OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.0/] [gdb/] [solib.c] - Blame information for rev 1774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 104 markom
/* Handle SunOS and SVR4 shared libraries for GDB, the GNU Debugger.
2
   Copyright 1990, 91, 92, 93, 94, 95, 96, 98, 1999
3
   Free Software Foundation, Inc.
4
 
5
   This file is part of GDB.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 2 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 59 Temple Place - Suite 330,
20
   Boston, MA 02111-1307, USA.  */
21
 
22
 
23
#include "defs.h"
24
 
25
/* This file is only compilable if link.h is available. */
26
 
27
#ifdef HAVE_LINK_H
28
 
29
#include <sys/types.h>
30
#include <signal.h>
31
#include "gdb_string.h"
32
#include <sys/param.h>
33
#include <fcntl.h>
34
 
35
#ifndef SVR4_SHARED_LIBS
36
 /* SunOS shared libs need the nlist structure.  */
37
#include <a.out.h>
38
#else
39
#include "elf/external.h"
40
#endif
41
 
42
#include <link.h>
43
 
44
#include "symtab.h"
45
#include "bfd.h"
46
#include "symfile.h"
47
#include "objfiles.h"
48
#include "gdbcore.h"
49
#include "command.h"
50
#include "target.h"
51
#include "frame.h"
52
#include "gdb_regex.h"
53
#include "inferior.h"
54
#include "environ.h"
55
#include "language.h"
56
#include "gdbcmd.h"
57
 
58
#define MAX_PATH_SIZE 512       /* FIXME: Should be dynamic */
59
 
60
/* On SVR4 systems, a list of symbols in the dynamic linker where
61
   GDB can try to place a breakpoint to monitor shared library
62
   events.
63
 
64
   If none of these symbols are found, or other errors occur, then
65
   SVR4 systems will fall back to using a symbol as the "startup
66
   mapping complete" breakpoint address.  */
67
 
68
#ifdef SVR4_SHARED_LIBS
69
static char *solib_break_names[] =
70
{
71
  "r_debug_state",
72
  "_r_debug_state",
73
  "_dl_debug_state",
74
  "rtld_db_dlactivity",
75
  NULL
76
};
77
#endif
78
 
79
#define BKPT_AT_SYMBOL 1
80
 
81
#if defined (BKPT_AT_SYMBOL) && defined (SVR4_SHARED_LIBS)
82
static char *bkpt_names[] =
83
{
84
#ifdef SOLIB_BKPT_NAME
85
  SOLIB_BKPT_NAME,              /* Prefer configured name if it exists. */
86
#endif
87
  "_start",
88
  "main",
89
  NULL
90
};
91
#endif
92
 
93
/* Symbols which are used to locate the base of the link map structures. */
94
 
95
#ifndef SVR4_SHARED_LIBS
96
static char *debug_base_symbols[] =
97
{
98
  "_DYNAMIC",
99
  "_DYNAMIC__MGC",
100
  NULL
101
};
102
#endif
103
 
104
static char *main_name_list[] =
105
{
106
  "main_$main",
107
  NULL
108
};
109
 
110
/* local data declarations */
111
 
112
/* Macro to extract an address from a solib structure.
113
   When GDB is configured for some 32-bit targets (e.g. Solaris 2.7
114
   sparc), BFD is configured to handle 64-bit targets, so CORE_ADDR is
115
   64 bits.  We have to extract only the significant bits of addresses
116
   to get the right address when accessing the core file BFD.  */
117
 
118
#define SOLIB_EXTRACT_ADDRESS(member) \
119
  extract_address (&member, sizeof (member))
120
 
121
#ifndef SVR4_SHARED_LIBS
122
 
123
#define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_addr))
124
#define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_next))
125
#define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.lm_name))
126
/* Test for first link map entry; first entry is a shared library. */
127
#define IGNORE_FIRST_LINK_MAP_ENTRY(so) (0)
128
static struct link_dynamic dynamic_copy;
129
static struct link_dynamic_2 ld_2_copy;
130
static struct ld_debug debug_copy;
131
static CORE_ADDR debug_addr;
132
static CORE_ADDR flag_addr;
133
 
134
#else /* SVR4_SHARED_LIBS */
135
 
136
#define LM_ADDR(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_addr))
137
#define LM_NEXT(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_next))
138
#define LM_NAME(so) (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_name))
139
/* Test for first link map entry; first entry is the exec-file. */
140
#define IGNORE_FIRST_LINK_MAP_ENTRY(so) \
141
  (SOLIB_EXTRACT_ADDRESS ((so) -> lm.l_prev) == 0)
142
static struct r_debug debug_copy;
143
char shadow_contents[BREAKPOINT_MAX];   /* Stash old bkpt addr contents */
144
 
145
#endif /* !SVR4_SHARED_LIBS */
146
 
147
struct so_list
148
  {
149
    /* The following fields of the structure come directly from the
150
       dynamic linker's tables in the inferior, and are initialized by
151
       current_sos.  */
152
 
153
    struct so_list *next;       /* next structure in linked list */
154
    struct link_map lm;         /* copy of link map from inferior */
155
    CORE_ADDR lmaddr;           /* addr in inferior lm was read from */
156
 
157
    /* Shared object file name, exactly as it appears in the
158
       inferior's link map.  This may be a relative path, or something
159
       which needs to be looked up in LD_LIBRARY_PATH, etc.  We use it
160
       to tell which entries in the inferior's dynamic linker's link
161
       map we've already loaded.  */
162
    char so_original_name[MAX_PATH_SIZE];
163
 
164
    /* shared object file name, expanded to something GDB can open */
165
    char so_name[MAX_PATH_SIZE];
166
 
167
    /* The following fields of the structure are built from
168
       information gathered from the shared object file itself, and
169
       are initialized when we actually add it to our symbol tables.  */
170
 
171
    bfd *abfd;
172
    CORE_ADDR lmend;            /* upper addr bound of mapped object */
173
    char symbols_loaded;        /* flag: symbols read in yet? */
174
    char from_tty;              /* flag: print msgs? */
175
    struct objfile *objfile;    /* objfile for loaded lib */
176
    struct section_table *sections;
177
    struct section_table *sections_end;
178
    struct section_table *textsection;
179
  };
180
 
181
static struct so_list *so_list_head;    /* List of known shared objects */
182
static CORE_ADDR debug_base;    /* Base of dynamic linker structures */
183
static CORE_ADDR breakpoint_addr;       /* Address where end bkpt is set */
184
 
185
static int solib_cleanup_queued = 0;     /* make_run_cleanup called */
186
 
187
extern int
188
fdmatch PARAMS ((int, int));    /* In libiberty */
189
 
190
/* Local function prototypes */
191
 
192
static void
193
do_clear_solib PARAMS ((PTR));
194
 
195
static int
196
match_main PARAMS ((char *));
197
 
198
static void
199
special_symbol_handling PARAMS ((void));
200
 
201
static void
202
sharedlibrary_command PARAMS ((char *, int));
203
 
204
static int
205
enable_break PARAMS ((void));
206
 
207
static void
208
info_sharedlibrary_command PARAMS ((char *, int));
209
 
210
static int symbol_add_stub PARAMS ((PTR));
211
 
212
static CORE_ADDR
213
  first_link_map_member PARAMS ((void));
214
 
215
static CORE_ADDR
216
  locate_base PARAMS ((void));
217
 
218
static int solib_map_sections PARAMS ((PTR));
219
 
220
#ifdef SVR4_SHARED_LIBS
221
 
222
static CORE_ADDR
223
  elf_locate_base PARAMS ((void));
224
 
225
#else
226
 
227
static struct so_list *current_sos (void);
228
static void free_so (struct so_list *node);
229
 
230
static int
231
disable_break PARAMS ((void));
232
 
233
static void
234
allocate_rt_common_objfile PARAMS ((void));
235
 
236
static void
237
solib_add_common_symbols (CORE_ADDR);
238
 
239
#endif
240
 
241
void _initialize_solib PARAMS ((void));
242
 
243
/* If non-zero, this is a prefix that will be added to the front of the name
244
   shared libraries with an absolute filename for loading.  */
245
static char *solib_absolute_prefix = NULL;
246
 
247
/* If non-empty, this is a search path for loading non-absolute shared library
248
   symbol files.  This takes precedence over the environment variables PATH
249
   and LD_LIBRARY_PATH.  */
250
static char *solib_search_path = NULL;
251
 
252
/*
253
 
254
   LOCAL FUNCTION
255
 
256
   solib_map_sections -- open bfd and build sections for shared lib
257
 
258
   SYNOPSIS
259
 
260
   static int solib_map_sections (struct so_list *so)
261
 
262
   DESCRIPTION
263
 
264
   Given a pointer to one of the shared objects in our list
265
   of mapped objects, use the recorded name to open a bfd
266
   descriptor for the object, build a section table, and then
267
   relocate all the section addresses by the base address at
268
   which the shared object was mapped.
269
 
270
   FIXMES
271
 
272
   In most (all?) cases the shared object file name recorded in the
273
   dynamic linkage tables will be a fully qualified pathname.  For
274
   cases where it isn't, do we really mimic the systems search
275
   mechanism correctly in the below code (particularly the tilde
276
   expansion stuff?).
277
 */
278
 
