OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [bfd/] [coff-h8300.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* BFD back-end for Hitachi H8/300 COFF binaries.
2
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3
   2000, 2001, 2002
4
   Free Software Foundation, Inc.
5
   Written by Steve Chamberlain, <sac@cygnus.com>.
6
 
7
This file is part of BFD, the Binary File Descriptor library.
8
 
9
This program is free software; you can redistribute it and/or modify
10
it under the terms of the GNU General Public License as published by
11
the Free Software Foundation; either version 2 of the License, or
12
(at your option) any later version.
13
 
14
This program is distributed in the hope that it will be useful,
15
but WITHOUT ANY WARRANTY; without even the implied warranty of
16
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
GNU General Public License for more details.
18
 
19
You should have received a copy of the GNU General Public License
20
along with this program; if not, write to the Free Software
21
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
22
 
23
#include "bfd.h"
24
#include "sysdep.h"
25
#include "libbfd.h"
26
#include "bfdlink.h"
27
#include "genlink.h"
28
#include "coff/h8300.h"
29
#include "coff/internal.h"
30
#include "libcoff.h"
31
 
32
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
33
 
34
/* We derive a hash table from the basic BFD hash table to
35
   hold entries in the function vector.  Aside from the
36
   info stored by the basic hash table, we need the offset
37
   of a particular entry within the hash table as well as
38
   the offset where we'll add the next entry.  */
39
 
40
struct funcvec_hash_entry
41
  {
42
    /* The basic hash table entry.  */
43
    struct bfd_hash_entry root;
44
 
45
    /* The offset within the vectors section where
46
       this entry lives.  */
47
    bfd_vma offset;
48
  };
49
 
50
struct funcvec_hash_table
51
  {
52
    /* The basic hash table.  */
53
    struct bfd_hash_table root;
54
 
55
    bfd *abfd;
56
 
57
    /* Offset at which we'll add the next entry.  */
58
    unsigned int offset;
59
  };
60
 
61
static struct bfd_hash_entry *
62
funcvec_hash_newfunc
63
  PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
64
 
65
static boolean
66
funcvec_hash_table_init
67
  PARAMS ((struct funcvec_hash_table *, bfd *,
68
           struct bfd_hash_entry *(*) PARAMS ((struct bfd_hash_entry *,
69
                                               struct bfd_hash_table *,
70
                                               const char *))));
71
 
72
static bfd_reloc_status_type special PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
73
static int select_reloc PARAMS ((reloc_howto_type *));
74
static void rtype2howto PARAMS ((arelent *, struct internal_reloc *));
75
static void reloc_processing PARAMS ((arelent *, struct internal_reloc *, asymbol **, bfd *, asection *));
76
static boolean h8300_symbol_address_p PARAMS ((bfd *, asection *, bfd_vma));
77
static int h8300_reloc16_estimate PARAMS ((bfd *, asection *, arelent *, unsigned int, struct bfd_link_info *));
78
static void h8300_reloc16_extra_cases PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *, bfd_byte *, unsigned int *, unsigned int *));
79
static boolean h8300_bfd_link_add_symbols PARAMS ((bfd *, struct bfd_link_info *));
80
 
81
/* To lookup a value in the function vector hash table.  */
82
#define funcvec_hash_lookup(table, string, create, copy) \
83
  ((struct funcvec_hash_entry *) \
84
   bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
85
 
86
/* The derived h8300 COFF linker table.  Note it's derived from
87
   the generic linker hash table, not the COFF backend linker hash
88
   table!  We use this to attach additional data structures we
89
   need while linking on the h8300.  */
90
struct h8300_coff_link_hash_table
91
{
92
  /* The main hash table.  */
93
  struct generic_link_hash_table root;
94
 
95
  /* Section for the vectors table.  This gets attached to a
96
     random input bfd, we keep it here for easy access.  */
97
  asection *vectors_sec;
98
 
99
  /* Hash table of the functions we need to enter into the function
100
     vector.  */
101
  struct funcvec_hash_table *funcvec_hash_table;
102
};
103
 
104
static struct bfd_link_hash_table *h8300_coff_link_hash_table_create
105
  PARAMS ((bfd *));
106
 
107
/* Get the H8/300 COFF linker hash table from a link_info structure.  */
108
 
109
#define h8300_coff_hash_table(p) \
110
  ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
111
 
112
/* Initialize fields within a funcvec hash table entry.  Called whenever
113
   a new entry is added to the funcvec hash table.  */
114
 
115
static struct bfd_hash_entry *
116
funcvec_hash_newfunc (entry, gen_table, string)
117
     struct bfd_hash_entry *entry;
118
     struct bfd_hash_table *gen_table;
119
     const char *string;
120
{
121
  struct funcvec_hash_entry *ret;
122
  struct funcvec_hash_table *table;
123
 
124
  ret = (struct funcvec_hash_entry *) entry;
125
  table = (struct funcvec_hash_table *) gen_table;
126
 
127
  /* Allocate the structure if it has not already been allocated by a
128
     subclass.  */
129
  if (ret == NULL)
130
    ret = ((struct funcvec_hash_entry *)
131
           bfd_hash_allocate (gen_table,
132
                              sizeof (struct funcvec_hash_entry)));
133
  if (ret == NULL)
134
    return NULL;
135
 
