1 |
104 |
markom |
/* Target-dependent code for GDB, the GNU debugger.
|
2 |
|
|
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 2000
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
20 |
|
|
Boston, MA 02111-1307, USA. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "frame.h"
|
24 |
|
|
#include "inferior.h"
|
25 |
|
|
#include "symtab.h"
|
26 |
|
|
#include "target.h"
|
27 |
|
|
#include "gdbcore.h"
|
28 |
|
|
#include "gdbcmd.h"
|
29 |
|
|
#include "symfile.h"
|
30 |
|
|
#include "objfiles.h"
|
31 |
|
|
|
32 |
|
|
/* The following two instructions are used in the signal trampoline
|
33 |
|
|
code on linux/ppc */
|
34 |
|
|
#define INSTR_LI_R0_0x7777 0x38007777
|
35 |
|
|
#define INSTR_SC 0x44000002
|
36 |
|
|
|
37 |
|
|
/* Since the *-tdep.c files are platform independent (i.e, they may be
|
38 |
|
|
used to build cross platform debuggers), we can't include system
|
39 |
|
|
headers. Therefore, details concerning the sigcontext structure
|
40 |
|
|
must be painstakingly rerecorded. What's worse, if these details
|
41 |
|
|
ever change in the header files, they'll have to be changed here
|
42 |
|
|
as well. */
|
43 |
|
|
|
44 |
|
|
/* __SIGNAL_FRAMESIZE from <asm/ptrace.h> */
|
45 |
|
|
#define PPC_LINUX_SIGNAL_FRAMESIZE 64
|
46 |
|
|
|
47 |
|
|
/* From <asm/sigcontext.h>, offsetof(struct sigcontext_struct, regs) == 0x1c */
|
48 |
|
|
#define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c)
|
49 |
|
|
|
50 |
|
|
/* From <asm/sigcontext.h>,
|
51 |
|
|
offsetof(struct sigcontext_struct, handler) == 0x14 */
|
52 |
|
|
#define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14)
|
53 |
|
|
|
54 |
|
|
/* From <asm/ptrace.h>, values for PT_NIP, PT_R1, and PT_LNK */
|
55 |
|
|
#define PPC_LINUX_PT_R0 0
|
56 |
|
|
#define PPC_LINUX_PT_R1 1
|
57 |
|
|
#define PPC_LINUX_PT_R2 2
|
58 |
|
|
#define PPC_LINUX_PT_R3 3
|
59 |
|
|
#define PPC_LINUX_PT_R4 4
|
60 |
|
|
#define PPC_LINUX_PT_R5 5
|
61 |
|
|
#define PPC_LINUX_PT_R6 6
|
62 |
|
|
#define PPC_LINUX_PT_R7 7
|
63 |
|
|
#define PPC_LINUX_PT_R8 8
|
64 |
|
|
#define PPC_LINUX_PT_R9 9
|
65 |
|
|
#define PPC_LINUX_PT_R10 10
|
66 |
|
|
#define PPC_LINUX_PT_R11 11
|
67 |
|
|
#define PPC_LINUX_PT_R12 12
|
68 |
|
|
#define PPC_LINUX_PT_R13 13
|
69 |
|
|
#define PPC_LINUX_PT_R14 14
|
70 |
|
|
#define PPC_LINUX_PT_R15 15
|
71 |
|
|
#define PPC_LINUX_PT_R16 16
|
72 |
|
|
#define PPC_LINUX_PT_R17 17
|
73 |
|
|
#define PPC_LINUX_PT_R18 18
|
74 |
|
|
#define PPC_LINUX_PT_R19 19
|
75 |
|
|
#define PPC_LINUX_PT_R20 20
|
76 |
|
|
#define PPC_LINUX_PT_R21 21
|
77 |
|
|
#define PPC_LINUX_PT_R22 22
|
78 |
|
|
#define PPC_LINUX_PT_R23 23
|
79 |
|
|
#define PPC_LINUX_PT_R24 24
|
80 |
|
|
#define PPC_LINUX_PT_R25 25
|
81 |
|
|
#define PPC_LINUX_PT_R26 26
|
82 |
|
|
#define PPC_LINUX_PT_R27 27
|
83 |
|
|
#define PPC_LINUX_PT_R28 28
|
84 |
|
|
#define PPC_LINUX_PT_R29 29
|
85 |
|
|
#define PPC_LINUX_PT_R30 30
|
86 |
|
|
#define PPC_LINUX_PT_R31 31
|
87 |
|
|
#define PPC_LINUX_PT_NIP 32
|
88 |
|
|
#define PPC_LINUX_PT_MSR 33
|
89 |
|
|
#define PPC_LINUX_PT_CTR 35
|
90 |
|
|
#define PPC_LINUX_PT_LNK 36
|
91 |
|
|
#define PPC_LINUX_PT_XER 37
|
92 |
|
|
#define PPC_LINUX_PT_CCR 38
|
93 |
|
|
#define PPC_LINUX_PT_MQ 39
|
94 |
|
|
#define PPC_LINUX_PT_FPR0 48 /* each FP reg occupies 2 slots in this space */
|
95 |
|
|
#define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31)
|
96 |
|
|
#define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1)
|
97 |
|
|
|
98 |
|
|
int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc);
|
99 |
|
|
|
100 |
|
|
/* Determine if pc is in a signal trampoline...