279
static int
280
solib_map_sections (arg)
281
     PTR arg;
282
{
283
  struct so_list *so = (struct so_list *) arg;  /* catch_errors bogon */
284
  char *filename;
285
  char *scratch_pathname;
286
  int scratch_chan;
287
  struct section_table *p;
288
  struct cleanup *old_chain;
289
  bfd *abfd;
290
 
291
  filename = tilde_expand (so->so_name);
292
 
293
  if (solib_absolute_prefix && ROOTED_P (filename))
294
    /* Prefix shared libraries with absolute filenames with
295
       SOLIB_ABSOLUTE_PREFIX.  */
296
    {
297
      char *pfxed_fn;
298
      int pfx_len;
299
 
300
      pfx_len = strlen (solib_absolute_prefix);
301
 
302
      /* Remove trailing slashes.  */
303
      while (pfx_len > 0 && SLASH_P (solib_absolute_prefix[pfx_len - 1]))
304
        pfx_len--;
305
 
306
      pfxed_fn = xmalloc (pfx_len + strlen (filename) + 1);
307
      strcpy (pfxed_fn, solib_absolute_prefix);
308
      strcat (pfxed_fn, filename);
309
      free (filename);
310
 
311
      filename = pfxed_fn;
312
    }
313
 
314
  old_chain = make_cleanup (free, filename);
315
 
316
  scratch_chan = -1;
317
 
318
  if (solib_search_path)
319
    scratch_chan = openp (solib_search_path,
320
                          1, filename, O_RDONLY, 0, &scratch_pathname);
321
  if (scratch_chan < 0)
322
    scratch_chan = openp (get_in_environ (inferior_environ, "PATH"),
323
                          1, filename, O_RDONLY, 0, &scratch_pathname);
324
  if (scratch_chan < 0)
325
    {
326
      scratch_chan = openp (get_in_environ
327
                            (inferior_environ, "LD_LIBRARY_PATH"),
328
                            1, filename, O_RDONLY, 0, &scratch_pathname);
329
    }
330
  if (scratch_chan < 0)
331
    {
332
      perror_with_name (filename);
333
    }
334
  /* Leave scratch_pathname allocated.  abfd->name will point to it.  */
335
 
336
  abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
337
  if (!abfd)
338
    {
339
      close (scratch_chan);
340
      error ("Could not open `%s' as an executable file: %s",
341
             scratch_pathname, bfd_errmsg (bfd_get_error ()));
342
    }
343
  /* Leave bfd open, core_xfer_memory and "info files" need it.  */
344
  so->abfd = abfd;
345
  abfd->cacheable = true;
346
 
347
  /* copy full path name into so_name, so that later symbol_file_add can find
348
     it */
349
  if (strlen (scratch_pathname) >= MAX_PATH_SIZE)
350
    error ("Full path name length of shared library exceeds MAX_PATH_SIZE in so_list structure.");
351
  strcpy (so->so_name, scratch_pathname);
352
 
353
  if (!bfd_check_format (abfd, bfd_object))
354
    {
355
      error ("\"%s\": not in executable format: %s.",
356
             scratch_pathname, bfd_errmsg (bfd_get_error ()));
357
    }
358
  if (build_section_table (abfd, &so->sections, &so->sections_end))
359
    {
360
      error ("Can't find the file sections in `%s': %s",
361
             bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
362
    }
363
 
364
  for (p = so->sections; p < so->sections_end; p++)
365
    {
366
      /* Relocate the section binding addresses as recorded in the shared
367
         object's file by the base address to which the object was actually
368
         mapped. */
369
      p->addr += LM_ADDR (so);
370
      p->endaddr += LM_ADDR (so);
371
      so->lmend = max (p->endaddr, so->lmend);
372
      if (STREQ (p->the_bfd_section->name, ".text"))
373
        {
374
          so->textsection = p;
375
        }
376
    }
377
 
378
  /* Free the file names, close the file now.  */
379
  do_cleanups (old_chain);
380
 
381
  return (1);
382
}
383
 
384
#ifndef SVR4_SHARED_LIBS
385
 
386
/* Allocate the runtime common object file.  */
387
 
388
static void
389
allocate_rt_common_objfile ()
390
{
391
  struct objfile *objfile;
392
  struct objfile *last_one;
393
 
394
  objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
395
  memset (objfile, 0, sizeof (struct objfile));
396
  objfile->md = NULL;
397
  obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
398
                              xmalloc, free);
399
  obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
400
                              free);
401
  obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
402
                              free);
403
  obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
404
                              free);
405
  objfile->name = mstrsave (objfile->md, "rt_common");
406
 
407
  /* Add this file onto the tail of the linked list of other such files. */
408
 
409
  objfile->next = NULL;
410
  if (object_files == NULL)
411
    object_files = objfile;
412
  else
413
    {
414
      for (last_one = object_files;
415
           last_one->next;
416
           last_one = last_one->next);
417
      last_one->next = objfile;
418
    }
419
 
420
  rt_common_objfile = objfile;
421
}
422
 
423
/* Read all dynamically loaded common symbol definitions from the inferior
424
   and put them into the minimal symbol table for the runtime common
425
   objfile.  */
426
 
427
static void
428
solib_add_common_symbols (rtc_symp)
429
     CORE_ADDR rtc_symp;
430
{
431
  struct rtc_symb inferior_rtc_symb;
432
  struct nlist inferior_rtc_nlist;
433
  int len;
434
  char *name;
435
 
436
  /* Remove any runtime common symbols from previous runs.  */
437
 
438
  if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
439
    {
440
      obstack_free (&rt_common_objfile->symbol_obstack, 0);
441
      obstack_specify_allocation (&rt_common_objfile->symbol_obstack, 0, 0,
442
                                  xmalloc, free);
443
      rt_common_objfile->minimal_symbol_count = 0;
444
      rt_common_objfile->msymbols = NULL;
445
    }
446
 
447
  init_minimal_symbol_collection ();
448
  make_cleanup ((make_cleanup_func) discard_minimal_symbols, 0);
449
 
450
  while (rtc_symp)
451
    {
452
      read_memory (rtc_symp,
453
                   (char *) &inferior_rtc_symb,
454
                   sizeof (inferior_rtc_symb));
455
      read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
456
                   (char *) &inferior_rtc_nlist,
457
                   sizeof (inferior_rtc_nlist));
458
      if (inferior_rtc_nlist.n_type == N_COMM)
459
        {
460
          /* FIXME: The length of the symbol name is not available, but in the
461
             current implementation the common symbol is allocated immediately
462
             behind the name of the symbol. */
463
          len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
464
 
465
          name = xmalloc (len);
466
          read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
467
                       name, len);
468
 
469
          /* Allocate the runtime common objfile if necessary. */
470
          if (rt_common_objfile == NULL)
471
            allocate_rt_common_objfile ();
472
 
473
          prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
474
                                      mst_bss, rt_common_objfile);
475
          free (name);
476
        }
477
      rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
478
    }
479
 
480
  /* Install any minimal symbols that have been collected as the current
481
     minimal symbols for the runtime common objfile.  */
482
 
483
  install_minimal_symbols (rt_common_objfile);
484
}
485
 
486
#endif /* SVR4_SHARED_LIBS */
487
 
488
 
489
#ifdef SVR4_SHARED_LIBS
490
 
491
static CORE_ADDR
492
  bfd_lookup_symbol PARAMS ((bfd *, char *));
493
 
494
/*
495
 
496
   LOCAL FUNCTION
497
 
498
   bfd_lookup_symbol -- lookup the value for a specific symbol
499
 
500
   SYNOPSIS
501
 
502
   CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
503
 
504
   DESCRIPTION
505
 
506
   An expensive way to lookup the value of a single symbol for
507
   bfd's that are only temporary anyway.  This is used by the
508
   shared library support to find the address of the debugger
509
   interface structures in the shared library.
510
 
511
   Note that 0 is specifically allowed as an error return (no
512
   such symbol).
513
 */
514
 
515
static CORE_ADDR
516
bfd_lookup_symbol (abfd, symname)
517
     bfd *abfd;
518
     char *symname;
519
{
520
  unsigned int storage_needed;
521
  asymbol *sym;
522
  asymbol **symbol_table;
523
  unsigned int number_of_symbols;
524
  unsigned int i;
525
  struct cleanup *back_to;
526
  CORE_ADDR symaddr = 0;
527
 
528
  storage_needed = bfd_get_symtab_upper_bound (abfd);
529
 
530
  if (storage_needed > 0)
531
    {
532
      symbol_table = (asymbol **) xmalloc (storage_needed);
533
      back_to = make_cleanup (free, (PTR) symbol_table);
534
      number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
535
 
536
      for (i = 0; i < number_of_symbols; i++)
537
        {
538
          sym = *symbol_table++;
539
          if (STREQ (sym->name, symname))
540
            {
541
              /* Bfd symbols are section relative. */
542
              symaddr = sym->value + sym->section->vma;
543
              break;
544
            }
545
        }
546
      do_cleanups (back_to);
547
    }
548
  return (symaddr);
549
}
550
 