136
  /* Call the allocation method of the superclass.  */
137
  ret = ((struct funcvec_hash_entry *)
138
         bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
139
 
140
  if (ret == NULL)
141
    return NULL;
142
 
143
  /* Note where this entry will reside in the function vector table.  */
144
  ret->offset = table->offset;
145
 
146
  /* Bump the offset at which we store entries in the function
147
     vector.  We'd like to bump up the size of the vectors section,
148
     but it's not easily available here.  */
149
  if (bfd_get_mach (table->abfd) == bfd_mach_h8300)
150
    table->offset += 2;
151
  else if (bfd_get_mach (table->abfd) == bfd_mach_h8300h
152
           || bfd_get_mach (table->abfd) == bfd_mach_h8300s)
153
    table->offset += 4;
154
  else
155
    return NULL;
156
 
157
  /* Everything went OK.  */
158
  return (struct bfd_hash_entry *) ret;
159
}
160
 
161
/* Initialize the function vector hash table.  */
162
 
163
static boolean
164
funcvec_hash_table_init (table, abfd, newfunc)
165
     struct funcvec_hash_table *table;
166
     bfd *abfd;
167
     struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
168
                                                struct bfd_hash_table *,
169
                                                const char *));
170
{
171
  /* Initialize our local fields, then call the generic initialization
172
     routine.  */
173
  table->offset = 0;
174
  table->abfd = abfd;
175
  return (bfd_hash_table_init (&table->root, newfunc));
176
}
177
 
178
/* Create the derived linker hash table.  We use a derived hash table
179
   basically to hold "static" information during an h8/300 coff link
180
   without using static variables.  */
181
 
182
static struct bfd_link_hash_table *
183
h8300_coff_link_hash_table_create (abfd)
184
     bfd *abfd;
185
{
186
  struct h8300_coff_link_hash_table *ret;
187
  bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
188
 
189
  ret = (struct h8300_coff_link_hash_table *) bfd_malloc (amt);
190
  if (ret == NULL)
191
    return NULL;
192
  if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
193
                                  _bfd_generic_link_hash_newfunc))
194
    {
195
      free (ret);
196
      return NULL;
197
    }
198
 
199
  /* Initialize our data.  */
200
  ret->vectors_sec = NULL;
201
  ret->funcvec_hash_table = NULL;
202
 
203
  /* OK.  Everything's intialized, return the base pointer.  */
204
  return &ret->root.root;
205
}
206
 
207
/* Special handling for H8/300 relocs.
208
   We only come here for pcrel stuff and return normally if not an -r link.
209
   When doing -r, we can't do any arithmetic for the pcrel stuff, because
210
   the code in reloc.c assumes that we can manipulate the targets of
211
   the pcrel branches.  This isn't so, since the H8/300 can do relaxing,
212
   which means that the gap after the instruction may not be enough to
213
   contain the offset required for the branch, so we have to use only
214
   the addend until the final link.  */
215
 
216
static bfd_reloc_status_type
217
special (abfd, reloc_entry, symbol, data, input_section, output_bfd,
218
         error_message)
219
     bfd *abfd ATTRIBUTE_UNUSED;
220
     arelent *reloc_entry ATTRIBUTE_UNUSED;
221
     asymbol *symbol ATTRIBUTE_UNUSED;
222
     PTR data ATTRIBUTE_UNUSED;
223
     asection *input_section ATTRIBUTE_UNUSED;
224
     bfd *output_bfd;
225
     char **error_message ATTRIBUTE_UNUSED;
226
{
227
  if (output_bfd == (bfd *) NULL)
228
    return bfd_reloc_continue;
229
 
230
  /* Adjust the reloc address to that in the output section.  */
231
  reloc_entry->address += input_section->output_offset;
232
  return bfd_reloc_ok;
233
}
234
 
235
static reloc_howto_type howto_table[] =
236
{
237
  HOWTO (R_RELBYTE, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "8", false, 0x000000ff, 0x000000ff, false),
238
  HOWTO (R_RELWORD, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "16", false, 0x0000ffff, 0x0000ffff, false),
239
  HOWTO (R_RELLONG, 0, 2, 32, false, 0, complain_overflow_bitfield, special, "32", false, 0xffffffff, 0xffffffff, false),
240
  HOWTO (R_PCRBYTE, 0, 0, 8, true, 0, complain_overflow_signed, special, "DISP8", false, 0x000000ff, 0x000000ff, true),
241
  HOWTO (R_PCRWORD, 0, 1, 16, true, 0, complain_overflow_signed, special, "DISP16", false, 0x0000ffff, 0x0000ffff, true),
242
  HOWTO (R_PCRLONG, 0, 2, 32, true, 0, complain_overflow_signed, special, "DISP32", false, 0xffffffff, 0xffffffff, true),
243
  HOWTO (R_MOV16B1, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", false, 0x0000ffff, 0x0000ffff, false),
244
  HOWTO (R_MOV16B2, 0, 1, 8, false, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", false, 0x000000ff, 0x000000ff, false),
245
  HOWTO (R_JMP1, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "16/pcrel", false, 0x0000ffff, 0x0000ffff, false),
246
  HOWTO (R_JMP2, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "pcrecl/16", false, 0x000000ff, 0x000000ff, false),
247
  HOWTO (R_JMPL1, 0, 2, 32, false, 0, complain_overflow_bitfield, special, "24/pcrell", false, 0x00ffffff, 0x00ffffff, false),
248
  HOWTO (R_JMPL2, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "pc8/24", false, 0x000000ff, 0x000000ff, false),
249
  HOWTO (R_MOV24B1, 0, 1, 32, false, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", false, 0xffffffff, 0xffffffff, false),
250
  HOWTO (R_MOV24B2, 0, 1, 8, false, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", false, 0x0000ffff, 0x0000ffff, false),
251
 