|
101 |
|
|
|
102 |
|
|
Ha! That's not what this does at all. wait_for_inferior in infrun.c
|
103 |
|
|
calls IN_SIGTRAMP in order to detect entry into a signal trampoline
|
104 |
|
|
just after delivery of a signal. But on linux, signal trampolines
|
105 |
|
|
are used for the return path only. The kernel sets things up so that
|
106 |
|
|
the signal handler is called directly.
|
107 |
|
|
|
108 |
|
|
If we use in_sigtramp2() in place of in_sigtramp() (see below)
|
109 |
|
|
we'll (often) end up with stop_pc in the trampoline and prev_pc in
|
110 |
|
|
the (now exited) handler. The code there will cause a temporary
|
111 |
|
|
breakpoint to be set on prev_pc which is not very likely to get hit
|
112 |
|
|
again.
|
113 |
|
|
|
114 |
|
|
If this is confusing, think of it this way... the code in
|
115 |
|
|
wait_for_inferior() needs to be able to detect entry into a signal
|
116 |
|
|
trampoline just after a signal is delivered, not after the handler
|
117 |
|
|
has been run.
|
118 |
|
|
|
119 |
|
|
So, we define in_sigtramp() below to return 1 if the following is
|
120 |
|
|
true:
|
121 |
|
|
|
122 |
|
|
1) The previous frame is a real signal trampoline.
|
123 |
|
|
|
124 |
|
|
- and -
|
125 |
|
|
|
126 |
|
|
2) pc is at the first or second instruction of the corresponding
|
127 |
|
|
handler.
|
128 |
|
|
|
129 |
|
|
Why the second instruction? It seems that wait_for_inferior()
|
130 |
|
|
never sees the first instruction when single stepping. When a
|
131 |
|
|
signal is delivered while stepping, the next instruction that
|
132 |
|
|
would've been stepped over isn't, instead a signal is delivered and
|
133 |
|
|
the first instruction of the handler is stepped over instead. That
|
134 |
|
|
puts us on the second instruction. (I added the test for the
|
135 |
|
|
first instruction long after the fact, just in case the observed
|
136 |
|
|
behavior is ever fixed.)
|
137 |
|
|
|
138 |
|
|
IN_SIGTRAMP is called from blockframe.c as well in order to set
|
139 |
|
|
the signal_handler_caller flag. Because of our strange definition
|
140 |
|
|
of in_sigtramp below, we can't rely on signal_handler_caller getting
|
141 |
|
|
set correctly from within blockframe.c. This is why we take pains
|
142 |
|
|
to set it in init_extra_frame_info(). */
|
143 |
|
|
|
144 |
|
|
int
|
145 |
|
|
ppc_linux_in_sigtramp (CORE_ADDR pc, char *func_name)
|
146 |
|
|
{
|
147 |
|
|
CORE_ADDR lr;
|
148 |
|
|
CORE_ADDR sp;
|
149 |
|
|
CORE_ADDR tramp_sp;
|
150 |
|
|
char buf[4];
|
151 |
|
|
CORE_ADDR handler;
|
152 |
|
|
|
153 |
|
|
lr = read_register (LR_REGNUM);
|
154 |
|
|
if (!ppc_linux_at_sigtramp_return_path (lr))
|
155 |
|
|
return 0;
|
156 |
|
|
|
157 |
|
|
sp = read_register (SP_REGNUM);
|
158 |
|
|
|
159 |
|
|
if (target_read_memory (sp, buf, sizeof (buf)) != 0)
|
160 |
|
|
return 0;
|
161 |
|
|
|
162 |
|
|
tramp_sp = extract_unsigned_integer (buf, 4);
|
163 |
|
|
|
164 |
|
|
if (target_read_memory (tramp_sp + PPC_LINUX_HANDLER_PTR_OFFSET, buf,
|
165 |
|
|
sizeof (buf)) != 0)
|
166 |
|
|
return 0;
|
167 |
|
|
|
168 |
|
|
handler = extract_unsigned_integer (buf, 4);
|
169 |
|
|
|
170 |
|
|
return (pc == handler || pc == handler + 4);
|
171 |
|
|
}
|
172 |
|
|
|
173 |
|
|
/*
|
174 |
|
|
* The signal handler trampoline is on the stack and consists of exactly
|
175 |
|
|
* two instructions. The easiest and most accurate way of determining
|
176 |
|
|
* whether the pc is in one of these trampolines is by inspecting the
|
177 |
|
|
* instructions. It'd be faster though if we could find a way to do this
|
178 |
|
|
* via some simple address comparisons.
