t *regp = (elf_greg_t *) gregsetp;
|
285 |
|
|
int regi;
|
286 |
|
|
|
287 |
|
|
for (regi = 0; regi < NUM_GREGS; regi++)
|
288 |
|
|
supply_register (regi, (char *) (regp + regmap[regi]));
|
289 |
|
|
}
|
290 |
|
|
|
291 |
|
|
/* Convert the valid general-purpose register values in GDB's register
|
292 |
|
|
array to `struct user' format and store them in *GREGSETP. The
|
293 |
|
|
array VALID indicates which register values are valid. If VALID is
|
294 |
|
|
NULL, all registers are assumed to be valid. */
|
295 |
|
|
|
296 |
|
|
static void
|
297 |
|
|
convert_to_gregset (elf_gregset_t *gregsetp, signed char *valid)
|
298 |
|
|
{
|
299 |
|
|
elf_greg_t *regp = (elf_greg_t *) gregsetp;
|
300 |
|
|
int regi;
|
301 |
|
|
|
302 |
|
|
for (regi = 0; regi < NUM_GREGS; regi++)
|
303 |
|
|
if (! valid || valid[regi])
|
304 |
|
|
*(regp + regmap[regi]) = * (int *) ®isters[REGISTER_BYTE (regi)];
|
305 |
|
|
}
|
306 |
|
|
|
307 |
|
|
/* Fill register REGNO (if it is a general-purpose register) in
|
308 |
|
|
*GREGSETPS with the value in GDB's register array. If REGNO is -1,
|
309 |
|
|
do this for all registers. */
|
310 |
|
|
void
|
311 |
|
|
fill_gregset (elf_gregset_t *gregsetp, int regno)
|
312 |
|
|
{
|
313 |
|
|
if (regno == -1)
|
314 |
|
|
{
|
315 |
|
|
convert_to_gregset (gregsetp, NULL);
|
316 |
|
|
return;
|
317 |
|
|
}
|
318 |
|
|
|
319 |
|
|
if (GETREGS_SUPPLIES (regno))
|
320 |
|
|
{
|
321 |
|
|
signed char valid[NUM_GREGS];
|
322 |
|
|
|
323 |
|
|
memset (valid, 0, sizeof (valid));
|
324 |
|
|
valid[regno] = 1;
|
325 |
|
|
|
326 |
|
|
convert_to_gregset (gregsetp, valid);
|
327 |
|
|
}
|
328 |
|
|
}
|
329 |
|
|
|
330 |
|
|
#ifdef HAVE_PTRACE_GETREGS
|
331 |
|
|
|
332 |
|
|
/* Fetch all general-purpose registers from process/thread TID and
|
333 |
|
|
store their values in GDB's register array. */
|
334 |
|
|
|
335 |
|
|
static void
|
336 |
|
|
fetch_regs (int tid)
|
337 |
|
|
{
|
338 |
|
|
elf_gregset_t regs;
|
339 |
|
|
int ret;
|
340 |
|
|
|
341 |
|
|
ret = ptrace (PTRACE_GETREGS, tid, 0, (int) ®s);
|
342 |
|
|
if (ret < 0)
|
343 |
|
|
{
|
344 |
|
|
if (errno == EIO)
|
345 |
|
|
{
|
346 |
|
|
/* The kernel we're running on doesn't support the GETREGS
|
347 |
|
|
request. Reset `have_ptrace_getregs'. */
|
348 |
|
|
have_ptrace_getregs = 0;
|
349 |
|
|
return;
|
350 |
|
|
}
|
351 |
|
|
|
352 |
|
|
warning ("Couldn't get registers.");
|
353 |
|
|
return;
|
354 |
|
|
}
|
355 |
|
|
|
356 |
|
|
supply_gregset (®s);
|
357 |
|
|
}
|
358 |
|
|
|
359 |
|
|
/* Store all valid general-purpose registers in GDB's register array
|
360 |
|
|
into the process/thread specified by TID. */
|
361 |
|
|
|
362 |
|
|
static void
|
363 |
|
|
store_regs (int tid)
|
364 |
|
|
{
|
365 |
|
|
elf_gregset_t regs;
|
366 |
|
|
int ret;
|
367 |
|
|
|
368 |
|
|
ret = ptrace (PTRACE_GETREGS, tid, 0, (int) ®s);
|
369 |
|
|
if (ret < 0)
|
370 |
|
|
{
|
371 |
|
|
warning ("Couldn't get registers.");
|
372 |
|
|
return;
|
373 |
|
|
}
|
374 |
|
|
|
375 |
|
|
convert_to_gregset (®s, register_valid);
|
376 |
|
|
|
377 |
|
|
ret = ptrace (PTRACE_SETREGS, tid, 0, (int) ®s);
|
378 |
|
|
if (ret < 0)
|
379 |
|
|
{
|
380 |
|
|
warning ("Couldn't write registers.");
|
381 |
|
|
return;
|
382 |
|
|
}
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
#else
|
386 |
|
|
|
387 |
|
|
static void fetch_regs (int tid) {}
|
388 |
|
|
static void store_regs (int tid) {}
|
389 |
|
|
|
390 |
|
|
#endif
|
391 |
|
|
|
392 |
|
|
|
393 |
|
|