252
  /* An indirect reference to a function.  This causes the function's address
253
     to be added to the function vector in lo-mem and puts the address of
254
     the function vector's entry in the jsr instruction.  */
255
  HOWTO (R_MEM_INDIRECT, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "8/indirect", false, 0x000000ff, 0x000000ff, false),
256
 
257
  /* Internal reloc for relaxing.  This is created when a 16bit pc-relative
258
     branch is turned into an 8bit pc-relative branch.  */
259
  HOWTO (R_PCRWORD_B, 0, 0, 8, true, 0, complain_overflow_bitfield, special, "relaxed bCC:16", false, 0x000000ff, 0x000000ff, false),
260
 
261
  HOWTO (R_MOVL1, 0, 2, 32, false, 0, complain_overflow_bitfield,special, "32/24 relaxable move", false, 0xffffffff, 0xffffffff, false),
262
 
263
  HOWTO (R_MOVL2, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "32/24 relaxed move", false, 0x0000ffff, 0x0000ffff, false),
264
 
265
  HOWTO (R_BCC_INV, 0, 0, 8, true, 0, complain_overflow_signed, special, "DISP8 inverted", false, 0x000000ff, 0x000000ff, true),
266
 
267
  HOWTO (R_JMP_DEL, 0, 0, 8, true, 0, complain_overflow_signed, special, "Deleted jump", false, 0x000000ff, 0x000000ff, true),
268
};
269
 
270
/* Turn a howto into a reloc number.  */
271
 
272
#define SELECT_RELOC(x,howto) \
273
  { x.r_type = select_reloc(howto); }
274
 
275
#define BADMAG(x) (H8300BADMAG(x) && H8300HBADMAG(x) && H8300SBADMAG(x))
276
#define H8300 1                 /* Customize coffcode.h */
277
#define __A_MAGIC_SET__
278
 
279
/* Code to swap in the reloc.  */
280
#define SWAP_IN_RELOC_OFFSET    H_GET_32
281
#define SWAP_OUT_RELOC_OFFSET   H_PUT_32
282
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
283
  dst->r_stuff[0] = 'S'; \
284
  dst->r_stuff[1] = 'C';
285
 
286
static int
287
select_reloc (howto)
288
     reloc_howto_type *howto;
289
{
290
  return howto->type;
291
}
292
 
293
/* Code to turn a r_type into a howto ptr, uses the above howto table.  */
294
 
295
static void
296
rtype2howto (internal, dst)
297
     arelent *internal;
298
     struct internal_reloc *dst;
299
{
300
  switch (dst->r_type)
301
    {
302
    case R_RELBYTE:
303
      internal->howto = howto_table + 0;
304
      break;
305
    case R_RELWORD:
306
      internal->howto = howto_table + 1;
307
      break;
308
    case R_RELLONG:
309
      internal->howto = howto_table + 2;
310
      break;
311
    case R_PCRBYTE:
312
      internal->howto = howto_table + 3;
313
      break;
314
    case R_PCRWORD:
315
      internal->howto = howto_table + 4;
316
      break;
317
    case R_PCRLONG:
318
      internal->howto = howto_table + 5;
319
      break;
320
    case R_MOV16B1:
321
      internal->howto = howto_table + 6;
322
      break;
323
    case R_MOV16B2:
324
      internal->howto = howto_table + 7;
325
      break;
326
    case R_JMP1:
327
      internal->howto = howto_table + 8;
328
      break;
329
    case R_JMP2:
330
      internal->howto = howto_table + 9;
331
      break;
332
    case R_JMPL1:
333
      internal->howto = howto_table + 10;
334
      break;
335
    case R_JMPL2:
336
      internal->howto = howto_table + 11;
337
      break;
338
    case R_MOV24B1:
339
      internal->howto = howto_table + 12;
340
      break;
341
    case R_MOV24B2:
342
      internal->howto = howto_table + 13;
343
      break;
344
    case R_MEM_INDIRECT:
345
      internal->howto = howto_table + 14;
346
      break;
347
    case R_PCRWORD_B:
348
      internal->howto = howto_table + 15;
349
      break;
350
    case R_MOVL1:
351
      internal->howto = howto_table + 16;
352
      break;
353
    case R_MOVL2:
354
      internal->howto = howto_table + 17;
355
      break;
356
    case R_BCC_INV:
357
      internal->howto = howto_table + 18;
358
      break;
359
    case R_JMP_DEL:
360
      internal->howto = howto_table + 19;
361
      break;
362
    default:
363
      abort ();
364
      break;
365
    }
366
}
367
 