|
179 |
|
|
*/
|
180 |
|
|
int
|
181 |
|
|
ppc_linux_at_sigtramp_return_path (CORE_ADDR pc)
|
182 |
|
|
{
|
183 |
|
|
char buf[12];
|
184 |
|
|
unsigned long pcinsn;
|
185 |
|
|
if (target_read_memory (pc - 4, buf, sizeof (buf)) != 0)
|
186 |
|
|
return 0;
|
187 |
|
|
|
188 |
|
|
/* extract the instruction at the pc */
|
189 |
|
|
pcinsn = extract_unsigned_integer (buf + 4, 4);
|
190 |
|
|
|
191 |
|
|
return (
|
192 |
|
|
(pcinsn == INSTR_LI_R0_0x7777
|
193 |
|
|
&& extract_unsigned_integer (buf + 8, 4) == INSTR_SC)
|
194 |
|
|
||
|
195 |
|
|
(pcinsn == INSTR_SC
|
196 |
|
|
&& extract_unsigned_integer (buf, 4) == INSTR_LI_R0_0x7777));
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
CORE_ADDR
|
200 |
|
|
ppc_linux_skip_trampoline_code (CORE_ADDR pc)
|
201 |
|
|
{
|
202 |
|
|
char buf[4];
|
203 |
|
|
struct obj_section *sect;
|
204 |
|
|
struct objfile *objfile;
|
205 |
|
|
unsigned long insn;
|
206 |
|
|
CORE_ADDR plt_start = 0;
|
207 |
|
|
CORE_ADDR symtab = 0;
|
208 |
|
|
CORE_ADDR strtab = 0;
|
209 |
|
|
int num_slots = -1;
|
210 |
|
|
int reloc_index = -1;
|
211 |
|
|
CORE_ADDR plt_table;
|
212 |
|
|
CORE_ADDR reloc;
|
213 |
|
|
CORE_ADDR sym;
|
214 |
|
|
long symidx;
|
215 |
|
|
char symname[1024];
|
216 |
|
|
struct minimal_symbol *msymbol;
|
217 |
|
|
|
218 |
|
|
/* Find the section pc is in; return if not in .plt */
|
219 |
|
|
sect = find_pc_section (pc);
|
220 |
|
|
if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
|
221 |
|
|
return 0;
|
222 |
|
|
|
223 |
|
|
objfile = sect->objfile;
|
224 |
|
|
|
225 |
|
|
/* Pick up the instruction at pc. It had better be of the
|
226 |
|
|
form
|
227 |
|
|
li r11, IDX
|
228 |
|
|
|
229 |
|
|
where IDX is an index into the plt_table. */
|
230 |
|
|
|
231 |
|
|
if (target_read_memory (pc, buf, 4) != 0)
|
232 |
|
|
return 0;
|
233 |
|
|
insn = extract_unsigned_integer (buf, 4);
|
234 |
|
|
|
235 |
|
|
if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
|
236 |
|
|
return 0;
|
237 |
|
|
|
238 |
|
|
reloc_index = (insn << 16) >> 16;
|
239 |
|
|
|
240 |
|
|
/* Find the objfile that pc is in and obtain the information
|
241 |
|
|
necessary for finding the symbol name. */
|
242 |
|
|
for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
|
243 |
|
|
{
|
244 |
|
|
const char *secname = sect->the_bfd_section->name;
|
245 |
|
|
if (strcmp (secname, ".plt") == 0)
|
246 |
|
|
plt_start = sect->addr;
|
247 |
|
|
else if (strcmp (secname, ".rela.plt") == 0)
|
248 |
|
|
num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
|
249 |
|
|
else if (strcmp (secname, ".dynsym") == 0)
|
250 |
|
|
symtab = sect->addr;
|
251 |
|
|
else if (strcmp (secname, ".dynstr") == 0)
|
252 |
|
|
strtab = sect->addr;
|
253 |
|
|
}
|
254 |
|
|
|
255 |
|
|
/* Make sure we have all the information we need. */
|
256 |
|
|
if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
|
257 |
|
|
return 0;
|
258 |
|
|
|
259 |
|
|
/* Compute the value of the plt table */
|
260 |
|
|
plt_table = plt_start + 72 + 8 * num_slots;
|
261 |
|
|
|
262 |
|
|
/* Get address of the relocation entry (Elf32_Rela) */
|
263 |
|
|
if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
|
264 |
|
|
return 0;
|
265 |
|
|
reloc = extract_address (buf, 4);
|
266 |
|
|
|
267 |
|
|
sect = find_pc_section (reloc);
|
268 |
|
|
if (!sect)
|
269 |
|
|
return 0;
|
270 |
|
|
|
271 |
|
|
if (strcmp (sect->the_bfd_section->name, ".text") == 0)
|
272 |
|
|
return reloc;
|
273 |
|
|
|
274 |
|
|
/* Now get the r_info field which is the relocation type and symbol
|
275 |
|
|
index. */
|
276 |
|
|
if (target_read_memory (reloc + 4, buf, 4) != 0)
|
277 |
|
|
return 0;
|
278 |
|
|
symidx = extract_unsigned_integer (buf, 4);
|
279 |
|
|
|
280 |
|
|
/* Shift out the relocation type leaving just the symbol index */
|
281 |
|
|
/* symidx = ELF32_R_SYM(symidx); */
|