/* Transfering floating-point registers between GDB, inferiors and cores. */
|
394 |
|
|
|
395 |
|
|
/* What is the address of st(N) within the floating-point register set F? */
|
396 |
|
|
#define FPREG_ADDR(f, n) ((char *) &(f)->st_space + (n) * 10)
|
397 |
|
|
|
398 |
|
|
/* Fill GDB's register array with the floating-point register values in
|
399 |
|
|
*FPREGSETP. */
|
400 |
|
|
|
401 |
|
|
void
|
402 |
|
|
supply_fpregset (elf_fpregset_t *fpregsetp)
|
403 |
|
|
{
|
404 |
|
|
int reg;
|
405 |
|
|
long l;
|
406 |
|
|
|
407 |
|
|
/* Supply the floating-point registers. */
|
408 |
|
|
for (reg = 0; reg < 8; reg++)
|
409 |
|
|
supply_register (FP0_REGNUM + reg, FPREG_ADDR (fpregsetp, reg));
|
410 |
|
|
|
411 |
|
|
/* We have to mask off the reserved bits in *FPREGSETP before
|
412 |
|
|
storing the values in GDB's register file. */
|
413 |
|
|
#define supply(REGNO, MEMBER) \
|
414 |
|
|
l = fpregsetp->MEMBER & 0xffff; \
|
415 |
|
|
supply_register (REGNO, (char *) &l)
|
416 |
|
|
|
417 |
|
|
supply (FCTRL_REGNUM, cwd);
|
418 |
|
|
supply (FSTAT_REGNUM, swd);
|
419 |
|
|
supply (FTAG_REGNUM, twd);
|
420 |
|
|
supply_register (FCOFF_REGNUM, (char *) &fpregsetp->fip);
|
421 |
|
|
supply (FDS_REGNUM, fos);
|
422 |
|
|
supply_register (FDOFF_REGNUM, (char *) &fpregsetp->foo);
|
423 |
|
|
|
424 |
|
|
#undef supply
|
425 |
|
|
|
426 |
|
|
/* Extract the code segment and opcode from the "fcs" member. */
|
427 |
|
|
l = fpregsetp->fcs & 0xffff;
|
428 |
|
|
supply_register (FCS_REGNUM, (char *) &l);
|
429 |
|
|
|
430 |
|
|
l = (fpregsetp->fcs >> 16) & ((1 << 11) - 1);
|
431 |
|
|
supply_register (FOP_REGNUM, (char *) &l);
|
432 |
|
|
}
|
433 |
|
|
|
434 |
|
|
/* Convert the valid floating-point register values in GDB's register
|
435 |
|
|
array to `struct user' format and store them in *FPREGSETP. The
|
436 |
|
|
array VALID indicates which register values are valid. If VALID is
|
437 |
|
|
NULL, all registers are assumed to be valid. */
|
438 |
|
|
|
439 |
|
|
static void
|
440 |
|
|
convert_to_fpregset (elf_fpregset_t *fpregsetp, signed char *valid)
|
441 |
|
|
{
|
442 |
|
|
int reg;
|
443 |
|
|
|
444 |
|
|
/* Fill in the floating-point registers. */
|
445 |
|
|
for (reg = 0; reg < 8; reg++)
|
446 |
|
|
if (!valid || valid[reg])
|
447 |
|
|
memcpy (FPREG_ADDR (fpregsetp, reg),
|
448 |
|
|
®isters[REGISTER_BYTE (FP0_REGNUM + reg)],
|
449 |
|
|
REGISTER_RAW_SIZE(FP0_REGNUM + reg));
|
450 |
|
|
|
451 |
|
|
/* We're not supposed to touch the reserved bits in *FPREGSETP. */
|
452 |
|
|
|
453 |
|
|
#define fill(MEMBER, REGNO) \
|
454 |
|
|
if (! valid || valid[(REGNO)]) \
|
455 |
|
|
fpregsetp->MEMBER \
|
456 |
|
|
= ((fpregsetp->MEMBER & ~0xffff) \
|
457 |
|
|
| (* (int *) ®isters[REGISTER_BYTE (REGNO)] & 0xffff))
|
458 |
|
|
|
459 |
|
|
#define fill_register(MEMBER, REGNO) \
|
460 |
|
|
if (! valid || valid[(REGNO)]) \
|
461 |
|
|
memcpy (&fpregsetp->MEMBER, ®isters[REGISTER_BYTE (REGNO)], \
|
462 |
|
|
sizeof (fpregsetp->MEMBER))
|
463 |
|
|
|
464 |
|
|
fill (cwd, FCTRL_REGNUM);
|
465 |
|
|
fill (swd, FSTAT_REGNUM);
|
466 |
|
|
fill (twd, FTAG_REGNUM);
|
467 |
|
|
fill_register (fip, FCOFF_REGNUM);
|
468 |
|
|
fill (foo, FDOFF_REGNUM);
|
469 |
|
|
fill_register (fos, FDS_REGNUM);
|
470 |
|
|
|
471 |
|
|
#undef fill
|
472 |
|
|
#undef fill_register
|
473 |
|
|
|
474 |
|
|
if (! valid || valid[FCS_REGNUM])
|
475 |
|
|
fpregsetp->fcs
|
476 |
|
|
= ((fpregsetp->fcs & ~0xffff)
|
477 |
|
|
| (* (int *) ®isters[REGISTER_BYTE (FCS_REGNUM)] & 0xffff));
|
478 |