368
#define RTYPE2HOWTO(internal, relocentry) rtype2howto(internal,relocentry)
369
 
370
/* Perform any necessary magic to the addend in a reloc entry.  */
371
 
372
#define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
373
 cache_ptr->addend =  ext_reloc.r_offset;
374
 
375
#define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
376
 reloc_processing(relent, reloc, symbols, abfd, section)
377
 
378
static void
379
reloc_processing (relent, reloc, symbols, abfd, section)
380
     arelent *relent;
381
     struct internal_reloc *reloc;
382
     asymbol **symbols;
383
     bfd *abfd;
384
     asection *section;
385
{
386
  relent->address = reloc->r_vaddr;
387
  rtype2howto (relent, reloc);
388
 
389
  if (((int) reloc->r_symndx) > 0)
390
    {
391
      relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
392
    }
393
  else
394
    {
395
      relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
396
    }
397
 
398
  relent->addend = reloc->r_offset;
399
 
400
  relent->address -= section->vma;
401
#if 0
402
  relent->section = 0;
403
#endif
404
}
405
 
406
static boolean
407
h8300_symbol_address_p (abfd, input_section, address)
408
     bfd *abfd;
409
     asection *input_section;
410
     bfd_vma address;
411
{
412
  asymbol **s;
413
 
414
  s = _bfd_generic_link_get_symbols (abfd);
415
  BFD_ASSERT (s != (asymbol **) NULL);
416
 
417
  /* Search all the symbols for one in INPUT_SECTION with
418
     address ADDRESS.  */
419
  while (*s)
420
    {
421
      asymbol *p = *s;
422
      if (p->section == input_section
423
          && (input_section->output_section->vma
424
              + input_section->output_offset
425
              + p->value) == address)
426
        return true;
427
      s++;
428
    }
429
  return false;
430
}
431
 
432
/* If RELOC represents a relaxable instruction/reloc, change it into
433
   the relaxed reloc, notify the linker that symbol addresses
434
   have changed (bfd_perform_slip) and return how much the current
435
   section has shrunk by.
436
 
437
   FIXME: Much of this code has knowledge of the ordering of entries
438
   in the howto table.  This needs to be fixed.  */
439
 
440
static int
441
h8300_reloc16_estimate (abfd, input_section, reloc, shrink, link_info)
442
     bfd *abfd;
443
     asection *input_section;
444
     arelent *reloc;
445
     unsigned int shrink;
446
     struct bfd_link_info *link_info;
447
{
448
  bfd_vma value;
449
  bfd_vma dot;
450
  bfd_vma gap;
451
  static asection *last_input_section = NULL;
452
  static arelent *last_reloc = NULL;
453
 
454
  /* The address of the thing to be relocated will have moved back by
455
     the size of the shrink - but we don't change reloc->address here,
456
     since we need it to know where the relocation lives in the source
457
     uncooked section.  */
458
  bfd_vma address = reloc->address - shrink;
459
 
460
  if (input_section != last_input_section)
461
    last_reloc = NULL;
462
 
463
  /* Only examine the relocs which might be relaxable.  */
464
  switch (reloc->howto->type)
465
    {
466
    /* This is the 16/24 bit absolute branch which could become an 8 bit
467
       pc-relative branch.  */
468
    case R_JMP1:
469
    case R_JMPL1:
470
      /* Get the address of the target of this branch.  */
471
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
472
 
473
      /* Get the address of the next instruction (not the reloc).  */
474
      dot = (input_section->output_section->vma
475
             + input_section->output_offset + address);
476
 
477
      /* Adjust for R_JMP1 vs R_JMPL1.  */
478
      dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
479
 
480
      /* Compute the distance from this insn to the branch target.  */
481
      gap = value - dot;
482
 
483
      /* If the distance is within -128..+128 inclusive, then we can relax
484
         this jump.  +128 is valid since the target will move two bytes
485
         closer if we do relax this branch.  */
486
      if ((int)gap >= -128 && (int)gap <= 128 )
487
        {
488
          /* It's possible we may be able to eliminate this branch entirely;
489
             if the previous instruction is a branch around this instruction,
490
             and there's no label at this instruction, then we can reverse
491
             the condition on the previous branch and eliminate this jump.
492
 
493
               original:                        new:
494
                 bCC lab1                       bCC' lab2
495
                 jmp lab2
496
                lab1:                           lab1:
497
 
498
             This saves 4 bytes instead of two, and should be relatively
499
             common.  */
500
 
501
          if (gap <= 126
502
              && last_reloc
503
              && last_reloc->howto->type == R_PCRBYTE)
504
            {
505
              bfd_vma last_value;
506
              last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
507
                                                       input_section) + 1;
508
 
509
              if (last_value == dot + 2
510
                  && last_reloc->address + 1 == reloc->address
511
                  && !h8300_symbol_address_p (abfd, input_section, dot - 2))
512
                {
513
                  reloc->howto = howto_table + 19;
514
                  last_reloc->howto = howto_table + 18;
515
                  last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
516
                  last_reloc->addend = reloc->addend;
517
                  shrink += 4;
518
                  bfd_perform_slip (abfd, 4, input_section, address);
519
                  break;
520
                }
521
            }
522
 
