1 |
104 |
markom |
/* GDB routines for manipulating objfiles.
|
2 |
|
|
Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Cygnus Support, using pieces from other GDB modules.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
20 |
|
|
Boston, MA 02111-1307, USA. */
|
21 |
|
|
|
22 |
|
|
/* This file contains support routines for creating, manipulating, and
|
23 |
|
|
destroying objfile structures. */
|
24 |
|
|
|
25 |
|
|
#include "defs.h"
|
26 |
|
|
#include "bfd.h" /* Binary File Description */
|
27 |
|
|
#include "symtab.h"
|
28 |
|
|
#include "symfile.h"
|
29 |
|
|
#include "objfiles.h"
|
30 |
|
|
#include "gdb-stabs.h"
|
31 |
|
|
#include "target.h"
|
32 |
|
|
|
33 |
|
|
#include <sys/types.h>
|
34 |
|
|
#include "gdb_stat.h"
|
35 |
|
|
#include <fcntl.h>
|
36 |
|
|
#include "obstack.h"
|
37 |
|
|
#include "gdb_string.h"
|
38 |
|
|
|
39 |
|
|
#include "breakpoint.h"
|
40 |
|
|
|
41 |
|
|
/* Prototypes for local functions */
|
42 |
|
|
|
43 |
|
|
#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
|
44 |
|
|
|
45 |
|
|
static int
|
46 |
|
|
open_existing_mapped_file PARAMS ((char *, long, int));
|
47 |
|
|
|
48 |
|
|
static int
|
49 |
|
|
open_mapped_file PARAMS ((char *filename, long mtime, int flags));
|
50 |
|
|
|
51 |
|
|
static PTR
|
52 |
|
|
map_to_file PARAMS ((int));
|
53 |
|
|
|
54 |
|
|
#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
|
55 |
|
|
|
56 |
|
|
static void
|
57 |
|
|
add_to_objfile_sections PARAMS ((bfd *, sec_ptr, PTR));
|
58 |
|
|
|
59 |
|
|
/* Externally visible variables that are owned by this module.
|
60 |
|
|
See declarations in objfile.h for more info. */
|
61 |
|
|
|
62 |
|
|
struct objfile *object_files; /* Linked list of all objfiles */
|
63 |
|
|
struct objfile *current_objfile; /* For symbol file being read in */
|
64 |
|
|
struct objfile *symfile_objfile; /* Main symbol table loaded from */
|
65 |
|
|
struct objfile *rt_common_objfile; /* For runtime common symbols */
|
66 |
|
|
|
67 |
|
|
int mapped_symbol_files; /* Try to use mapped symbol files */
|
68 |
|
|
|
69 |
|
|
/* Locate all mappable sections of a BFD file.
|
70 |
|
|
objfile_p_char is a char * to get it through
|
71 |
|
|
bfd_map_over_sections; we cast it back to its proper type. */
|
72 |
|
|
|
73 |
|
|
#ifndef TARGET_KEEP_SECTION
|
74 |
|
|
#define TARGET_KEEP_SECTION(ASECT) 0
|
75 |
|
|
#endif
|
76 |
|
|
|
77 |
|
|
/* Called via bfd_map_over_sections to build up the section table that
|
78 |
|
|
the objfile references. The objfile contains pointers to the start
|
79 |
|
|
of the table (objfile->sections) and to the first location after
|
80 |
|
|
the end of the table (objfile->sections_end). */
|
81 |
|
|
|
82 |
|
|
static void
|
83 |
|
|
add_to_objfile_sections (abfd, asect, objfile_p_char)
|
84 |
|
|
bfd *abfd;
|
85 |
|
|
sec_ptr asect;
|
86 |
|
|
PTR objfile_p_char;
|
87 |
|
|
{
|
88 |
|
|
struct objfile *objfile = (struct objfile *) objfile_p_char;
|
89 |
|
|
struct obj_section section;
|
90 |
|
|
flagword aflag;
|
91 |
|
|
|
92 |
|
|
aflag = bfd_get_section_flags (abfd, asect);
|
93 |
|
|
|
94 |
|
|
if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
|
95 |
|
|
return;
|
96 |
|
|
|
97 |
|
|
if (0 == bfd_section_size (abfd, asect))
|
98 |
|
|
return;
|
99 |
|
|
section.offset = 0;
|
100 |
|
|
section.objfile = objfile;
|
101 |
|
|
section.the_bfd_section = asect;
|
102 |
|
|
section.ovly_mapped = 0;
|
103 |
|
|
section.addr = bfd_section_vma (abfd, asect);
|
104 |
|
|
section.endaddr = section.addr + bfd_section_size (abfd, asect);
|
105 |
|
|
obstack_grow (&objfile->psymbol_obstack, (char *) §ion, sizeof (section));
|
106 |
|
|
objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
|
107 |
|
|
}
|
108 |
|
|
|
109 |
|
|
/* Builds a section table for OBJFILE.
|
110 |
|
|
Returns 0 if OK, 1 on error (in which case bfd_error contains the
|
111 |
|
|
error).
|
112 |
|
|
|
113 |
|
|
Note that while we are building the table, which goes into the
|
114 |
|
|
psymbol obstack, we hijack the sections_end pointer to instead hold
|
115 |
|
|
a count of the number of sections. When bfd_map_over_sections
|
116 |
|
|
returns, this count is used to compute the pointer to the end of
|
117 |
|
|
the sections table, which then overwrites the count.
|
118 |
|
|
|
119 |
|
|
Also note that the OFFSET and OVLY_MAPPED in each table entry
|
120 |
|
|
are initialized to zero.
