1 |
104 |
markom |
/* Target-dependent code for the SPARC for GDB, the GNU debugger.
|
2 |
|
|
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
20 |
|
|
Boston, MA 02111-1307, USA. */
|
21 |
|
|
|
22 |
|
|
/* ??? Support for calling functions from gdb in sparc64 is unfinished. */
|
23 |
|
|
|
24 |
|
|
#include "defs.h"
|
25 |
|
|
#include "frame.h"
|
26 |
|
|
#include "inferior.h"
|
27 |
|
|
#include "obstack.h"
|
28 |
|
|
#include "target.h"
|
29 |
|
|
#include "value.h"
|
30 |
|
|
#include "bfd.h"
|
31 |
|
|
#include "gdb_string.h"
|
32 |
|
|
|
33 |
|
|
#ifdef USE_PROC_FS
|
34 |
|
|
#include <sys/procfs.h>
|
35 |
|
|
#endif
|
36 |
|
|
|
37 |
|
|
#include "gdbcore.h"
|
38 |
|
|
|
39 |
|
|
#if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
|
40 |
|
|
#define SPARC_HAS_FPU 0
|
41 |
|
|
#else
|
42 |
|
|
#define SPARC_HAS_FPU 1
|
43 |
|
|
#endif
|
44 |
|
|
|
45 |
|
|
#ifdef GDB_TARGET_IS_SPARC64
|
46 |
|
|
#define FP_REGISTER_BYTES (64 * 4)
|
47 |
|
|
#else
|
48 |
|
|
#define FP_REGISTER_BYTES (32 * 4)
|
49 |
|
|
#endif
|
50 |
|
|
|
51 |
|
|
/* If not defined, assume 32 bit sparc. */
|
52 |
|
|
#ifndef FP_MAX_REGNUM
|
53 |
|
|
#define FP_MAX_REGNUM (FP0_REGNUM + 32)
|
54 |
|
|
#endif
|
55 |
|
|
|
56 |
|
|
#define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))
|
57 |
|
|
|
58 |
|
|
/* From infrun.c */
|
59 |
|
|
extern int stop_after_trap;
|
60 |
|
|
|
61 |
|
|
/* We don't store all registers immediately when requested, since they
|
62 |
|
|
get sent over in large chunks anyway. Instead, we accumulate most
|
63 |
|
|
of the changes and send them over once. "deferred_stores" keeps
|
64 |
|
|
track of which sets of registers we have locally-changed copies of,
|
65 |
|
|
so we only need send the groups that have changed. */
|
66 |
|
|
|
67 |
|
|
int deferred_stores = 0; /* Cumulates stores we want to do eventually. */
|
68 |
|
|
|
69 |
|
|
|
70 |
|
|
/* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode
|
71 |
|
|
where instructions are big-endian and data are little-endian.
|
72 |
|
|
This flag is set when we detect that the target is of this type. */
|
73 |
|
|
|
74 |
|
|
int bi_endian = 0;
|
75 |
|
|
|
76 |
|
|
|
77 |
|
|
/* Fetch a single instruction. Even on bi-endian machines
|
78 |
|
|
such as sparc86x, instructions are always big-endian. */
|
79 |
|
|
|
80 |
|
|
static unsigned long
|
81 |
|
|
fetch_instruction (pc)
|
82 |
|
|
CORE_ADDR pc;
|
83 |
|
|
{
|
84 |
|
|
unsigned long retval;
|
85 |
|
|
int i;
|
86 |
|
|
unsigned char buf[4];
|
87 |
|
|
|
88 |
|
|
read_memory (pc, buf, sizeof (buf));
|
89 |
|
|
|
90 |
|
|
/* Start at the most significant end of the integer, and work towards
|
91 |
|
|
the least significant. */
|
92 |
|
|
retval = 0;
|
93 |
|
|
for (i = 0; i < sizeof (buf); ++i)
|
94 |
|
|
retval = (retval << 8) | buf[i];
|
95 |
|
|
return retval;
|
96 |
|
|
}
|
97 |
|
|
|
98 |
|
|
|
99 |
|
|
/* Branches with prediction are treated like their non-predicting cousins. */
|
100 |
|
|
/* FIXME: What about floating point branches? */
|
101 |
|
|
|
102 |
|
|
/* Macros to extract fields from sparc instructions. */
|
103 |
|
|
#define X_OP(i) (((i) >> 30) & 0x3)
|
104 |
|
|
#define X_RD(i) (((i) >> 25) & 0x1f)
|
105 |
|
|
#define X_A(i) (((i) >> 29) & 1)
|
106 |
|
|
#define X_COND(i) (((i) >> 25) & 0xf)
|
107 |
|
|
#define X_OP2(i) (((i) >> 22) & 0x7)
|
108 |
|
|
#define X_IMM22(i) ((i) & 0x3fffff)
|
109 |
|
|
#define X_OP3(i) (((i) >> 19) & 0x3f)
|
110 |
|
|
#define X_RS1(i) (((i) >> 14) & 0x1f)
|
111 |
|
|
#define X_I(i) (((i) >> 13) & 1)
|
112 |
|
|
#define X_IMM13(i) ((i) & 0x1fff)
|
113 |
|
|
/* Sign extension macros. */
|
114 |
|
|
#define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
|
115 |
|
|
#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
|
116 |
|
|
#define X_CC(i) (((i) >> 20) & 3)
|
117 |
|
|
#define X_P(i) (((i) >> 19) & 1)
|
118 |
|
|
#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
|
119 |
|
|
#define X_RCOND(i) (((i) >> 25) & 7)
|
120 |
|
|
#define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
|
121 |
|
|
#define X_FCN(i) (((i) >> 25) & 31)
|
122 |
|
|
|
123 |
|
|
typedef enum
|
124 |
|
|
{
|
125 |
|
|
Error, not_branch, bicc, bicca, ba, baa, ticc, ta,
|
126 |
|
|
#ifdef GDB_TARGET_IS_SPARC64
|
127 |
|
|
done_retry
|
128 |
|
|
#endif
|
129 |
|
|
}
|
130 |
|
|
branch_type;
|
131 |
|
|
|
132 |
|
|
/* Simulate single-step ptrace call for sun4. Code written by Gary
|
133 |
|
|
Beihl (beihl@mcc.com). */
|
134 |
|
|
|
135 |
|
|
/* npc4 and next_pc describe the situation at the time that the
|
136 |
|
|
step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
|
137 |
|
|
static CORE_ADDR next_pc, npc4, target;
|
138 |
|
|
static int brknpc4, brktrg;
|
139 |
|
|
typedef char binsn_quantum[BREAKPOINT_MAX];
|
140 |
|
|
static binsn_quantum break_mem[3];
|
141 |
|
|
|
142 |
|
|
static branch_type isbranch PARAMS ((long, CORE_ADDR, CORE_ADDR *));
|
143 |
|
|
|
144 |
|
|
/* single_step() is called just before we want to resume the inferior,
|
145 |
|
|
if we want to single-step it but there is no hardware or kernel single-step
|
146 |
|
|
support (as on all SPARCs). We find all the possible targets of the
|
147 |
|
|
coming instruction and breakpoint them.
|
148 |
|
|
|
149 |
|
|
single_step is also called just after the inferior stops. If we had
|
150 |
|
|
set up a simulated single-step, we undo our damage. */
|
151 |
|
|
|
152 |
|
|
void
|
153 |
|
|
sparc_software_single_step (ignore, insert_breakpoints_p)
|
154 |
|
|
enum target_signal ignore; /* pid, but we don't need it */
|
155 |
|
|
int insert_breakpoints_p;
|
156 |
|
|
{
|
157 |
|
|
branch_type br;
|
158 |
|
|
CORE_ADDR pc;
|
159 |
|
|
long pc_instruction;
|
160 |
|
|
|
161 |
|
|
if (insert_breakpoints_p)
|
162 |
|
|
{
|
163 |
|
|
/* Always set breakpoint for NPC. */
|
164 |
|
|
next_pc = read_register (NPC_REGNUM);
|
165 |
|
|
npc4 = next_pc + 4; /* branch not taken */
|
166 |
|
|
|
167 |
|
|
target_insert_breakpoint (next_pc, break_mem[0]);
|
168 |
|
|
/* printf_unfiltered ("set break at %x\n",next_pc); */
|
169 |
|
|
|
170 |
|
|
pc = read_register (PC_REGNUM);
|
171 |
|
|
pc_instruction = fetch_instruction (pc);
|
172 |
|
|
br = isbranch (pc_instruction, pc, &target);
|
173 |
|
|
brknpc4 = brktrg = 0;
|
174 |
|
|
|
175 |
|
|
if (br == bicca)
|
176 |
|
|
{
|
177 |
|
|
/* Conditional annulled branch will either end up at
|
178 |
|
|
npc (if taken) or at npc+4 (if not taken).
|
179 |
|
|
Trap npc+4. */
|
180 |
|
|
brknpc4 = 1;
|
181 |
|
|
target_insert_breakpoint (npc4, break_mem[1]);
|
182 |
|
|
}
|
183 |
|
|
else if (br == baa && target != next_pc)
|
184 |
|
|
{
|
185 |
|
|
/* Unconditional annulled branch will always end up at
|
186 |
|
|
the target. */
|
187 |
|
|
brktrg = 1;
|
188 |
|
|
target_insert_breakpoint (target, break_mem[2]);
|
189 |
|
|
}
|
190 |
|
|
#ifdef GDB_TARGET_IS_SPARC64
|
191 |
|
|
else if (br == done_retry)
|
192 |
|
|
{
|
193 |
|
|
brktrg = 1;
|
194 |
|
|
target_insert_breakpoint (target, break_mem[2]);
|
195 |
|
|
}
|
196 |
|
|
#endif
|
197 |
|
|
}
|
198 |
|
|
else
|
199 |
|
|
{
|
200 |
|
|
/* Remove breakpoints */
|
201 |
|
|
target_remove_breakpoint (next_pc, break_mem[0]);
|
202 |
|
|
|
203 |
|
|
if (brknpc4)
|
204 |
|
|
target_remove_breakpoint (npc4, break_mem[1]);
|
205 |
|
|
|
206 |
|
|
if (brktrg)
|
207 |
|
|
target_remove_breakpoint (target, break_mem[2]);
|
208 |
|
|
}
|
209 |
|
|
}
|
210 |
|
|
|
211 |
|
|
/* Call this for each newly created frame. For SPARC, we need to calculate
|
212 |
|
|
the bottom of the frame, and do some extra work if the prologue
|
213 |
|
|
has been generated via the -mflat option to GCC. In particular,
|
214 |
|
|
we need to know where the previous fp and the pc have been stashed,
|
215 |
|
|
since their exact position within the frame may vary. */
|
216 |
|
|
|
217 |
|
|
void
|
218 |
|
|
sparc_init_extra_frame_info (fromleaf, fi)
|
219 |
|
|
int fromleaf;
|
220 |
|
|
struct frame_info *fi;
|
221 |
|
|
{
|
222 |
|
|
char *name;
|
223 |
|
|
CORE_ADDR prologue_start, prologue_end;
|
224 |
|
|
int insn;
|
225 |
|
|
|
226 |
|
|
fi->bottom =
|
227 |
|
|
(fi->next ?