523
          /* Change the reloc type.  */
524
          reloc->howto = reloc->howto + 1;
525
 
526
          /* This shrinks this section by two bytes.  */
527
          shrink += 2;
528
          bfd_perform_slip (abfd, 2, input_section, address);
529
        }
530
      break;
531
 
532
    /* This is the 16 bit pc-relative branch which could become an 8 bit
533
       pc-relative branch.  */
534
    case R_PCRWORD:
535
      /* Get the address of the target of this branch, add one to the value
536
         because the addend field in PCrel jumps is off by -1.  */
537
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
538
 
539
      /* Get the address of the next instruction if we were to relax.  */
540
      dot = input_section->output_section->vma +
541
        input_section->output_offset + address;
542
 
543
      /* Compute the distance from this insn to the branch target.  */
544
      gap = value - dot;
545
 
546
      /* If the distance is within -128..+128 inclusive, then we can relax
547
         this jump.  +128 is valid since the target will move two bytes
548
         closer if we do relax this branch.  */
549
      if ((int)gap >= -128 && (int)gap <= 128 )
550
        {
551
          /* Change the reloc type.  */
552
          reloc->howto = howto_table + 15;
553
 
554
          /* This shrinks this section by two bytes.  */
555
          shrink += 2;
556
          bfd_perform_slip (abfd, 2, input_section, address);
557
        }
558
      break;
559
 
560
    /* This is a 16 bit absolute address in a mov.b insn, which can
561
       become an 8 bit absolute address if it's in the right range.  */
562
    case R_MOV16B1:
563
      /* Get the address of the data referenced by this mov.b insn.  */
564
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
565
 
566
      /* The address is in 0xff00..0xffff inclusive on the h8300 or
567
         0xffff00..0xffffff inclusive on the h8300h, then we can
568
         relax this mov.b  */
569
      if ((bfd_get_mach (abfd) == bfd_mach_h8300
570
           && value >= 0xff00
571
           && value <= 0xffff)
572
          || ((bfd_get_mach (abfd) == bfd_mach_h8300h
573
               || bfd_get_mach (abfd) == bfd_mach_h8300s)
574
              && value >= 0xffff00
575
              && value <= 0xffffff))
576
        {
577
          /* Change the reloc type.  */
578
          reloc->howto = reloc->howto + 1;
579
 
580
          /* This shrinks this section by two bytes.  */
581
          shrink += 2;
582
          bfd_perform_slip (abfd, 2, input_section, address);
583
        }
584
      break;
585
 
586
    /* Similarly for a 24 bit absolute address in a mov.b.  Note that
587
       if we can't relax this into an 8 bit absolute, we'll fall through
588
       and try to relax it into a 16bit absolute.  */
589
    case R_MOV24B1:
590
      /* Get the address of the data referenced by this mov.b insn.  */
591
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
592
 
593
      /* The address is in 0xffff00..0xffffff inclusive on the h8300h,
594
         then we can relax this mov.b  */
595
      if ((bfd_get_mach (abfd) == bfd_mach_h8300h
596
           || bfd_get_mach (abfd) == bfd_mach_h8300s)
597
          && value >= 0xffff00
598
          && value <= 0xffffff)
599
        {
600
          /* Change the reloc type.  */
601
          reloc->howto = reloc->howto + 1;
602
 
603
          /* This shrinks this section by four bytes.  */
604
          shrink += 4;
605
          bfd_perform_slip (abfd, 4, input_section, address);
606
 
607
          /* Done with this reloc.  */
608
          break;
609
        }
610
 
611
      /* FALLTHROUGH and try to turn the 32/24 bit reloc into a 16 bit
612
         reloc.  */
613
 
614
    /* This is a 24/32 bit absolute address in a mov insn, which can
615
       become an 16 bit absolute address if it's in the right range.  */
616
    case R_MOVL1:
617
      /* Get the address of the data referenced by this mov insn.  */
618
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
619
 
620
      /* If this address is in 0x0000..0x7fff inclusive or
621
         0xff8000..0xffffff inclusive, then it can be relaxed.  */
622
      if (value <= 0x7fff || value >= 0xff8000)
623
        {
624
          /* Change the reloc type.  */
625
          reloc->howto = howto_table + 17;
626
 
627
          /* This shrinks this section by two bytes.  */
628
          shrink += 2;
629
          bfd_perform_slip (abfd, 2, input_section, address);
630
        }
631
      break;
632
 
633
      /* No other reloc types represent relaxing opportunities.  */
634
    default:
635
      break;
636
    }
637
 
638
  last_reloc = reloc;
639
  last_input_section = input_section;
640
  return shrink;
641
}
642
 
643
/* Handle relocations for the H8/300, including relocs for relaxed
644
   instructions.
645
 
646
   FIXME: Not all relocations check for overflow!  */
647
 
648
static void
649
h8300_reloc16_extra_cases (abfd, link_info, link_order, reloc, data, src_ptr,
650
                           dst_ptr)
651
     bfd *abfd;
652
     struct bfd_link_info *link_info;
653
     struct bfd_link_order *link_order;
654
     arelent *reloc;
655
     bfd_byte *data;
656
     unsigned int *src_ptr;
657
     unsigned int *dst_ptr;
658
{
659
  unsigned int src_address = *src_ptr;
660
  unsigned int dst_address = *dst_ptr;
661
  asection *input_section = link_order->u.indirect.section;
662
  bfd_vma value;
663
  bfd_vma dot;
664
  int gap, tmp;
665
 