282 |
|
|
symidx = symidx >> 8;
|
283 |
|
|
|
284 |
|
|
/* compute the address of the symbol */
|
285 |
|
|
sym = symtab + symidx * 4;
|
286 |
|
|
|
287 |
|
|
/* Fetch the string table index */
|
288 |
|
|
if (target_read_memory (sym, buf, 4) != 0)
|
289 |
|
|
return 0;
|
290 |
|
|
symidx = extract_unsigned_integer (buf, 4);
|
291 |
|
|
|
292 |
|
|
/* Fetch the string; we don't know how long it is. Is it possible
|
293 |
|
|
that the following will fail because we're trying to fetch too
|
294 |
|
|
much? */
|
295 |
|
|
if (target_read_memory (strtab + symidx, symname, sizeof (symname)) != 0)
|
296 |
|
|
return 0;
|
297 |
|
|
|
298 |
|
|
/* This might not work right if we have multiple symbols with the
|
299 |
|
|
same name; the only way to really get it right is to perform
|
300 |
|
|
the same sort of lookup as the dynamic linker. */
|
301 |
|
|
msymbol = lookup_minimal_symbol_text (symname, NULL, NULL);
|
302 |
|
|
if (!msymbol)
|
303 |
|
|
return 0;
|
304 |
|
|
|
305 |
|
|
return SYMBOL_VALUE_ADDRESS (msymbol);
|
306 |
|
|
}
|
307 |
|
|
|
308 |
|
|
/* The rs6000 version of FRAME_SAVED_PC will almost work for us. The
|
309 |
|
|
signal handler details are different, so we'll handle those here
|
310 |
|
|
and call the rs6000 version to do the rest. */
|
311 |
|
|
unsigned long
|
312 |
|
|
ppc_linux_frame_saved_pc (struct frame_info *fi)
|
313 |
|
|
{
|
314 |
|
|
if (fi->signal_handler_caller)
|
315 |
|
|
{
|
316 |
|
|
CORE_ADDR regs_addr =
|
317 |
|
|
read_memory_integer (fi->frame + PPC_LINUX_REGS_PTR_OFFSET, 4);
|
318 |
|
|
/* return the NIP in the regs array */
|
319 |
|
|
return read_memory_integer (regs_addr + 4 * PPC_LINUX_PT_NIP, 4);
|
320 |
|
|
}
|
321 |
|
|
else if (fi->next && fi->next->signal_handler_caller)
|
322 |
|
|
{
|
323 |
|
|
CORE_ADDR regs_addr =
|
324 |
|
|
read_memory_integer (fi->next->frame + PPC_LINUX_REGS_PTR_OFFSET, 4);
|
325 |
|
|
/* return LNK in the regs array */
|
326 |
|
|
return read_memory_integer (regs_addr + 4 * PPC_LINUX_PT_LNK, 4);
|
327 |
|
|
}
|
328 |
|
|
else
|
329 |
|
|
return rs6000_frame_saved_pc (fi);
|
330 |
|
|
}
|
331 |
|
|
|
332 |
|
|
void
|
333 |
|
|
ppc_linux_init_extra_frame_info (int fromleaf, struct frame_info *fi)
|
334 |
|
|
{
|
335 |
|
|
rs6000_init_extra_frame_info (fromleaf, fi);
|
336 |
|
|
|
337 |
|
|
if (fi->next != 0)
|
338 |
|
|
{
|
339 |
|
|
/* We're called from get_prev_frame_info; check to see if
|
340 |
|
|
this is a signal frame by looking to see if the pc points
|
341 |
|
|
at trampoline code */
|
342 |
|
|
if (ppc_linux_at_sigtramp_return_path (fi->pc))
|
343 |
|
|
fi->signal_handler_caller = 1;
|
344 |
|
|
else
|
345 |
|
|
fi->signal_handler_caller = 0;
|
346 |
|
|
}
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
int
|
350 |
|
|
ppc_linux_frameless_function_invocation (struct frame_info *fi)
|
351 |
|
|
{
|
352 |
|
|
/* We'll find the wrong thing if we let
|
353 |
|
|
rs6000_frameless_function_invocation () search for a signal trampoline */
|
354 |
|
|
if (ppc_linux_at_sigtramp_return_path (fi->pc))
|
355 |
|
|
return 0;
|
356 |
|
|
else
|
357 |
|
|
return rs6000_frameless_function_invocation (fi);
|
358 |
|
|
}
|
359 |
|
|
|
360 |
|
|
void
|
361 |
|
|
ppc_linux_frame_init_saved_regs (struct frame_info *fi)
|
362 |
|
|
{
|
363 |
|
|
if (fi->signal_handler_caller)
|
364 |
|
|
{
|
365 |
|
|
CORE_ADDR regs_addr;
|
366 |
|
|
int i;
|
367 |
|
|
if (fi->saved_regs)
|
368 |
|
|
return;
|
369 |
|
|
|
370 |
|
|
frame_saved_regs_zalloc (fi);
|
371 |
|
|
|
372 |
|
|
regs_addr =
|
373 |
|
|
read_memory_integer (fi->frame + PPC_LINUX_REGS_PTR_OFFSET, 4);
|
374 |
|
|
fi->saved_regs[PC_REGNUM] = regs_addr + 4 * PPC_LINUX_PT_NIP;
|
375 |
|
|
fi->saved_regs[PS_REGNUM] = regs_addr + 4 * PPC_LINUX_PT_MSR;
|
376 |
|
|
fi->saved_regs[CR_REGNUM] = regs_addr + 4 * PPC_LINUX_PT_CCR;
|
377 |