|
228 |
|
|
(fi->frame == fi->next->frame ? fi->next->bottom : fi->next->frame) :
|
229 |
|
|
read_sp ());
|
230 |
|
|
|
231 |
|
|
/* If fi->next is NULL, then we already set ->frame by passing read_fp()
|
232 |
|
|
to create_new_frame. */
|
233 |
|
|
if (fi->next)
|
234 |
|
|
{
|
235 |
|
|
char buf[MAX_REGISTER_RAW_SIZE];
|
236 |
|
|
|
237 |
|
|
/* Compute ->frame as if not flat. If it is flat, we'll change
|
238 |
|
|
it later. */
|
239 |
|
|
if (fi->next->next != NULL
|
240 |
|
|
&& (fi->next->next->signal_handler_caller
|
241 |
|
|
|| frame_in_dummy (fi->next->next))
|
242 |
|
|
&& frameless_look_for_prologue (fi->next))
|
243 |
|
|
{
|
244 |
|
|
/* A frameless function interrupted by a signal did not change
|
245 |
|
|
the frame pointer, fix up frame pointer accordingly. */
|
246 |
|
|
fi->frame = FRAME_FP (fi->next);
|
247 |
|
|
fi->bottom = fi->next->bottom;
|
248 |
|
|
}
|
249 |
|
|
else
|
250 |
|
|
{
|
251 |
|
|
/* Should we adjust for stack bias here? */
|
252 |
|
|
get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0);
|
253 |
|
|
fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM));
|
254 |
|
|
#ifdef GDB_TARGET_IS_SPARC64
|
255 |
|
|
if (fi->frame & 1)
|
256 |
|
|
fi->frame += 2047;
|
257 |
|
|
#endif
|
258 |
|
|
|
259 |
|
|
}
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
/* Decide whether this is a function with a ``flat register window''
|
263 |
|
|
frame. For such functions, the frame pointer is actually in %i7. */
|
264 |
|
|
fi->flat = 0;
|
265 |
|
|
fi->in_prologue = 0;
|
266 |
|
|
if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end))
|
267 |
|
|
{
|
268 |
|
|
/* See if the function starts with an add (which will be of a
|
269 |
|
|
negative number if a flat frame) to the sp. FIXME: Does not
|
270 |
|
|
handle large frames which will need more than one instruction
|
271 |
|
|
to adjust the sp. */
|
272 |
|
|
insn = fetch_instruction (prologue_start, 4);
|
273 |
|
|
if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
|
274 |
|
|
&& X_I (insn) && X_SIMM13 (insn) < 0)
|
275 |
|
|
{
|
276 |
|
|
int offset = X_SIMM13 (insn);
|
277 |
|
|
|
278 |
|
|
/* Then look for a save of %i7 into the frame. */
|
279 |
|
|
insn = fetch_instruction (prologue_start + 4);
|
280 |
|
|
if (X_OP (insn) == 3
|
281 |
|
|
&& X_RD (insn) == 31
|
282 |
|
|
&& X_OP3 (insn) == 4
|
283 |
|
|
&& X_RS1 (insn) == 14)
|
284 |
|
|
{
|
285 |
|
|
char buf[MAX_REGISTER_RAW_SIZE];
|
286 |
|
|
|
287 |
|
|
/* We definitely have a flat frame now. */
|
288 |
|
|
fi->flat = 1;
|
289 |
|
|
|
290 |
|
|
fi->sp_offset = offset;
|
291 |
|
|
|
292 |
|
|
/* Overwrite the frame's address with the value in %i7. */
|
293 |
|
|
get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0);
|
294 |
|
|
fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM));
|
295 |
|
|
#ifdef GDB_TARGET_IS_SPARC64
|
296 |
|
|
if (fi->frame & 1)
|
297 |
|
|
fi->frame += 2047;
|
298 |
|
|
#endif
|
299 |
|
|
/* Record where the fp got saved. */
|
300 |
|
|
fi->fp_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn);
|
301 |
|
|
|
302 |
|
|
/* Also try to collect where the pc got saved to. */
|
303 |
|
|
fi->pc_addr = 0;
|
304 |
|
|
insn = fetch_instruction (prologue_start + 12);
|
305 |
|
|
if (X_OP (insn) == 3
|
306 |
|
|
&& X_RD (insn) == 15
|
307 |
|
|
&& X_OP3 (insn) == 4
|
308 |
|
|
&& X_RS1 (insn) == 14)
|
309 |
|
|
fi->pc_addr = fi->frame + fi->sp_offset + X_SIMM13 (insn);
|
310 |
|
|
}
|
311 |
|
|
}
|
312 |
|
|
else
|
313 |
|
|
{
|
314 |
|
|
/* Check if the PC is in the function prologue before a SAVE
|
315 |
|
|
instruction has been executed yet. If so, set the frame
|
316 |
|
|
to the current value of the stack pointer and set
|
317 |
|
|
the in_prologue flag. */
|
318 |
|
|
CORE_ADDR addr;
|
319 |
|
|
struct symtab_and_line sal;
|
320 |
|
|
|
321 |
|
|
sal = find_pc_line (prologue_start, 0);
|
322 |
|
|
if (sal.line == 0) /* no line info, use PC */
|
323 |
|
|
prologue_end = fi->pc;
|
324 |
|
|
else if (sal.end < prologue_end)
|
325 |
|
|
prologue_end = sal.end;
|
326 |
|
|
if (fi->pc < prologue_end)
|
327 |
|
|
{
|
328 |
|
|
for (addr = prologue_start; addr < fi->pc; addr += 4)
|
329 |
|
|
{
|
330 |
|
|
insn = read_memory_integer (addr, 4);
|
331 |
|
|
if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
|
332 |
|
|
break; /* SAVE seen, stop searching */
|
333 |
|
|
}
|
334 |
|
|
if (addr >= fi->pc)
|
335 |
|
|
{
|
336 |
|
|
fi->in_prologue = 1;
|
337 |
|
|
fi->frame = read_register (SP_REGNUM);
|
338 |
|
|
}
|
339 |
|
|
}
|
340 |
|
|
}
|
341 |
|
|
}
|
342 |
|
|
if (fi->next && fi->frame == 0)
|
343 |
|
|
{
|
344 |
|
|
/* Kludge to cause init_prev_frame_info to destroy the new frame. */
|
345 |
|
|
fi->frame = fi->next->frame;
|
346 |
|
|
fi->pc = fi->next->pc;
|
347 |
|
|
}
|
348 |
|
|
}
|
349 |
|
|
|
350 |
|
|
CORE_ADDR
|
351 |
|
|
sparc_frame_chain (frame)
|
352 |
|
|
struct frame_info *frame;
|
353 |
|
|
{
|
354 |
|
|
/* Value that will cause FRAME_CHAIN_VALID to not worry about the chain
|
355 |
|
|
value. If it realy is zero, we detect it later in
|
356 |
|
|
sparc_init_prev_frame. */
|
357 |
|
|
return (CORE_ADDR) 1;
|
358 |
|
|
}
|
359 |
|
|
|
360 |
|
|
CORE_ADDR
|
361 |
|
|
sparc_extract_struct_value_address (regbuf)
|
362 |
|
|
char regbuf[REGISTER_BYTES];
|
363 |
|
|
{
|
364 |
|
|
return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
|
365 |
|
|
REGISTER_RAW_SIZE (O0_REGNUM));
|
366 |
|
|
}
|
367 |
|
|
|
368 |
|
|
/* Find the pc saved in frame FRAME. */
|
369 |
|
|
|
370 |
|
|
CORE_ADDR
|
371 |
|
|
sparc_frame_saved_pc (frame)
|
372 |
|
|
struct frame_info *frame;
|
373 |
|
|
{
|
374 |
|
|
char buf[MAX_REGISTER_RAW_SIZE];
|
375 |
|
|
CORE_ADDR addr;
|
376 |
|
|
|
377 |
|
|
if (frame->signal_handler_caller)
|
378 |
|
|
{
|
379 |
|
|
/* This is the signal trampoline frame.
|
380 |
|
|
Get the saved PC from the sigcontext structure. */
|
381 |
|
|
|
382 |
|
|
#ifndef SIGCONTEXT_PC_OFFSET
|
383 |
|
|
#define SIGCONTEXT_PC_OFFSET 12
|
384 |
|
|
#endif
|
385 |
|
|
|
386 |
|
|
CORE_ADDR sigcontext_addr;
|
387 |
|
|
char scbuf[TARGET_PTR_BIT / HOST_CHAR_BIT];
|
388 |
|
|
int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
|
389 |
|
|
char *name = NULL;
|
390 |
|
|
|
391 |
|
|
/* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
|
392 |
|
|
as the third parameter. The offset to the saved pc is 12. */
|
393 |
|
|
find_pc_partial_function (frame->pc, &name,
|
394 |
|
|
(CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
|
395 |
|
|
if (name && STREQ (name, "ucbsigvechandler"))
|
396 |
|
|
saved_pc_offset = 12;
|
397 |
|
|
|
398 |
|
|
/* The sigcontext address is contained in register O2. */
|
399 |
|
|
get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
|
400 |
|
|
frame, O0_REGNUM + 2, (enum lval_type *) NULL);
|
401 |
|
|
sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2));
|
402 |
|
|
|
403 |
|
|
/* Don't cause a memory_error when accessing sigcontext in case the
|
404 |
|
|
stack layout has changed or the stack is corrupt. */
|
405 |
|
|
target_read_memory (sigcontext_addr + saved_pc_offset,
|
406 |
|
|
scbuf, sizeof (scbuf));
|
407 |
|
|
return extract_address (scbuf, sizeof (scbuf));
|
408 |
|
|
}
|
409 |
|
|
else if (frame->in_prologue ||
|
410 |
|
|
(frame->next != NULL
|
411 |
|
|
&& (frame->next->signal_handler_caller
|
412 |
|
|
|| frame_in_dummy (frame->next))
|
413 |
|
|
&& frameless_look_for_prologue (frame)))
|
414 |
|
|
{
|
415 |
|
|
/* A frameless function interrupted by a signal did not save
|
416 |
|
|
the PC, it is still in %o7. */
|
417 |
|
|
get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
|
418 |
|
|
frame, O7_REGNUM, (enum lval_type *) NULL);
|
419 |
|
|
return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
|
420 |
|
|
}
|
421 |
|
|
if (frame->flat)
|
422 |
|
|
addr = frame->pc_addr;
|
423 |
|
|
else
|
424 |
|
|
addr = frame->bottom + FRAME_SAVED_I0 +
|
425 |
|
|
SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);
|
426 |
|
|
|
427 |
|
|
if (addr == 0)
|
428 |
|
|
/* A flat frame leaf function might not save the PC anywhere,
|
429 |
|
|
just leave it in %o7. */
|
430 |
|
|
return PC_ADJUST (read_register (O7_REGNUM));
|
431 |
|
|
|
432 |
|
|
read_memory (addr, buf, SPARC_INTREG_SIZE);
|
433 |
|
|
return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
|
434 |
|
|
}
|
435 |
|
|
|
436 |
|
|
/* Since an individual frame in the frame cache is defined by two
|
437 |
|
|
arguments (a frame pointer and a stack pointer), we need two
|
438 |
|
|
arguments to get info for an arbitrary stack frame. This routine
|
439 |
|
|
takes two arguments and makes the cached frames look as if these
|
440 |
|
|
two arguments defined a frame on the cache. This allows the rest
|
441 |
|
|
of info frame to extract the important arguments without
|
442 |
|
|
difficulty. */
|
443 |
|
|
|
444 |
|
|
struct frame_info *
|
445 |
|
|
setup_arbitrary_frame (argc, argv)
|
446 |
|
|
int argc;
|
447 |
|
|
CORE_ADDR *argv;
|
448 |
|
|
{
|
449 |
|
|
struct frame_info *frame;
|
450 |
|
|
|
451 |
|
|
if (argc != 2)
|
452 |
|
|
error ("Sparc frame specifications require two arguments: fp and sp");
|
453 |
|
|
|
454 |
|
|
frame = create_new_frame (argv[0], 0);
|
455 |
|
|
|
456 |
|
|
if (!frame)
|
457 |
|
|
internal_error ("create_new_frame returned invalid frame");
|
458 |
|
|
|
459 |
|
|
frame->bottom = argv[1];
|
460 |
|
|
frame->pc = FRAME_SAVED_PC (frame);
|
461 |
|
|
return frame;
|
462 |
|
|
}
|
463 |
|
|
|
464 |
|
|
/* Given a pc value, skip it forward past the function prologue by
|
465 |
|
|
disassembling instructions that appear to be a prologue.
|
466 |
|
|
|
467 |
|
|
If FRAMELESS_P is set, we are only testing to see if the function
|
468 |
|
|
is frameless. This allows a quicker answer.
|
469 |
|
|
|
470 |
|
|
This routine should be more specific in its actions; making sure
|
471 |
|
|
that it uses the same register in the initial prologue section. */
|
472 |
|
|
|
473 |
|
|
static CORE_ADDR examine_prologue PARAMS ((CORE_ADDR, int, struct frame_info *,
|
474 |
|
|
struct frame_saved_regs *));
|
475 |
|
|
|
476 |
|
|
static CORE_ADDR
|
477 |
|
|
examine_prologue (start_pc, frameless_p, fi, saved_regs)
|
478 |
|
|
CORE_ADDR start_pc;
|
479 |
|
|
int frameless_p;
|
480 |
|
|
struct frame_info *fi;
|
481 |
|
|
struct frame_saved_regs *saved_regs;
|
482 |
|
|
{
|
483 |
|
|
int insn;
|
484 |
|
|
int dest = -1;
|
485 |
|
|
CORE_ADDR pc = start_pc;
|
486 |
|
|
int is_flat = 0;
|
487 |
|
|
|
488 |
|
|
insn = fetch_instruction (pc);
|
489 |
|
|
|
490 |
|
|
/* Recognize the `sethi' insn and record its destination. */
|
491 |
|
|
if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
|
492 |
|
|
{
|
493 |
|
|
dest = X_RD (insn);
|
494 |
|
|
pc += 4;
|
495 |
|
|
insn = fetch_instruction (pc);
|
496 |
|
|
}
|
497 |
|
|
|
498 |
|
|
/* Recognize an add immediate value to register to either %g1 or
|
499 |
|
|
the destination register recorded above. Actually, this might
|
500 |
|
|
well recognize several different arithmetic operations.
|
501 |
|
|
It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
|
502 |
|
|
followed by "save %sp, %g1, %sp" is a valid prologue (Not that
|
503 |
|
|
I imagine any compiler really does that, however). */
|
504 |
|
|
if (X_OP (insn) == 2
|
505 |
|
|
&& X_I (insn)
|
506 |
|
|
&& (X_RD (insn) == 1 || X_RD (insn) == dest))
|
507 |
|
|
{
|
508 |
|
|
pc += 4;
|
509 |
|
|
insn = fetch_instruction (pc);
|
510 |
|
|
}
|
511 |
|
|
|
512 |
|
|
/* Recognize any SAVE insn. */
|
513 |
|
|
if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
|
514 |
|
|
{
|
515 |
|
|
pc += 4;
|
516 |
|
|
if (frameless_p) /* If the save is all we care about, */
|
517 |
|
|
return pc; /* return before doing more work */
|
518 |
|
|
insn = fetch_instruction (pc);
|
519 |
|
|
}
|
520 |
|
|
/* Recognize add to %sp. */
|
521 |
|
|
else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
|
522 |
|
|
{
|
523 |
|
|
pc += 4;
|
524 |
|
|
if (frameless_p) /* If the add is all we care about, */
|
525 |
|
|
return pc; /* return before doing more work */
|
526 |
|
|
is_flat = 1;
|
527 |
|
|
insn = fetch_instruction (pc);
|
528 |
|
|
/* Recognize store of frame pointer (i7). */
|
529 |
|
|
if (X_OP (insn) == 3
|
530 |
|
|
&& X_RD (insn) == 31
|
531 |
|
|
&& X_OP3 (insn) == 4
|
532 |
|
|
&& X_RS1 (insn) == 14)
|
533 |
|
|
{
|
534 |
|
|
pc += 4;
|
535 |
|
|
insn = fetch_instruction (pc);
|
536 |
|
|
|
537 |
|
|
/* Recognize sub %sp, <anything>, %i7. */
|
538 |
|
|
if (X_OP (insn) == 2
|
539 |
|
|
&& X_OP3 (insn) == 4
|
540 |
|
|
&& X_RS1 (insn) == 14
|
541 |
|
|
&& X_RD (insn) == 31)
|
542 |
|
|
{
|
543 |
|
|
pc += 4;
|
544 |
|
|
insn = fetch_instruction (pc);
|
545 |
|
|
}
|
546 |
|
|
else
|
547 |
|
|
return pc;
|
548 |
|
|
}
|
549 |
|
|
else
|
550 |
|
|
return pc;
|
551 |
|
|
}
|
552 |
|
|
else
|
553 |
|
|
/* Without a save or add instruction, it's not a prologue. */
|
554 |
|
|
return start_pc;
|
555 |
|
|
|
556 |
|
|
while (1)
|
557 |
|
|
{
|
558 |
|
|
/* Recognize stores into the frame from the input registers.