666
  switch (reloc->howto->type)
667
    {
668
    /* Generic 8bit pc-relative relocation.  */
669
    case R_PCRBYTE:
670
      /* Get the address of the target of this branch.  */
671
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
672
 
673
      dot = (link_order->offset
674
             + dst_address
675
             + link_order->u.indirect.section->output_section->vma);
676
 
677
      gap = value - dot;
678
 
679
      /* Sanity check.  */
680
      if (gap < -128 || gap > 126)
681
        {
682
          if (! ((*link_info->callbacks->reloc_overflow)
683
                 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
684
                  reloc->howto->name, reloc->addend, input_section->owner,
685
                  input_section, reloc->address)))
686
            abort ();
687
        }
688
 
689
      /* Everything looks OK.  Apply the relocation and update the
690
         src/dst address appropriately.  */
691
 
692
      bfd_put_8 (abfd, gap, data + dst_address);
693
      dst_address++;
694
      src_address++;
695
 
696
      /* All done.  */
697
      break;
698
 
699
    /* Generic 16bit pc-relative relocation.  */
700
    case R_PCRWORD:
701
      /* Get the address of the target of this branch.  */
702
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
703
 
704
      /* Get the address of the instruction (not the reloc).  */
705
      dot = (link_order->offset
706
             + dst_address
707
             + link_order->u.indirect.section->output_section->vma + 1);
708
 
709
      gap = value - dot;
710
 
711
      /* Sanity check.  */
712
      if (gap > 32766 || gap < -32768)
713
        {
714
          if (! ((*link_info->callbacks->reloc_overflow)
715
                 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
716
                  reloc->howto->name, reloc->addend, input_section->owner,
717
                  input_section, reloc->address)))
718
            abort ();
719
        }
720
 
721
      /* Everything looks OK.  Apply the relocation and update the
722
         src/dst address appropriately.  */
723
 
724
      bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
725
      dst_address += 2;
726
      src_address += 2;
727
 
728
      /* All done.  */
729
      break;
730
 
731
    /* Generic 8bit absolute relocation.  */
732
    case R_RELBYTE:
733
      /* Get the address of the object referenced by this insn.  */
734
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
735
 
736
      /* Sanity check.  */
737
      if (value <= 0xff
738
          || (value >= 0x0000ff00 && value <= 0x0000ffff)
739
          || (value >= 0x00ffff00 && value <= 0x00ffffff)
740
          || (value >= 0xffffff00 && value <= 0xffffffff))
741
        {
742
          /* Everything looks OK.  Apply the relocation and update the
743
             src/dst address appropriately.  */
744
 
745
          bfd_put_8 (abfd, value & 0xff, data + dst_address);
746
          dst_address += 1;
747
          src_address += 1;
748
        }
749
      else
750
        {
751
          if (! ((*link_info->callbacks->reloc_overflow)
752
                 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
753
                  reloc->howto->name, reloc->addend, input_section->owner,
754
                  input_section, reloc->address)))
755
            abort ();
756
        }
757
 
758
      /* All done.  */
759
      break;
760
 
761
    /* Various simple 16bit absolute relocations.  */
762
    case R_MOV16B1:
763
    case R_JMP1:
764
    case R_RELWORD:
765
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
766
      bfd_put_16 (abfd, value, data + dst_address);
767
      dst_address += 2;
768
      src_address += 2;
769
      break;
770
 
771
    /* Various simple 24/32bit absolute relocations.  */
772
    case R_MOV24B1:
773
    case R_MOVL1:
774
    case R_RELLONG:
775
      /* Get the address of the target of this branch.  */
776
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
777
      bfd_put_32 (abfd, value, data + dst_address);
778
      dst_address += 4;
779
      src_address += 4;
780
      break;
781
 
782
    /* Another 24/32bit absolute relocation.  */
783
    case R_JMPL1:
784
      /* Get the address of the target of this branch.  */
785
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
786
 
787
      value = ((value & 0x00ffffff)
788
               | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
789
      bfd_put_32 (abfd, value, data + dst_address);
790
      dst_address += 4;
791
      src_address += 4;
792
      break;
793
 
794
    /* A 16bit abolute relocation that was formerlly a 24/32bit
795
       absolute relocation.  */
796
    case R_MOVL2:
797
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
798
 
799
      /* Sanity check.  */
800
      if (value <= 0x7fff || value >= 0xff8000)
801
        {
802
          /* Insert the 16bit value into the proper location.  */
803
          bfd_put_16 (abfd, value, data + dst_address);
804
 
805
          /* Fix the opcode.  For all the move insns, we simply
806
             need to turn off bit 0x20 in the previous byte.  */
807
          data[dst_address - 1] &= ~0x20;
808
          dst_address += 2;
809
          src_address += 4;
810
        }
811
      else
812
        {
813
          if (! ((*link_info->callbacks->reloc_overflow)
814
                 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
815
                  reloc->howto->name, reloc->addend, input_section->owner,
816
                  input_section, reloc->address)))
817
            abort ();
818
        }
819
      break;
820
 