|
|
fi->saved_regs[LR_REGNUM] = regs_addr + 4 * PPC_LINUX_PT_LNK;
|
378 |
|
|
fi->saved_regs[CTR_REGNUM] = regs_addr + 4 * PPC_LINUX_PT_CTR;
|
379 |
|
|
fi->saved_regs[XER_REGNUM] = regs_addr + 4 * PPC_LINUX_PT_XER;
|
380 |
|
|
fi->saved_regs[MQ_REGNUM] = regs_addr + 4 * PPC_LINUX_PT_MQ;
|
381 |
|
|
for (i = 0; i < 32; i++)
|
382 |
|
|
fi->saved_regs[GP0_REGNUM + i] = regs_addr + 4 * PPC_LINUX_PT_R0 + 4 * i;
|
383 |
|
|
for (i = 0; i < 32; i++)
|
384 |
|
|
fi->saved_regs[FP0_REGNUM + i] = regs_addr + 4 * PPC_LINUX_PT_FPR0 + 8 * i;
|
385 |
|
|
}
|
386 |
|
|
else
|
387 |
|
|
rs6000_frame_init_saved_regs (fi);
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
CORE_ADDR
|
391 |
|
|
ppc_linux_frame_chain (struct frame_info *thisframe)
|
392 |
|
|
{
|
393 |
|
|
/* Kernel properly constructs the frame chain for the handler */
|
394 |
|
|
if (thisframe->signal_handler_caller)
|
395 |
|
|
return read_memory_integer ((thisframe)->frame, 4);
|
396 |
|
|
else
|
397 |
|
|
return rs6000_frame_chain (thisframe);
|
398 |
|
|
}
|
399 |
|
|
|
400 |
|
|
/* FIXME: Move the following to rs6000-tdep.c (or some other file where
|
401 |
|
|
it may be used generically by ports which use either the SysV ABI or
|
402 |
|
|
the EABI */
|
403 |
|
|
|
404 |
|
|
/* round2 rounds x up to the nearest multiple of s assuming that s is a
|
405 |
|
|
power of 2 */
|
406 |
|
|
|
407 |
|
|
#undef round2
|
408 |
|
|
#define round2(x,s) ((((long) (x) - 1) & ~(long)((s)-1)) + (s))
|
409 |
|
|
|
410 |
|
|
/* Pass the arguments in either registers, or in the stack. Using the
|
411 |
|
|
ppc sysv ABI, the first eight words of the argument list (that might
|
412 |
|
|
be less than eight parameters if some parameters occupy more than one
|
413 |
|
|
word) are passed in r3..r10 registers. float and double parameters are
|
414 |
|
|
passed in fpr's, in addition to that. Rest of the parameters if any
|
415 |
|
|
are passed in user stack.
|
416 |
|
|
|
417 |
|
|
If the function is returning a structure, then the return address is passed
|
418 |
|
|
in r3, then the first 7 words of the parametes can be passed in registers,
|
419 |
|
|
starting from r4. */
|
420 |
|
|
|
421 |
|
|
CORE_ADDR
|
422 |
|
|
ppc_sysv_abi_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
423 |
|
|
int nargs;
|
424 |
|
|
value_ptr *args;
|
425 |
|
|
CORE_ADDR sp;
|
426 |
|
|
int struct_return;
|
427 |
|
|
CORE_ADDR struct_addr;
|
428 |
|
|
{
|
429 |
|
|
int argno;
|
430 |
|
|
int greg, freg;
|
431 |
|
|
int argstkspace;
|
432 |
|
|
int structstkspace;
|
433 |
|
|
int argoffset;
|
434 |
|
|
int structoffset;
|
435 |
|
|
value_ptr arg;
|
436 |
|
|
struct type *type;
|
437 |
|
|
int len;
|
438 |
|
|
char old_sp_buf[4];
|
439 |
|
|
CORE_ADDR saved_sp;
|
440 |
|
|
|
441 |
|
|
greg = struct_return ? 4 : 3;
|
442 |
|
|
freg = 1;
|
443 |
|
|
argstkspace = 0;
|
444 |
|
|
structstkspace = 0;
|
445 |
|
|
|
446 |
|
|
/* Figure out how much new stack space is required for arguments
|
447 |
|
|
which don't fit in registers. Unlike the PowerOpen ABI, the
|
448 |
|
|
SysV ABI doesn't reserve any extra space for parameters which
|
449 |
|
|
are put in registers. */
|
450 |
|
|
for (argno = 0; argno < nargs; argno++)
|
451 |
|
|
{
|
452 |
|
|
arg = args[argno];
|
453 |
|
|
type = check_typedef (VALUE_TYPE (arg));
|
454 |
|
|
len = TYPE_LENGTH (type);
|
455 |
|
|
|
456 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
457 |
|
|
{
|
458 |
|
|
if (freg <= 8)
|
459 |
|
|
freg++;
|
460 |
|
|
else
|
461 |
|
|
{
|
462 |
|
|
/* SysV ABI converts floats to doubles when placed in
|
463 |
|
|
memory and requires 8 byte alignment */
|
464 |
|
|
if (argstkspace & 0x4)
|
465 |
|
|
argstkspace += 4;
|
466 |
|
|
argstkspace += 8;
|
467 |
|
|
}
|
468 |
|
|
}
|
469 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_INT && len == 8) /* long long */