|
559 |
|
|
This recognizes all non alternate stores of input register,
|
560 |
|
|
into a location offset from the frame pointer. */
|
561 |
|
|
if ((X_OP (insn) == 3
|
562 |
|
|
&& (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */
|
563 |
|
|
&& (X_RD (insn) & 0x18) == 0x18 /* Input register. */
|
564 |
|
|
&& X_I (insn) /* Immediate mode. */
|
565 |
|
|
&& X_RS1 (insn) == 30 /* Off of frame pointer. */
|
566 |
|
|
/* Into reserved stack space. */
|
567 |
|
|
&& X_SIMM13 (insn) >= 0x44
|
568 |
|
|
&& X_SIMM13 (insn) < 0x5b))
|
569 |
|
|
;
|
570 |
|
|
else if (is_flat
|
571 |
|
|
&& X_OP (insn) == 3
|
572 |
|
|
&& X_OP3 (insn) == 4
|
573 |
|
|
&& X_RS1 (insn) == 14
|
574 |
|
|
)
|
575 |
|
|
{
|
576 |
|
|
if (saved_regs && X_I (insn))
|
577 |
|
|
saved_regs->regs[X_RD (insn)] =
|
578 |
|
|
fi->frame + fi->sp_offset + X_SIMM13 (insn);
|
579 |
|
|
}
|
580 |
|
|
else
|
581 |
|
|
break;
|
582 |
|
|
pc += 4;
|
583 |
|
|
insn = fetch_instruction (pc);
|
584 |
|
|
}
|
585 |
|
|
|
586 |
|
|
return pc;
|
587 |
|
|
}
|
588 |
|
|
|
589 |
|
|
CORE_ADDR
|
590 |
|
|
sparc_skip_prologue (start_pc, frameless_p)
|
591 |
|
|
CORE_ADDR start_pc;
|
592 |
|
|
int frameless_p;
|
593 |
|
|
{
|
594 |
|
|
return examine_prologue (start_pc, frameless_p, NULL, NULL);
|
595 |
|
|
}
|
596 |
|
|
|
597 |
|
|
/* Check instruction at ADDR to see if it is a branch.
|
598 |
|
|
All non-annulled instructions will go to NPC or will trap.
|
599 |
|
|
Set *TARGET if we find a candidate branch; set to zero if not.
|
600 |
|
|
|
601 |
|
|
This isn't static as it's used by remote-sa.sparc.c. */
|
602 |
|
|
|
603 |
|
|
static branch_type
|
604 |
|
|
isbranch (instruction, addr, target)
|
605 |
|
|
long instruction;
|
606 |
|
|
CORE_ADDR addr, *target;
|
607 |
|
|
{
|
608 |
|
|
branch_type val = not_branch;
|
609 |
|
|
long int offset = 0; /* Must be signed for sign-extend. */
|
610 |
|
|
|
611 |
|
|
*target = 0;
|
612 |
|
|
|
613 |
|
|
if (X_OP (instruction) == 0
|
614 |
|
|
&& (X_OP2 (instruction) == 2
|
615 |
|
|
|| X_OP2 (instruction) == 6
|
616 |
|
|
|| X_OP2 (instruction) == 1
|
617 |
|
|
|| X_OP2 (instruction) == 3
|
618 |
|
|
|| X_OP2 (instruction) == 5
|
619 |
|
|
#ifndef GDB_TARGET_IS_SPARC64
|
620 |
|
|
|| X_OP2 (instruction) == 7
|
621 |
|
|
#endif
|
622 |
|
|
))
|
623 |
|
|
{
|
624 |
|
|
if (X_COND (instruction) == 8)
|
625 |
|
|
val = X_A (instruction) ? baa : ba;
|
626 |
|
|
else
|
627 |
|
|
val = X_A (instruction) ? bicca : bicc;
|
628 |
|
|
switch (X_OP2 (instruction))
|
629 |
|
|
{
|
630 |
|
|
case 2:
|
631 |
|
|
case 6:
|
632 |
|
|
#ifndef GDB_TARGET_IS_SPARC64
|
633 |
|
|
case 7:
|
634 |
|
|
#endif
|
635 |
|
|
offset = 4 * X_DISP22 (instruction);
|
636 |
|
|
break;
|
637 |
|
|
case 1:
|
638 |
|
|
case 5:
|
639 |
|
|
offset = 4 * X_DISP19 (instruction);
|
640 |
|
|
break;
|
641 |
|
|
case 3:
|
642 |
|
|
offset = 4 * X_DISP16 (instruction);
|
643 |
|
|
break;
|
644 |
|
|
}
|
645 |
|
|
*target = addr + offset;
|
646 |
|
|
}
|
647 |
|
|
#ifdef GDB_TARGET_IS_SPARC64
|
648 |
|
|
else if (X_OP (instruction) == 2
|
649 |
|
|
&& X_OP3 (instruction) == 62)
|
650 |
|
|
{
|
651 |
|
|
if (X_FCN (instruction) == 0)
|
652 |
|
|
{
|
653 |
|
|
/* done */
|
654 |
|
|
*target = read_register (TNPC_REGNUM);
|
655 |
|
|
val = done_retry;
|
656 |
|
|
}
|
657 |
|
|
else if (X_FCN (instruction) == 1)
|
658 |
|
|
{
|
659 |
|
|
/* retry */
|
660 |
|
|
*target = read_register (TPC_REGNUM);
|
661 |
|
|
val = done_retry;
|
662 |
|
|
}
|
663 |
|
|
}
|
664 |
|
|
#endif
|
665 |
|
|
|
666 |
|
|
return val;
|
667 |
|
|
}
|
668 |
|
|
|
669 |
|
|
/* Find register number REGNUM relative to FRAME and put its
|
670 |
|
|
(raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
|
671 |
|
|
was optimized out (and thus can't be fetched). If the variable
|
672 |
|
|
was fetched from memory, set *ADDRP to where it was fetched from,
|
673 |
|
|
otherwise it was fetched from a register.
|
674 |
|
|
|
675 |
|
|
The argument RAW_BUFFER must point to aligned memory. */
|
676 |
|
|
|
677 |
|
|
void
|
678 |
|
|
sparc_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
|
679 |
|
|
char *raw_buffer;
|
680 |
|
|
int *optimized;
|
681 |
|
|
CORE_ADDR *addrp;
|
682 |
|
|
struct frame_info *frame;
|
683 |
|
|
int regnum;
|
684 |
|
|
enum lval_type *lval;
|
685 |
|
|
{
|
686 |
|
|
struct frame_info *frame1;
|
687 |
|
|
CORE_ADDR addr;
|
688 |
|
|
|
689 |
|
|
if (!target_has_registers)
|
690 |
|
|
error ("No registers.");
|
691 |
|
|
|
692 |
|
|
if (optimized)
|
693 |
|
|
*optimized = 0;
|
694 |
|
|
|
695 |
|
|
addr = 0;
|
696 |
|
|
|
697 |
|
|
/* FIXME This code extracted from infcmd.c; should put elsewhere! */
|
698 |
|
|
if (frame == NULL)
|
699 |
|
|
{
|
700 |
|
|
/* error ("No selected frame."); */
|
701 |
|
|
if (!target_has_registers)
|
702 |
|
|
error ("The program has no registers now.");
|
703 |
|
|
if (selected_frame == NULL)
|
704 |
|
|
error ("No selected frame.");
|
705 |
|
|
/* Try to use selected frame */
|
706 |
|
|
frame = get_prev_frame (selected_frame);
|
707 |
|
|
if (frame == 0)
|
708 |
|
|
error ("Cmd not meaningful in the outermost frame.");
|
709 |
|
|
}
|
710 |
|
|
|
711 |
|
|
|
712 |
|
|
frame1 = frame->next;
|
713 |
|
|
|
714 |
|
|
/* Get saved PC from the frame info if not in innermost frame. */
|
715 |
|
|
if (regnum == PC_REGNUM && frame1 != NULL)
|
716 |
|
|
{
|
717 |
|
|
if (lval != NULL)
|
718 |
|
|
*lval = not_lval;
|
719 |
|
|
if (raw_buffer != NULL)
|
720 |
|
|
{
|
721 |
|
|
/* Put it back in target format. */
|
722 |
|
|
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
|
723 |
|
|
}
|
724 |
|
|
if (addrp != NULL)
|
725 |
|
|
*addrp = 0;
|
726 |
|
|
return;
|
727 |
|
|
}
|
728 |
|
|
|
729 |
|
|
while (frame1 != NULL)
|
730 |
|
|
{
|
731 |
|
|
if (frame1->pc >= (frame1->bottom ? frame1->bottom :
|
732 |
|
|
read_sp ())
|
733 |
|
|
&& frame1->pc <= FRAME_FP (frame1))
|
734 |
|
|
{
|
735 |
|
|
/* Dummy frame. All but the window regs are in there somewhere.
|
736 |
|
|
The window registers are saved on the stack, just like in a
|
737 |
|
|
normal frame. */
|
738 |
|
|
if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
|
739 |
|
|
addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
|
740 |
|
|
- (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
|
741 |
|
|
else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
|
742 |
|
|
addr = (frame1->prev->bottom
|
743 |
|
|
+ (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
|
744 |
|
|
+ FRAME_SAVED_I0);
|
745 |
|
|
else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
|
746 |
|
|
addr = (frame1->prev->bottom
|
747 |
|
|
+ (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
|
748 |
|
|
+ FRAME_SAVED_L0);
|
749 |
|
|
else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
|
750 |
|
|
addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
|
751 |
|
|
- (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
|
752 |
|
|
#ifdef FP0_REGNUM
|
753 |
|
|
else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
|
754 |
|
|
addr = frame1->frame + (regnum - FP0_REGNUM) * 4
|
755 |
|
|
- (FP_REGISTER_BYTES);
|
756 |
|
|
#ifdef GDB_TARGET_IS_SPARC64
|
757 |
|
|
else if (regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
|
758 |
|
|
addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
|
759 |
|
|
- (FP_REGISTER_BYTES);
|
760 |
|
|
#endif
|
761 |
|
|
#endif /* FP0_REGNUM */
|
762 |
|
|
else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
|
763 |
|
|
addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
|
764 |
|
|
- (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
|
765 |
|
|
}
|
766 |
|
|
else if (frame1->flat)
|
767 |
|
|
{
|
768 |
|
|
|
769 |
|
|
if (regnum == RP_REGNUM)
|
770 |
|
|
addr = frame1->pc_addr;
|
771 |
|
|
else if (regnum == I7_REGNUM)
|
772 |
|
|
addr = frame1->fp_addr;
|
773 |
|
|
else
|
774 |
|
|
{
|
775 |
|
|
CORE_ADDR func_start;
|
776 |
|
|
struct frame_saved_regs regs;
|
777 |
|
|
memset (®s, 0, sizeof (regs));
|
778 |
|
|
|
779 |
|
|
find_pc_partial_function (frame1->pc, NULL, &func_start, NULL);
|
780 |
|
|
examine_prologue (func_start, 0, frame1, ®s);
|
781 |
|
|
addr = regs.regs[regnum];
|
782 |
|
|
}
|
783 |
|
|
}
|
784 |
|
|
else
|
785 |
|
|
{
|
786 |
|
|
/* Normal frame. Local and In registers are saved on stack. */
|
787 |
|
|
if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
|
788 |
|
|
addr = (frame1->prev->bottom
|
789 |
|
|
+ (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
|
790 |
|
|
+ FRAME_SAVED_I0);
|
791 |
|
|
else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
|
792 |
|
|
addr = (frame1->prev->bottom
|
793 |
|
|
+ (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
|
794 |
|
|
+ FRAME_SAVED_L0);
|
795 |
|
|
else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
|
796 |
|
|
{
|
797 |
|
|
/* Outs become ins. */
|
798 |
|
|
get_saved_register (raw_buffer, optimized, addrp, frame1,
|
799 |
|
|
(regnum - O0_REGNUM + I0_REGNUM), lval);
|
800 |
|
|
return;
|
801 |
|
|
}
|
802 |
|
|
}
|
803 |
|
|
if (addr != 0)
|
804 |
|
|
break;
|
805 |
|
|
frame1 = frame1->next;
|
806 |
|
|
}
|
807 |
|
|
if (addr != 0)
|
808 |
|
|
{
|
809 |
|
|
if (lval != NULL)
|
810 |
|
|
*lval = lval_memory;
|
811 |
|
|
if (regnum == SP_REGNUM)
|
812 |
|
|
{
|
813 |
|
|
if (raw_buffer != NULL)
|
814 |
|
|
{
|
815 |
|
|
/* Put it back in target format. */
|
816 |
|
|
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
|
817 |
|
|
}
|
818 |
|
|
if (addrp != NULL)
|
819 |
|
|
*addrp = 0;
|
820 |
|
|
return;
|
821 |
|
|
}
|
822 |
|
|
if (raw_buffer != NULL)
|
823 |
|
|
read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
|
824 |
|
|
}
|
825 |
|
|
else
|
826 |
|
|
{
|
827 |
|
|
if (lval != NULL)
|
828 |
|
|
*lval = lval_register;
|
829 |
|
|
addr = REGISTER_BYTE (regnum);
|
830 |
|
|
if (raw_buffer != NULL)
|
831 |
|
|
read_register_gen (regnum, raw_buffer);
|
832 |
|
|
}
|
833 |
|
|
if (addrp != NULL)
|
834 |
|
|
*addrp = addr;
|
835 |
|
|
}
|
836 |
|
|
|
837 |
|
|
/* Push an empty stack frame, and record in it the current PC, regs, etc.