|
|
|
479 |
|
|
if (! valid || valid[FOP_REGNUM])
|
480 |
|
|
fpregsetp->fcs
|
481 |
|
|
= ((fpregsetp->fcs & 0xffff)
|
482 |
|
|
| ((*(int *) ®isters[REGISTER_BYTE (FOP_REGNUM)] & ((1 << 11) - 1))
|
483 |
|
|
<< 16));
|
484 |
|
|
}
|
485 |
|
|
|
486 |
|
|
/* Fill register REGNO (if it is a floating-point register) in
|
487 |
|
|
*FPREGSETP with the value in GDB's register array. If REGNO is -1,
|
488 |
|
|
do this for all registers. */
|
489 |
|
|
|
490 |
|
|
void
|
491 |
|
|
fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
|
492 |
|
|
{
|
493 |
|
|
if (regno == -1)
|
494 |
|
|
{
|
495 |
|
|
convert_to_fpregset (fpregsetp, NULL);
|
496 |
|
|
return;
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
if (GETFPREGS_SUPPLIES(regno))
|
500 |
|
|
{
|
501 |
|
|
signed char valid[MAX_NUM_REGS];
|
502 |
|
|
|
503 |
|
|
memset (valid, 0, sizeof (valid));
|
504 |
|
|
valid[regno] = 1;
|
505 |
|
|
|
506 |
|
|
convert_to_fpregset (fpregsetp, valid);
|
507 |
|
|
}
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
#ifdef HAVE_PTRACE_GETREGS
|
511 |
|
|
|
512 |
|
|
/* Fetch all floating-point registers from process/thread TID and store
|
513 |
|
|
thier values in GDB's register array. */
|
514 |
|
|
|
515 |
|
|
static void
|
516 |
|
|
fetch_fpregs (int tid)
|
517 |
|
|
{
|
518 |
|
|
elf_fpregset_t fpregs;
|
519 |
|
|
int ret;
|
520 |
|
|
|
521 |
|
|
ret = ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs);
|
522 |
|
|
if (ret < 0)
|
523 |
|
|
{
|
524 |
|
|
warning ("Couldn't get floating point status.");
|
525 |
|
|
return;
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
supply_fpregset (&fpregs);
|
529 |
|
|
}
|
530 |
|
|
|
531 |
|
|
/* Store all valid floating-point registers in GDB's register array
|
532 |
|
|
into the process/thread specified by TID. */
|
533 |
|
|
|
534 |
|
|
static void
|
535 |
|
|
store_fpregs (int tid)
|
536 |
|
|
{
|
537 |
|
|
elf_fpregset_t fpregs;
|
538 |
|
|
int ret;
|
539 |
|
|
|
540 |
|
|
ret = ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs);
|
541 |
|
|
if (ret < 0)
|
542 |
|
|
{
|
543 |
|
|
warning ("Couldn't get floating point status.");
|
544 |
|
|
return;
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
convert_to_fpregset (&fpregs, register_valid);
|
548 |
|
|
|
549 |
|
|
ret = ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs);
|
550 |
|
|
if (ret < 0)
|
551 |
|
|
{
|
552 |
|
|
warning ("Couldn't write floating point status.");
|
553 |
|
|
return;
|
554 |
|
|
}
|
555 |
|
|
}
|
556 |
|
|
|
557 |
|
|
#else
|
558 |
|
|
|
559 |
|
|
static void fetch_fpregs (int tid) {}
|
560 |
|
|
static void store_fpregs (int tid) {}
|
561 |
|
|
|
562 |
|
|
#endif
|
563 |
|
|
|
564 |
|
|
|
565 |
|
|
/* Transfering floating-point and SSE registers to and from GDB. */
|
566 |
|
|
|
567 |
|
|
/* PTRACE_GETXFPREGS is a Cygnus invention, since we wrote our own
|
568 |
|
|
Linux kernel patch for SSE support. That patch may or may not
|
569 |
|
|
actually make it into the official distribution. If you find that
|
570 |
|
|
years have gone by since this code was added, and Linux isn't using
|
571 |
|
|
PTRACE_GETXFPREGS, that means that our patch didn't make it, and
|
572 |
|
|
you can delete this code. */
|
573 |
|
|
|
574 |
|
|
#ifdef HAVE_PTRACE_GETXFPREGS
|
575 |
|
|
|
576 |
|
|
/* Fill GDB's register array with the floating-point and SSE register
|
577 |
|
|
values in *XFPREGS. */
|
578 |
|
|
|
579 |
|
|
static void
|
580 |
|
|
supply_xfpregset (struct user_xfpregs_struct *xfpregs)