551
#ifdef HANDLE_SVR4_EXEC_EMULATORS
552
 
553
/*
554
   Solaris BCP (the part of Solaris which allows it to run SunOS4
555
   a.out files) throws in another wrinkle. Solaris does not fill
556
   in the usual a.out link map structures when running BCP programs,
557
   the only way to get at them is via groping around in the dynamic
558
   linker.
559
   The dynamic linker and it's structures are located in the shared
560
   C library, which gets run as the executable's "interpreter" by
561
   the kernel.
562
 
563
   Note that we can assume nothing about the process state at the time
564
   we need to find these structures.  We may be stopped on the first
565
   instruction of the interpreter (C shared library), the first
566
   instruction of the executable itself, or somewhere else entirely
567
   (if we attached to the process for example).
568
 */
569
 
570
static char *debug_base_symbols[] =
571
{
572
  "r_debug",                    /* Solaris 2.3 */
573
  "_r_debug",                   /* Solaris 2.1, 2.2 */
574
  NULL
575
};
576
 
577
static int
578
look_for_base PARAMS ((int, CORE_ADDR));
579
 
580
/*
581
 
582
   LOCAL FUNCTION
583
 
584
   look_for_base -- examine file for each mapped address segment
585
 
586
   SYNOPSYS
587
 
588
   static int look_for_base (int fd, CORE_ADDR baseaddr)
589
 
590
   DESCRIPTION
591
 
592
   This function is passed to proc_iterate_over_mappings, which
593
   causes it to get called once for each mapped address space, with
594
   an open file descriptor for the file mapped to that space, and the
595
   base address of that mapped space.
596
 
597
   Our job is to find the debug base symbol in the file that this
598
   fd is open on, if it exists, and if so, initialize the dynamic
599
   linker structure base address debug_base.
600
 
601
   Note that this is a computationally expensive proposition, since
602
   we basically have to open a bfd on every call, so we specifically
603
   avoid opening the exec file.
604
 */
605
 
606
static int
607
look_for_base (fd, baseaddr)
608
     int fd;
609
     CORE_ADDR baseaddr;
610
{
611
  bfd *interp_bfd;
612
  CORE_ADDR address = 0;
613
  char **symbolp;
614
 
615
  /* If the fd is -1, then there is no file that corresponds to this
616
     mapped memory segment, so skip it.  Also, if the fd corresponds
617
     to the exec file, skip it as well. */
618
 
619
  if (fd == -1
620
      || (exec_bfd != NULL
621
          && fdmatch (fileno ((FILE *) (exec_bfd->iostream)), fd)))
622
    {
623
      return (0);
624
    }
625
 
626
  /* Try to open whatever random file this fd corresponds to.  Note that
627
     we have no way currently to find the filename.  Don't gripe about
628
     any problems we might have, just fail. */
629
 
630
  if ((interp_bfd = bfd_fdopenr ("unnamed", gnutarget, fd)) == NULL)
631
    {
632
      return (0);
633
    }
634
  if (!bfd_check_format (interp_bfd, bfd_object))
635
    {
636
      /* FIXME-leak: on failure, might not free all memory associated with
637
         interp_bfd.  */
638
      bfd_close (interp_bfd);
639
      return (0);
640
    }
641
 
642
  /* Now try to find our debug base symbol in this file, which we at
643
     least know to be a valid ELF executable or shared library. */
644
 
645
  for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
646
    {
647
      address = bfd_lookup_symbol (interp_bfd, *symbolp);
648
      if (address != 0)
649
        {
650
          break;
651
        }
652
    }
653
  if (address == 0)
654
    {
655
      /* FIXME-leak: on failure, might not free all memory associated with
656
         interp_bfd.  */
657
      bfd_close (interp_bfd);
658
      return (0);
659
    }
660
 
661
  /* Eureka!  We found the symbol.  But now we may need to relocate it
662
     by the base address.  If the symbol's value is less than the base
663
     address of the shared library, then it hasn't yet been relocated
664
     by the dynamic linker, and we have to do it ourself.  FIXME: Note
665
     that we make the assumption that the first segment that corresponds
666
     to the shared library has the base address to which the library
667
     was relocated. */
668
 
669
  if (address < baseaddr)
670
    {
671
      address += baseaddr;
672
    }
673
  debug_base = address;
674
  /* FIXME-leak: on failure, might not free all memory associated with
675
     interp_bfd.  */
676
  bfd_close (interp_bfd);
677
  return (1);
678
}
679
#endif /* HANDLE_SVR4_EXEC_EMULATORS */
680
 
681
/*
682
 
683
   LOCAL FUNCTION
684
 
685
   elf_locate_base -- locate the base address of dynamic linker structs
686
   for SVR4 elf targets.
687
 
688
   SYNOPSIS
689
 
690
   CORE_ADDR elf_locate_base (void)
691
 
692
   DESCRIPTION
693
 
694
   For SVR4 elf targets the address of the dynamic linker's runtime
695
   structure is contained within the dynamic info section in the
696
   executable file.  The dynamic section is also mapped into the
697
   inferior address space.  Because the runtime loader fills in the
698
   real address before starting the inferior, we have to read in the
699
   dynamic info section from the inferior address space.
700
   If there are any errors while trying to find the address, we
701
   silently return 0, otherwise the found address is returned.
702
 
703
 */
704
 
705
static CORE_ADDR
706
elf_locate_base ()
707
{
708
  sec_ptr dyninfo_sect;
709
  int dyninfo_sect_size;
710
  CORE_ADDR dyninfo_addr;
711
  char *buf;
712
  char *bufend;
713
 
714
  /* Find the start address of the .dynamic section.  */
715
  dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic");
716
  if (dyninfo_sect == NULL)
717
    return 0;
718
  dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect);
719
 
720
  /* Read in .dynamic section, silently ignore errors.  */
721
  dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect);
722
  buf = alloca (dyninfo_sect_size);
723
  if (target_read_memory (dyninfo_addr, buf, dyninfo_sect_size))
724
    return 0;
725
 
726
  /* Find the DT_DEBUG entry in the the .dynamic section.
727
     For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has
728
     no DT_DEBUG entries.  */
729
#ifndef TARGET_ELF64
730
  for (bufend = buf + dyninfo_sect_size;
731
       buf < bufend;
732
       buf += sizeof (Elf32_External_Dyn))
733
    {
734
      Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf;
735
      long dyn_tag;
736
      CORE_ADDR dyn_ptr;
737
 
738
      dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
739
      if (dyn_tag == DT_NULL)
740
        break;
741
      else if (dyn_tag == DT_DEBUG)
742
        {
743
          dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
744
          return dyn_ptr;
745
        }
746
#ifdef DT_MIPS_RLD_MAP
747
      else if (dyn_tag == DT_MIPS_RLD_MAP)
748
        {
749
          char pbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
750
 
751
          /* DT_MIPS_RLD_MAP contains a pointer to the address
752
             of the dynamic link structure.  */
753
          dyn_ptr = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
754
          if (target_read_memory (dyn_ptr, pbuf, sizeof (pbuf)))
755
            return 0;
756
          return extract_unsigned_integer (pbuf, sizeof (pbuf));
757
        }
758
#endif
759
    }
760
#else /* ELF64 */
761
  for (bufend = buf + dyninfo_sect_size;
762
       buf < bufend;
763
       buf += sizeof (Elf64_External_Dyn))
764
    {
765
      Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf;
766
      long dyn_tag;
767
      CORE_ADDR dyn_ptr;
768
 
769
      dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag);
770
      if (dyn_tag == DT_NULL)
771
        break;
772
      else if (dyn_tag == DT_DEBUG)
773
        {
774
          dyn_ptr = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_un.d_ptr);
775
          return dyn_ptr;
776
        }
777
    }
778
#endif
779
 
780
  /* DT_DEBUG entry not found.  */
781
  return 0;
782
}
783
 
784
#endif /* SVR4_SHARED_LIBS */
785
 
786
/*
787
 
788
   LOCAL FUNCTION
789
 
790
   locate_base -- locate the base address of dynamic linker structs
791
 
792
   SYNOPSIS
793
 
794
   CORE_ADDR locate_base (void)
795
 
796
   DESCRIPTION
797
 
798
   For both the SunOS and SVR4 shared library implementations, if the
799
   inferior executable has been linked dynamically, there is a single
800
   address somewhere in the inferior's data space which is the key to
801
   locating all of the dynamic linker's runtime structures.  This
802
   address is the value of the debug base symbol.  The job of this
803
   function is to find and return that address, or to return 0 if there
804
   is no such address (the executable is statically linked for example).
805
 
806
   For SunOS, the job is almost trivial, since the dynamic linker and
807
   all of it's structures are statically linked to the executable at
808
   link time.  Thus the symbol for the address we are looking for has
809
   already been added to the minimal symbol table for the executable's
810
   objfile at the time the symbol file's symbols were read, and all we
811
   have to do is look it up there.  Note that we explicitly do NOT want
812
   to find the copies in the shared library.
813
 
814
   The SVR4 version is a bit more complicated because the address
815
   is contained somewhere in the dynamic info section.  We have to go
816
   to a lot more work to discover the address of the debug base symbol.
817
   Because of this complexity, we cache the value we find and return that
818
   value on subsequent invocations.  Note there is no copy in the
819
   executable symbol tables.
820
 
821
 */
822
 
823
static CORE_ADDR
824
locate_base ()
825
{
826
 
827
#ifndef SVR4_SHARED_LIBS
828
 
829
  struct minimal_symbol *msymbol;
830
  CORE_ADDR address = 0;
831
  char **symbolp;
832
 