|
121 |
|
|
|
122 |
|
|
Also note that if anything else writes to the psymbol obstack while
|
123 |
|
|
we are building the table, we're pretty much hosed. */
|
124 |
|
|
|
125 |
|
|
int
|
126 |
|
|
build_objfile_section_table (objfile)
|
127 |
|
|
struct objfile *objfile;
|
128 |
|
|
{
|
129 |
|
|
/* objfile->sections can be already set when reading a mapped symbol
|
130 |
|
|
file. I believe that we do need to rebuild the section table in
|
131 |
|
|
this case (we rebuild other things derived from the bfd), but we
|
132 |
|
|
can't free the old one (it's in the psymbol_obstack). So we just
|
133 |
|
|
waste some memory. */
|
134 |
|
|
|
135 |
|
|
objfile->sections_end = 0;
|
136 |
|
|
bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
|
137 |
|
|
objfile->sections = (struct obj_section *)
|
138 |
|
|
obstack_finish (&objfile->psymbol_obstack);
|
139 |
|
|
objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
|
140 |
|
|
return (0);
|
141 |
|
|
}
|
142 |
|
|
|
143 |
|
|
/* Given a pointer to an initialized bfd (ABFD) and some flag bits
|
144 |
|
|
allocate a new objfile struct, fill it in as best we can, link it
|
145 |
|
|
into the list of all known objfiles, and return a pointer to the
|
146 |
|
|
new objfile struct.
|
147 |
|
|
|
148 |
|
|
The FLAGS word contains various bits (OBJF_*) that can be taken as
|
149 |
|
|
requests for specific operations, like trying to open a mapped
|
150 |
|
|
version of the objfile (OBJF_MAPPED). Other bits like
|
151 |
|
|
OBJF_SHARED are simply copied through to the new objfile flags
|
152 |
|
|
member. */
|
153 |
|
|
|
154 |
|
|
struct objfile *
|
155 |
|
|
allocate_objfile (abfd, flags)
|
156 |
|
|
bfd *abfd;
|
157 |
|
|
int flags;
|
158 |
|
|
{
|
159 |
|
|
struct objfile *objfile = NULL;
|
160 |
|
|
struct objfile *last_one = NULL;
|
161 |
|
|
|
162 |
|
|
if (mapped_symbol_files)
|
163 |
|
|
flags |= OBJF_MAPPED;
|
164 |
|
|
|
165 |
|
|
#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
|
166 |
|
|
if (abfd != NULL)
|
167 |
|
|
{
|
168 |
|
|
|
169 |
|
|
/* If we can support mapped symbol files, try to open/reopen the
|
170 |
|
|
mapped file that corresponds to the file from which we wish to
|
171 |
|
|
read symbols. If the objfile is to be mapped, we must malloc
|
172 |
|
|
the structure itself using the mmap version, and arrange that
|
173 |
|
|
all memory allocation for the objfile uses the mmap routines.
|
174 |
|
|
If we are reusing an existing mapped file, from which we get
|
175 |
|
|
our objfile pointer, we have to make sure that we update the
|
176 |
|
|
pointers to the alloc/free functions in the obstack, in case
|
177 |
|
|
these functions have moved within the current gdb. */
|
178 |
|
|
|
179 |
|
|
int fd;
|
180 |
|
|
|
181 |
|
|
fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
|
182 |
|
|
flags);
|
183 |
|
|
if (fd >= 0)
|
184 |
|
|
{
|
185 |
|
|
PTR md;
|
186 |
|
|
|
187 |
|
|
if ((md = map_to_file (fd)) == NULL)
|
188 |
|
|
{
|
189 |
|
|
close (fd);
|
190 |
|
|
}
|
191 |
|
|
else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
|
192 |
|
|
{
|
193 |
|
|
/* Update memory corruption handler function addresses. */
|
194 |
|
|
init_malloc (md);
|
195 |
|
|
objfile->md = md;
|
196 |
|
|
objfile->mmfd = fd;
|
197 |
|
|
/* Update pointers to functions to *our* copies */
|
198 |
|
|
obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
|
199 |
|
|
obstack_freefun (&objfile->psymbol_cache.cache, mfree);
|
200 |
|
|
obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
|
201 |
|
|
obstack_freefun (&objfile->psymbol_obstack, mfree);
|
202 |
|
|
obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
|
203 |
|
|
obstack_freefun (&objfile->symbol_obstack, mfree);
|
204 |
|
|
obstack_chunkfun (&objfile->type_obstack, xmmalloc);
|
205 |
|
|
obstack_freefun (&objfile->type_obstack, mfree);
|
206 |
|
|
/* If already in objfile list, unlink it. */
|
207 |
|
|
unlink_objfile (objfile);
|
208 |
|
|
/* Forget things specific to a particular gdb, may have changed. */
|
209 |
|
|
objfile->sf = NULL;
|
210 |
|
|
}
|
211 |
|
|
else
|
212 |
|
|
{
|
213 |
|
|
|
214 |
|
|
/* Set up to detect internal memory corruption. MUST be
|
215 |
|
|
done before the first malloc. See comments in
|
216 |
|
|
init_malloc() and mmcheck(). */
|
217 |
|
|
|
218 |
|
|
init_malloc (md);
|
219 |
|
|
|
220 |
|
|
objfile = (struct objfile *)
|
221 |
|
|
xmmalloc (md, sizeof (struct objfile));
|
222 |
|
|
memset (objfile, 0, sizeof (struct objfile));
|
223 |
|
|
objfile->md = md;
|
224 |
|
|
objfile->mmfd = fd;
|
225 |
|
|
objfile->flags |= OBJF_MAPPED;
|
226 |
|
|
mmalloc_setkey (objfile->md, 0, objfile);
|
227 |
|
|
obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
|
228 |
|
|
0, 0, xmmalloc, mfree,
|
229 |
|
|
objfile->md);
|
230 |
|
|
obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
|
231 |
|
|
0, 0, xmmalloc, mfree,
|
232 |
|
|
objfile->md);
|
233 |
|
|
obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
|
234 |
|
|
0, 0, xmmalloc, mfree,
|
235 |
|
|
objfile->md);
|
236 |
|
|
obstack_specify_allocation_with_arg (&objfile->type_obstack,
|
237 |
|
|
0, 0, xmmalloc, mfree,
|
238 |
|
|
objfile->md);
|
239 |
|
|