|
470 |
|
|
{
|
471 |
|
|
if (greg > 9)
|
472 |
|
|
{
|
473 |
|
|
greg = 11;
|
474 |
|
|
if (argstkspace & 0x4)
|
475 |
|
|
argstkspace += 4;
|
476 |
|
|
argstkspace += 8;
|
477 |
|
|
}
|
478 |
|
|
else
|
479 |
|
|
{
|
480 |
|
|
if ((greg & 1) == 0)
|
481 |
|
|
greg++;
|
482 |
|
|
greg += 2;
|
483 |
|
|
}
|
484 |
|
|
}
|
485 |
|
|
else
|
486 |
|
|
{
|
487 |
|
|
if (len > 4
|
488 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_STRUCT
|
489 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
490 |
|
|
{
|
491 |
|
|
/* Rounding to the nearest multiple of 8 may not be necessary,
|
492 |
|
|
but it is safe. Particularly since we don't know the
|
493 |
|
|
field types of the structure */
|
494 |
|
|
structstkspace += round2 (len, 8);
|
495 |
|
|
}
|
496 |
|
|
if (greg <= 10)
|
497 |
|
|
greg++;
|
498 |
|
|
else
|
499 |
|
|
argstkspace += 4;
|
500 |
|
|
}
|
501 |
|
|
}
|
502 |
|
|
|
503 |
|
|
/* Get current SP location */
|
504 |
|
|
saved_sp = read_sp ();
|
505 |
|
|
|
506 |
|
|
sp -= argstkspace + structstkspace;
|
507 |
|
|
|
508 |
|
|
/* Allocate space for backchain and callee's saved lr */
|
509 |
|
|
sp -= 8;
|
510 |
|
|
|
511 |
|
|
/* Make sure that we maintain 16 byte alignment */
|
512 |
|
|
sp &= ~0x0f;
|
513 |
|
|
|
514 |
|
|
/* Update %sp before proceeding any further */
|
515 |
|
|
write_register (SP_REGNUM, sp);
|
516 |
|
|
|
517 |
|
|
/* write the backchain */
|
518 |
|
|
store_address (old_sp_buf, 4, saved_sp);
|
519 |
|
|
write_memory (sp, old_sp_buf, 4);
|
520 |
|
|
|
521 |
|
|
argoffset = 8;
|
522 |
|
|
structoffset = argoffset + argstkspace;
|
523 |
|
|
freg = 1;
|
524 |
|
|
greg = 3;
|
525 |
|
|
/* Fill in r3 with the return structure, if any */
|
526 |
|
|
if (struct_return)
|
527 |
|
|
{
|
528 |
|
|
char val_buf[4];
|
529 |
|
|
store_address (val_buf, 4, struct_addr);
|
530 |
|
|
memcpy (®isters[REGISTER_BYTE (greg)], val_buf, 4);
|
531 |
|
|
greg++;
|
532 |
|
|
}
|
533 |
|
|
/* Now fill in the registers and stack... */
|
534 |
|
|
for (argno = 0; argno < nargs; argno++)
|
535 |
|
|
{
|
536 |
|
|
arg = args[argno];
|
537 |
|
|
type = check_typedef (VALUE_TYPE (arg));
|
538 |
|
|
len = TYPE_LENGTH (type);
|
539 |
|
|
|
540 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
541 |
|
|
{
|
542 |
|
|
if (freg <= 8)
|
543 |
|
|
{
|
544 |
|
|
if (len > 8)
|
545 |
|
|
printf_unfiltered (
|
546 |
|
|
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
|
547 |
|
|
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + freg)],
|
548 |
|
|
VALUE_CONTENTS (arg), len);
|
549 |
|
|
freg++;
|
550 |
|
|
}
|
551 |
|
|
else
|
552 |
|
|
{
|
553 |
|
|
/* SysV ABI converts floats to doubles when placed in
|
554 |
|
|
memory and requires 8 byte alignment */
|
555 |
|
|
/* FIXME: Convert floats to doubles */
|
556 |
|
|
if (argoffset & 0x4)
|
557 |
|
|
argoffset += 4;
|
558 |
|
|
write_memory (sp + argoffset, (char *) VALUE_CONTENTS (arg), len);
|
559 |
|
|
argoffset += 8;
|
560 |
|
|
}
|
561 |
|
|
}
|
562 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_INT && len == 8) /* long long */
|
563 |
|
|
{
|
564 |
|
|
if (greg > 9)
|
565 |
|
|
{
|
566 |
|
|
greg = 11;
|
567 |
|
|
if (argoffset & 0x4)
|
568 |
|
|
argoffset += 4;
|
569 |
|
|
write_memory (sp + argoffset, (char *) VALUE_CONTENTS (arg), len);
|
570 |
|
|
argoffset += 8;
|
571 |
|
|
}
|
572 |
|
|
else
|
573 |
|
|
{
|
574 |
|
|
if ((greg & 1) == 0)
|
575 |
|
|
greg++;
|
576 |
|
|
|
577 |
|
|
memcpy (®isters[REGISTER_BYTE (greg)],
|
578 |
|
|
VALUE_CONTENTS (arg), 4);
|
579 |
|
|
memcpy (®isters[REGISTER_BYTE (greg + 1)],
|
580 |
|
|
VALUE_CONTENTS (arg) + 4, 4);
|
581 |
|
|
greg += 2;
|
582 |
|
|
}
|
583 |
|
|
}
|
584 |
|
|
else
|
585 |
|
|
{
|
586 |
|
|
char val_buf[4];
|
587 |
|
|
if (len > 4
|
588 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_STRUCT
|