821
    /* A 16bit absolute branch that is now an 8-bit pc-relative branch.  */
822
    case R_JMP2:
823
      /* Get the address of the target of this branch.  */
824
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
825
 
826
      /* Get the address of the next instruction.  */
827
      dot = (link_order->offset
828
             + dst_address
829
             + link_order->u.indirect.section->output_section->vma + 1);
830
 
831
      gap = value - dot;
832
 
833
      /* Sanity check.  */
834
      if (gap < -128 || gap > 126)
835
        {
836
          if (! ((*link_info->callbacks->reloc_overflow)
837
                 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
838
                  reloc->howto->name, reloc->addend, input_section->owner,
839
                  input_section, reloc->address)))
840
            abort ();
841
        }
842
 
843
      /* Now fix the instruction itself.  */
844
      switch (data[dst_address - 1])
845
        {
846
        case 0x5e:
847
          /* jsr -> bsr */
848
          bfd_put_8 (abfd, 0x55, data + dst_address - 1);
849
          break;
850
        case 0x5a:
851
          /* jmp ->bra */
852
          bfd_put_8 (abfd, 0x40, data + dst_address - 1);
853
          break;
854
 
855
        default:
856
          abort ();
857
        }
858
 
859
      /* Write out the 8bit value.  */
860
      bfd_put_8 (abfd, gap, data + dst_address);
861
 
862
      dst_address += 1;
863
      src_address += 3;
864
 
865
      break;
866
 
867
    /* A 16bit pc-relative branch that is now an 8-bit pc-relative branch.  */
868
    case R_PCRWORD_B:
869
      /* Get the address of the target of this branch.  */
870
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
871
 
872
      /* Get the address of the instruction (not the reloc).  */
873
      dot = (link_order->offset
874
             + dst_address
875
             + link_order->u.indirect.section->output_section->vma - 1);
876
 
877
      gap = value - dot;
878
 
879
      /* Sanity check.  */
880
      if (gap < -128 || gap > 126)
881
        {
882
          if (! ((*link_info->callbacks->reloc_overflow)
883
                 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
884
                  reloc->howto->name, reloc->addend, input_section->owner,
885
                  input_section, reloc->address)))
886
            abort ();
887
        }
888
 
889
      /* Now fix the instruction.  */
890
      switch (data[dst_address - 2])
891
        {
892
        case 0x58:
893
          /* bCC:16 -> bCC:8 */
894
          /* Get the condition code from the original insn.  */
895
          tmp = data[dst_address - 1];
896
          tmp &= 0xf0;
897
          tmp >>= 4;
898
 
899
          /* Now or in the high nibble of the opcode.  */
900
          tmp |= 0x40;
901
 
902
          /* Write it.  */
903
          bfd_put_8 (abfd, tmp, data + dst_address - 2);
904
          break;
905
 
906
        case 0x5c:
907
          /* bsr:16 -> bsr:8 */
908
          bfd_put_8 (abfd, 0x55, data + dst_address - 2);
909
          break;
910
 
911
        default:
912
          abort ();
913
        }
914
 
915
        /* Output the target.  */
916
        bfd_put_8 (abfd, gap, data + dst_address - 1);
917
 
918
        /* We don't advance dst_address -- the 8bit reloc is applied at
919
           dst_address - 1, so the next insn should begin at dst_address.  */
920
        src_address += 2;
921
 
922
        break;
923
 
924
    /* Similarly for a 24bit absolute that is now 8 bits.  */
925
    case R_JMPL2:
926
      /* Get the address of the target of this branch.  */
927
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
928
 
929
      /* Get the address of the instruction (not the reloc).  */
930
      dot = (link_order->offset
931
             + dst_address
932
             + link_order->u.indirect.section->output_section->vma + 2);
933
 
934
      gap = value - dot;
935
 
936
      /* Fix the instruction.  */
937
      switch (data[src_address])
938
        {
939
        case 0x5e:
940
          /* jsr -> bsr */
941
          bfd_put_8 (abfd, 0x55, data + dst_address);
942
          break;
943
        case 0x5a:
944
          /* jmp ->bra */
945
          bfd_put_8 (abfd, 0x40, data + dst_address);
946
          break;
947
        default:
948
          abort ();
949
        }
950
 
951
      bfd_put_8 (abfd, gap, data + dst_address + 1);
952
      dst_address += 2;
953
      src_address += 4;
954
 
955
      break;
956
 
957
    /* A 16bit absolute mov.b that is now an 8bit absolute mov.b.  */
958
    case R_MOV16B2:
959
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
960
 
961
      /* Sanity check.  */
962
      if (data[dst_address - 2] != 0x6a)
963
        abort ();
964
 
965
      /* Fix up the opcode.  */
966
      switch (data[src_address - 1] & 0xf0)
967
        {
968
        case 0x00:
969
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
970
          break;
971
        case 0x80:
972
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
973
          break;
974
        default:
975
          abort ();
976
        }
977
 
978
      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
979
      src_address += 2;
980
      break;
981
 
982
    /* Similarly for a 24bit mov.b  */
983
    case R_MOV24B2:
984
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
985
 