}
|
240 |
|
|
}
|
241 |
|
|
|
242 |
|
|
if ((flags & OBJF_MAPPED) && (objfile == NULL))
|
243 |
|
|
{
|
244 |
|
|
warning ("symbol table for '%s' will not be mapped",
|
245 |
|
|
bfd_get_filename (abfd));
|
246 |
|
|
flags &= ~OBJF_MAPPED;
|
247 |
|
|
}
|
248 |
|
|
}
|
249 |
|
|
#else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
|
250 |
|
|
|
251 |
|
|
if (flags & OBJF_MAPPED)
|
252 |
|
|
{
|
253 |
|
|
warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
|
254 |
|
|
|
255 |
|
|
/* Turn off the global flag so we don't try to do mapped symbol tables
|
256 |
|
|
any more, which shuts up gdb unless the user specifically gives the
|
257 |
|
|
"mapped" keyword again. */
|
258 |
|
|
|
259 |
|
|
mapped_symbol_files = 0;
|
260 |
|
|
flags &= ~OBJF_MAPPED;
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
|
264 |
|
|
|
265 |
|
|
/* If we don't support mapped symbol files, didn't ask for the file to be
|
266 |
|
|
mapped, or failed to open the mapped file for some reason, then revert
|
267 |
|
|
back to an unmapped objfile. */
|
268 |
|
|
|
269 |
|
|
if (objfile == NULL)
|
270 |
|
|
{
|
271 |
|
|
objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
|
272 |
|
|
memset (objfile, 0, sizeof (struct objfile));
|
273 |
|
|
objfile->md = NULL;
|
274 |
|
|
obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
|
275 |
|
|
xmalloc, free);
|
276 |
|
|
obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
|
277 |
|
|
free);
|
278 |
|
|
obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
|
279 |
|
|
free);
|
280 |
|
|
obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
|
281 |
|
|
free);
|
282 |
|
|
flags &= ~OBJF_MAPPED;
|
283 |
|
|
}
|
284 |
|
|
|
285 |
|
|
/* Update the per-objfile information that comes from the bfd, ensuring
|
286 |
|
|
that any data that is reference is saved in the per-objfile data
|
287 |
|
|
region. */
|
288 |
|
|
|
289 |
|
|
objfile->obfd = abfd;
|
290 |
|
|
if (objfile->name != NULL)
|
291 |
|
|
{
|
292 |
|
|
mfree (objfile->md, objfile->name);
|
293 |
|
|
}
|
294 |
|
|
if (abfd != NULL)
|
295 |
|
|
{
|
296 |
|
|
objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
|
297 |
|
|
objfile->mtime = bfd_get_mtime (abfd);
|
298 |
|
|
|
299 |
|
|
/* Build section table. */
|
300 |
|
|
|
301 |
|
|
if (build_objfile_section_table (objfile))
|
302 |
|
|
{
|
303 |
|
|
error ("Can't find the file sections in `%s': %s",
|
304 |
|
|
objfile->name, bfd_errmsg (bfd_get_error ()));
|
305 |
|
|
}
|
306 |
|
|
}
|
307 |
|
|
|
308 |
|
|
/* Add this file onto the tail of the linked list of other such files. */
|
309 |
|
|
|
310 |
|
|
objfile->next = NULL;
|
311 |
|
|
if (object_files == NULL)
|
312 |
|
|
object_files = objfile;
|
313 |
|
|
else
|
314 |
|
|
{
|
315 |
|
|
for (last_one = object_files;
|
316 |
|
|
last_one->next;
|
317 |
|
|
last_one = last_one->next);
|
318 |
|
|
last_one->next = objfile;
|
319 |
|
|
}
|
320 |
|
|
|
321 |
|
|
/* Save passed in flag bits. */
|
322 |
|
|
objfile->flags |= flags;
|
323 |
|
|
|
324 |
|
|
return (objfile);
|
325 |
|
|
}
|
326 |
|
|
|
327 |
|
|
/* Put OBJFILE at the front of the list. */
|
328 |
|
|
|
329 |
|
|
void
|
330 |
|
|
objfile_to_front (objfile)
|
331 |
|
|
struct objfile *objfile;
|
332 |
|
|
{
|
333 |
|
|
struct objfile **objp;
|
334 |
|
|
for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
|
335 |
|
|
{
|
336 |
|
|
if (*objp == objfile)
|
337 |
|
|
{
|
338 |
|
|
/* Unhook it from where it is. */
|
339 |
|
|
*objp = objfile->next;
|
340 |
|
|
/* Put it in the front. */
|
341 |
|
|
objfile->next = object_files;
|
342 |
|
|
object_files = objfile;
|
343 |
|
|
break;
|
344 |
|
|
}
|
345 |
|
|
}
|
346 |
|
|
}
|
347 |
|
|
|
348 |
|
|
/* Unlink OBJFILE from the list of known objfiles, if it is found in the
|
349 |
|
|
list.
|
350 |
|
|
|
351 |
|
|
It is not a bug, or error, to call this function if OBJFILE is not known
|
352 |
|
|
to be in the current list. This is done in the case of mapped objfiles,
|
353 |
|
|
for example, just to ensure that the mapped objfile doesn't appear twice
|
354 |
|
|
in the list. Since the list is threaded, linking in a mapped objfile
|
355 |
|
|
twice would create a circular list.
|
356 |
|
|
|
357 |
|
|
If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
|
358 |
|
|
unlinking it, just to ensure that we have completely severed any linkages
|
359 |
|
|
between the OBJFILE and the list. */
|
360 |
|
|
|
361 |
|
|
void
|
362 |
|
|
unlink_objfile (objfile)
|
363 |
|
|
struct objfile *objfile;
|
364 |
|
|
{
|
365 |
|
|
struct objfile **objpp;
|
366 |
|
|
|
367 |
|
|
for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
|
368 |
|
|
{
|
369 |
|
|
if (*objpp == objfile)
|
370 |
|
|
{
|
371 |
|
|
*objpp = (*objpp)->next;
|
372 |
|
|
objfile->next = NULL;
|
373 |
|
|
return;
|
374 |
|
|
}
|
375 |
|
|
}
|
376 |
|
|
|
377 |
|
|
internal_error ("objfiles.c (unlink_objfile): objfile already unlinked");
|
378 |
|
|
}
|
379 |
|
|
|
380 |
|
|
|
381 |
|
|
/* Destroy an objfile and all the symtabs and psymtabs under it. Note
|
382 |
|
|
that as much as possible is allocated on the symbol_obstack and
|
383 |
|
|
psymbol_obstack, so that the memory can be efficiently freed.