|
838 |
|
|
|
839 |
|
|
We save the non-windowed registers and the ins. The locals and outs
|
840 |
|
|
are new; they don't need to be saved. The i's and l's of
|
841 |
|
|
the last frame were already saved on the stack. */
|
842 |
|
|
|
843 |
|
|
/* Definitely see tm-sparc.h for more doc of the frame format here. */
|
844 |
|
|
|
845 |
|
|
#ifdef GDB_TARGET_IS_SPARC64
|
846 |
|
|
#define DUMMY_REG_SAVE_OFFSET (128 + 16)
|
847 |
|
|
#else
|
848 |
|
|
#define DUMMY_REG_SAVE_OFFSET 0x60
|
849 |
|
|
#endif
|
850 |
|
|
|
851 |
|
|
/* See tm-sparc.h for how this is calculated. */
|
852 |
|
|
#ifdef FP0_REGNUM
|
853 |
|
|
#define DUMMY_STACK_REG_BUF_SIZE \
|
854 |
|
|
(((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
|
855 |
|
|
#else
|
856 |
|
|
#define DUMMY_STACK_REG_BUF_SIZE \
|
857 |
|
|
(((8+8+8) * SPARC_INTREG_SIZE) )
|
858 |
|
|
#endif /* FP0_REGNUM */
|
859 |
|
|
#define DUMMY_STACK_SIZE (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)
|
860 |
|
|
|
861 |
|
|
void
|
862 |
|
|
sparc_push_dummy_frame ()
|
863 |
|
|
{
|
864 |
|
|
CORE_ADDR sp, old_sp;
|
865 |
|
|
char register_temp[DUMMY_STACK_SIZE];
|
866 |
|
|
|
867 |
|
|
old_sp = sp = read_sp ();
|
868 |
|
|
|
869 |
|
|
#ifdef GDB_TARGET_IS_SPARC64
|
870 |
|
|
/* PC, NPC, CCR, FSR, FPRS, Y, ASI */
|
871 |
|
|
read_register_bytes (REGISTER_BYTE (PC_REGNUM), ®ister_temp[0],
|
872 |
|
|
REGISTER_RAW_SIZE (PC_REGNUM) * 7);
|
873 |
|
|
read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM), ®ister_temp[8],
|
874 |
|
|
REGISTER_RAW_SIZE (PSTATE_REGNUM));
|
875 |
|
|
/* FIXME: not sure what needs to be saved here. */
|
876 |
|
|
#else
|
877 |
|
|
/* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
|
878 |
|
|
read_register_bytes (REGISTER_BYTE (Y_REGNUM), ®ister_temp[0],
|
879 |
|
|
REGISTER_RAW_SIZE (Y_REGNUM) * 8);
|
880 |
|
|
#endif
|
881 |
|
|
|
882 |
|
|
read_register_bytes (REGISTER_BYTE (O0_REGNUM),
|
883 |
|
|
®ister_temp[8 * SPARC_INTREG_SIZE],
|
884 |
|
|
SPARC_INTREG_SIZE * 8);
|
885 |
|
|
|
886 |
|
|
read_register_bytes (REGISTER_BYTE (G0_REGNUM),
|
887 |
|
|
®ister_temp[16 * SPARC_INTREG_SIZE],
|
888 |
|
|
SPARC_INTREG_SIZE * 8);
|
889 |
|
|
|
890 |
|
|
#ifdef FP0_REGNUM
|
891 |
|
|
read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
|
892 |
|
|
®ister_temp[24 * SPARC_INTREG_SIZE],
|
893 |
|
|
FP_REGISTER_BYTES);
|
894 |
|
|
#endif /* FP0_REGNUM */
|
895 |
|
|
|
896 |
|
|
sp -= DUMMY_STACK_SIZE;
|
897 |
|
|
|
898 |
|
|
write_sp (sp);
|
899 |
|
|
|
900 |
|
|
write_memory (sp + DUMMY_REG_SAVE_OFFSET, ®ister_temp[0],
|
901 |
|
|
DUMMY_STACK_REG_BUF_SIZE);
|
902 |
|
|
|
903 |
|
|
if (strcmp (target_shortname, "sim") != 0)
|
904 |
|
|
{
|
905 |
|
|
write_fp (old_sp);
|
906 |
|
|
|
907 |
|
|
/* Set return address register for the call dummy to the current PC. */
|
908 |
|
|
write_register (I7_REGNUM, read_pc () - 8);
|
909 |
|
|
}
|
910 |
|
|
else
|
911 |
|
|
{
|
912 |
|
|
/* The call dummy will write this value to FP before executing
|
913 |
|
|
the 'save'. This ensures that register window flushes work
|
914 |
|
|
correctly in the simulator. */
|
915 |
|
|
write_register (G0_REGNUM + 1, read_register (FP_REGNUM));
|
916 |
|
|
|
917 |
|
|
/* The call dummy will write this value to FP after executing
|
918 |
|
|
the 'save'. */
|
919 |
|
|
write_register (G0_REGNUM + 2, old_sp);
|
920 |
|
|
|
921 |
|
|
/* The call dummy will write this value to the return address (%i7) after
|
922 |
|
|
executing the 'save'. */
|
923 |
|
|
write_register (G0_REGNUM + 3, read_pc () - 8);
|
924 |
|
|
|
925 |
|
|
/* Set the FP that the call dummy will be using after the 'save'.
|
926 |
|
|
This makes backtraces from an inferior function call work properly. */
|
927 |
|
|
write_register (FP_REGNUM, old_sp);
|
928 |
|
|
}
|
929 |
|
|
}
|
930 |
|
|
|
931 |
|
|
/* sparc_frame_find_saved_regs (). This function is here only because
|
932 |
|
|
pop_frame uses it. Note there is an interesting corner case which
|
933 |
|
|
I think few ports of GDB get right--if you are popping a frame
|
934 |
|
|
which does not save some register that *is* saved by a more inner
|
935 |
|
|
frame (such a frame will never be a dummy frame because dummy
|
936 |
|
|
frames save all registers). Rewriting pop_frame to use
|
937 |
|
|
get_saved_register would solve this problem and also get rid of the
|
938 |
|
|
ugly duplication between sparc_frame_find_saved_regs and
|
939 |
|
|
get_saved_register.
|
940 |
|
|
|
941 |
|
|
Stores, into a struct frame_saved_regs,
|
942 |
|
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
943 |
|
|
This includes special registers such as pc and fp saved in special
|
944 |
|
|
ways in the stack frame. sp is even more special:
|
945 |
|
|
the address we return for it IS the sp for the next frame.
|
946 |
|
|
|
947 |
|
|
Note that on register window machines, we are currently making the
|
948 |
|
|
assumption that window registers are being saved somewhere in the
|
949 |
|
|
frame in which they are being used. If they are stored in an
|
950 |
|
|
inferior frame, find_saved_register will break.
|
951 |
|
|
|
952 |
|
|
On the Sun 4, the only time all registers are saved is when
|
953 |
|
|
a dummy frame is involved. Otherwise, the only saved registers
|
954 |
|
|
are the LOCAL and IN registers which are saved as a result
|
955 |
|
|
of the "save/restore" opcodes. This condition is determined
|
956 |
|
|
by address rather than by value.
|
957 |
|
|
|
958 |
|
|
The "pc" is not stored in a frame on the SPARC. (What is stored
|
959 |
|
|
is a return address minus 8.) sparc_pop_frame knows how to
|
960 |
|
|
deal with that. Other routines might or might not.
|
961 |
|
|
|
962 |
|
|
See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
|
963 |
|
|
about how this works. */
|
964 |
|
|
|
965 |
|
|
static void sparc_frame_find_saved_regs PARAMS ((struct frame_info *,
|
966 |
|
|
struct frame_saved_regs *));
|
967 |
|
|
|
968 |
|
|
static void
|
969 |
|
|
sparc_frame_find_saved_regs (fi, saved_regs_addr)
|
970 |
|
|
struct frame_info *fi;
|
971 |
|
|
struct frame_saved_regs *saved_regs_addr;
|
972 |
|
|
{
|
973 |
|
|
register int regnum;
|
974 |
|
|
CORE_ADDR frame_addr = FRAME_FP (fi);
|
975 |
|
|
|
976 |
|
|
if (!fi)
|
977 |
|
|
internal_error ("Bad frame info struct in FRAME_FIND_SAVED_REGS");
|
978 |
|
|
|
979 |
|
|
memset (saved_regs_addr, 0, sizeof (*saved_regs_addr));
|
980 |
|
|
|
981 |
|
|
if (fi->pc >= (fi->bottom ? fi->bottom :
|
982 |
|
|
read_sp ())
|
983 |
|
|
&& fi->pc <= FRAME_FP (fi))
|
984 |
|
|
{
|
985 |
|
|
/* Dummy frame. All but the window regs are in there somewhere. */
|
986 |
|
|
for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++)
|
987 |
|
|
saved_regs_addr->regs[regnum] =
|
988 |
|
|
frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
|
989 |
|
|
- DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;
|
990 |
|
|
for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
|
991 |
|
|
saved_regs_addr->regs[regnum] =
|
992 |
|
|
frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
|
993 |
|
|
- DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;
|
994 |
|
|
#ifdef FP0_REGNUM
|
995 |
|
|
for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++)
|
996 |
|
|
saved_regs_addr->regs[regnum] =
|
997 |
|
|
frame_addr + (regnum - FP0_REGNUM) * 4
|
998 |
|
|
- DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
|
999 |
|
|
#ifdef GDB_TARGET_IS_SPARC64
|
1000 |
|
|
for (regnum = FP0_REGNUM + 32; regnum < FP_MAX_REGNUM; regnum++)
|
1001 |
|
|
saved_regs_addr->regs[regnum] =
|
1002 |
|
|
frame_addr + 32 * 4 + (regnum - FP0_REGNUM - 32) * 4
|
1003 |
|
|
- DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
|
1004 |
|
|
#endif
|
1005 |
|
|
#endif /* FP0_REGNUM */
|
1006 |
|
|
#ifdef GDB_TARGET_IS_SPARC64
|
1007 |
|
|
for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
|
1008 |
|
|
{
|
1009 |
|
|
saved_regs_addr->regs[regnum] =
|
1010 |
|
|
frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE
|
1011 |
|
|
- DUMMY_STACK_REG_BUF_SIZE;
|
1012 |
|
|
}
|
1013 |
|
|
saved_regs_addr->regs[PSTATE_REGNUM] =
|
1014 |
|
|
frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
|
1015 |
|
|
#else
|
1016 |
|
|
for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
|
1017 |
|
|
saved_regs_addr->regs[regnum] =
|
1018 |
|
|
frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
|
1019 |
|
|
- DUMMY_STACK_REG_BUF_SIZE;
|
1020 |
|
|
#endif
|
1021 |
|
|
frame_addr = fi->bottom ?
|
1022 |
|
|
fi->bottom : read_sp ();
|
1023 |
|
|
}
|
1024 |
|
|
else if (fi->flat)
|
1025 |
|
|
{
|
1026 |
|
|
CORE_ADDR func_start;
|
1027 |
|
|
find_pc_partial_function (fi->pc, NULL, &func_start, NULL);
|
1028 |
|
|
examine_prologue (func_start, 0, fi, saved_regs_addr);
|
1029 |
|
|
|
1030 |
|
|
/* Flat register window frame. */
|
1031 |
|
|
saved_regs_addr->regs[RP_REGNUM] = fi->pc_addr;
|
1032 |
|
|
saved_regs_addr->regs[I7_REGNUM] = fi->fp_addr;
|
1033 |
|
|
}
|
1034 |
|
|
else
|
1035 |
|
|
{
|
1036 |
|
|
/* Normal frame. Just Local and In registers */
|
1037 |
|
|
frame_addr = fi->bottom ?
|
1038 |
|
|
fi->bottom : read_sp ();
|
1039 |
|
|
for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++)
|
1040 |
|
|
saved_regs_addr->regs[regnum] =
|
1041 |
|
|
(frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
|
1042 |
|
|
+ FRAME_SAVED_L0);
|
1043 |
|
|
for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
|
1044 |
|
|
saved_regs_addr->regs[regnum] =
|
1045 |
|
|
(frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
|
1046 |
|
|
+ FRAME_SAVED_I0);
|
1047 |
|
|
}
|
1048 |
|
|
if (fi->next)
|
1049 |
|
|
{
|
1050 |
|
|
if (fi->flat)
|
1051 |
|
|
{
|
1052 |
|
|
saved_regs_addr->regs[O7_REGNUM] = fi->pc_addr;
|
1053 |
|
|
}
|
1054 |
|
|
else
|
1055 |
|
|
{
|
1056 |
|
|
/* Pull off either the next frame pointer or the stack pointer */
|
1057 |
|
|
CORE_ADDR next_next_frame_addr =
|
1058 |
|
|
(fi->next->bottom ?
|
1059 |
|
|
fi->next->bottom :
|
1060 |
|
|
read_sp ());
|
1061 |
|
|
for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++)
|
1062 |
|
|
saved_regs_addr->regs[regnum] =
|
1063 |
|
|
(next_next_frame_addr
|
1064 |
|
|
+ (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
|
1065 |
|
|
+ FRAME_SAVED_I0);
|
1066 |
|
|
}
|
1067 |
|
|
}
|
1068 |
|
|
/* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
|
1069 |
|
|
/* FIXME -- should this adjust for the sparc64 offset? */
|
1070 |
|
|
saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi);
|
1071 |
|
|
}
|
1072 |
|
|
|
1073 |
|
|
/* Discard from the stack the innermost frame, restoring all saved registers.
|
1074 |
|
|
|
1075 |
|
|
Note that the values stored in fsr by get_frame_saved_regs are *in
|
1076 |
|
|
the context of the called frame*. What this means is that the i
|
1077 |
|
|
regs of fsr must be restored into the o regs of the (calling) frame that
|
1078 |
|
|
we pop into. We don't care about the output regs of the calling frame,
|
1079 |
|
|
since unless it's a dummy frame, it won't have any output regs in it.