|
581 |
|
|
{
|
582 |
|
|
int reg;
|
583 |
|
|
|
584 |
|
|
/* Supply the floating-point registers. */
|
585 |
|
|
for (reg = 0; reg < 8; reg++)
|
586 |
|
|
supply_register (FP0_REGNUM + reg, (char *) &xfpregs->st_space[reg]);
|
587 |
|
|
|
588 |
|
|
{
|
589 |
|
|
supply_register (FCTRL_REGNUM, (char *) &xfpregs->cwd);
|
590 |
|
|
supply_register (FSTAT_REGNUM, (char *) &xfpregs->swd);
|
591 |
|
|
supply_register (FTAG_REGNUM, (char *) &xfpregs->twd);
|
592 |
|
|
supply_register (FCOFF_REGNUM, (char *) &xfpregs->fip);
|
593 |
|
|
supply_register (FDS_REGNUM, (char *) &xfpregs->fos);
|
594 |
|
|
supply_register (FDOFF_REGNUM, (char *) &xfpregs->foo);
|
595 |
|
|
|
596 |
|
|
/* Extract the code segment and opcode from the "fcs" member. */
|
597 |
|
|
{
|
598 |
|
|
long l;
|
599 |
|
|
|
600 |
|
|
l = xfpregs->fcs & 0xffff;
|
601 |
|
|
supply_register (FCS_REGNUM, (char *) &l);
|
602 |
|
|
|
603 |
|
|
l = (xfpregs->fcs >> 16) & ((1 << 11) - 1);
|
604 |
|
|
supply_register (FOP_REGNUM, (char *) &l);
|
605 |
|
|
}
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* Supply the SSE registers. */
|
609 |
|
|
for (reg = 0; reg < 8; reg++)
|
610 |
|
|
supply_register (XMM0_REGNUM + reg, (char *) &xfpregs->xmm_space[reg]);
|
611 |
|
|
supply_register (MXCSR_REGNUM, (char *) &xfpregs->mxcsr);
|
612 |
|
|
}
|
613 |
|
|
|
614 |
|
|
/* Convert the valid floating-point and SSE registers in GDB's
|
615 |
|
|
register array to `struct user' format and store them in *XFPREGS.
|
616 |
|
|
The array VALID indicates which registers are valid. If VALID is
|
617 |
|
|
NULL, all registers are assumed to be valid. */
|
618 |
|
|
|
619 |
|
|
static void
|
620 |
|
|
convert_to_xfpregset (struct user_xfpregs_struct *xfpregs,
|
621 |
|
|
signed char *valid)
|
622 |
|
|
{
|
623 |
|
|
int reg;
|
624 |
|
|
|
625 |
|
|
/* Fill in the floating-point registers. */
|
626 |
|
|
for (reg = 0; reg < 8; reg++)
|
627 |
|
|
if (!valid || valid[reg])
|
628 |
|
|
memcpy (&xfpregs->st_space[reg],
|
629 |
|
|
®isters[REGISTER_BYTE (FP0_REGNUM + reg)],
|
630 |
|
|
REGISTER_RAW_SIZE(FP0_REGNUM + reg));
|
631 |
|
|
|
632 |
|
|
#define fill(MEMBER, REGNO) \
|
633 |
|
|
if (! valid || valid[(REGNO)]) \
|
634 |
|
|
memcpy (&xfpregs->MEMBER, ®isters[REGISTER_BYTE (REGNO)], \
|
635 |
|
|
sizeof (xfpregs->MEMBER))
|
636 |
|
|
|
637 |
|
|
fill (cwd, FCTRL_REGNUM);
|
638 |
|
|
fill (swd, FSTAT_REGNUM);
|
639 |
|
|
fill (twd, FTAG_REGNUM);
|
640 |
|
|
fill (fip, FCOFF_REGNUM);
|
641 |
|
|
fill (foo, FDOFF_REGNUM);
|
642 |
|
|
fill (fos, FDS_REGNUM);
|
643 |
|
|
|
644 |
|
|
#undef fill
|
645 |
|
|
|
646 |
|
|
if (! valid || valid[FCS_REGNUM])
|
647 |
|
|
xfpregs->fcs
|
648 |
|
|
= ((xfpregs->fcs & ~0xffff)
|
649 |
|
|
| (* (int *) ®isters[REGISTER_BYTE (FCS_REGNUM)] & 0xffff));
|
650 |
|
|
|
651 |
|
|
if (! valid || valid[FOP_REGNUM])
|
652 |
|
|
xfpregs->fcs
|
653 |
|
|
= ((xfpregs->fcs & 0xffff)
|
654 |
|
|
| ((*(int *) ®isters[REGISTER_BYTE (FOP_REGNUM)] & ((1 << 11) - 1))
|
655 |
|
|
<< 16));
|
656 |
|
|
|
657 |
|
|
/* Fill in the XMM registers. */
|
658 |
|
|
for (reg = 0; reg < 8; reg++)
|
659 |
|
|
if (! valid || valid[reg])
|
660 |
|
|
memcpy (&xfpregs->xmm_space[reg],
|
661 |
|
|
®isters[REGISTER_BYTE (XMM0_REGNUM + reg)],
|
662 |
|
|
REGISTER_RAW_SIZE (XMM0_REGNUM + reg));
|
663 |
|
|
}
|
664 |
|
|
|
665 |
|
|
/* Fetch all registers covered by the PTRACE_SETXFPREGS request from
|
666 |
|
|
process/thread TID and store their values in GDB's register array.