|
384 |
|
|
|
385 |
|
|
Things which we do NOT free because they are not in malloc'd memory
|
386 |
|
|
or not in memory specific to the objfile include:
|
387 |
|
|
|
388 |
|
|
objfile -> sf
|
389 |
|
|
|
390 |
|
|
FIXME: If the objfile is using reusable symbol information (via mmalloc),
|
391 |
|
|
then we need to take into account the fact that more than one process
|
392 |
|
|
may be using the symbol information at the same time (when mmalloc is
|
393 |
|
|
extended to support cooperative locking). When more than one process
|
394 |
|
|
is using the mapped symbol info, we need to be more careful about when
|
395 |
|
|
we free objects in the reusable area. */
|
396 |
|
|
|
397 |
|
|
void
|
398 |
|
|
free_objfile (objfile)
|
399 |
|
|
struct objfile *objfile;
|
400 |
|
|
{
|
401 |
|
|
/* First do any symbol file specific actions required when we are
|
402 |
|
|
finished with a particular symbol file. Note that if the objfile
|
403 |
|
|
is using reusable symbol information (via mmalloc) then each of
|
404 |
|
|
these routines is responsible for doing the correct thing, either
|
405 |
|
|
freeing things which are valid only during this particular gdb
|
406 |
|
|
execution, or leaving them to be reused during the next one. */
|
407 |
|
|
|
408 |
|
|
if (objfile->sf != NULL)
|
409 |
|
|
{
|
410 |
|
|
(*objfile->sf->sym_finish) (objfile);
|
411 |
|
|
}
|
412 |
|
|
|
413 |
|
|
/* We always close the bfd. */
|
414 |
|
|
|
415 |
|
|
if (objfile->obfd != NULL)
|
416 |
|
|
{
|
417 |
|
|
char *name = bfd_get_filename (objfile->obfd);
|
418 |
|
|
if (!bfd_close (objfile->obfd))
|
419 |
|
|
warning ("cannot close \"%s\": %s",
|
420 |
|
|
name, bfd_errmsg (bfd_get_error ()));
|
421 |
|
|
free (name);
|
422 |
|
|
}
|
423 |
|
|
|
424 |
|
|
/* Remove it from the chain of all objfiles. */
|
425 |
|
|
|
426 |
|
|
unlink_objfile (objfile);
|
427 |
|
|
|
428 |
|
|
/* If we are going to free the runtime common objfile, mark it
|
429 |
|
|
as unallocated. */
|
430 |
|
|
|
431 |
|
|
if (objfile == rt_common_objfile)
|
432 |
|
|
rt_common_objfile = NULL;
|
433 |
|
|
|
434 |
|
|
/* Before the symbol table code was redone to make it easier to
|
435 |
|
|
selectively load and remove information particular to a specific
|
436 |
|
|
linkage unit, gdb used to do these things whenever the monolithic
|
437 |
|
|
symbol table was blown away. How much still needs to be done
|
438 |
|
|
is unknown, but we play it safe for now and keep each action until
|
439 |
|
|
it is shown to be no longer needed. */
|
440 |
|
|
|
441 |
|
|
/* I *think* all our callers call clear_symtab_users. If so, no need
|
442 |
|
|
to call this here. */
|
443 |
|
|
clear_pc_function_cache ();
|
444 |
|
|
|
445 |
|
|
/* The last thing we do is free the objfile struct itself for the
|
446 |
|
|
non-reusable case, or detach from the mapped file for the reusable
|
447 |
|
|
case. Note that the mmalloc_detach or the mfree is the last thing
|
448 |
|
|
we can do with this objfile. */
|
449 |
|
|
|
450 |
|
|
#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
|
451 |
|
|
|
452 |
|
|
if (objfile->flags & OBJF_MAPPED)
|
453 |
|
|
{
|
454 |
|
|
/* Remember the fd so we can close it. We can't close it before
|
455 |
|
|
doing the detach, and after the detach the objfile is gone. */
|
456 |
|
|
int mmfd;
|
457 |
|
|
|
458 |
|
|
mmfd = objfile->mmfd;
|
459 |
|
|
mmalloc_detach (objfile->md);
|
460 |
|
|
objfile = NULL;
|
461 |
|
|
close (mmfd);
|
462 |
|
|
}
|
463 |
|
|
|
464 |
|
|
#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
|
465 |
|
|
|
466 |
|
|
/* If we still have an objfile, then either we don't support reusable
|
467 |
|
|
objfiles or this one was not reusable. So free it normally. */
|
468 |
|
|
|
469 |
|
|
if (objfile != NULL)
|
470 |
|
|
{
|
471 |
|
|
if (objfile->name != NULL)
|
472 |
|
|
{
|
473 |
|
|
mfree (objfile->md, objfile->name);
|
474 |
|
|
}
|
475 |
|
|
if (objfile->global_psymbols.list)
|
476 |
|
|
mfree (objfile->md, objfile->global_psymbols.list);
|
477 |
|
|
if (objfile->static_psymbols.list)
|
478 |
|
|
mfree (objfile->md, objfile->static_psymbols.list);
|
479 |
|
|
/* Free the obstacks for non-reusable objfiles */
|
480 |
|
|
free_bcache (&objfile->psymbol_cache);
|
481 |
|
|
obstack_free (&objfile->psymbol_obstack, 0);
|
482 |
|
|
obstack_free (&objfile->symbol_obstack, 0);
|
483 |
|
|
obstack_free (&objfile->type_obstack, 0);
|
484 |
|
|
mfree (objfile->md, objfile);
|
485 |
|
|
objfile = NULL;
|
486 |
|
|
}
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
|
490 |
|
|
/* Free all the object files at once and clean up their users. */
|
491 |
|
|
|
492 |
|
|
void
|
493 |
|
|
free_all_objfiles ()
|
494 |
|
|
{
|
495 |