|
1080 |
|
|
|
1081 |
|
|
We never have to bother with %l (local) regs, since the called routine's
|
1082 |
|
|
locals get tossed, and the calling routine's locals are already saved
|
1083 |
|
|
on its stack. */
|
1084 |
|
|
|
1085 |
|
|
/* Definitely see tm-sparc.h for more doc of the frame format here. */
|
1086 |
|
|
|
1087 |
|
|
void
|
1088 |
|
|
sparc_pop_frame ()
|
1089 |
|
|
{
|
1090 |
|
|
register struct frame_info *frame = get_current_frame ();
|
1091 |
|
|
register CORE_ADDR pc;
|
1092 |
|
|
struct frame_saved_regs fsr;
|
1093 |
|
|
char raw_buffer[REGISTER_BYTES];
|
1094 |
|
|
int regnum;
|
1095 |
|
|
|
1096 |
|
|
sparc_frame_find_saved_regs (frame, &fsr);
|
1097 |
|
|
#ifdef FP0_REGNUM
|
1098 |
|
|
if (fsr.regs[FP0_REGNUM])
|
1099 |
|
|
{
|
1100 |
|
|
read_memory (fsr.regs[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
|
1101 |
|
|
write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
|
1102 |
|
|
raw_buffer, FP_REGISTER_BYTES);
|
1103 |
|
|
}
|
1104 |
|
|
#ifndef GDB_TARGET_IS_SPARC64
|
1105 |
|
|
if (fsr.regs[FPS_REGNUM])
|
1106 |
|
|
{
|
1107 |
|
|
read_memory (fsr.regs[FPS_REGNUM], raw_buffer, 4);
|
1108 |
|
|
write_register_bytes (REGISTER_BYTE (FPS_REGNUM), raw_buffer, 4);
|
1109 |
|
|
}
|
1110 |
|
|
if (fsr.regs[CPS_REGNUM])
|
1111 |
|
|
{
|
1112 |
|
|
read_memory (fsr.regs[CPS_REGNUM], raw_buffer, 4);
|
1113 |
|
|
write_register_bytes (REGISTER_BYTE (CPS_REGNUM), raw_buffer, 4);
|
1114 |
|
|
}
|
1115 |
|
|
#endif
|
1116 |
|
|
#endif /* FP0_REGNUM */
|
1117 |
|
|
if (fsr.regs[G1_REGNUM])
|
1118 |
|
|
{
|
1119 |
|
|
read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
|
1120 |
|
|
write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
|
1121 |
|
|
7 * SPARC_INTREG_SIZE);
|
1122 |
|
|
}
|
1123 |
|
|
|
1124 |
|
|
if (frame->flat)
|
1125 |
|
|
{
|
1126 |
|
|
/* Each register might or might not have been saved, need to test
|
1127 |
|
|
individually. */
|
1128 |
|
|
for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
|
1129 |
|
|
if (fsr.regs[regnum])
|
1130 |
|
|
write_register (regnum, read_memory_integer (fsr.regs[regnum],
|
1131 |
|
|
SPARC_INTREG_SIZE));
|
1132 |
|
|
for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
|
1133 |
|
|
if (fsr.regs[regnum])
|
1134 |
|
|
write_register (regnum, read_memory_integer (fsr.regs[regnum],
|
1135 |
|
|
SPARC_INTREG_SIZE));
|
1136 |
|
|
|
1137 |
|
|
/* Handle all outs except stack pointer (o0-o5; o7). */
|
1138 |
|
|
for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
|
1139 |
|
|
if (fsr.regs[regnum])
|
1140 |
|
|
write_register (regnum, read_memory_integer (fsr.regs[regnum],
|
1141 |
|
|
SPARC_INTREG_SIZE));
|
1142 |
|
|
if (fsr.regs[O0_REGNUM + 7])
|
1143 |
|
|
write_register (O0_REGNUM + 7,
|
1144 |
|
|
read_memory_integer (fsr.regs[O0_REGNUM + 7],
|
1145 |
|
|
SPARC_INTREG_SIZE));
|
1146 |
|
|
|
1147 |
|
|
write_sp (frame->frame);
|
1148 |
|
|
}
|
1149 |
|
|
else if (fsr.regs[I0_REGNUM])
|
1150 |
|
|
{
|
1151 |
|
|
CORE_ADDR sp;
|
1152 |
|
|
|
1153 |
|
|
char reg_temp[REGISTER_BYTES];
|
1154 |
|
|
|
1155 |
|
|
read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);
|
1156 |
|
|
|
1157 |
|
|
/* Get the ins and locals which we are about to restore. Just
|
1158 |
|
|
moving the stack pointer is all that is really needed, except
|
1159 |
|
|
store_inferior_registers is then going to write the ins and
|
1160 |
|
|
locals from the registers array, so we need to muck with the
|
1161 |
|
|
registers array. */
|
1162 |
|
|
sp = fsr.regs[SP_REGNUM];
|
1163 |
|
|
#ifdef GDB_TARGET_IS_SPARC64
|
1164 |
|
|
if (sp & 1)
|
1165 |
|
|
sp += 2047;
|
1166 |
|
|
#endif
|
1167 |
|
|
read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);
|
1168 |
|
|
|
1169 |
|
|
/* Restore the out registers.
|
1170 |
|
|
Among other things this writes the new stack pointer. */
|
1171 |
|
|
write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
|
1172 |
|
|
SPARC_INTREG_SIZE * 8);
|
1173 |
|
|
|
1174 |
|
|
write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
|
1175 |
|
|
SPARC_INTREG_SIZE * 16);
|
1176 |
|
|
}
|
1177 |
|
|
#ifndef GDB_TARGET_IS_SPARC64
|
1178 |
|
|
if (fsr.regs[PS_REGNUM])
|
1179 |
|
|
write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
|
1180 |
|
|
#endif
|
1181 |
|
|
if (fsr.regs[Y_REGNUM])
|
1182 |
|
|
write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], REGISTER_RAW_SIZE (Y_REGNUM)));
|
1183 |
|
|
if (fsr.regs[PC_REGNUM])
|
1184 |
|
|
{
|
1185 |
|
|
/* Explicitly specified PC (and maybe NPC) -- just restore them. */
|
1186 |
|
|
write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM],
|
1187 |
|
|
REGISTER_RAW_SIZE (PC_REGNUM)));
|
1188 |
|
|
if (fsr.regs[NPC_REGNUM])
|
1189 |
|
|
write_register (NPC_REGNUM,
|
1190 |
|
|
read_memory_integer (fsr.regs[NPC_REGNUM],
|
1191 |
|
|
REGISTER_RAW_SIZE (NPC_REGNUM)));
|
1192 |
|
|
}
|
1193 |
|
|
else if (frame->flat)
|
1194 |
|
|
{
|
1195 |
|
|
if (frame->pc_addr)
|
1196 |
|
|
pc = PC_ADJUST ((CORE_ADDR)
|
1197 |
|
|
read_memory_integer (frame->pc_addr,
|
1198 |
|
|
REGISTER_RAW_SIZE (PC_REGNUM)));
|
1199 |
|
|
else
|
1200 |
|
|
{
|
1201 |
|
|
/* I think this happens only in the innermost frame, if so then
|
1202 |
|
|
it is a complicated way of saying
|
1203 |
|
|
"pc = read_register (O7_REGNUM);". */
|
1204 |
|
|
char buf[MAX_REGISTER_RAW_SIZE];
|
1205 |
|
|
get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0);
|
1206 |
|
|
pc = PC_ADJUST (extract_address
|
1207 |
|
|
(buf, REGISTER_RAW_SIZE (O7_REGNUM)));
|
1208 |
|
|
}
|
1209 |
|
|
|
1210 |
|
|
write_register (PC_REGNUM, pc);
|
1211 |
|
|
write_register (NPC_REGNUM, pc + 4);
|
1212 |
|
|
}
|
1213 |
|
|
else if (fsr.regs[I7_REGNUM])
|
1214 |
|
|
{
|
1215 |
|
|
/* Return address in %i7 -- adjust it, then restore PC and NPC from it */
|
1216 |
|
|
pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr.regs[I7_REGNUM],
|
1217 |
|
|
SPARC_INTREG_SIZE));
|
1218 |
|
|
write_register (PC_REGNUM, pc);
|
1219 |
|
|
write_register (NPC_REGNUM, pc + 4);
|
1220 |
|
|
}
|
1221 |
|
|
flush_cached_frames ();
|
1222 |
|
|
}
|
1223 |
|
|
|
1224 |
|
|
/* On the Sun 4 under SunOS, the compile will leave a fake insn which
|
1225 |
|
|
encodes the structure size being returned. If we detect such
|
1226 |
|
|
a fake insn, step past it. */
|
1227 |
|
|
|
1228 |
|
|
CORE_ADDR
|
1229 |
|
|
sparc_pc_adjust (pc)
|
1230 |
|
|
CORE_ADDR pc;
|
1231 |
|
|
{
|
1232 |
|
|
unsigned long insn;
|
1233 |
|
|
char buf[4];
|
1234 |
|
|
int err;
|
1235 |
|
|
|
1236 |
|
|
err = target_read_memory (pc + 8, buf, 4);
|
1237 |
|
|
insn = extract_unsigned_integer (buf, 4);
|
1238 |
|
|
if ((err == 0) && (insn & 0xffc00000) == 0)
|
1239 |
|
|
return pc + 12;
|
1240 |
|
|
else
|
1241 |
|
|
return pc + 8;
|
1242 |
|
|
}
|
1243 |
|
|
|
1244 |
|
|
/* If pc is in a shared library trampoline, return its target.
|
1245 |
|
|
The SunOs 4.x linker rewrites the jump table entries for PIC
|
1246 |
|
|
compiled modules in the main executable to bypass the dynamic linker
|
1247 |
|
|
with jumps of the form
|
1248 |
|
|
sethi %hi(addr),%g1
|
1249 |
|
|
jmp %g1+%lo(addr)
|
1250 |
|
|
and removes the corresponding jump table relocation entry in the
|
1251 |
|
|
dynamic relocations.
|
1252 |
|
|
find_solib_trampoline_target relies on the presence of the jump
|
1253 |
|
|
table relocation entry, so we have to detect these jump instructions
|
1254 |
|
|
by hand. */
|
1255 |
|
|
|
1256 |
|
|
CORE_ADDR
|
1257 |
|
|
sunos4_skip_trampoline_code (pc)
|
1258 |
|
|
CORE_ADDR pc;
|
1259 |
|
|
{
|
1260 |
|
|
unsigned long insn1;
|
1261 |
|
|
char buf[4];
|
1262 |
|
|
int err;
|
1263 |
|
|
|
1264 |
|
|
err = target_read_memory (pc, buf, 4);
|
1265 |
|
|
insn1 = extract_unsigned_integer (buf, 4);
|
1266 |
|
|
if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
|
1267 |
|
|
{
|
1268 |
|
|
unsigned long insn2;
|
1269 |
|
|
|
1270 |
|
|
err = target_read_memory (pc + 4, buf, 4);
|
1271 |
|
|
insn2 = extract_unsigned_integer (buf, 4);
|
1272 |
|
|
if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
|
1273 |
|
|
{
|
1274 |
|
|
CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
|
1275 |
|
|
int delta = insn2 & 0x1fff;
|
1276 |
|
|
|
1277 |
|
|
/* Sign extend the displacement. */
|
1278 |
|
|
if (delta & 0x1000)
|
1279 |
|
|
delta |= ~0x1fff;
|
1280 |
|
|
return target_pc + delta;
|
1281 |
|
|
}
|
1282 |
|
|
}
|
1283 |
|
|
return find_solib_trampoline_target (pc);
|
1284 |
|
|
}
|
1285 |
|
|
|
1286 |
|
|
#ifdef USE_PROC_FS /* Target dependent support for /proc */
|
1287 |
|
|
/* *INDENT-OFF* */
|
1288 |
|
|
/* The /proc interface divides the target machine's register set up into
|
1289 |
|
|
two different sets, the general register set (gregset) and the floating
|
1290 |
|
|
point register set (fpregset). For each set, there is an ioctl to get
|
1291 |
|
|
the current register set and another ioctl to set the current values.
|
1292 |
|
|
|
1293 |
|
|
The actual structure passed through the ioctl interface is, of course,
|
1294 |
|
|
naturally machine dependent, and is different for each set of registers.
|
1295 |
|
|
For the sparc for example, the general register set is typically defined
|
1296 |
|
|
by:
|
1297 |
|
|
|
1298 |
|
|
typedef int gregset_t[38];
|
1299 |
|
|
|
1300 |
|
|
#define R_G0 0
|
1301 |
|
|
...
|
1302 |
|
|
#define R_TBR 37
|
1303 |
|
|
|
1304 |
|
|
and the floating point set by:
|
1305 |
|
|
|
1306 |
|
|
typedef struct prfpregset {
|
1307 |
|
|
union {
|
1308 |
|
|
u_long pr_regs[32];
|
1309 |
|
|
double pr_dregs[16];
|
1310 |
|
|
} pr_fr;
|
1311 |
|
|
void * pr_filler;
|
1312 |
|
|
u_long pr_fsr;
|
1313 |
|
|
u_char pr_qcnt;
|
1314 |
|
|
u_char pr_q_entrysize;
|
1315 |
|
|
u_char pr_en;
|
1316 |
|
|
u_long pr_q[64];
|
1317 |
|
|
} prfpregset_t;
|
1318 |
|
|
|
1319 |
|
|
These routines provide the packing and unpacking of gregset_t and
|
1320 |
|
|
fpregset_t formatted data.