833
  /* For SunOS, we want to limit the search for the debug base symbol to the
834
     executable being debugged, since there is a duplicate named symbol in the
835
     shared library.  We don't want the shared library versions. */
836
 
837
  for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
838
    {
839
      msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
840
      if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
841
        {
842
          address = SYMBOL_VALUE_ADDRESS (msymbol);
843
          return (address);
844
        }
845
    }
846
  return (0);
847
 
848
#else /* SVR4_SHARED_LIBS */
849
 
850
  /* Check to see if we have a currently valid address, and if so, avoid
851
     doing all this work again and just return the cached address.  If
852
     we have no cached address, try to locate it in the dynamic info
853
     section for ELF executables.  */
854
 
855
  if (debug_base == 0)
856
    {
857
      if (exec_bfd != NULL
858
          && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
859
        debug_base = elf_locate_base ();
860
#ifdef HANDLE_SVR4_EXEC_EMULATORS
861
      /* Try it the hard way for emulated executables.  */
862
      else if (inferior_pid != 0 && target_has_execution)
863
        proc_iterate_over_mappings (look_for_base);
864
#endif
865
    }
866
  return (debug_base);
867
 
868
#endif /* !SVR4_SHARED_LIBS */
869
 
870
}
871
 
872
/*
873
 
874
   LOCAL FUNCTION
875
 
876
   first_link_map_member -- locate first member in dynamic linker's map
877
 
878
   SYNOPSIS
879
 
880
   static CORE_ADDR first_link_map_member (void)
881
 
882
   DESCRIPTION
883
 
884
   Find the first element in the inferior's dynamic link map, and
885
   return its address in the inferior.  This function doesn't copy the
886
   link map entry itself into our address space; current_sos actually
887
   does the reading.  */
888
 
889
static CORE_ADDR
890
first_link_map_member ()
891
{
892
  CORE_ADDR lm = 0;
893
 
894
#ifndef SVR4_SHARED_LIBS
895
 
896
  read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
897
  if (dynamic_copy.ld_version >= 2)
898
    {
899
      /* It is a version that we can deal with, so read in the secondary
900
         structure and find the address of the link map list from it. */
901
      read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
902
                   (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
903
      lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
904
    }
905
 
906
#else /* SVR4_SHARED_LIBS */
907
 
908
  read_memory (debug_base, (char *) &debug_copy, sizeof (struct r_debug));
909
  /* FIXME:  Perhaps we should validate the info somehow, perhaps by
910
     checking r_version for a known version number, or r_state for
911
     RT_CONSISTENT. */
912
  lm = SOLIB_EXTRACT_ADDRESS (debug_copy.r_map);
913
 
914
#endif /* !SVR4_SHARED_LIBS */
915
 
916
  return (lm);
917
}
918
 
919
#ifdef SVR4_SHARED_LIBS
920
/*
921
 
922
  LOCAL FUNCTION
923
 
924
  open_symbol_file_object
925
 
926
  SYNOPSIS
927
 
928
  void open_symbol_file_object (int from_tty)
929
 
930
  DESCRIPTION
931
 
932
  If no open symbol file, attempt to locate and open the main symbol
933
  file.  On SVR4 systems, this is the first link map entry.  If its
934
  name is here, we can open it.  Useful when attaching to a process
935
  without first loading its symbol file.
936
 
937
 */
938
 
939
static int
940
open_symbol_file_object (from_ttyp)
941
     int *from_ttyp;    /* sneak past catch_errors */
942
{
943
  CORE_ADDR lm;
944
  struct link_map lmcopy;
945
  char *filename;
946
  int errcode;
947
 
948
  if (symfile_objfile)
949
    if (!query ("Attempt to reload symbols from process? "))
950
      return 0;
951
 
952
  if ((debug_base = locate_base ()) == 0)
953
    return 0;    /* failed somehow... */
954
 
955
  /* First link map member should be the executable.  */
956
  if ((lm = first_link_map_member ()) == 0)
957
    return 0;    /* failed somehow... */
958
 
959
  /* Read from target memory to GDB.  */
960
  read_memory (lm, (void *) &lmcopy, sizeof (lmcopy));
961
 
962
  if (lmcopy.l_name == 0)
963
    return 0;    /* no filename.  */
964
 
965
  /* Now fetch the filename from target memory.  */
966
  target_read_string (SOLIB_EXTRACT_ADDRESS (lmcopy.l_name), &filename,
967
                      MAX_PATH_SIZE - 1, &errcode);
968
  if (errcode)
969
    {
970
      warning ("failed to read exec filename from attached file: %s",
971
               safe_strerror (errcode));
972
      return 0;
973
    }
974
 
975
  make_cleanup ((make_cleanup_func) free, (void *) filename);
976
  /* Have a pathname: read the symbol file.  */
977
  symbol_file_command (filename, *from_ttyp);
978
 
979
  return 1;
980
}
981
#endif /* SVR4_SHARED_LIBS */
982
 
983
 
984
/* LOCAL FUNCTION
985
 
986
   free_so --- free a `struct so_list' object
987
 
988
   SYNOPSIS
989
 
990
   void free_so (struct so_list *so)
991
 
992
   DESCRIPTION
993
 
994
   Free the storage associated with the `struct so_list' object SO.
995
   If we have opened a BFD for SO, close it.
996
 
997
   The caller is responsible for removing SO from whatever list it is
998
   a member of.  If we have placed SO's sections in some target's
999
   section table, the caller is responsible for removing them.
1000
 
1001
   This function doesn't mess with objfiles at all.  If there is an
1002
   objfile associated with SO that needs to be removed, the caller is
1003
   responsible for taking care of that.  */
1004
 
1005
static void
1006
free_so (struct so_list *so)
1007
{
1008
  char *bfd_filename = 0;
1009
 
1010
  if (so->sections)
1011
    free (so->sections);
1012
 
1013
  if (so->abfd)
1014
    {
1015
      bfd_filename = bfd_get_filename (so->abfd);
1016
      if (! bfd_close (so->abfd))
1017
        warning ("cannot close \"%s\": %s",
1018
                 bfd_filename, bfd_errmsg (bfd_get_error ()));
1019
    }
1020
 
1021
  if (bfd_filename)
1022
    free (bfd_filename);
1023
 
1024
  free (so);
1025
}
1026
 
1027
 
1028
/* On some systems, the only way to recognize the link map entry for
1029
   the main executable file is by looking at its name.  Return
1030
   non-zero iff SONAME matches one of the known main executable names.  */
1031
 
1032
static int
1033
match_main (soname)
1034
     char *soname;
1035
{
1036
  char **mainp;
1037
 
1038
  for (mainp = main_name_list; *mainp != NULL; mainp++)
1039
    {
1040
      if (strcmp (soname, *mainp) == 0)
1041
        return (1);
1042
    }
1043
 
1044
  return (0);
1045
}
1046
 
1047
 
1048
/* LOCAL FUNCTION
1049
 
1050
   current_sos -- build a list of currently loaded shared objects
1051
 
1052
   SYNOPSIS
1053
 
1054
   struct so_list *current_sos ()
1055
 
1056
   DESCRIPTION
1057
 
1058
   Build a list of `struct so_list' objects describing the shared
1059
   objects currently loaded in the inferior.  This list does not
1060
   include an entry for the main executable file.
1061
 
1062
   Note that we only gather information directly available from the
1063
   inferior --- we don't examine any of the shared library files
1064
   themselves.  The declaration of `struct so_list' says which fields
1065
   we provide values for.  */
1066
 
1067
static struct so_list *
1068
current_sos ()
1069
{
1070
  CORE_ADDR lm;
1071
  struct so_list *head = 0;
1072
  struct so_list **link_ptr = &head;
1073
 
1074
  /* Make sure we've looked up the inferior's dynamic linker's base
1075
     structure.  */
1076
  if (! debug_base)
1077
    {
1078
      debug_base = locate_base ();
1079
 
1080
      /* If we can't find the dynamic linker's base structure, this
1081
         must not be a dynamically linked executable.  Hmm.  */
1082
      if (! debug_base)
1083
        return 0;
1084
    }
1085
 
1086
  /* Walk the inferior's link map list, and build our list of
1087
     `struct so_list' nodes.  */
1088
  lm = first_link_map_member ();
1089
  while (lm)
1090
    {
1091
      struct so_list *new
1092
        = (struct so_list *) xmalloc (sizeof (struct so_list));
1093
      struct cleanup *old_chain = make_cleanup (free, new);
1094
      memset (new, 0, sizeof (*new));
1095
 
1096
      new->lmaddr = lm;
1097
      read_memory (lm, (char *) &(new->lm), sizeof (struct link_map));
1098
 
1099
      lm = LM_NEXT (new);
1100
 
1101
      /* For SVR4 versions, the first entry in the link map is for the
1102
         inferior executable, so we must ignore it.  For some versions of
1103
         SVR4, it has no name.  For others (Solaris 2.3 for example), it
1104
         does have a name, so we can no longer use a missing name to
1105
         decide when to ignore it. */
1106
      if (IGNORE_FIRST_LINK_MAP_ENTRY (new))
1107
        free_so (new);
1108
      else
1109
        {
1110
          int errcode;
1111
          char *buffer;
1112
 