589 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION)
|
590 |
|
|
{
|
591 |
|
|
write_memory (sp + structoffset, VALUE_CONTENTS (arg), len);
|
592 |
|
|
store_address (val_buf, 4, sp + structoffset);
|
593 |
|
|
structoffset += round2 (len, 8);
|
594 |
|
|
}
|
595 |
|
|
else
|
596 |
|
|
{
|
597 |
|
|
memset (val_buf, 0, 4);
|
598 |
|
|
memcpy (val_buf, VALUE_CONTENTS (arg), len);
|
599 |
|
|
}
|
600 |
|
|
if (greg <= 10)
|
601 |
|
|
{
|
602 |
|
|
*(int *) ®isters[REGISTER_BYTE (greg)] = 0;
|
603 |
|
|
memcpy (®isters[REGISTER_BYTE (greg)], val_buf, 4);
|
604 |
|
|
greg++;
|
605 |
|
|
}
|
606 |
|
|
else
|
607 |
|
|
{
|
608 |
|
|
write_memory (sp + argoffset, val_buf, 4);
|
609 |
|
|
argoffset += 4;
|
610 |
|
|
}
|
611 |
|
|
}
|
612 |
|
|
}
|
613 |
|
|
|
614 |
|
|
target_store_registers (-1);
|
615 |
|
|
return sp;
|
616 |
|
|
}
|
617 |
|
|
|
618 |
|
|
/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
|
619 |
|
|
in much the same fashion as memory_remove_breakpoint in mem-break.c,
|
620 |
|
|
but is careful not to write back the previous contents if the code
|
621 |
|
|
in question has changed in between inserting the breakpoint and
|
622 |
|
|
removing it.
|
623 |
|
|
|
624 |
|
|
Here is the problem that we're trying to solve...
|
625 |
|
|
|
626 |
|
|
Once upon a time, before introducing this function to remove
|
627 |
|
|
breakpoints from the inferior, setting a breakpoint on a shared
|
628 |
|
|
library function prior to running the program would not work
|
629 |
|
|
properly. In order to understand the problem, it is first
|
630 |
|
|
necessary to understand a little bit about dynamic linking on
|
631 |
|
|
this platform.
|
632 |
|
|
|
633 |
|
|
A call to a shared library function is accomplished via a bl
|
634 |
|
|
(branch-and-link) instruction whose branch target is an entry
|
635 |
|
|
in the procedure linkage table (PLT). The PLT in the object
|
636 |
|
|
file is uninitialized. To gdb, prior to running the program, the
|
637 |
|
|
entries in the PLT are all zeros.
|
638 |
|
|
|
639 |
|
|
Once the program starts running, the shared libraries are loaded
|
640 |
|
|
and the procedure linkage table is initialized, but the entries in
|
641 |
|
|
the table are not (necessarily) resolved. Once a function is
|
642 |
|
|
actually called, the code in the PLT is hit and the function is
|
643 |
|
|
resolved. In order to better illustrate this, an example is in
|
644 |
|
|
order; the following example is from the gdb testsuite.
|
645 |
|
|
|
646 |
|
|
We start the program shmain.
|
647 |
|
|
|
648 |
|
|
[kev@arroyo testsuite]$ ../gdb gdb.base/shmain
|
649 |
|
|
[...]
|
650 |
|
|
|
651 |
|
|
We place two breakpoints, one on shr1 and the other on main.
|
652 |
|
|
|
653 |
|
|
(gdb) b shr1
|
654 |
|
|
Breakpoint 1 at 0x100409d4
|
655 |
|
|
(gdb) b main
|
656 |
|
|
Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
|
657 |
|
|
|
658 |
|
|
Examine the instruction (and the immediatly following instruction)
|
659 |
|
|
upon which the breakpoint was placed. Note that the PLT entry
|
660 |
|
|
for shr1 contains zeros.
|
661 |
|
|
|
662 |
|
|
(gdb) x/2i 0x100409d4
|
663 |
|
|
0x100409d4 <shr1>: .long 0x0
|
664 |
|
|
0x100409d8 <shr1+4>: .long 0x0
|
665 |
|
|
|
666 |
|
|
Now run 'til main.
|
667 |
|
|
|
668 |
|
|
(gdb) r
|
669 |
|
|
Starting program: gdb.base/shmain
|
670 |
|
|
Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
|
671 |
|
|
|
672 |
|
|
Breakpoint 2, main ()
|
673 |
|
|
at gdb.base/shmain.c:44
|
674 |
|
|
44 g = 1;
|
675 |
|
|
|
676 |
|
|
Examine the PLT again. Note that the loading of the shared
|
677 |
|
|
library has initialized the PLT to code which loads a constant
|
678 |
|
|
(which I think is an index into the GOT) into r11 and then
|
679 |
|
|
branchs a short distance to the code which actually does the
|
680 |
|
|
resolving.