|
1321 |
|
|
|
1322 |
|
|
*/
|
1323 |
|
|
/* *INDENT-ON* */
|
1324 |
|
|
|
1325 |
|
|
|
1326 |
|
|
|
1327 |
|
|
/* Given a pointer to a general register set in /proc format (gregset_t *),
|
1328 |
|
|
unpack the register contents and supply them as gdb's idea of the current
|
1329 |
|
|
register values. */
|
1330 |
|
|
|
1331 |
|
|
void
|
1332 |
|
|
supply_gregset (gregsetp)
|
1333 |
|
|
prgregset_t *gregsetp;
|
1334 |
|
|
{
|
1335 |
|
|
register int regi;
|
1336 |
|
|
register prgreg_t *regp = (prgreg_t *) gregsetp;
|
1337 |
|
|
static char zerobuf[MAX_REGISTER_RAW_SIZE] =
|
1338 |
|
|
{0};
|
1339 |
|
|
|
1340 |
|
|
/* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
|
1341 |
|
|
for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++)
|
1342 |
|
|
{
|
1343 |
|
|
supply_register (regi, (char *) (regp + regi));
|
1344 |
|
|
}
|
1345 |
|
|
|
1346 |
|
|
/* These require a bit more care. */
|
1347 |
|
|
supply_register (PS_REGNUM, (char *) (regp + R_PS));
|
1348 |
|
|
supply_register (PC_REGNUM, (char *) (regp + R_PC));
|
1349 |
|
|
supply_register (NPC_REGNUM, (char *) (regp + R_nPC));
|
1350 |
|
|
supply_register (Y_REGNUM, (char *) (regp + R_Y));
|
1351 |
|
|
|
1352 |
|
|
/* Fill inaccessible registers with zero. */
|
1353 |
|
|
supply_register (WIM_REGNUM, zerobuf);
|
1354 |
|
|
supply_register (TBR_REGNUM, zerobuf);
|
1355 |
|
|
supply_register (CPS_REGNUM, zerobuf);
|
1356 |
|
|
}
|
1357 |
|
|
|
1358 |
|
|
void
|
1359 |
|
|
fill_gregset (gregsetp, regno)
|
1360 |
|
|
prgregset_t *gregsetp;
|
1361 |
|
|
int regno;
|
1362 |
|
|
{
|
1363 |
|
|
int regi;
|
1364 |
|
|
register prgreg_t *regp = (prgreg_t *) gregsetp;
|
1365 |
|
|
|
1366 |
|
|
for (regi = 0; regi <= R_I7; regi++)
|
1367 |
|
|
{
|
1368 |
|
|
if ((regno == -1) || (regno == regi))
|
1369 |
|
|
{
|
1370 |
|
|
*(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)];
|
1371 |
|
|
}
|
1372 |
|
|
}
|
1373 |
|
|
if ((regno == -1) || (regno == PS_REGNUM))
|
1374 |
|
|
{
|
1375 |
|
|
*(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
|
1376 |
|
|
}
|
1377 |
|
|
if ((regno == -1) || (regno == PC_REGNUM))
|
1378 |
|
|
{
|
1379 |
|
|
*(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
|
1380 |
|
|
}
|
1381 |
|
|
if ((regno == -1) || (regno == NPC_REGNUM))
|
1382 |
|
|
{
|
1383 |
|
|
*(regp + R_nPC) = *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)];
|
1384 |
|
|
}
|
1385 |
|
|
if ((regno == -1) || (regno == Y_REGNUM))
|
1386 |
|
|
{
|
1387 |
|
|
*(regp + R_Y) = *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)];
|
1388 |
|
|
}
|
1389 |
|
|
}
|
1390 |
|
|
|
1391 |
|
|
#if defined (FP0_REGNUM)
|
1392 |
|
|
|
1393 |
|
|
/* Given a pointer to a floating point register set in /proc format
|
1394 |
|
|
(fpregset_t *), unpack the register contents and supply them as gdb's
|
1395 |
|
|
idea of the current floating point register values. */
|
1396 |
|
|
|
1397 |
|
|
void
|
1398 |
|
|
supply_fpregset (fpregsetp)
|
1399 |
|
|
prfpregset_t *fpregsetp;
|
1400 |
|
|
{
|
1401 |
|
|
register int regi;
|
1402 |
|
|
char *from;
|
1403 |
|
|
|
1404 |
|
|
for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
|
1405 |
|
|
{
|
1406 |
|
|
from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
|
1407 |
|
|
supply_register (regi, from);
|
1408 |
|
|
}
|
1409 |
|
|
supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
|
1410 |
|
|
}
|
1411 |
|
|
|
1412 |
|
|
/* Given a pointer to a floating point register set in /proc format
|
1413 |
|
|
(fpregset_t *), update the register specified by REGNO from gdb's idea
|
1414 |
|
|
of the current floating point register set. If REGNO is -1, update
|
1415 |
|
|
them all. */
|
1416 |
|
|
/* ??? This will probably need some changes for sparc64. */
|
1417 |
|
|
|
1418 |
|
|
void
|
1419 |
|
|
fill_fpregset (fpregsetp, regno)
|
1420 |
|
|
prfpregset_t *fpregsetp;
|
1421 |
|
|
int regno;
|
1422 |
|
|
{
|
1423 |
|
|
int regi;
|
1424 |
|
|
char *to;
|
1425 |
|
|
char *from;
|
1426 |
|
|
|
1427 |
|
|
for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
|
1428 |
|
|
{
|
1429 |
|
|
if ((regno == -1) || (regno == regi))
|
1430 |
|
|
{
|
1431 |
|
|
from = (char *) ®isters[REGISTER_BYTE (regi)];
|
1432 |
|
|
to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
|
1433 |
|
|
memcpy (to, from, REGISTER_RAW_SIZE (regi));
|
1434 |
|
|
}
|
1435 |
|
|
}
|
1436 |
|
|
if ((regno == -1) || (regno == FPS_REGNUM))
|
1437 |
|
|
{
|
1438 |
|
|
fpregsetp->pr_fsr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)];
|
1439 |
|
|
}
|
1440 |
|
|
}
|
1441 |
|
|
|
1442 |
|
|
#endif /* defined (FP0_REGNUM) */
|
1443 |
|
|
|
1444 |
|
|
#endif /* USE_PROC_FS */
|
1445 |
|
|
|
1446 |
|
|
|
1447 |
|
|
#ifdef GET_LONGJMP_TARGET
|
1448 |
|
|
|
1449 |
|
|
/* Figure out where the longjmp will land. We expect that we have just entered
|
1450 |
|
|
longjmp and haven't yet setup the stack frame, so the args are still in the
|
1451 |
|
|
output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
|
1452 |
|
|
extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
|
1453 |
|
|
This routine returns true on success */
|
1454 |
|
|
|
1455 |
|
|
int
|
1456 |
|
|
get_longjmp_target (pc)
|
1457 |
|
|
CORE_ADDR *pc;
|
1458 |
|
|
{
|
1459 |
|
|
CORE_ADDR jb_addr;
|
1460 |
|
|
#define LONGJMP_TARGET_SIZE 4
|
1461 |
|
|
char buf[LONGJMP_TARGET_SIZE];
|
1462 |
|
|
|
1463 |
|
|
jb_addr = read_register (O0_REGNUM);
|
1464 |
|
|
|
1465 |
|
|
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
|
1466 |
|
|
LONGJMP_TARGET_SIZE))
|
1467 |
|
|
return 0;
|
1468 |
|
|
|
1469 |
|
|
*pc = extract_address (buf, LONGJMP_TARGET_SIZE);
|
1470 |
|
|
|
1471 |
|
|
return 1;
|
1472 |
|
|
}
|
1473 |
|
|
#endif /* GET_LONGJMP_TARGET */
|
1474 |
|
|
|
1475 |
|
|
#ifdef STATIC_TRANSFORM_NAME
|
1476 |
|
|
/* SunPRO (3.0 at least), encodes the static variables. This is not
|
1477 |
|
|
related to C++ mangling, it is done for C too. */
|
1478 |
|
|
|
1479 |
|
|
char *
|
1480 |
|
|
sunpro_static_transform_name (name)
|
1481 |
|
|
char *name;
|
1482 |
|
|
{
|
1483 |
|
|
char *p;
|
1484 |
|
|
if (name[0] == '$')
|
1485 |
|
|
{
|
1486 |
|
|
/* For file-local statics there will be a dollar sign, a bunch
|
1487 |
|
|
of junk (the contents of which match a string given in the
|
1488 |
|
|
N_OPT), a period and the name. For function-local statics
|
1489 |
|
|
there will be a bunch of junk (which seems to change the
|
1490 |
|
|
second character from 'A' to 'B'), a period, the name of the
|
1491 |
|
|
function, and the name. So just skip everything before the
|
1492 |
|
|
last period. */
|
1493 |
|
|
p = strrchr (name, '.');
|
1494 |
|
|
if (p != NULL)
|
1495 |
|
|
name = p + 1;
|
1496 |
|
|
}
|
1497 |
|
|
return name;
|
1498 |
|
|
}
|
1499 |
|
|
#endif /* STATIC_TRANSFORM_NAME */
|
1500 |
|
|
|
1501 |
|
|
|
1502 |
|
|
/* Utilities for printing registers.
|
1503 |
|
|
Page numbers refer to the SPARC Architecture Manual. */
|
1504 |
|
|
|
1505 |
|
|
static void dump_ccreg PARAMS ((char *, int));
|
1506 |
|
|
|
1507 |
|
|
static void
|
1508 |
|
|
dump_ccreg (reg, val)
|
1509 |
|
|
char *reg;
|
1510 |
|
|
int val;
|
1511 |
|
|
{
|
1512 |
|
|
/* page 41 */
|
1513 |
|
|
printf_unfiltered ("%s:%s,%s,%s,%s", reg,
|
1514 |
|
|
val & 8 ? "N" : "NN",
|
1515 |
|
|
val & 4 ? "Z" : "NZ",
|
1516 |
|
|
val & 2 ? "O" : "NO",
|
1517 |
|
|
val & 1 ? "C" : "NC"
|
1518 |
|
|
);
|
1519 |
|
|
}
|
1520 |
|
|
|
1521 |
|
|
static char *
|
1522 |
|
|
decode_asi (val)
|
1523 |
|
|
int val;
|
1524 |
|
|
{
|
1525 |
|
|
/* page 72 */
|
1526 |
|
|
switch (val)
|
1527 |
|
|
{
|
1528 |
|
|
case 4:
|
1529 |
|
|
return "ASI_NUCLEUS";
|
1530 |
|
|
case 0x0c:
|
1531 |
|
|
return "ASI_NUCLEUS_LITTLE";
|
1532 |
|
|
case 0x10:
|
1533 |
|
|
return "ASI_AS_IF_USER_PRIMARY";
|
1534 |
|
|
case 0x11:
|
1535 |
|
|
return "ASI_AS_IF_USER_SECONDARY";
|
1536 |
|
|
case 0x18:
|
1537 |
|
|
return "ASI_AS_IF_USER_PRIMARY_LITTLE";
|
1538 |
|
|
case 0x19:
|
1539 |
|
|
return "ASI_AS_IF_USER_SECONDARY_LITTLE";
|
1540 |
|
|
case 0x80:
|
1541 |
|
|
return "ASI_PRIMARY";
|
1542 |
|
|
case 0x81:
|
1543 |
|
|
return "ASI_SECONDARY";
|
1544 |
|
|
case 0x82:
|
1545 |
|
|
return "ASI_PRIMARY_NOFAULT";
|
1546 |
|
|
case 0x83:
|
1547 |
|
|
return "ASI_SECONDARY_NOFAULT";
|
1548 |
|
|
case 0x88:
|
1549 |
|
|
return "ASI_PRIMARY_LITTLE";
|
1550 |
|
|
case 0x89:
|
1551 |
|
|
return "ASI_SECONDARY_LITTLE";
|
1552 |
|
|
case 0x8a:
|
1553 |
|
|
return "ASI_PRIMARY_NOFAULT_LITTLE";
|
1554 |
|
|
case 0x8b:
|
1555 |
|
|
return "ASI_SECONDARY_NOFAULT_LITTLE";
|
1556 |
|
|
default:
|
1557 |
|
|
return NULL;
|
1558 |
|
|
}
|
1559 |
|
|
}
|
1560 |
|
|
|
1561 |
|
|
/* PRINT_REGISTER_HOOK routine.
|
1562 |
|
|
Pretty print various registers. */
|
1563 |
|
|
/* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */
|
1564 |
|
|
|
1565 |
|
|
void
|
1566 |
|
|
sparc_print_register_hook (regno)
|
1567 |
|
|
int regno;
|
1568 |
|
|
{
|
1569 |
|
|
ULONGEST val;
|
1570 |
|
|
|
1571 |
|
|
/* Handle double/quad versions of lower 32 fp regs. */
|
1572 |
|
|
if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
|
1573 |
|
|
&& (regno & 1) == 0)
|
1574 |
|
|
{
|
1575 |
|
|
char value[16];
|
1576 |
|
|
|
1577 |
|
|
if (!read_relative_register_raw_bytes (regno, value)
|
1578 |
|
|
&& !read_relative_register_raw_bytes (regno + 1, value + 4))
|
1579 |
|
|
{
|
1580 |
|
|
printf_unfiltered ("\t");
|
1581 |
|
|
print_floating (value, builtin_type_double, gdb_stdout);
|
1582 |
|
|
}
|
1583 |
|
|
#if 0 /* FIXME: gdb doesn't handle long doubles */
|
1584 |
|
|
if ((regno & 3) == 0)
|
1585 |
|
|
{
|
1586 |
|
|
if (!read_relative_register_raw_bytes (regno + 2, value + 8)
|
1587 |
|
|
&& !read_relative_register_raw_bytes (regno + 3, value + 12))
|
1588 |
|
|
{
|
1589 |
|
|
printf_unfiltered ("\t");
|
1590 |
|
|
print_floating (value, builtin_type_long_double, gdb_stdout);
|
1591 |
|
|
}
|
1592 |
|
|
}
|
1593 |
|
|
#endif
|
1594 |
|
|
return;
|
1595 |
|
|
}
|
1596 |
|
|
|
1597 |
|
|
#if 0 /* FIXME: gdb doesn't handle long doubles */
|
1598 |
|
|
/* Print upper fp regs as long double if appropriate. */
|
1599 |
|
|
if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
|
1600 |
|
|
/* We test for even numbered regs and not a multiple of 4 because
|
1601 |
|
|
the upper fp regs are recorded as doubles. */
|
1602 |
|
|
&& (regno & 1) == 0)
|
1603 |
|
|
{
|
1604 |
|
|
char value[16];
|
1605 |
|
|
|
1606 |
|
|
if (!read_relative_register_raw_bytes (regno, value)
|
1607 |
|
|
&& !read_relative_register_raw_bytes (regno + 1, value + 8))
|
1608 |
|
|
{
|
1609 |
|
|
printf_unfiltered ("\t");
|
1610 |
|
|
print_floating (value, builtin_type_long_double, gdb_stdout);
|
1611 |
|
|
}
|
1612 |
|
|
return;
|
1613 |
|
|
}
|
1614 |
|
|
#endif
|
1615 |
|
|
|
1616 |
|
|
/* FIXME: Some of these are priviledged registers.