1113
          /* Extract this shared object's name.  */
1114
          target_read_string (LM_NAME (new), &buffer,
1115
                              MAX_PATH_SIZE - 1, &errcode);
1116
          if (errcode != 0)
1117
            {
1118
              warning ("current_sos: Can't read pathname for load map: %s\n",
1119
                       safe_strerror (errcode));
1120
            }
1121
          else
1122
            {
1123
              strncpy (new->so_name, buffer, MAX_PATH_SIZE - 1);
1124
              new->so_name[MAX_PATH_SIZE - 1] = '\0';
1125
              free (buffer);
1126
              strcpy (new->so_original_name, new->so_name);
1127
            }
1128
 
1129
          /* If this entry has no name, or its name matches the name
1130
             for the main executable, don't include it in the list.  */
1131
          if (! new->so_name[0]
1132
              || match_main (new->so_name))
1133
            free_so (new);
1134
          else
1135
            {
1136
              new->next = 0;
1137
              *link_ptr = new;
1138
              link_ptr = &new->next;
1139
            }
1140
        }
1141
 
1142
      discard_cleanups (old_chain);
1143
    }
1144
 
1145
  return head;
1146
}
1147
 
1148
 
1149
/* A small stub to get us past the arg-passing pinhole of catch_errors.  */
1150
 
1151
static int
1152
symbol_add_stub (arg)
1153
     PTR arg;
1154
{
1155
  register struct so_list *so = (struct so_list *) arg;  /* catch_errs bogon */
1156
  CORE_ADDR text_addr = 0;
1157
  struct section_addr_info *sap;
1158
 
1159
  /* Have we already loaded this shared object?  */
1160
  ALL_OBJFILES (so->objfile)
1161
    {
1162
      if (strcmp (so->objfile->name, so->so_name) == 0)
1163
        return 1;
1164
    }
1165
 
1166
  /* Find the shared object's text segment.  */
1167
  if (so->textsection)
1168
    text_addr = so->textsection->addr;
1169
  else if (so->abfd != NULL)
1170
    {
1171
      asection *lowest_sect;
1172
 
1173
      /* If we didn't find a mapped non zero sized .text section, set up
1174
         text_addr so that the relocation in symbol_file_add does no harm.  */
1175
      lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
1176
      if (lowest_sect == NULL)
1177
        bfd_map_over_sections (so->abfd, find_lowest_section,
1178
                               (PTR) &lowest_sect);
1179
      if (lowest_sect)
1180
        text_addr = bfd_section_vma (so->abfd, lowest_sect)
1181
          + LM_ADDR (so);
1182
    }
1183
 
1184
  sap = build_section_addr_info_from_section_table (so->sections,
1185
                                                    so->sections_end);
1186
  sap->text_addr = text_addr;
1187
  so->objfile = symbol_file_add (so->so_name, so->from_tty,
1188
                                 sap, 0, OBJF_SHARED);
1189
  free_section_addr_info (sap);
1190
 
1191
  return (1);
1192
}
1193
 
1194
 
1195
/* LOCAL FUNCTION
1196
 
1197
   update_solib_list --- synchronize GDB's shared object list with inferior's
1198
 
1199
   SYNOPSIS
1200
 
1201
   void update_solib_list (int from_tty, struct target_ops *TARGET)
1202
 
1203
   Extract the list of currently loaded shared objects from the
1204
   inferior, and compare it with the list of shared objects currently
1205
   in GDB's so_list_head list.  Edit so_list_head to bring it in sync
1206
   with the inferior's new list.
1207
 
1208
   If we notice that the inferior has unloaded some shared objects,
1209
   free any symbolic info GDB had read about those shared objects.
1210
 
1211
   Don't load symbolic info for any new shared objects; just add them
1212
   to the list, and leave their symbols_loaded flag clear.
1213
 
1214
   If FROM_TTY is non-null, feel free to print messages about what
1215
   we're doing.
1216
 
1217
   If TARGET is non-null, add the sections of all new shared objects
1218
   to TARGET's section table.  Note that this doesn't remove any
1219
   sections for shared objects that have been unloaded, and it
1220
   doesn't check to see if the new shared objects are already present in
1221
   the section table.  But we only use this for core files and
1222
   processes we've just attached to, so that's okay.  */
1223
 
1224
void
1225
update_solib_list (int from_tty, struct target_ops *target)
1226
{
1227
  struct so_list *inferior = current_sos ();
1228
  struct so_list *gdb, **gdb_link;
1229
 
1230
#ifdef SVR4_SHARED_LIBS
1231
  /* If we are attaching to a running process for which we
1232
     have not opened a symbol file, we may be able to get its
1233
     symbols now!  */
1234
  if (attach_flag &&
1235
      symfile_objfile == NULL)
1236
    catch_errors (open_symbol_file_object, (PTR) &from_tty,
1237
                  "Error reading attached process's symbol file.\n",
1238
                  RETURN_MASK_ALL);
1239
 
1240
#endif SVR4_SHARED_LIBS
1241
 
1242
  /* Since this function might actually add some elements to the
1243
     so_list_head list, arrange for it to be cleaned up when
1244
     appropriate.  */
1245
  if (!solib_cleanup_queued)
1246
    {
1247
      make_run_cleanup (do_clear_solib, NULL);
1248
      solib_cleanup_queued = 1;
1249
    }
1250
 
1251
  /* GDB and the inferior's dynamic linker each maintain their own
1252
     list of currently loaded shared objects; we want to bring the
1253
     former in sync with the latter.  Scan both lists, seeing which
1254
     shared objects appear where.  There are three cases:
1255
 
1256
     - A shared object appears on both lists.  This means that GDB
1257
     knows about it already, and it's still loaded in the inferior.
1258
     Nothing needs to happen.
1259
 
1260
     - A shared object appears only on GDB's list.  This means that
1261
     the inferior has unloaded it.  We should remove the shared
1262
     object from GDB's tables.
1263
 
1264
     - A shared object appears only on the inferior's list.  This
1265
     means that it's just been loaded.  We should add it to GDB's
1266
     tables.
1267
 
1268
     So we walk GDB's list, checking each entry to see if it appears
1269
     in the inferior's list too.  If it does, no action is needed, and
1270
     we remove it from the inferior's list.  If it doesn't, the
1271
     inferior has unloaded it, and we remove it from GDB's list.  By
1272
     the time we're done walking GDB's list, the inferior's list
1273
     contains only the new shared objects, which we then add.  */
1274
 
1275
  gdb = so_list_head;
1276
  gdb_link = &so_list_head;
1277
  while (gdb)
1278
    {
1279
      struct so_list *i = inferior;
1280
      struct so_list **i_link = &inferior;
1281
 
1282
      /* Check to see whether the shared object *gdb also appears in
1283
         the inferior's current list.  */
1284
      while (i)
1285
        {
1286
          if (! strcmp (gdb->so_original_name, i->so_original_name))
1287
            break;
1288
 
1289
          i_link = &i->next;
1290
          i = *i_link;
1291
        }
1292
 
1293
      /* If the shared object appears on the inferior's list too, then
1294
         it's still loaded, so we don't need to do anything.  Delete
1295
         it from the inferior's list, and leave it on GDB's list.  */
1296
      if (i)
1297
        {
1298
          *i_link = i->next;
1299
          free_so (i);
1300
          gdb_link = &gdb->next;
1301
          gdb = *gdb_link;
1302
        }
1303
 
1304
      /* If it's not on the inferior's list, remove it from GDB's tables.  */
1305
      else
1306
        {
1307
          *gdb_link = gdb->next;
1308
 
1309
          /* Unless the user loaded it explicitly, free SO's objfile.  */
1310
          if (gdb->objfile && ! (gdb->objfile->flags & OBJF_USERLOADED))
1311
            free_objfile (gdb->objfile);
1312
 
1313
          /* Some targets' section tables might be referring to
1314
             sections from so->abfd; remove them.  */
1315
          remove_target_sections (gdb->abfd);
1316
 
1317
          free_so (gdb);
1318
          gdb = *gdb_link;
1319
        }
1320
    }
1321
 
1322
  /* Now the inferior's list contains only shared objects that don't
1323
     appear in GDB's list --- those that are newly loaded.  Add them
1324
     to GDB's shared object list.  */
1325
  if (inferior)
1326
    {
1327
      struct so_list *i;
1328
 
1329
      /* Add the new shared objects to GDB's list.  */
1330
      *gdb_link = inferior;
1331
 
1332
      /* Fill in the rest of each of the `struct so_list' nodes.  */
1333
      for (i = inferior; i; i = i->next)
1334
        {
1335
          i->from_tty = from_tty;
1336
 
1337
          /* Fill in the rest of the `struct so_list' node.  */
1338
          catch_errors (solib_map_sections, i,
1339
                        "Error while mapping shared library sections:\n",
1340
                        RETURN_MASK_ALL);
1341
        }
1342
 
1343
      /* If requested, add the shared objects' sections to the the
1344
         TARGET's section table.  */
1345
      if (target)
1346
        {
1347
          int new_sections;
1348
 
1349
          /* Figure out how many sections we'll need to add in total.  */
1350
          new_sections = 0;
1351
          for (i = inferior; i; i = i->next)
1352
            new_sections += (i->sections_end - i->sections);
1353
 