|
667 |
|
|
Return non-zero if successful, zero otherwise. */
|
668 |
|
|
|
669 |
|
|
static int
|
670 |
|
|
fetch_xfpregs (int tid)
|
671 |
|
|
{
|
672 |
|
|
struct user_xfpregs_struct xfpregs;
|
673 |
|
|
int ret;
|
674 |
|
|
|
675 |
|
|
if (! have_ptrace_getxfpregs)
|
676 |
|
|
return 0;
|
677 |
|
|
|
678 |
|
|
ret = ptrace (PTRACE_GETXFPREGS, tid, 0, &xfpregs);
|
679 |
|
|
if (ret == -1)
|
680 |
|
|
{
|
681 |
|
|
if (errno == EIO)
|
682 |
|
|
{
|
683 |
|
|
have_ptrace_getxfpregs = 0;
|
684 |
|
|
return 0;
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
warning ("Couldn't read floating-point and SSE registers.");
|
688 |
|
|
return 0;
|
689 |
|
|
}
|
690 |
|
|
|
691 |
|
|
supply_xfpregset (&xfpregs);
|
692 |
|
|
return 1;
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
/* Store all valid registers in GDB's register array covered by the
|
696 |
|
|
PTRACE_SETXFPREGS request into the process/thread specified by TID.
|
697 |
|
|
Return non-zero if successful, zero otherwise. */
|
698 |
|
|
|
699 |
|
|
static int
|
700 |
|
|
store_xfpregs (int tid)
|
701 |
|
|
{
|
702 |
|
|
struct user_xfpregs_struct xfpregs;
|
703 |
|
|
int ret;
|
704 |
|
|
|
705 |
|
|
if (! have_ptrace_getxfpregs)
|
706 |
|
|
return 0;
|
707 |
|
|
|
708 |
|
|
ret = ptrace (PTRACE_GETXFPREGS, tid, 0, &xfpregs);
|
709 |
|
|
if (ret == -1)
|
710 |
|
|
{
|
711 |
|
|
if (errno == EIO)
|
712 |
|
|
{
|
713 |
|
|
have_ptrace_getxfpregs = 0;
|
714 |
|
|
return 0;
|
715 |
|
|
}
|
716 |
|
|
|
717 |
|
|
warning ("Couldn't read floating-point and SSE registers.");
|
718 |
|
|
return 0;
|
719 |
|
|
}
|
720 |
|
|
|
721 |
|
|
convert_to_xfpregset (&xfpregs, register_valid);
|
722 |
|
|
|
723 |
|
|
if (ptrace (PTRACE_SETXFPREGS, tid, 0, &xfpregs) < 0)
|
724 |
|
|
{
|
725 |
|
|
warning ("Couldn't write floating-point and SSE registers.");
|
726 |
|
|
return 0;
|
727 |
|
|
}
|
728 |
|
|
|
729 |
|
|
return 1;
|
730 |
|
|
}
|
731 |
|
|
|
732 |
|
|
/* Fill the XMM registers in the register array with dummy values. For
|
733 |
|
|
cases where we don't have access to the XMM registers. I think
|
734 |
|
|
this is cleaner than printing a warning. For a cleaner solution,
|
735 |
|
|
we should gdbarchify the i386 family. */
|
736 |
|
|
|
737 |
|
|
static void
|
738 |
|
|
dummy_sse_values (void)
|
739 |
|
|
{
|
740 |
|
|
/* C doesn't have a syntax for NaN's, so write it out as an array of
|
741 |
|
|
longs. */
|
742 |
|
|
static long dummy[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
|
743 |
|
|
static long mxcsr = 0x1f80;
|
744 |
|
|
int reg;
|
745 |
|
|
|
746 |
|
|
for (reg = 0; reg < 8; reg++)
|
747 |
|
|
supply_register (XMM0_REGNUM + reg, (char *) dummy);
|
748 |
|
|
supply_register (MXCSR_REGNUM, (char *) &mxcsr);
|
749 |
|
|
}
|
750 |
|
|
|
751 |
|
|
#else
|
752 |
|
|
|
753 |
|
|
/* Stub versions of the above routines, for systems that don't have
|
754 |
|
|
PTRACE_GETXFPREGS. */
|
755 |
|
|
static int store_xfpregs (int tid) { return 0; }
|
756 |
|
|
static int fetch_xfpregs (int tid) { return 0; }
|
757 |
|
|
static void dummy_sse_values (void) {}
|
758 |
|
|
|
759 |
|
|
#endif
|
760 |
|
|
|
761 |
|
|
|
762 |
|
|
/* Transferring arbitrary registers between GDB and inferior. */
|
763 |
|
|
|
764 |
|
|
/* Fetch register REGNO from the child process. If REGNO is -1, do
|
765 |
|
|
this for all registers (including the floating point and SSE
|
766 |
|
|
registers). */
|
767 |
|
|
|
768 |
|
|
void
|
769 |
|
|
fetch_inferior_registers (int regno)
|
770 |
|
|
{
|
771 |
|
|
int tid;
|
772 |
|
|
|
773 |
|
|
/* Use the old method of peeking around in `struct user' if the
|
774 |
|
|
GETREGS request isn't available. */
|
775 |
|
|
if (! have_ptrace_getregs)
|
776 |
|
|
{
|
777 |
|
|
old_fetch_inferior_registers (regno);
|