|
1617 |
|
|
Not sure how they should be handled. */
|
1618 |
|
|
|
1619 |
|
|
#define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))
|
1620 |
|
|
|
1621 |
|
|
val = read_register (regno);
|
1622 |
|
|
|
1623 |
|
|
/* pages 40 - 60 */
|
1624 |
|
|
switch (regno)
|
1625 |
|
|
{
|
1626 |
|
|
#ifdef GDB_TARGET_IS_SPARC64
|
1627 |
|
|
case CCR_REGNUM:
|
1628 |
|
|
printf_unfiltered ("\t");
|
1629 |
|
|
dump_ccreg ("xcc", val >> 4);
|
1630 |
|
|
printf_unfiltered (", ");
|
1631 |
|
|
dump_ccreg ("icc", val & 15);
|
1632 |
|
|
break;
|
1633 |
|
|
case FPRS_REGNUM:
|
1634 |
|
|
printf ("\tfef:%d, du:%d, dl:%d",
|
1635 |
|
|
BITS (2, 1), BITS (1, 1), BITS (0, 1));
|
1636 |
|
|
break;
|
1637 |
|
|
case FSR_REGNUM:
|
1638 |
|
|
{
|
1639 |
|
|
static char *fcc[4] =
|
1640 |
|
|
{"=", "<", ">", "?"};
|
1641 |
|
|
static char *rd[4] =
|
1642 |
|
|
{"N", "0", "+", "-"};
|
1643 |
|
|
/* Long, yes, but I'd rather leave it as is and use a wide screen. */
|
1644 |
|
|
printf ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
|
1645 |
|
|
fcc[BITS (10, 3)], fcc[BITS (32, 3)],
|
1646 |
|
|
fcc[BITS (34, 3)], fcc[BITS (36, 3)],
|
1647 |
|
|
rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
|
1648 |
|
|
BITS (14, 7), BITS (13, 1), BITS (5, 31), BITS (0, 31));
|
1649 |
|
|
break;
|
1650 |
|
|
}
|
1651 |
|
|
case ASI_REGNUM:
|
1652 |
|
|
{
|
1653 |
|
|
char *asi = decode_asi (val);
|
1654 |
|
|
if (asi != NULL)
|
1655 |
|
|
printf ("\t%s", asi);
|
1656 |
|
|
break;
|
1657 |
|
|
}
|
1658 |
|
|
case VER_REGNUM:
|
1659 |
|
|
printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
|
1660 |
|
|
BITS (48, 0xffff), BITS (32, 0xffff),
|
1661 |
|
|
BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
|
1662 |
|
|
break;
|
1663 |
|
|
case PSTATE_REGNUM:
|
1664 |
|
|
{
|
1665 |
|
|
static char *mm[4] =
|
1666 |
|
|
{"tso", "pso", "rso", "?"};
|
1667 |
|
|
printf ("\tcle:%d, tle:%d, mm:%s, red:%d, pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
|
1668 |
|
|
BITS (9, 1), BITS (8, 1), mm[BITS (6, 3)], BITS (5, 1),
|
1669 |
|
|
BITS (4, 1), BITS (3, 1), BITS (2, 1), BITS (1, 1),
|
1670 |
|
|
BITS (0, 1));
|
1671 |
|
|
break;
|
1672 |
|
|
}
|
1673 |
|
|
case TSTATE_REGNUM:
|
1674 |
|
|
/* FIXME: print all 4? */
|
1675 |
|
|
break;
|
1676 |
|
|
case TT_REGNUM:
|
1677 |
|
|
/* FIXME: print all 4? */
|
1678 |
|
|
break;
|
1679 |
|
|
case TPC_REGNUM:
|
1680 |
|
|
/* FIXME: print all 4? */
|
1681 |
|
|
break;
|
1682 |
|
|
case TNPC_REGNUM:
|
1683 |
|
|
/* FIXME: print all 4? */
|
1684 |
|
|
break;
|
1685 |
|
|
case WSTATE_REGNUM:
|
1686 |
|
|
printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
|
1687 |
|
|
break;
|
1688 |
|
|
case CWP_REGNUM:
|
1689 |
|
|
printf ("\t%d", BITS (0, 31));
|
1690 |
|
|
break;
|
1691 |
|
|
case CANSAVE_REGNUM:
|
1692 |
|
|
printf ("\t%-2d before spill", BITS (0, 31));
|
1693 |
|
|
break;
|
1694 |
|
|
case CANRESTORE_REGNUM:
|
1695 |
|
|
printf ("\t%-2d before fill", BITS (0, 31));
|
1696 |
|
|
break;
|
1697 |
|
|
case CLEANWIN_REGNUM:
|
1698 |
|
|
printf ("\t%-2d before clean", BITS (0, 31));
|
1699 |
|
|
break;
|
1700 |
|
|
case OTHERWIN_REGNUM:
|
1701 |
|
|
printf ("\t%d", BITS (0, 31));
|
1702 |
|
|
break;
|
1703 |
|
|
#else
|
1704 |
|
|
case PS_REGNUM:
|
1705 |
|
|
printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
|
1706 |
|
|
BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
|
1707 |
|
|
BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
|
1708 |
|
|
BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
|
1709 |
|
|
BITS (0, 31));
|
1710 |
|
|
break;
|
1711 |
|
|
case FPS_REGNUM:
|
1712 |
|
|
{
|
1713 |
|
|
static char *fcc[4] =
|
1714 |
|
|
{"=", "<", ">", "?"};
|
1715 |
|
|
static char *rd[4] =
|
1716 |
|
|
{"N", "0", "+", "-"};
|
1717 |
|
|
/* Long, yes, but I'd rather leave it as is and use a wide screen. */
|
1718 |
|
|
printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
|
1719 |
|
|
"fcc:%s, aexc:%d, cexc:%d",
|
1720 |
|
|
rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
|
1721 |
|
|
BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
|
1722 |
|
|
BITS (0, 31));
|
1723 |
|
|
break;
|
1724 |
|
|
}
|
1725 |
|
|
|
1726 |
|
|
#endif /* GDB_TARGET_IS_SPARC64 */
|
1727 |
|
|
}
|
1728 |
|
|
|
1729 |
|
|
#undef BITS
|
1730 |
|
|
}
|
1731 |
|
|
|
1732 |
|
|
int
|
1733 |
|
|
gdb_print_insn_sparc (memaddr, info)
|
1734 |
|
|
bfd_vma memaddr;
|
1735 |
|
|
disassemble_info *info;
|
1736 |
|
|
{
|
1737 |
|
|
/* It's necessary to override mach again because print_insn messes it up. */
|
1738 |
|
|
info->mach = TARGET_ARCHITECTURE->mach;
|
1739 |
|
|
return print_insn_sparc (memaddr, info);
|
1740 |
|
|
}
|
1741 |
|
|
|
1742 |
|
|
/* The SPARC passes the arguments on the stack; arguments smaller
|
1743 |
|
|
than an int are promoted to an int. */
|
1744 |
|
|
|
1745 |
|
|
CORE_ADDR
|
1746 |
|
|
sparc_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
1747 |
|
|
int nargs;
|
1748 |
|
|
value_ptr *args;
|
1749 |
|
|
CORE_ADDR sp;
|
1750 |
|
|
int struct_return;
|
1751 |
|
|
CORE_ADDR struct_addr;
|
1752 |
|
|
{
|
1753 |
|
|
int i;
|
1754 |
|
|
int accumulate_size = 0;
|
1755 |
|
|
struct sparc_arg
|
1756 |
|
|
{
|
1757 |
|
|
char *contents;
|
1758 |
|
|
int len;
|
1759 |
|
|
int offset;
|
1760 |
|
|
};
|
1761 |
|
|
struct sparc_arg *sparc_args =
|
1762 |
|
|
(struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg));
|
1763 |
|
|
struct sparc_arg *m_arg;
|
1764 |
|
|
|
1765 |
|
|
/* Promote arguments if necessary, and calculate their stack offsets
|
1766 |
|
|
and sizes. */
|
1767 |
|
|
for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
|
1768 |
|
|
{
|
1769 |
|
|
value_ptr arg = args[i];
|
1770 |
|
|
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
|
1771 |
|
|
/* Cast argument to long if necessary as the compiler does it too. */
|
1772 |
|
|
switch (TYPE_CODE (arg_type))
|
1773 |
|
|
{
|
1774 |
|
|
case TYPE_CODE_INT:
|
1775 |
|
|
case TYPE_CODE_BOOL:
|
1776 |
|
|
case TYPE_CODE_CHAR:
|
1777 |
|
|
case TYPE_CODE_RANGE:
|
1778 |
|
|
case TYPE_CODE_ENUM:
|
1779 |
|
|
if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
|
1780 |
|
|
{
|
1781 |
|
|
arg_type = builtin_type_long;
|
1782 |
|
|
arg = value_cast (arg_type, arg);
|
1783 |
|
|
}
|
1784 |
|
|
break;
|
1785 |
|
|
default:
|
1786 |
|
|
break;
|
1787 |
|
|
}
|
1788 |
|
|
m_arg->len = TYPE_LENGTH (arg_type);
|
1789 |
|
|
m_arg->offset = accumulate_size;
|
1790 |
|
|
accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
|
1791 |
|
|
m_arg->contents = VALUE_CONTENTS (arg);
|
1792 |
|
|
}
|
1793 |
|
|
|
1794 |
|
|
/* Make room for the arguments on the stack. */
|
1795 |
|
|
accumulate_size += CALL_DUMMY_STACK_ADJUST;
|
1796 |
|
|
sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST;
|
1797 |
|
|
|
1798 |
|
|
/* `Push' arguments on the stack. */
|
1799 |
|
|
for (i = nargs; m_arg--, --i >= 0;)
|
1800 |
|
|
write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
|
1801 |
|
|
|
1802 |
|
|
return sp;
|
1803 |
|
|
}
|
1804 |
|
|
|
1805 |
|
|
|
1806 |
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
1807 |
|
|
a function return value of type TYPE, and copy that, in virtual format,
|
1808 |
|
|
into VALBUF. */
|
1809 |
|
|
|
1810 |
|
|
void
|
1811 |
|
|
sparc_extract_return_value (type, regbuf, valbuf)
|
1812 |
|
|
struct type *type;
|
1813 |
|
|
char *regbuf;
|
1814 |
|
|
char *valbuf;
|
1815 |
|
|
{
|
1816 |
|
|
int typelen = TYPE_LENGTH (type);
|
1817 |
|
|
int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
|
1818 |
|
|
|
1819 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
|
1820 |
|
|
memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen);
|
1821 |
|
|
else
|
1822 |
|
|
memcpy (valbuf,
|
1823 |
|
|
®buf[O0_REGNUM * regsize +
|
1824 |
|
|
(typelen >= regsize
|
1825 |
|
|
|| TARGET_BYTE_ORDER == LITTLE_ENDIAN ? 0
|
1826 |
|
|
: regsize - typelen)],
|
1827 |
|
|
typelen);
|
1828 |
|
|
}
|
1829 |
|
|
|
1830 |
|
|
|
1831 |
|
|
/* Write into appropriate registers a function return value
|
1832 |
|
|
of type TYPE, given in virtual format. On SPARCs with FPUs,
|
1833 |
|
|
float values are returned in %f0 (and %f1). In all other cases,
|
1834 |
|
|
values are returned in register %o0. */
|
1835 |
|
|
|
1836 |
|
|
void
|
1837 |
|
|
sparc_store_return_value (type, valbuf)
|
1838 |
|
|
struct type *type;
|
1839 |
|
|
char *valbuf;
|
1840 |
|
|
{
|
1841 |
|
|
int regno;
|
1842 |
|
|
char buffer[MAX_REGISTER_RAW_SIZE];
|
1843 |
|
|
|
1844 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
|
1845 |
|
|
/* Floating-point values are returned in the register pair */
|
1846 |
|
|
/* formed by %f0 and %f1 (doubles are, anyway). */
|
1847 |
|
|
regno = FP0_REGNUM;
|
1848 |
|
|
else
|
1849 |
|
|
/* Other values are returned in register %o0. */
|
1850 |
|
|
regno = O0_REGNUM;
|
1851 |
|
|
|
1852 |
|
|
/* Add leading zeros to the value. */
|
1853 |
|
|
if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno))
|
1854 |
|
|
{
|
1855 |
|
|
bzero (buffer, REGISTER_RAW_SIZE (regno));
|
1856 |
|
|
memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf,
|
1857 |
|
|
TYPE_LENGTH (type));
|
1858 |
|
|
write_register_bytes (REGISTER_BYTE (regno), buffer,
|
1859 |
|
|
REGISTER_RAW_SIZE (regno));
|
1860 |
|
|
}
|
1861 |
|
|
else
|
1862 |
|
|
write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type));
|
1863 |
|
|
}
|
1864 |
|
|
|
1865 |
|
|
|
1866 |
|
|
/* Insert the function address into a call dummy instruction sequence
|
1867 |
|
|
stored at DUMMY.