1354
          if (new_sections > 0)
1355
            {
1356
              int space = target_resize_to_sections (target, new_sections);
1357
 
1358
              for (i = inferior; i; i = i->next)
1359
                {
1360
                  int count = (i->sections_end - i->sections);
1361
                  memcpy (target->to_sections + space,
1362
                          i->sections,
1363
                          count * sizeof (i->sections[0]));
1364
                  space += count;
1365
                }
1366
            }
1367
        }
1368
    }
1369
}
1370
 
1371
 
1372
/* GLOBAL FUNCTION
1373
 
1374
   solib_add -- read in symbol info for newly added shared libraries
1375
 
1376
   SYNOPSIS
1377
 
1378
   void solib_add (char *pattern, int from_tty, struct target_ops *TARGET)
1379
 
1380
   DESCRIPTION
1381
 
1382
   Read in symbolic information for any shared objects whose names
1383
   match PATTERN.  (If we've already read a shared object's symbol
1384
   info, leave it alone.)  If PATTERN is zero, read them all.
1385
 
1386
   FROM_TTY and TARGET are as described for update_solib_list, above.  */
1387
 
1388
void
1389
solib_add (char *pattern, int from_tty, struct target_ops *target)
1390
{
1391
  struct so_list *gdb;
1392
 
1393
  if (pattern)
1394
    {
1395
      char *re_err = re_comp (pattern);
1396
 
1397
      if (re_err)
1398
        error ("Invalid regexp: %s", re_err);
1399
    }
1400
 
1401
  update_solib_list (from_tty, target);
1402
 
1403
  /* Walk the list of currently loaded shared libraries, and read
1404
     symbols for any that match the pattern --- or any whose symbols
1405
     aren't already loaded, if no pattern was given.  */
1406
  {
1407
    int any_matches = 0;
1408
    int loaded_any_symbols = 0;
1409
 
1410
    for (gdb = so_list_head; gdb; gdb = gdb->next)
1411
      if (! pattern || re_exec (gdb->so_name))
1412
        {
1413
          any_matches = 1;
1414
 
1415
          if (gdb->symbols_loaded)
1416
            {
1417
              if (from_tty)
1418
                printf_unfiltered ("Symbols already loaded for %s\n",
1419
                                   gdb->so_name);
1420
            }
1421
          else
1422
            {
1423
              if (catch_errors
1424
                  (symbol_add_stub, gdb,
1425
                   "Error while reading shared library symbols:\n",
1426
                   RETURN_MASK_ALL))
1427
                {
1428
                  if (from_tty)
1429
                    printf_unfiltered ("Loaded symbols for %s\n",
1430
                                       gdb->so_name);
1431
                  gdb->symbols_loaded = 1;
1432
                  loaded_any_symbols = 1;
1433
                }
1434
            }
1435
        }
1436
 
1437
    if (from_tty && pattern && ! any_matches)
1438
      printf_unfiltered
1439
        ("No loaded shared libraries match the pattern `%s'.\n", pattern);
1440
 
1441
    if (loaded_any_symbols)
1442
      {
1443
        /* Getting new symbols may change our opinion about what is
1444
           frameless.  */
1445
        reinit_frame_cache ();
1446
 
1447
        special_symbol_handling ();
1448
      }
1449
  }
1450
}
1451
 
1452
 
1453
/*
1454
 
1455
   LOCAL FUNCTION
1456
 
1457
   info_sharedlibrary_command -- code for "info sharedlibrary"
1458
 
1459
   SYNOPSIS
1460
 
1461
   static void info_sharedlibrary_command ()
1462
 
1463
   DESCRIPTION
1464
 
1465
   Walk through the shared library list and print information
1466
   about each attached library.
1467
 */
1468
 
1469
static void
1470
info_sharedlibrary_command (ignore, from_tty)
1471
     char *ignore;
1472
     int from_tty;
1473
{
1474
  register struct so_list *so = NULL;   /* link map state variable */
1475
  int header_done = 0;
1476
  int addr_width;
1477
  char *addr_fmt;
1478
 
1479
  if (exec_bfd == NULL)
1480
    {
1481
      printf_unfiltered ("No executable file.\n");
1482
      return;
1483
    }
1484
 
1485
#ifndef TARGET_ELF64
1486
  addr_width = 8 + 4;
1487
  addr_fmt = "08l";
1488
#else
1489
  addr_width = 16 + 4;
1490
  addr_fmt = "016l";
1491
#endif
1492
 
1493
  update_solib_list (from_tty, 0);
1494
 
1495
  for (so = so_list_head; so; so = so->next)
1496
    {
1497
      if (so->so_name[0])
1498
        {
1499
          if (!header_done)
1500
            {
1501
              printf_unfiltered ("%-*s%-*s%-12s%s\n", addr_width, "From",
1502
                                 addr_width, "To", "Syms Read",
1503
                                 "Shared Object Library");
1504
              header_done++;
1505
            }
1506
 
1507
          printf_unfiltered ("%-*s", addr_width,
1508
                      local_hex_string_custom ((unsigned long) LM_ADDR (so),
1509
                                               addr_fmt));
1510
          printf_unfiltered ("%-*s", addr_width,
1511
                         local_hex_string_custom ((unsigned long) so->lmend,
1512
                                                  addr_fmt));
1513
          printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
1514
          printf_unfiltered ("%s\n", so->so_name);
1515
        }
1516
    }
1517
  if (so_list_head == NULL)
1518
    {
1519
      printf_unfiltered ("No shared libraries loaded at this time.\n");
1520
    }
1521
}
1522
 
1523
/*
1524
 
1525
   GLOBAL FUNCTION
1526
 
1527
   solib_address -- check to see if an address is in a shared lib
1528
 
1529
   SYNOPSIS
1530
 
1531
   char * solib_address (CORE_ADDR address)
1532
 
1533
   DESCRIPTION
1534
 
1535
   Provides a hook for other gdb routines to discover whether or
1536
   not a particular address is within the mapped address space of
1537
   a shared library.  Any address between the base mapping address
1538
   and the first address beyond the end of the last mapping, is
1539
   considered to be within the shared library address space, for
1540
   our purposes.
1541
 
1542
   For example, this routine is called at one point to disable
1543
   breakpoints which are in shared libraries that are not currently
1544
   mapped in.
1545
 */
1546
 
1547
char *
1548
solib_address (address)
1549
     CORE_ADDR address;
1550
{
1551
  register struct so_list *so = 0;       /* link map state variable */
1552
 
1553
  for (so = so_list_head; so; so = so->next)
1554
    {
1555
      if (LM_ADDR (so) <= address && address < so->lmend)
1556
        return (so->so_name);
1557
    }
1558
 
1559
  return (0);
1560
}
1561
 
1562
/* Called by free_all_symtabs */
1563
 
1564
void
1565
clear_solib ()
1566
{
1567
  /* This function is expected to handle ELF shared libraries.  It is
1568
     also used on Solaris, which can run either ELF or a.out binaries
1569
     (for compatibility with SunOS 4), both of which can use shared
1570
     libraries.  So we don't know whether we have an ELF executable or
1571
     an a.out executable until the user chooses an executable file.
1572
 
1573
     ELF shared libraries don't get mapped into the address space
1574
     until after the program starts, so we'd better not try to insert
1575
     breakpoints in them immediately.  We have to wait until the
1576
     dynamic linker has loaded them; we'll hit a bp_shlib_event
1577
     breakpoint (look for calls to create_solib_event_breakpoint) when
1578
     it's ready.
1579
 
1580
     SunOS shared libraries seem to be different --- they're present
1581
     as soon as the process begins execution, so there's no need to
1582
     put off inserting breakpoints.  There's also nowhere to put a
1583
     bp_shlib_event breakpoint, so if we put it off, we'll never get
1584
     around to it.
1585
 
1586
     So: disable breakpoints only if we're using ELF shared libs.  */
1587
  if (exec_bfd != NULL
1588
      && bfd_get_flavour (exec_bfd) != bfd_target_aout_flavour)
1589
    disable_breakpoints_in_shlibs (1);
1590
 
1591
  while (so_list_head)
1592
    {
1593
      struct so_list *so = so_list_head;
1594
      so_list_head = so->next;
1595
      free_so (so);
1596
    }
1597
 
1598
  debug_base = 0;
1599
}
1600
 
1601
static void
1602
do_clear_solib (dummy)
1603
     PTR dummy;
1604
{
1605
  solib_cleanup_queued = 0;
1606
  clear_solib ();
1607
}
1608
 
1609
#ifdef SVR4_SHARED_LIBS
1610
 
1611
/* Return 1 if PC lies in the dynamic symbol resolution code of the
1612
   SVR4 run time loader.  */
1613
 
1614
static CORE_ADDR interp_text_sect_low;
1615
static CORE_ADDR interp_text_sect_high;
1616
static CORE_ADDR interp_plt_sect_low;
1617
static CORE_ADDR interp_plt_sect_high;
1618
 
1619
int
1620
in_svr4_dynsym_resolve_code (pc)
1621
     CORE_ADDR pc;
1622
{
1623
  return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
1624
          || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
1625
          || in_plt_section (pc, NULL));
1626
}
1627
#endif
1628
 