778 |
|
|
return;
|
779 |
|
|
}
|
780 |
|
|
|
781 |
|
|
/* Linux LWP ID's are process ID's. */
|
782 |
|
|
if ((tid = TIDGET (inferior_pid)) == 0)
|
783 |
|
|
tid = inferior_pid; /* Not a threaded program. */
|
784 |
|
|
|
785 |
|
|
/* Use the PTRACE_GETXFPREGS request whenever possible, since it
|
786 |
|
|
transfers more registers in one system call, and we'll cache the
|
787 |
|
|
results. But remember that fetch_xfpregs can fail, and return
|
788 |
|
|
zero. */
|
789 |
|
|
if (regno == -1)
|
790 |
|
|
{
|
791 |
|
|
fetch_regs (tid);
|
792 |
|
|
|
793 |
|
|
/* The call above might reset `have_ptrace_getregs'. */
|
794 |
|
|
if (! have_ptrace_getregs)
|
795 |
|
|
{
|
796 |
|
|
old_fetch_inferior_registers (-1);
|
797 |
|
|
return;
|
798 |
|
|
}
|
799 |
|
|
|
800 |
|
|
if (fetch_xfpregs (tid))
|
801 |
|
|
return;
|
802 |
|
|
fetch_fpregs (tid);
|
803 |
|
|
return;
|
804 |
|
|
}
|
805 |
|
|
|
806 |
|
|
if (GETREGS_SUPPLIES (regno))
|
807 |
|
|
{
|
808 |
|
|
fetch_regs (tid);
|
809 |
|
|
return;
|
810 |
|
|
}
|
811 |
|
|
|
812 |
|
|
if (GETXFPREGS_SUPPLIES (regno))
|
813 |
|
|
{
|
814 |
|
|
if (fetch_xfpregs (tid))
|
815 |
|
|
return;
|
816 |
|
|
|
817 |
|
|
/* Either our processor or our kernel doesn't support the SSE
|
818 |
|
|
registers, so read the FP registers in the traditional way,
|
819 |
|
|
and fill the SSE registers with dummy values. It would be
|
820 |
|
|
more graceful to handle differences in the register set using
|
821 |
|
|
gdbarch. Until then, this will at least make things work
|
822 |
|
|
plausibly. */
|
823 |
|
|
fetch_fpregs (tid);
|
824 |
|
|
dummy_sse_values ();
|
825 |
|
|
return;
|
826 |
|
|
}
|
827 |
|
|
|
828 |
|
|
internal_error ("i386-linux-nat.c (fetch_inferior_registers): "
|
829 |
|
|
"got request for bad register number %d", regno);
|
830 |
|
|
}
|
831 |
|
|
|
832 |
|
|
/* Store register REGNO back into the child process. If REGNO is -1,
|
833 |
|
|
do this for all registers (including the floating point and SSE
|
834 |
|
|
registers). */
|
835 |
|
|
void
|
836 |
|
|
store_inferior_registers (int regno)
|
837 |
|
|
{
|
838 |
|
|
int tid;
|
839 |
|
|
|
840 |
|
|
/* Use the old method of poking around in `struct user' if the
|
841 |
|
|
SETREGS request isn't available. */
|
842 |
|
|
if (! have_ptrace_getregs)
|
843 |
|
|
{
|
844 |
|
|
old_store_inferior_registers (regno);
|
845 |
|
|
return;
|
846 |
|
|
}
|
847 |
|
|
|
848 |
|
|
/* Linux LWP ID's are process ID's. */
|
849 |
|
|
if ((tid = TIDGET (inferior_pid)) == 0)
|
850 |
|
|
tid = inferior_pid; /* Not a threaded program. */
|
851 |
|
|
|
852 |
|
|
/* Use the PTRACE_SETXFPREGS requests whenever possibl, since it
|
853 |
|
|
transfers more registers in one system call. But remember that
|
854 |
|
|
store_xfpregs can fail, and return zero. */
|
855 |
|
|
if (regno == -1)
|
856 |
|
|
{
|
857 |
|
|
store_regs (tid);
|
858 |
|
|
if (store_xfpregs (tid))
|
859 |
|
|
return;
|
860 |
|
|
store_fpregs (tid);
|
861 |
|
|
return;
|
862 |
|
|
}
|
863 |
|
|
|
864 |
|
|
if (GETREGS_SUPPLIES (regno))
|
865 |
|
|
{
|
866 |
|
|
store_regs (tid);
|
867 |
|
|
return;
|
868 |
|
|
}
|
869 |
|
|
|
870 |
|
|
if (GETXFPREGS_SUPPLIES (regno))
|
871 |
|
|
{
|
872 |
|
|
if (store_xfpregs (tid))
|
873 |
|
|
return;
|
874 |
|
|
|
875 |
|
|
/* Either our processor or our kernel doesn't support the SSE
|
876 |
|
|
registers, so just write the FP registers in the traditional
|
877 |
|
|
way. */
|
878 |
|
|
store_fpregs (tid);
|
879 |
|
|
return;
|
880 |
|
|
}
|
881 |
|
|
|
882 |
|
|
internal_error ("Got request to store bad register number %d.", regno);
|
883 |
|
|
}
|
884 |
|
|
|
885 |
|
|
|
886 |
|
|
/* Interpreting register set info found in core files. */
|
887 |
|
|
|
888 |
|
|
/* Provide registers to GDB from a core file.