|
|
struct objfile *objfile, *temp;
|
496 |
|
|
|
497 |
|
|
ALL_OBJFILES_SAFE (objfile, temp)
|
498 |
|
|
{
|
499 |
|
|
free_objfile (objfile);
|
500 |
|
|
}
|
501 |
|
|
clear_symtab_users ();
|
502 |
|
|
}
|
503 |
|
|
|
504 |
|
|
/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
|
505 |
|
|
entries in new_offsets. */
|
506 |
|
|
void
|
507 |
|
|
objfile_relocate (objfile, new_offsets)
|
508 |
|
|
struct objfile *objfile;
|
509 |
|
|
struct section_offsets *new_offsets;
|
510 |
|
|
{
|
511 |
|
|
struct section_offsets *delta =
|
512 |
|
|
(struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
|
513 |
|
|
|
514 |
|
|
{
|
515 |
|
|
int i;
|
516 |
|
|
int something_changed = 0;
|
517 |
|
|
for (i = 0; i < objfile->num_sections; ++i)
|
518 |
|
|
{
|
519 |
|
|
ANOFFSET (delta, i) =
|
520 |
|
|
ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
|
521 |
|
|
if (ANOFFSET (delta, i) != 0)
|
522 |
|
|
something_changed = 1;
|
523 |
|
|
}
|
524 |
|
|
if (!something_changed)
|
525 |
|
|
return;
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
/* OK, get all the symtabs. */
|
529 |
|
|
{
|
530 |
|
|
struct symtab *s;
|
531 |
|
|
|
532 |
|
|
ALL_OBJFILE_SYMTABS (objfile, s)
|
533 |
|
|
{
|
534 |
|
|
struct linetable *l;
|
535 |
|
|
struct blockvector *bv;
|
536 |
|
|
int i;
|
537 |
|
|
|
538 |
|
|
/* First the line table. */
|
539 |
|
|
l = LINETABLE (s);
|
540 |
|
|
if (l)
|
541 |
|
|
{
|
542 |
|
|
for (i = 0; i < l->nitems; ++i)
|
543 |
|
|
l->item[i].pc += ANOFFSET (delta, s->block_line_section);
|
544 |
|
|
}
|
545 |
|
|
|
546 |
|
|
/* Don't relocate a shared blockvector more than once. */
|
547 |
|
|
if (!s->primary)
|
548 |
|
|
continue;
|
549 |
|
|
|
550 |
|
|
bv = BLOCKVECTOR (s);
|
551 |
|
|
for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
|
552 |
|
|
{
|
553 |
|
|
struct block *b;
|
554 |
|
|
int j;
|
555 |
|
|
|
556 |
|
|
b = BLOCKVECTOR_BLOCK (bv, i);
|
557 |
|
|
BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
|
558 |
|
|
BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
|
559 |
|
|
|
560 |
|
|
for (j = 0; j < BLOCK_NSYMS (b); ++j)
|
561 |
|
|
{
|
562 |
|
|
struct symbol *sym = BLOCK_SYM (b, j);
|
563 |
|
|
/* The RS6000 code from which this was taken skipped
|
564 |
|
|
any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
|
565 |
|
|
But I'm leaving out that test, on the theory that
|
566 |
|
|
they can't possibly pass the tests below. */
|
567 |
|
|
if ((SYMBOL_CLASS (sym) == LOC_LABEL
|
568 |
|
|
|| SYMBOL_CLASS (sym) == LOC_STATIC
|
569 |
|
|
|| SYMBOL_CLASS (sym) == LOC_INDIRECT)
|
570 |
|
|
&& SYMBOL_SECTION (sym) >= 0)
|
571 |
|
|
{
|
572 |
|
|
SYMBOL_VALUE_ADDRESS (sym) +=
|
573 |
|
|
ANOFFSET (delta, SYMBOL_SECTION (sym));
|
574 |
|
|
}
|
575 |
|
|
#ifdef MIPS_EFI_SYMBOL_NAME
|
576 |
|
|
/* Relocate Extra Function Info for ecoff. */
|
577 |
|
|
|
578 |
|
|
else if (SYMBOL_CLASS (sym) == LOC_CONST
|
579 |
|
|
&& SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
|
580 |
|
|
&& STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
|
581 |
|
|
ecoff_relocate_efi (sym, ANOFFSET (delta,
|
582 |
|
|
s->block_line_section));
|
583 |
|
|
#endif
|
584 |
|
|
}
|
585 |
|
|
}
|
586 |
|
|
}
|
587 |
|
|
}
|
588 |
|
|
|
589 |
|
|
{
|
590 |
|
|
struct partial_symtab *p;
|
591 |
|
|
|
592 |
|
|
ALL_OBJFILE_PSYMTABS (objfile, p)
|
593 |
|
|
{
|
594 |
|
|
p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
|
595 |
|
|
p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
|
596 |
|
|
}
|
597 |
|
|
}
|
598 |
|
|
|
599 |
|
|
{
|
600 |
|
|
struct partial_symbol **psym;
|
601 |
|
|
|
602 |
|
|
for (psym = objfile->global_psymbols.list;
|
603 |
|
|
psym < objfile->global_psymbols.next;
|
604 |
|
|
psym++)
|
605 |
|
|
if (SYMBOL_SECTION (*psym) >= 0)
|
606 |
|
|
SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
|
607 |
|
|
SYMBOL_SECTION (*psym));
|
608 |
|
|
for (psym = objfile->static_psymbols.list;
|
609 |
|
|
psym < objfile->static_psymbols.next;
|
610 |
|
|
psym++)
|
611 |
|
|
if (SYMBOL_SECTION (*psym) >= 0)
|
612 |
|
|
SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
|
613 |
|
|
SYMBOL_SECTION (*psym));
|
614 |
|
|
}
|
615 |
|
|
|
616 |
|
|
{
|
617 |
|
|
struct minimal_symbol *msym;
|
618 |
|
|
ALL_OBJFILE_MSYMBOLS (objfile, msym)
|
619 |
|
|
if (SYMBOL_SECTION (msym) >= 0)
|
620 |
|
|
SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
|
621 |
|
|
}
|
622 |
|
|
/* Relocating different sections by different amounts may cause the symbols
|
623 |
|
|
to be out of order. */
|
624 |
|
|
msymbols_sort (objfile);
|
625 |
|
|
|
626 |
|
|
{
|
627 |
|
|
int i;
|
628 |
|
|
for (i = 0; i < objfile->num_sections; ++i)
|
629 |
|
|
ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
|
630 |
|
|
}
|
631 |
|
|
|
632 |
|
|
{
|
633 |
|
|
struct obj_section *s;
|
634 |
|
|
bfd *abfd;
|
635 |
|
|
|
636 |
|
|
abfd = objfile->obfd;
|
637 |
|
|
|
638 |
|
|
ALL_OBJFILE_OSECTIONS (objfile, s)
|
639 |
|
|
{
|
640 |
|
|
flagword flags;
|
641 |
|
|
|
642 |
|
|
flags = bfd_get_section_flags (abfd, s->the_bfd_section);
|
643 |
|
|
|
644 |
|
|
if (flags & SEC_CODE)
|
645 |
|
|
{
|
646 |
|
|
s->addr += ANOFFSET (delta, SECT_OFF_TEXT);
|
647 |
|
|
s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT);
|
648 |
|
|
}
|
649 |
|
|
else if (flags & (SEC_DATA | SEC_LOAD))
|
650 |
|
|
{
|
651 |
|
|
s->addr += ANOFFSET (delta, SECT_OFF_DATA);
|
652 |
|
|
s->endaddr += ANOFFSET (delta, SECT_OFF_DATA);
|
653 |
|
|
}
|
654 |
|
|
else if (flags & SEC_ALLOC)
|
655 |
|
|
{
|
656 |
|
|
s->addr += ANOFFSET (delta, SECT_OFF_BSS);
|
657 |
|
|
s->endaddr += ANOFFSET (delta, SECT_OFF_BSS);
|
658 |
|
|
}
|
659 |
|
|
}
|
660 |
|
|
}
|
661 |
|
|
|
662 |
|
|
if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
|
663 |
|
|
objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT);
|
664 |
|
|
|
665 |
|
|
if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
|
666 |
|
|
{
|
667 |
|
|
objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
|
668 |
|
|
objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
|
669 |
|
|
}
|
670 |
|
|
|
671 |
|
|
if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
|
672 |
|
|
{
|
673 |
|
|
objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
|
674 |
|
|
objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
|
675 |
|
|
}
|
676 |
|
|
|
677 |
|
|
if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
|
678 |
|
|
{
|
679 |
|
|
objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT);
|
680 |
|
|
objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT);
|
681 |
|
|
}
|
682 |
|
|
|
683 |
|
|
/* Relocate breakpoints as necessary, after things are relocated. */
|
684 |
|
|
breakpoint_re_set ();
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
/* Many places in gdb want to test just to see if we have any partial
|
688 |
|
|
symbols available. This function returns zero if none are currently
|
689 |
|
|
available, nonzero otherwise. */
|
690 |
|
|
|
691 |
|
|
int
|
692 |
|
|
have_partial_symbols ()
|
693 |
|
|
{
|
694 |
|
|
struct objfile *ofp;
|
695 |
|
|
|
696 |
|
|
ALL_OBJFILES (ofp)
|
697 |
|
|
{
|
698 |
|
|
if (ofp->psymtabs != NULL)
|
699 |
|
|
{
|
700 |
|
|
return 1;
|
701 |
|
|
}
|
702 |
|
|
}
|
703 |
|
|
return 0;
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
/* Many places in gdb want to test just to see if we have any full
|
707 |
|
|
symbols available. This function returns zero if none are currently
|
708 |
|
|
available, nonzero otherwise. */
|
709 |
|
|
|
710 |
|
|
int
|
711 |
|
|
have_full_symbols ()
|
712 |
|
|
{
|
713 |
|
|
struct objfile *ofp;
|
714 |
|
|
|
715 |
|
|
ALL_OBJFILES (ofp)
|
716 |
|
|
{
|
717 |
|
|
if (ofp->symtabs != NULL)
|
718 |
|
|
{
|
719 |
|
|
return 1;
|
720 |
|
|
}
|
721 |
|
|
}
|
722 |
|
|
return 0;
|
723 |
|
|
}
|
724 |
|
|
|
725 |
|
|
|
726 |
|
|
/* This operations deletes all objfile entries that represent solibs that
|
727 |
|
|
weren't explicitly loaded by the user, via e.g., the add-symbol-file
|
728 |
|
|
command.
|
729 |
|
|
*/
|
730 |
|
|
void
|
731 |
|
|
objfile_purge_solibs ()
|
732 |
|
|
{
|
733 |
|
|
struct objfile *objf;
|
734 |
|
|
struct objfile *temp;
|
735 |
|
|
|
736 |
|
|
ALL_OBJFILES_SAFE (objf, temp)
|
737 |
|
|
{
|
738 |
|
|
/* We assume that the solib package has been purged already, or will
|
739 |
|
|
be soon.
|
740 |
|
|
*/
|
741 |
|
|
if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
|
742 |
|
|
free_objfile (objf);
|
743 |
|
|
}
|
744 |
|
|
}
|
745 |
|
|
|
746 |
|
|
|
747 |
|
|
/* Many places in gdb want to test just to see if we have any minimal
|
748 |
|
|
symbols available. This function returns zero if none are currently
|
749 |
|
|
available, nonzero otherwise. */
|
750 |
|
|
|
751 |
|
|
int
|
752 |
|
|
have_minimal_symbols ()
|
753 |
|
|
{
|
754 |
|
|
struct objfile *ofp;
|
755 |
|
|
|
756 |
|
|
ALL_OBJFILES (ofp)
|
757 |
|
|
{
|
758 |
|
|
if (ofp->msymbols != NULL)
|
759 |
|
|
{
|
760 |
|
|
return 1;
|
761 |
|
|
}
|
762 |
|
|
}
|
763 |
|
|
return 0;
|
764 |
|
|
}
|
765 |
|
|
|
766 |
|
|
#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
|
767 |
|
|
|
768 |
|
|
/* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
|
769 |
|
|
of the corresponding symbol file in MTIME, try to open an existing file
|
770 |
|
|
with the name SYMSFILENAME and verify it is more recent than the base
|
771 |
|
|
file by checking it's timestamp against MTIME.