|
1868 |
|
|
|
1869 |
|
|
For structs and unions, if the function was compiled with Sun cc,
|
1870 |
|
|
it expects 'unimp' after the call. But gcc doesn't use that
|
1871 |
|
|
(twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY
|
1872 |
|
|
can assume it is operating on a pristine CALL_DUMMY, not one that
|
1873 |
|
|
has already been customized for a different function). */
|
1874 |
|
|
|
1875 |
|
|
void
|
1876 |
|
|
sparc_fix_call_dummy (dummy, pc, fun, value_type, using_gcc)
|
1877 |
|
|
char *dummy;
|
1878 |
|
|
CORE_ADDR pc;
|
1879 |
|
|
CORE_ADDR fun;
|
1880 |
|
|
struct type *value_type;
|
1881 |
|
|
int using_gcc;
|
1882 |
|
|
{
|
1883 |
|
|
int i;
|
1884 |
|
|
|
1885 |
|
|
/* Store the relative adddress of the target function into the
|
1886 |
|
|
'call' instruction. */
|
1887 |
|
|
store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
|
1888 |
|
|
(0x40000000
|
1889 |
|
|
| (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
|
1890 |
|
|
& 0x3fffffff)));
|
1891 |
|
|
|
1892 |
|
|
/* Comply with strange Sun cc calling convention for struct-returning
|
1893 |
|
|
functions. */
|
1894 |
|
|
if (!using_gcc
|
1895 |
|
|
&& (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
|
1896 |
|
|
|| TYPE_CODE (value_type) == TYPE_CODE_UNION))
|
1897 |
|
|
store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
|
1898 |
|
|
TYPE_LENGTH (value_type) & 0x1fff);
|
1899 |
|
|
|
1900 |
|
|
#ifndef GDB_TARGET_IS_SPARC64
|
1901 |
|
|
/* If this is not a simulator target, change the first four instructions
|
1902 |
|
|
of the call dummy to NOPs. Those instructions include a 'save'
|
1903 |
|
|
instruction and are designed to work around problems with register
|
1904 |
|
|
window flushing in the simulator. */
|
1905 |
|
|
if (strcmp (target_shortname, "sim") != 0)
|
1906 |
|
|
{
|
1907 |
|
|
for (i = 0; i < 4; i++)
|
1908 |
|
|
store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
|
1909 |
|
|
}
|
1910 |
|
|
#endif
|
1911 |
|
|
|
1912 |
|
|
/* If this is a bi-endian target, GDB has written the call dummy
|
1913 |
|
|
in little-endian order. We must byte-swap it back to big-endian. */
|
1914 |
|
|
if (bi_endian)
|
1915 |
|
|
{
|
1916 |
|
|
for (i = 0; i < CALL_DUMMY_LENGTH; i += 4)
|
1917 |
|
|
{
|
1918 |
|
|
char tmp = dummy[i];
|
1919 |
|
|
dummy[i] = dummy[i + 3];
|
1920 |
|
|
dummy[i + 3] = tmp;
|
1921 |
|
|
tmp = dummy[i + 1];
|
1922 |
|
|
dummy[i + 1] = dummy[i + 2];
|
1923 |
|
|
dummy[i + 2] = tmp;
|
1924 |
|
|
}
|
1925 |
|
|
}
|
1926 |
|
|
}
|
1927 |
|
|
|
1928 |
|
|
|
1929 |
|
|
/* Set target byte order based on machine type. */
|
1930 |
|
|
|
1931 |
|
|
static int
|
1932 |
|
|
sparc_target_architecture_hook (ap)
|
1933 |
|
|
const bfd_arch_info_type *ap;
|
1934 |
|
|
{
|
1935 |
|
|
int i, j;
|
1936 |
|
|
|
1937 |
|
|
if (ap->mach == bfd_mach_sparc_sparclite_le)
|
1938 |
|
|
{
|
1939 |
|
|
if (TARGET_BYTE_ORDER_SELECTABLE_P)
|
1940 |
|
|
{
|
1941 |
|
|
target_byte_order = LITTLE_ENDIAN;
|
1942 |
|
|
bi_endian = 1;
|
1943 |
|
|
}
|
1944 |
|
|
else
|
1945 |
|
|
{
|
1946 |
|
|
warning ("This GDB does not support little endian sparclite.");
|
1947 |
|
|
}
|
1948 |
|
|
}
|
1949 |
|
|
else
|
1950 |
|
|
bi_endian = 0;
|
1951 |
|
|
return 1;
|
1952 |
|
|
}
|
1953 |
|
|
|
1954 |
|
|
|
1955 |
|
|
void
|
1956 |
|
|
_initialize_sparc_tdep ()
|
1957 |
|
|
{
|
1958 |
|
|
tm_print_insn = gdb_print_insn_sparc;
|
1959 |
|
|
tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */
|
1960 |
|
|
target_architecture_hook = sparc_target_architecture_hook;
|
1961 |
|
|
}
|
1962 |
|
|
|
1963 |
|
|
|
1964 |
|
|
#ifdef GDB_TARGET_IS_SPARC64
|
1965 |
|
|
|
1966 |
|
|
/* Compensate for stack bias. Note that we currently don't handle mixed
|
1967 |
|
|
32/64 bit code. */
|
1968 |
|
|
CORE_ADDR
|
1969 |
|
|
sparc64_read_sp ()
|
1970 |
|
|
{
|
1971 |
|
|
CORE_ADDR sp = read_register (SP_REGNUM);
|
1972 |
|
|
|
1973 |
|
|
if (sp & 1)
|
1974 |
|
|
sp += 2047;
|
1975 |
|
|
return sp;
|
1976 |
|
|
}
|
1977 |
|
|
|
1978 |
|
|
CORE_ADDR
|
1979 |
|
|
sparc64_read_fp ()
|
1980 |
|
|
{
|
1981 |
|
|
CORE_ADDR fp = read_register (FP_REGNUM);
|
1982 |
|
|
|
1983 |
|
|
if (fp & 1)
|
1984 |
|
|
fp += 2047;
|
1985 |
|
|
return fp;
|
1986 |
|
|
}
|
1987 |
|
|
|
1988 |
|
|
void
|
1989 |
|
|
sparc64_write_sp (val)
|
1990 |
|
|
CORE_ADDR val;
|
1991 |
|
|
{
|
1992 |
|
|
CORE_ADDR oldsp = read_register (SP_REGNUM);
|
1993 |
|
|
if (oldsp & 1)
|
1994 |
|
|
write_register (SP_REGNUM, val - 2047);
|
1995 |
|
|
else
|
1996 |
|
|
write_register (SP_REGNUM, val);
|
1997 |
|
|
}
|
1998 |
|
|
|
1999 |
|
|
void
|
2000 |
|
|
sparc64_write_fp (val)
|
2001 |
|
|
CORE_ADDR val;
|
2002 |
|
|
{
|
2003 |
|
|
CORE_ADDR oldfp = read_register (FP_REGNUM);
|
2004 |
|
|
if (oldfp & 1)
|
2005 |
|
|
write_register (FP_REGNUM, val - 2047);
|
2006 |
|
|
else
|
2007 |
|
|
write_register (FP_REGNUM, val);
|
2008 |
|
|
}
|
2009 |
|
|
|
2010 |
|
|
/* The SPARC 64 ABI passes floating-point arguments in FP0-31. They are
|
2011 |
|
|
also copied onto the stack in the correct places. */
|
2012 |
|
|
|
2013 |
|
|
CORE_ADDR
|
2014 |
|
|
sp64_push_arguments (nargs, args, sp, struct_return, struct_retaddr)
|
2015 |
|
|
int nargs;
|
2016 |
|
|
value_ptr *args;
|
2017 |
|
|
CORE_ADDR sp;
|
2018 |
|
|
unsigned char struct_return;
|
2019 |
|
|
CORE_ADDR struct_retaddr;
|
2020 |
|
|
{
|
2021 |
|
|
int x;
|
2022 |
|
|
int regnum = 0;
|
2023 |
|
|
CORE_ADDR tempsp;
|
2024 |
|
|
|
2025 |
|
|
sp = (sp & ~(((unsigned long) TYPE_LENGTH (builtin_type_long)) - 1UL));
|
2026 |
|
|
|
2027 |
|
|
/* Figure out how much space we'll need. */
|
2028 |
|
|
for (x = nargs - 1; x >= 0; x--)
|
2029 |
|
|
{
|
2030 |
|
|
int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x])));
|
2031 |
|
|
value_ptr copyarg = args[x];
|
2032 |
|
|
int copylen = len;
|
2033 |
|
|
|
2034 |
|
|
/* This code is, of course, no longer correct. */
|
2035 |
|
|
if (copylen < TYPE_LENGTH (builtin_type_long))
|
2036 |
|
|
{
|
2037 |
|
|
copyarg = value_cast (builtin_type_long, copyarg);
|
2038 |
|
|
copylen = TYPE_LENGTH (builtin_type_long);
|
2039 |
|
|
}
|
2040 |
|
|
sp -= copylen;
|
2041 |
|
|
}
|
2042 |
|
|
|
2043 |
|
|
/* Round down. */
|
2044 |
|
|
sp = sp & ~7;
|
2045 |
|
|
tempsp = sp;
|
2046 |
|
|
|
2047 |
|
|
/* Now write the arguments onto the stack, while writing FP arguments
|
2048 |
|
|
into the FP registers. */
|
2049 |
|
|
for (x = 0; x < nargs; x++)
|
2050 |
|
|
{
|
2051 |
|
|
int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[x])));
|
2052 |
|
|
value_ptr copyarg = args[x];
|
2053 |
|
|
int copylen = len;
|
2054 |
|
|
|
2055 |
|
|
/* This code is, of course, no longer correct. */
|
2056 |
|
|
if (copylen < TYPE_LENGTH (builtin_type_long))
|
2057 |
|
|
{
|
2058 |
|
|
copyarg = value_cast (builtin_type_long, copyarg);
|
2059 |
|
|
copylen = TYPE_LENGTH (builtin_type_long);
|
2060 |
|
|
}
|
2061 |
|
|
write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
|
2062 |
|
|
tempsp += copylen;
|
2063 |
|
|
if (TYPE_CODE (VALUE_TYPE (args[x])) == TYPE_CODE_FLT && regnum < 32)
|
2064 |
|
|
{
|
2065 |
|
|
/* This gets copied into a FP register. */
|
2066 |
|
|
int nextreg = regnum + 2;
|
2067 |
|
|
char *data = VALUE_CONTENTS (args[x]);
|
2068 |
|
|
/* Floats go into the lower half of a FP register pair; quads
|
2069 |
|
|
use 2 pairs. */
|
2070 |
|
|
|
2071 |
|
|
if (len == 16)
|
2072 |
|
|
nextreg += 2;
|
2073 |
|
|
else if (len == 4)
|
2074 |
|
|
regnum++;
|
2075 |
|
|
|
2076 |
|
|
write_register_bytes (REGISTER_BYTE (FP0_REGNUM + regnum),
|
2077 |
|
|
data,
|
2078 |
|
|
len);
|
2079 |
|
|
regnum = nextreg;
|
2080 |
|
|
}
|
2081 |
|
|
}
|
2082 |
|
|
return sp;
|
2083 |
|
|
}
|
2084 |
|
|
|
2085 |
|
|
/* Values <= 32 bytes are returned in o0-o3 (floating-point values are
|
2086 |
|
|
returned in f0-f3). */
|
2087 |
|
|
void
|
2088 |
|
|
sparc64_extract_return_value (type, regbuf, valbuf, bitoffset)
|
2089 |
|
|
struct type *type;
|
2090 |
|
|
char *regbuf;
|
2091 |
|
|
char *valbuf;
|
2092 |
|
|
int bitoffset;
|
2093 |
|
|
{
|
2094 |
|
|
int typelen = TYPE_LENGTH (type);
|
2095 |
|
|
int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
|
2096 |
|
|
|
2097 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
|
2098 |
|
|
{
|
2099 |
|
|
memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen);
|
2100 |
|
|
return;
|
2101 |
|
|
}
|
2102 |
|
|
|
2103 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
2104 |
|
|
|| (TYPE_LENGTH (type) > 32))
|
2105 |
|
|
{
|
2106 |
|
|
memcpy (valbuf,
|
2107 |
|
|
®buf[O0_REGNUM * regsize +
|
2108 |
|
|
(typelen >= regsize ? 0 : regsize - typelen)],
|
2109 |
|
|
typelen);
|
2110 |
|
|
return;
|
2111 |
|
|
}
|
2112 |
|
|
else
|
2113 |
|
|
{
|
2114 |
|
|
char *o0 = ®buf[O0_REGNUM * regsize];
|
2115 |
|
|
char *f0 = ®buf[FP0_REGNUM * regsize];
|
2116 |
|
|
int x;
|
2117 |
|
|
|
2118 |
|
|
for (x = 0; x < TYPE_NFIELDS (type); x++)
|
2119 |
|
|
{
|
2120 |
|
|
struct field *f = &TYPE_FIELDS (type)[x];
|
2121 |
|
|
/* FIXME: We may need to handle static fields here. */
|
2122 |
|
|
int whichreg = (f->loc.bitpos + bitoffset) / 32;
|
2123 |
|
|
int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
|
2124 |
|
|
int where = (f->loc.bitpos + bitoffset) / 8;
|
2125 |
|
|
int size = TYPE_LENGTH (f->type);
|
2126 |
|
|
int typecode = TYPE_CODE (f->type);
|
2127 |
|
|
|
2128 |
|
|
if (typecode == TYPE_CODE_STRUCT)
|
2129 |
|
|
{
|
2130 |
|
|
sparc64_extract_return_value (f->type,
|
2131 |
|
|
regbuf,
|
2132 |
|
|
valbuf,
|
2133 |
|
|
bitoffset + f->loc.bitpos);
|
2134 |
|
|
}
|
2135 |
|
|
else if (typecode == TYPE_CODE_FLT)
|
2136 |
|
|
{
|
2137 |
|
|
memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
|
2138 |
|
|
}
|
2139 |
|
|
else
|
2140 |
|
|
{
|
2141 |
|
|
memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
|
2142 |
|
|
}
|
2143 |
|
|
}
|
2144 |
|
|
}
|
2145 |
|
|
}
|
2146 |
|
|
|
2147 |
|
|
|
2148 |
|
|
#endif
|