|
889 |
|
|
|
890 |
|
|
(We can't use the generic version of this function in
|
891 |
|
|
core-regset.c, because Linux has *three* different kinds of
|
892 |
|
|
register set notes. core-regset.c would have to call
|
893 |
|
|
supply_xfpregset, which most platforms don't have.)
|
894 |
|
|
|
895 |
|
|
CORE_REG_SECT points to an array of bytes, which are the contents
|
896 |
|
|
of a `note' from a core file which BFD thinks might contain
|
897 |
|
|
register contents. CORE_REG_SIZE is its size.
|
898 |
|
|
|
899 |
|
|
WHICH says which register set corelow suspects this is:
|
900 |
|
|
|
901 |
|
|
2 --- the floating-point register set, in elf_fpregset_t format
|
902 |
|
|
3 --- the extended floating-point register set, in struct
|
903 |
|
|
user_xfpregs_struct format
|
904 |
|
|
|
905 |
|
|
REG_ADDR isn't used on Linux. */
|
906 |
|
|
|
907 |
|
|
static void
|
908 |
|
|
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
|
909 |
|
|
int which, CORE_ADDR reg_addr)
|
910 |
|
|
{
|
911 |
|
|
elf_gregset_t gregset;
|
912 |
|
|
elf_fpregset_t fpregset;
|
913 |
|
|
|
914 |
|
|
switch (which)
|
915 |
|
|
{
|
916 |
|
|
case 0:
|
917 |
|
|
if (core_reg_size != sizeof (gregset))
|
918 |
|
|
warning ("Wrong size gregset in core file.");
|
919 |
|
|
else
|
920 |
|
|
{
|
921 |
|
|
memcpy (&gregset, core_reg_sect, sizeof (gregset));
|
922 |
|
|
supply_gregset (&gregset);
|
923 |
|
|
}
|
924 |
|
|
break;
|
925 |
|
|
|
926 |
|
|
case 2:
|
927 |
|
|
if (core_reg_size != sizeof (fpregset))
|
928 |
|
|
warning ("Wrong size fpregset in core file.");
|
929 |
|
|
else
|
930 |
|
|
{
|
931 |
|
|
memcpy (&fpregset, core_reg_sect, sizeof (fpregset));
|
932 |
|
|
supply_fpregset (&fpregset);
|
933 |
|
|
}
|
934 |
|
|
break;
|
935 |
|
|
|
936 |
|
|
#ifdef HAVE_PTRACE_GETXFPREGS
|
937 |
|
|
{
|
938 |
|
|
struct user_xfpregs_struct xfpregset;
|
939 |
|
|
|
940 |
|
|
case 3:
|
941 |
|
|
if (core_reg_size != sizeof (xfpregset))
|
942 |
|
|
warning ("Wrong size user_xfpregs_struct in core file.");
|
943 |
|
|
else
|
944 |
|
|
{
|
945 |
|
|
memcpy (&xfpregset, core_reg_sect, sizeof (xfpregset));
|
946 |
|
|
supply_xfpregset (&xfpregset);
|
947 |
|
|
}
|
948 |
|
|
break;
|
949 |
|
|
}
|
950 |
|
|
#endif
|
951 |
|
|
|
952 |
|
|
default:
|
953 |
|
|
/* We've covered all the kinds of registers we know about here,
|
954 |
|
|
so this must be something we wouldn't know what to do with
|
955 |
|
|
anyway. Just ignore it. */
|
956 |
|
|
break;
|
957 |
|
|
}
|
958 |
|
|
}
|
959 |
|
|
|
960 |
|
|
|
961 |
|
|
/* Calling functions in shared libraries. */
|
962 |
|
|
/* FIXME: kettenis/2000-03-05: Doesn't this belong in a
|
963 |
|
|
target-dependent file? The function
|
964 |
|
|
`i386_linux_skip_solib_resolver' is mentioned in
|
965 |
|
|
`config/i386/tm-linux.h'. */
|
966 |
|
|
|
967 |
|
|
/* Find the minimal symbol named NAME, and return both the minsym
|
968 |
|
|
struct and its objfile. This probably ought to be in minsym.c, but
|
969 |
|
|
everything there is trying to deal with things like C++ and
|
970 |
|
|
SOFUN_ADDRESS_MAYBE_TURQUOISE, ... Since this is so simple, it may
|
971 |
|
|
be considered too special-purpose for general consumption. */
|
972 |
|
|
|
973 |
|
|
static struct minimal_symbol *
|
974 |
|
|
find_minsym_and_objfile (char *name, struct objfile **objfile_p)
|
975 |
|
|
{
|
976 |
|
|
struct objfile *objfile;
|
977 |
|
|
|
978 |
|
|