1629
/*
1630
 
1631
   LOCAL FUNCTION
1632
 
1633
   disable_break -- remove the "mapping changed" breakpoint
1634
 
1635
   SYNOPSIS
1636
 
1637
   static int disable_break ()
1638
 
1639
   DESCRIPTION
1640
 
1641
   Removes the breakpoint that gets hit when the dynamic linker
1642
   completes a mapping change.
1643
 
1644
 */
1645
 
1646
#ifndef SVR4_SHARED_LIBS
1647
 
1648
static int
1649
disable_break ()
1650
{
1651
  int status = 1;
1652
 
1653
#ifndef SVR4_SHARED_LIBS
1654
 
1655
  int in_debugger = 0;
1656
 
1657
  /* Read the debugger structure from the inferior to retrieve the
1658
     address of the breakpoint and the original contents of the
1659
     breakpoint address.  Remove the breakpoint by writing the original
1660
     contents back. */
1661
 
1662
  read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
1663
 
1664
  /* Set `in_debugger' to zero now. */
1665
 
1666
  write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1667
 
1668
  breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
1669
  write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
1670
                sizeof (debug_copy.ldd_bp_inst));
1671
 
1672
#else /* SVR4_SHARED_LIBS */
1673
 
1674
  /* Note that breakpoint address and original contents are in our address
1675
     space, so we just need to write the original contents back. */
1676
 
1677
  if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
1678
    {
1679
      status = 0;
1680
    }
1681
 
1682
#endif /* !SVR4_SHARED_LIBS */
1683
 
1684
  /* For the SVR4 version, we always know the breakpoint address.  For the
1685
     SunOS version we don't know it until the above code is executed.
1686
     Grumble if we are stopped anywhere besides the breakpoint address. */
1687
 
1688
  if (stop_pc != breakpoint_addr)
1689
    {
1690
      warning ("stopped at unknown breakpoint while handling shared libraries");
1691
    }
1692
 
1693
  return (status);
1694
}
1695
 
1696
#endif /* #ifdef SVR4_SHARED_LIBS */
1697
 
1698
/*
1699
 
1700
   LOCAL FUNCTION
1701
 
1702
   enable_break -- arrange for dynamic linker to hit breakpoint
1703
 
1704
   SYNOPSIS
1705
 
1706
   int enable_break (void)
1707
 
1708
   DESCRIPTION
1709
 
1710
   Both the SunOS and the SVR4 dynamic linkers have, as part of their
1711
   debugger interface, support for arranging for the inferior to hit
1712
   a breakpoint after mapping in the shared libraries.  This function
1713
   enables that breakpoint.
1714
 
1715
   For SunOS, there is a special flag location (in_debugger) which we
1716
   set to 1.  When the dynamic linker sees this flag set, it will set
1717
   a breakpoint at a location known only to itself, after saving the
1718
   original contents of that place and the breakpoint address itself,
1719
   in it's own internal structures.  When we resume the inferior, it
1720
   will eventually take a SIGTRAP when it runs into the breakpoint.
1721
   We handle this (in a different place) by restoring the contents of
1722
   the breakpointed location (which is only known after it stops),
1723
   chasing around to locate the shared libraries that have been
1724
   loaded, then resuming.
1725
 
1726
   For SVR4, the debugger interface structure contains a member (r_brk)
1727
   which is statically initialized at the time the shared library is
1728
   built, to the offset of a function (_r_debug_state) which is guaran-
1729
   teed to be called once before mapping in a library, and again when
1730
   the mapping is complete.  At the time we are examining this member,
1731
   it contains only the unrelocated offset of the function, so we have
1732
   to do our own relocation.  Later, when the dynamic linker actually
1733
   runs, it relocates r_brk to be the actual address of _r_debug_state().
1734
 
1735
   The debugger interface structure also contains an enumeration which
1736
   is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1737
   depending upon whether or not the library is being mapped or unmapped,
1738
   and then set to RT_CONSISTENT after the library is mapped/unmapped.
1739
 */
1740
 
1741
static int
1742
enable_break ()
1743
{
1744
  int success = 0;
1745
 
1746
#ifndef SVR4_SHARED_LIBS
1747
 
1748
  int j;
1749
  int in_debugger;
1750
 
1751
  /* Get link_dynamic structure */
1752
 
1753
  j = target_read_memory (debug_base, (char *) &dynamic_copy,
1754
                          sizeof (dynamic_copy));
1755
  if (j)
1756
    {
1757
      /* unreadable */
1758
      return (0);
1759
    }
1760
 
1761
  /* Calc address of debugger interface structure */
1762
 
1763
  debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
1764
 
1765
  /* Calc address of `in_debugger' member of debugger interface structure */
1766
 
1767
  flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
1768
                                        (char *) &debug_copy);
1769
 
1770
  /* Write a value of 1 to this member.  */
1771
 
1772
  in_debugger = 1;
1773
  write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
1774
  success = 1;
1775
 
1776
#else /* SVR4_SHARED_LIBS */
1777
 
1778
#ifdef BKPT_AT_SYMBOL
1779
 
1780
  struct minimal_symbol *msymbol;
1781
  char **bkpt_namep;
1782
  asection *interp_sect;
1783
 
1784
  /* First, remove all the solib event breakpoints.  Their addresses
1785
     may have changed since the last time we ran the program.  */
1786
  remove_solib_event_breakpoints ();
1787
 
1788
#ifdef SVR4_SHARED_LIBS
1789
  interp_text_sect_low = interp_text_sect_high = 0;
1790
  interp_plt_sect_low = interp_plt_sect_high = 0;
1791
 
1792
  /* Find the .interp section; if not found, warn the user and drop
1793
     into the old breakpoint at symbol code.  */
1794
  interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
1795
  if (interp_sect)
1796
    {
1797
      unsigned int interp_sect_size;
1798
      char *buf;
1799
      CORE_ADDR load_addr;
1800
      bfd *tmp_bfd;
1801
      CORE_ADDR sym_addr = 0;
1802
 
1803
      /* Read the contents of the .interp section into a local buffer;
1804
         the contents specify the dynamic linker this program uses.  */
1805
      interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
1806
      buf = alloca (interp_sect_size);
1807
      bfd_get_section_contents (exec_bfd, interp_sect,
1808
                                buf, 0, interp_sect_size);
1809
 
1810
      /* Now we need to figure out where the dynamic linker was
1811
         loaded so that we can load its symbols and place a breakpoint
1812
         in the dynamic linker itself.
1813
 
1814
         This address is stored on the stack.  However, I've been unable
1815
         to find any magic formula to find it for Solaris (appears to
1816
         be trivial on GNU/Linux).  Therefore, we have to try an alternate
1817
         mechanism to find the dynamic linker's base address.  */
1818
      tmp_bfd = bfd_openr (buf, gnutarget);
1819
      if (tmp_bfd == NULL)
1820
        goto bkpt_at_symbol;
1821
 
1822
      /* Make sure the dynamic linker's really a useful object.  */
1823
      if (!bfd_check_format (tmp_bfd, bfd_object))
1824
        {
1825
          warning ("Unable to grok dynamic linker %s as an object file", buf);
1826
          bfd_close (tmp_bfd);
1827
          goto bkpt_at_symbol;
1828
        }
1829
 
1830
      /* We find the dynamic linker's base address by examining the
1831
         current pc (which point at the entry point for the dynamic
1832
         linker) and subtracting the offset of the entry point.  */
1833
      load_addr = read_pc () - tmp_bfd->start_address;
1834
 
1835
      /* Record the relocated start and end address of the dynamic linker
1836
         text and plt section for in_svr4_dynsym_resolve_code.  */
1837
      interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1838
      if (interp_sect)
1839
        {
1840
          interp_text_sect_low =
1841
            bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1842
          interp_text_sect_high =
1843
            interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1844
        }
1845
      interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1846
      if (interp_sect)
1847
        {
1848
          interp_plt_sect_low =
1849
            bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1850
          interp_plt_sect_high =
1851
            interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
1852
        }
1853
 
1854
      /* Now try to set a breakpoint in the dynamic linker.  */
1855
      for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1856
        {
1857
          sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1858
          if (sym_addr != 0)
1859
            break;
1860
        }
1861
 
1862
      /* We're done with the temporary bfd.  */
1863
      bfd_close (tmp_bfd);
1864
 
1865
      if (sym_addr != 0)
1866
        {
1867
          create_solib_event_breakpoint (load_addr + sym_addr);
1868
          return 1;
1869
        }
1870
 
1871
      /* For whatever reason we couldn't set a breakpoint in the dynamic
1872
         linker.  Warn and drop into the old code.  */
1873
    bkpt_at_symbol:
1874
      warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code.");
1875
    }
1876
#endif
1877
 
1878
  /* Scan through the list of symbols, trying to look up the symbol and
1879
     set a breakpoint there.  Terminate loop when we/if we succeed. */
1880
 
1881
  breakpoint_addr = 0;
1882
  for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1883
    {
1884
      msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1885
      if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1886
        {
1887
          create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol));
1888
          return 1;
1889
        }
1890
    }
1891
 