|
681 |
|
|
|
682 |
|
|
(gdb) x/2i 0x100409d4
|
683 |
|
|
0x100409d4 <shr1>: li r11,4
|
684 |
|
|
0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
|
685 |
|
|
(gdb) c
|
686 |
|
|
Continuing.
|
687 |
|
|
|
688 |
|
|
Breakpoint 1, shr1 (x=1)
|
689 |
|
|
at gdb.base/shr1.c:19
|
690 |
|
|
19 l = 1;
|
691 |
|
|
|
692 |
|
|
Now we've hit the breakpoint at shr1. (The breakpoint was
|
693 |
|
|
reset from the PLT entry to the actual shr1 function after the
|
694 |
|
|
shared library was loaded.) Note that the PLT entry has been
|
695 |
|
|
resolved to contain a branch that takes us directly to shr1.
|
696 |
|
|
(The real one, not the PLT entry.)
|
697 |
|
|
|
698 |
|
|
(gdb) x/2i 0x100409d4
|
699 |
|
|
0x100409d4 <shr1>: b 0xffaf76c <shr1>
|
700 |
|
|
0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
|
701 |
|
|
|
702 |
|
|
The thing to note here is that the PLT entry for shr1 has been
|
703 |
|
|
changed twice.
|
704 |
|
|
|
705 |
|
|
Now the problem should be obvious. GDB places a breakpoint (a
|
706 |
|
|
trap instruction) on the zero value of the PLT entry for shr1.
|
707 |
|
|
Later on, after the shared library had been loaded and the PLT
|
708 |
|
|
initialized, GDB gets a signal indicating this fact and attempts
|
709 |
|
|
(as it always does when it stops) to remove all the breakpoints.
|
710 |
|
|
|
711 |
|
|
The breakpoint removal was causing the former contents (a zero
|
712 |
|
|
word) to be written back to the now initialized PLT entry thus
|
713 |
|
|
destroying a portion of the initialization that had occurred only a
|
714 |
|
|
short time ago. When execution continued, the zero word would be
|
715 |
|
|
executed as an instruction an an illegal instruction trap was
|
716 |
|
|
generated instead. (0 is not a legal instruction.)
|
717 |
|
|
|
718 |
|
|
The fix for this problem was fairly straightforward. The function
|
719 |
|
|
memory_remove_breakpoint from mem-break.c was copied to this file,
|
720 |
|
|
modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
|
721 |
|
|
In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
|
722 |
|
|
function.
|
723 |
|
|
|
724 |
|
|
The differences between ppc_linux_memory_remove_breakpoint () and
|
725 |
|
|
memory_remove_breakpoint () are minor. All that the former does
|
726 |
|
|
that the latter does not is check to make sure that the breakpoint
|
727 |
|
|
location actually contains a breakpoint (trap instruction) prior
|
728 |
|
|
to attempting to write back the old contents. If it does contain
|
729 |
|
|
a trap instruction, we allow the old contents to be written back.
|
730 |
|
|
Otherwise, we silently do nothing.
|
731 |
|
|
|
732 |
|
|
The big question is whether memory_remove_breakpoint () should be
|
733 |
|
|
changed to have the same functionality. The downside is that more
|
734 |
|
|
traffic is generated for remote targets since we'll have an extra
|
735 |
|
|
fetch of a memory word each time a breakpoint is removed.
|
736 |
|
|
|
737 |
|
|
For the time being, we'll leave this self-modifying-code-friendly
|
738 |
|
|
version in ppc-linux-tdep.c, but it ought to be migrated somewhere
|
739 |
|
|
else in the event that some other platform has similar needs with
|
740 |
|
|
regard to removing breakpoints in some potentially self modifying
|
741 |
|
|
code. */
|
742 |
|
|
int
|
743 |
|
|
ppc_linux_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
|
744 |
|
|
{
|
745 |
|
|
unsigned char *bp;
|
746 |
|
|
int val;
|
747 |
|
|
int bplen;
|
748 |
|
|
char old_contents[BREAKPOINT_MAX];
|
749 |
|
|
|
750 |
|
|
/* Determine appropriate breakpoint contents and size for this address. */
|
751 |
|
|
bp = BREAKPOINT_FROM_PC (&addr, &bplen);
|
752 |
|
|
if (bp == NULL)
|
753 |
|
|
error ("Software breakpoints not implemented for this target.");
|
754 |
|
|
|
755 |
|
|
val = target_read_memory (addr, old_contents, bplen);
|
756 |
|
|
|
757 |
|
|
/* If our breakpoint is no longer at the address, this means that the
|
758 |
|
|
program modified the code on us, so it is wrong to put back the
|
759 |
|
|
old value */
|
760 |
|
|
if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
|
761 |
|
|
val = target_write_memory (addr, contents_cache, bplen);
|
762 |
|
|
|
763 |
|
|
return val;
|
764 |
|
|
}
|