|
772 |
|
|
|
773 |
|
|
If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
|
774 |
|
|
|
775 |
|
|
If SYMSFILENAME does exist, but is out of date, we check to see if the
|
776 |
|
|
user has specified creation of a mapped file. If so, we don't issue
|
777 |
|
|
any warning message because we will be creating a new mapped file anyway,
|
778 |
|
|
overwriting the old one. If not, then we issue a warning message so that
|
779 |
|
|
the user will know why we aren't using this existing mapped symbol file.
|
780 |
|
|
In either case, we return -1.
|
781 |
|
|
|
782 |
|
|
If SYMSFILENAME does exist and is not out of date, but can't be opened for
|
783 |
|
|
some reason, then prints an appropriate system error message and returns -1.
|
784 |
|
|
|
785 |
|
|
Otherwise, returns the open file descriptor. */
|
786 |
|
|
|
787 |
|
|
static int
|
788 |
|
|
open_existing_mapped_file (symsfilename, mtime, flags)
|
789 |
|
|
char *symsfilename;
|
790 |
|
|
long mtime;
|
791 |
|
|
int flags;
|
792 |
|
|
{
|
793 |
|
|
int fd = -1;
|
794 |
|
|
struct stat sbuf;
|
795 |
|
|
|
796 |
|
|
if (stat (symsfilename, &sbuf) == 0)
|
797 |
|
|
{
|
798 |
|
|
if (sbuf.st_mtime < mtime)
|
799 |
|
|
{
|
800 |
|
|
if (!(flags & OBJF_MAPPED))
|
801 |
|
|
{
|
802 |
|
|
warning ("mapped symbol file `%s' is out of date, ignored it",
|
803 |
|
|
symsfilename);
|
804 |
|
|
}
|
805 |
|
|
}
|
806 |
|
|
else if ((fd = open (symsfilename, O_RDWR)) < 0)
|
807 |
|
|
{
|
808 |
|
|
if (error_pre_print)
|
809 |
|
|
{
|
810 |
|
|
printf_unfiltered (error_pre_print);
|
811 |
|
|
}
|
812 |
|
|
print_sys_errmsg (symsfilename, errno);
|
813 |
|
|
}
|
814 |
|
|
}
|
815 |
|
|
return (fd);
|
816 |
|
|
}
|
817 |
|
|
|
818 |
|
|
/* Look for a mapped symbol file that corresponds to FILENAME and is more
|
819 |
|
|
recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
|
820 |
|
|
use a mapped symbol file for this file, so create a new one if one does
|
821 |
|
|
not currently exist.
|
822 |
|
|
|
823 |
|
|
If found, then return an open file descriptor for the file, otherwise
|
824 |
|
|
return -1.
|
825 |
|
|
|
826 |
|
|
This routine is responsible for implementing the policy that generates
|
827 |
|
|
the name of the mapped symbol file from the name of a file containing
|
828 |
|
|
symbols that gdb would like to read. Currently this policy is to append
|
829 |
|
|
".syms" to the name of the file.
|
830 |
|
|
|
831 |
|
|
This routine is also responsible for implementing the policy that
|
832 |
|
|
determines where the mapped symbol file is found (the search path).
|
833 |
|
|
This policy is that when reading an existing mapped file, a file of
|
834 |
|
|
the correct name in the current directory takes precedence over a
|
835 |
|
|
file of the correct name in the same directory as the symbol file.
|
836 |
|
|
When creating a new mapped file, it is always created in the current
|
837 |
|
|
directory. This helps to minimize the chances of a user unknowingly
|
838 |
|
|
creating big mapped files in places like /bin and /usr/local/bin, and
|
839 |
|
|
allows a local copy to override a manually installed global copy (in
|
840 |
|
|
/bin for example). */
|
841 |
|
|
|
842 |
|
|
static int
|
843 |
|
|
open_mapped_file (filename, mtime, flags)
|
844 |
|
|
char *filename;
|
845 |
|
|
long mtime;
|
846 |
|
|
int flags;
|
847 |
|
|
{
|
848 |
|
|
int fd;
|
849 |
|
|
char *symsfilename;
|
850 |
|
|
|
851 |
|
|
/* First try to open an existing file in the current directory, and
|
852 |
|
|
then try the directory where the symbol file is located. */
|
853 |
|
|
|
854 |
|
|
symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
|
855 |
|
|
if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
|
856 |
|
|
{
|
857 |
|
|
free (symsfilename);
|
858 |
|
|
symsfilename = concat (filename, ".syms", (char *) NULL);
|
859 |
|
|
fd = open_existing_mapped_file (symsfilename, mtime, flags);
|
860 |
|
|
}
|
861 |
|
|
|
862 |
|
|
/* If we don't have an open file by now, then either the file does not
|
863 |
|
|
already exist, or the base file has changed since it was created. In
|
864 |
|
|
either case, if the user has specified use of a mapped file, then
|
865 |
|
|
create a new mapped file, truncating any existing one. If we can't
|
866 |
|
|
create one, print a system error message saying why we can't.