ALL_OBJFILES (objfile)
|
979 |
|
|
{
|
980 |
|
|
struct minimal_symbol *msym;
|
981 |
|
|
|
982 |
|
|
ALL_OBJFILE_MSYMBOLS (objfile, msym)
|
983 |
|
|
{
|
984 |
|
|
if (SYMBOL_NAME (msym)
|
985 |
|
|
&& STREQ (SYMBOL_NAME (msym), name))
|
986 |
|
|
{
|
987 |
|
|
*objfile_p = objfile;
|
988 |
|
|
return msym;
|
989 |
|
|
}
|
990 |
|
|
}
|
991 |
|
|
}
|
992 |
|
|
|
993 |
|
|
return 0;
|
994 |
|
|
}
|
995 |
|
|
|
996 |
|
|
|
997 |
|
|
static CORE_ADDR
|
998 |
|
|
skip_hurd_resolver (CORE_ADDR pc)
|
999 |
|
|
{
|
1000 |
|
|
/* The HURD dynamic linker is part of the GNU C library, so many
|
1001 |
|
|
GNU/Linux distributions use it. (All ELF versions, as far as I
|
1002 |
|
|
know.) An unresolved PLT entry points to "_dl_runtime_resolve",
|
1003 |
|
|
which calls "fixup" to patch the PLT, and then passes control to
|
1004 |
|
|
the function.
|
1005 |
|
|
|
1006 |
|
|
We look for the symbol `_dl_runtime_resolve', and find `fixup' in
|
1007 |
|
|
the same objfile. If we are at the entry point of `fixup', then
|
1008 |
|
|
we set a breakpoint at the return address (at the top of the
|
1009 |
|
|
stack), and continue.
|
1010 |
|
|
|
1011 |
|
|
It's kind of gross to do all these checks every time we're
|
1012 |
|
|
called, since they don't change once the executable has gotten
|
1013 |
|
|
started. But this is only a temporary hack --- upcoming versions
|
1014 |
|
|
of Linux will provide a portable, efficient interface for
|
1015 |
|
|
debugging programs that use shared libraries. */
|
1016 |
|
|
|
1017 |
|
|
struct objfile *objfile;
|
1018 |
|
|
struct minimal_symbol *resolver
|
1019 |
|
|
= find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);
|
1020 |
|
|
|
1021 |
|
|
if (resolver)
|
1022 |
|
|
{
|
1023 |
|
|
struct minimal_symbol *fixup
|
1024 |
|
|
= lookup_minimal_symbol ("fixup", 0, objfile);
|
1025 |
|
|
|
1026 |
|
|
if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
|
1027 |
|
|
return (SAVED_PC_AFTER_CALL (get_current_frame ()));
|
1028 |
|
|
}
|
1029 |
|
|
|
1030 |
|
|
return 0;
|
1031 |
|
|
}
|
1032 |
|
|
|
1033 |
|
|
/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
|
1034 |
|
|
This function:
|
1035 |
|
|
1) decides whether a PLT has sent us into the linker to resolve
|
1036 |
|
|
a function reference, and
|
1037 |
|
|
2) if so, tells us where to set a temporary breakpoint that will
|
1038 |
|
|
trigger when the dynamic linker is done. */
|
1039 |
|
|
|
1040 |
|
|
CORE_ADDR
|
1041 |
|
|
i386_linux_skip_solib_resolver (CORE_ADDR pc)
|
1042 |
|
|
{
|
1043 |
|
|
CORE_ADDR result;
|
1044 |
|
|
|
1045 |
|
|
/* Plug in functions for other kinds of resolvers here. */
|
1046 |
|
|
result = skip_hurd_resolver (pc);
|
1047 |
|
|
if (result)
|
1048 |
|
|
return result;
|
1049 |
|
|
|
1050 |
|
|
return 0;
|
1051 |
|
|
}
|
1052 |
|
|
|
1053 |
|
|
|
1054 |
|
|
/* Register that we are able to handle Linux ELF core file formats. */
|
1055 |
|
|
|
1056 |
|
|
static struct core_fns linux_elf_core_fns =
|
1057 |
|
|
{
|
1058 |
|
|
bfd_target_elf_flavour, /* core_flavour */
|
1059 |
|
|
default_check_format, /* check_format */
|
1060 |
|
|
default_core_sniffer, /* core_sniffer */
|
1061 |
|
|
fetch_core_registers, /* core_read_registers */
|
1062 |
|
|
NULL /* next */
|
1063 |
|
|
};
|
1064 |
|
|
|
1065 |
|
|
void
|
1066 |
|
|
_initialize_i386_linux_nat ()
|
1067 |
|
|
{
|
1068 |
|
|
add_core_fns (&linux_elf_core_fns);
|
1069 |
|
|
}
|