1892
  /* Nothing good happened.  */
1893
  success = 0;
1894
 
1895
#endif /* BKPT_AT_SYMBOL */
1896
 
1897
#endif /* !SVR4_SHARED_LIBS */
1898
 
1899
  return (success);
1900
}
1901
 
1902
/*
1903
 
1904
   GLOBAL FUNCTION
1905
 
1906
   solib_create_inferior_hook -- shared library startup support
1907
 
1908
   SYNOPSIS
1909
 
1910
   void solib_create_inferior_hook()
1911
 
1912
   DESCRIPTION
1913
 
1914
   When gdb starts up the inferior, it nurses it along (through the
1915
   shell) until it is ready to execute it's first instruction.  At this
1916
   point, this function gets called via expansion of the macro
1917
   SOLIB_CREATE_INFERIOR_HOOK.
1918
 
1919
   For SunOS executables, this first instruction is typically the
1920
   one at "_start", or a similar text label, regardless of whether
1921
   the executable is statically or dynamically linked.  The runtime
1922
   startup code takes care of dynamically linking in any shared
1923
   libraries, once gdb allows the inferior to continue.
1924
 
1925
   For SVR4 executables, this first instruction is either the first
1926
   instruction in the dynamic linker (for dynamically linked
1927
   executables) or the instruction at "start" for statically linked
1928
   executables.  For dynamically linked executables, the system
1929
   first exec's /lib/libc.so.N, which contains the dynamic linker,
1930
   and starts it running.  The dynamic linker maps in any needed
1931
   shared libraries, maps in the actual user executable, and then
1932
   jumps to "start" in the user executable.
1933
 
1934
   For both SunOS shared libraries, and SVR4 shared libraries, we
1935
   can arrange to cooperate with the dynamic linker to discover the
1936
   names of shared libraries that are dynamically linked, and the
1937
   base addresses to which they are linked.
1938
 
1939
   This function is responsible for discovering those names and
1940
   addresses, and saving sufficient information about them to allow
1941
   their symbols to be read at a later time.
1942
 
1943
   FIXME
1944
 
1945
   Between enable_break() and disable_break(), this code does not
1946
   properly handle hitting breakpoints which the user might have
1947
   set in the startup code or in the dynamic linker itself.  Proper
1948
   handling will probably have to wait until the implementation is
1949
   changed to use the "breakpoint handler function" method.
1950
 
1951
   Also, what if child has exit()ed?  Must exit loop somehow.
1952
 */
1953
 
1954
void
1955
solib_create_inferior_hook ()
1956
{
1957
  /* If we are using the BKPT_AT_SYMBOL code, then we don't need the base
1958
     yet.  In fact, in the case of a SunOS4 executable being run on
1959
     Solaris, we can't get it yet.  current_sos will get it when it needs
1960
     it.  */
1961
#if !(defined (SVR4_SHARED_LIBS) && defined (BKPT_AT_SYMBOL))
1962
  if ((debug_base = locate_base ()) == 0)
1963
    {
1964
      /* Can't find the symbol or the executable is statically linked. */
1965
      return;
1966
    }
1967
#endif
1968
 
1969
  if (!enable_break ())
1970
    {
1971
      warning ("shared library handler failed to enable breakpoint");
1972
      return;
1973
    }
1974
 
1975
#if !defined(SVR4_SHARED_LIBS) || defined(_SCO_DS)
1976
  /* SCO and SunOS need the loop below, other systems should be using the
1977
     special shared library breakpoints and the shared library breakpoint
1978
     service routine.
1979
 
1980
     Now run the target.  It will eventually hit the breakpoint, at
1981
     which point all of the libraries will have been mapped in and we
1982
     can go groveling around in the dynamic linker structures to find
1983
     out what we need to know about them. */
1984
 
1985
  clear_proceed_status ();
1986
  stop_soon_quietly = 1;
1987
  stop_signal = TARGET_SIGNAL_0;
1988
  do
1989
    {
1990
      target_resume (-1, 0, stop_signal);
1991
      wait_for_inferior ();
1992
    }
1993
  while (stop_signal != TARGET_SIGNAL_TRAP);
1994
  stop_soon_quietly = 0;
1995
 
1996
#if !defined(_SCO_DS)
1997
  /* We are now either at the "mapping complete" breakpoint (or somewhere
1998
     else, a condition we aren't prepared to deal with anyway), so adjust
1999
     the PC as necessary after a breakpoint, disable the breakpoint, and
2000
     add any shared libraries that were mapped in. */
2001
 
2002
  if (DECR_PC_AFTER_BREAK)
2003
    {
2004
      stop_pc -= DECR_PC_AFTER_BREAK;
2005
      write_register (PC_REGNUM, stop_pc);
2006
    }
2007
 
2008
  if (!disable_break ())
2009
    {
2010
      warning ("shared library handler failed to disable breakpoint");
2011
    }
2012
 
2013
  if (auto_solib_add)
2014
    solib_add ((char *) 0, 0, (struct target_ops *) 0);
2015
#endif /* ! _SCO_DS */
2016
#endif
2017
}
2018
 
2019
/*
2020
 
2021
   LOCAL FUNCTION
2022
 
2023
   special_symbol_handling -- additional shared library symbol handling
2024
 
2025
   SYNOPSIS
2026
 
2027
   void special_symbol_handling ()
2028
 
2029
   DESCRIPTION
2030
 
2031
   Once the symbols from a shared object have been loaded in the usual
2032
   way, we are called to do any system specific symbol handling that
2033
   is needed.
2034
 
2035
   For SunOS4, this consists of grunging around in the dynamic
2036
   linkers structures to find symbol definitions for "common" symbols
2037
   and adding them to the minimal symbol table for the runtime common
2038
   objfile.
2039
 
2040
 */
2041
 
2042
static void
2043
special_symbol_handling ()
2044
{
2045
#ifndef SVR4_SHARED_LIBS
2046
  int j;
2047
 
2048
  if (debug_addr == 0)
2049
    {
2050
      /* Get link_dynamic structure */
2051
 
2052
      j = target_read_memory (debug_base, (char *) &dynamic_copy,
2053
                              sizeof (dynamic_copy));
2054
      if (j)
2055
        {
2056
          /* unreadable */
2057
          return;
2058
        }
2059
 
2060
      /* Calc address of debugger interface structure */
2061
      /* FIXME, this needs work for cross-debugging of core files
2062
         (byteorder, size, alignment, etc).  */
2063
 
2064
      debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
2065
    }
2066
 
2067
  /* Read the debugger structure from the inferior, just to make sure
2068
     we have a current copy. */
2069
 
2070
  j = target_read_memory (debug_addr, (char *) &debug_copy,
2071
                          sizeof (debug_copy));
2072
  if (j)
2073
    return;                     /* unreadable */
2074
 
2075
  /* Get common symbol definitions for the loaded object. */
2076
 
2077
  if (debug_copy.ldd_cp)
2078
    {
2079
      solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
2080
    }
2081
 
2082
#endif /* !SVR4_SHARED_LIBS */
2083
}
2084
 
2085
 
2086
/*
2087
 
2088
   LOCAL FUNCTION
2089
 
2090
   sharedlibrary_command -- handle command to explicitly add library
2091
 
2092
   SYNOPSIS
2093
 
2094
   static void sharedlibrary_command (char *args, int from_tty)
2095
 
2096
   DESCRIPTION
2097
 
2098
 */
2099
 
2100
static void
2101
sharedlibrary_command (args, from_tty)
2102
     char *args;
2103
     int from_tty;
2104
{
2105
  dont_repeat ();
2106
  solib_add (args, from_tty, (struct target_ops *) 0);
2107
}
2108
 
2109
#endif /* HAVE_LINK_H */
2110
 
2111
void
2112
_initialize_solib ()
2113
{
2114
#ifdef HAVE_LINK_H
2115
 
2116
  add_com ("sharedlibrary", class_files, sharedlibrary_command,
2117
           "Load shared object library symbols for files matching REGEXP.");
2118
  add_info ("sharedlibrary", info_sharedlibrary_command,
2119
            "Status of loaded shared object libraries.");
2120
 
2121
  add_show_from_set
2122
    (add_set_cmd ("auto-solib-add", class_support, var_zinteger,
2123
                  (char *) &auto_solib_add,
2124
                  "Set autoloading of shared library symbols.\n\
2125
If nonzero, symbols from all shared object libraries will be loaded\n\
2126
automatically when the inferior begins execution or when the dynamic linker\n\
2127
informs gdb that a new library has been loaded.  Otherwise, symbols\n\
2128
must be loaded manually, using `sharedlibrary'.",
2129
                  &setlist),
2130
     &showlist);
2131
 
2132
  add_show_from_set
2133
    (add_set_cmd ("solib-absolute-prefix", class_support, var_filename,
2134
                  (char *) &solib_absolute_prefix,
2135
                  "Set prefix for loading absolute shared library symbol files.\n\
2136
For other (relative) files, you can add values using `set solib-search-path'.",
2137
                  &setlist),
2138
     &showlist);
2139
  add_show_from_set
2140
    (add_set_cmd ("solib-search-path", class_support, var_string,
2141
                  (char *) &solib_search_path,
2142
                  "Set the search path for loading non-absolute shared library symbol files.\n\
2143
This takes precedence over the environment variables PATH and LD_LIBRARY_PATH.",
2144
                  &setlist),
2145
     &showlist);
2146
 
2147
#endif /* HAVE_LINK_H */
2148
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.