|
867 |
|
|
|
868 |
|
|
By default the file is rw for everyone, with the user's umask taking
|
869 |
|
|
care of turning off the permissions the user wants off. */
|
870 |
|
|
|
871 |
|
|
if ((fd < 0) && (flags & OBJF_MAPPED))
|
872 |
|
|
{
|
873 |
|
|
free (symsfilename);
|
874 |
|
|
symsfilename = concat ("./", basename (filename), ".syms",
|
875 |
|
|
(char *) NULL);
|
876 |
|
|
if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
|
877 |
|
|
{
|
878 |
|
|
if (error_pre_print)
|
879 |
|
|
{
|
880 |
|
|
printf_unfiltered (error_pre_print);
|
881 |
|
|
}
|
882 |
|
|
print_sys_errmsg (symsfilename, errno);
|
883 |
|
|
}
|
884 |
|
|
}
|
885 |
|
|
|
886 |
|
|
free (symsfilename);
|
887 |
|
|
return (fd);
|
888 |
|
|
}
|
889 |
|
|
|
890 |
|
|
static PTR
|
891 |
|
|
map_to_file (fd)
|
892 |
|
|
int fd;
|
893 |
|
|
{
|
894 |
|
|
PTR md;
|
895 |
|
|
CORE_ADDR mapto;
|
896 |
|
|
|
897 |
|
|
md = mmalloc_attach (fd, (PTR) 0);
|
898 |
|
|
if (md != NULL)
|
899 |
|
|
{
|
900 |
|
|
mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
|
901 |
|
|
md = mmalloc_detach (md);
|
902 |
|
|
if (md != NULL)
|
903 |
|
|
{
|
904 |
|
|
/* FIXME: should figure out why detach failed */
|
905 |
|
|
md = NULL;
|
906 |
|
|
}
|
907 |
|
|
else if (mapto != (CORE_ADDR) NULL)
|
908 |
|
|
{
|
909 |
|
|
/* This mapping file needs to be remapped at "mapto" */
|
910 |
|
|
md = mmalloc_attach (fd, (PTR) mapto);
|
911 |
|
|
}
|
912 |
|
|
else
|
913 |
|
|
{
|
914 |
|
|
/* This is a freshly created mapping file. */
|
915 |
|
|
mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
|
916 |
|
|
if (mapto != 0)
|
917 |
|
|
{
|
918 |
|
|
/* To avoid reusing the freshly created mapping file, at the
|
919 |
|
|
address selected by mmap, we must truncate it before trying
|
920 |
|
|
to do an attach at the address we want. */
|
921 |
|
|
ftruncate (fd, 0);
|
922 |
|
|
md = mmalloc_attach (fd, (PTR) mapto);
|
923 |
|
|
if (md != NULL)
|
924 |
|
|
{
|
925 |
|
|
mmalloc_setkey (md, 1, (PTR) mapto);
|
926 |
|
|
}
|
927 |
|
|
}
|
928 |
|
|
}
|
929 |
|
|
}
|
930 |
|
|
return (md);
|
931 |
|
|
}
|
932 |
|
|
|
933 |
|
|
#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
|
934 |
|
|
|
935 |
|
|
/* Returns a section whose range includes PC and SECTION,
|
936 |
|
|
or NULL if none found. Note the distinction between the return type,
|
937 |
|
|
struct obj_section (which is defined in gdb), and the input type
|
938 |
|
|
struct sec (which is a bfd-defined data type). The obj_section
|
939 |
|
|
contains a pointer to the bfd struct sec section. */
|
940 |
|
|
|
941 |
|
|
struct obj_section *
|
942 |
|
|
find_pc_sect_section (pc, section)
|
943 |
|
|
CORE_ADDR pc;
|
944 |
|
|
struct sec *section;
|
945 |
|
|
{
|
946 |
|
|
struct obj_section *s;
|
947 |
|
|
struct objfile *objfile;
|
948 |
|
|
|
949 |
|
|
ALL_OBJSECTIONS (objfile, s)
|
950 |
|
|
if ((section == 0 || section == s->the_bfd_section) &&
|
951 |
|
|
s->addr <= pc && pc < s->endaddr)
|
952 |
|
|
return (s);
|
953 |
|
|
|
954 |
|
|
return (NULL);
|
955 |
|
|
}
|
956 |
|
|
|
957 |
|
|
/* Returns a section whose range includes PC or NULL if none found.
|
958 |
|
|
Backward compatibility, no section. */
|
959 |
|
|
|
960 |
|
|
struct obj_section *
|
961 |
|
|
find_pc_section (pc)
|
962 |
|
|
CORE_ADDR pc;
|
963 |
|
|
{
|
964 |
|
|
return find_pc_sect_section (pc, find_pc_mapped_section (pc));
|
965 |
|
|
}
|
966 |
|
|
|
967 |
|
|
|
968 |
|
|
/* In SVR4, we recognize a trampoline by it's section name.
|
969 |
|
|
That is, if the pc is in a section named ".plt" then we are in
|
970 |
|
|
a trampoline. */
|
971 |
|
|
|
972 |
|
|
int
|
973 |
|
|
in_plt_section (pc, name)
|
974 |
|
|
CORE_ADDR pc;
|
975 |
|
|
char *name;
|
976 |
|
|
{
|
977 |
|
|
struct obj_section *s;
|
978 |
|
|
int retval = 0;
|
979 |
|
|
|
980 |
|
|
s = find_pc_section (pc);
|
981 |
|
|
|
982 |
|
|
retval = (s != NULL
|
983 |
|
|
&& s->the_bfd_section->name != NULL
|
984 |
|
|
&& STREQ (s->the_bfd_section->name, ".plt"));
|
985 |
|
|
return (retval);
|
986 |
|
|
}
|
987 |
|
|
|
988 |
|
|
/* Return nonzero if NAME is in the import list of OBJFILE. Else
|
989 |
|
|
return zero. */
|
990 |
|
|
|
991 |
|
|
int
|
992 |
|
|
is_in_import_list (name, objfile)
|
993 |
|
|
char *name;
|
994 |
|
|
struct objfile *objfile;
|
995 |
|
|
{
|
996 |
|
|
register int i;
|
997 |
|
|
|
998 |
|
|
if (!objfile || !name || !*name)
|
999 |
|
|
return 0;
|
1000 |
|
|
|
1001 |
|
|
for (i = 0; i < objfile->import_list_size; i++)
|
1002 |
|
|
if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
|
1003 |
|
|
return 1;
|
1004 |
|
|
return 0;
|
1005 |
|
|
}
|
1006 |
|
|
|