986
      /* Sanity check.  */
987
      if (data[dst_address - 2] != 0x6a)
988
        abort ();
989
 
990
      /* Fix up the opcode.  */
991
      switch (data[src_address - 1] & 0xf0)
992
        {
993
        case 0x20:
994
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
995
          break;
996
        case 0xa0:
997
          data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
998
          break;
999
        default:
1000
          abort ();
1001
        }
1002
 
1003
      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1004
      src_address += 4;
1005
      break;
1006
 
1007
    case R_BCC_INV:
1008
      /* Get the address of the target of this branch.  */
1009
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1010
 
1011
      dot = (link_order->offset
1012
             + dst_address
1013
             + link_order->u.indirect.section->output_section->vma) + 1;
1014
 
1015
      gap = value - dot;
1016
 
1017
      /* Sanity check.  */
1018
      if (gap < -128 || gap > 126)
1019
        {
1020
          if (! ((*link_info->callbacks->reloc_overflow)
1021
                 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1022
                  reloc->howto->name, reloc->addend, input_section->owner,
1023
                  input_section, reloc->address)))
1024
            abort ();
1025
        }
1026
 
1027
      /* Everything looks OK.  Fix the condition in the instruction, apply
1028
         the relocation, and update the src/dst address appropriately.  */
1029
 
1030
      bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1031
                 data + dst_address - 1);
1032
      bfd_put_8 (abfd, gap, data + dst_address);
1033
      dst_address++;
1034
      src_address++;
1035
 
1036
      /* All done.  */
1037
      break;
1038
 
1039
    case R_JMP_DEL:
1040
      src_address += 4;
1041
      break;
1042
 
1043
    /* An 8bit memory indirect instruction (jmp/jsr).
1044
 
1045
       There's several things that need to be done to handle
1046
       this relocation.
1047
 
1048
       If this is a reloc against the absolute symbol, then
1049
       we should handle it just R_RELBYTE.  Likewise if it's
1050
       for a symbol with a value ge 0 and le 0xff.
1051
 
1052
       Otherwise it's a jump/call through the function vector,
1053
       and the linker is expected to set up the function vector
1054
       and put the right value into the jump/call instruction.  */
1055
    case R_MEM_INDIRECT:
1056
      {
1057
        /* We need to find the symbol so we can determine it's
1058
           address in the function vector table.  */
1059
        asymbol *symbol;
1060
        const char *name;
1061
        struct funcvec_hash_table *ftab;
1062
        struct funcvec_hash_entry *h;
1063
        asection *vectors_sec = h8300_coff_hash_table (link_info)->vectors_sec;
1064
 
1065
        /* First see if this is a reloc against the absolute symbol
1066
           or against a symbol with a nonnegative value <= 0xff.  */
1067
        symbol = *(reloc->sym_ptr_ptr);
1068
        value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1069
        if (symbol == bfd_abs_section_ptr->symbol
1070
            || value <= 0xff)
1071
          {
1072
            /* This should be handled in a manner very similar to
1073
               R_RELBYTES.   If the value is in range, then just slam
1074
               the value into the right location.  Else trigger a
1075
               reloc overflow callback.  */
1076
            if (value <= 0xff)
1077
              {
1078
                bfd_put_8 (abfd, value, data + dst_address);
1079
                dst_address += 1;
1080
                src_address += 1;
1081
              }
1082
            else
1083
              {
1084
                if (! ((*link_info->callbacks->reloc_overflow)
1085
                       (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1086
                        reloc->howto->name, reloc->addend, input_section->owner,
1087
                        input_section, reloc->address)))
1088
                  abort ();
1089
              }
1090
            break;
1091
          }
1092
 
1093
        /* This is a jump/call through a function vector, and we're
1094
           expected to create the function vector ourselves.
1095
 
1096
           First look up this symbol in the linker hash table -- we need
1097
           the derived linker symbol which holds this symbol's index
1098
           in the function vector.  */
1099
        name = symbol->name;
1100
        if (symbol->flags & BSF_LOCAL)
1101
          {
1102
            char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 9);
1103
            if (new_name == NULL)
1104
              abort ();
1105
 
1106
            strcpy (new_name, name);
1107
            sprintf (new_name + strlen (name), "_%08x",
1108
                     (int) symbol->section);
1109
            name = new_name;
1110
          }
1111
 
1112
        ftab = h8300_coff_hash_table (link_info)->funcvec_hash_table;
1113
        h = funcvec_hash_lookup (ftab, name, false, false);
1114
 
1115
        /* This shouldn't ever happen.  If it does that means we've got
1116
           data corruption of some kind.  Aborting seems like a reasonable
1117
           think to do here.  */
1118
        if (h == NULL || vectors_sec == NULL)
1119
          abort ();
1120
 
1121
        /* Place the address of the function vector entry into the
1122
           reloc's address.  */
1123
        bfd_put_8 (abfd,
1124
                   vectors_sec->output_offset + h->offset,
1125
                   data + dst_address);
1126
 
1127
        dst_address++;
1128
        src_address++;
1129
 
1130
        /* Now create an entry in the function vector itself.  */
1131
        if (bfd_get_mach (input_section->owner) == bfd_mach_h8300)
1132
          bfd_put_16 (abfd,
1133
                      bfd_coff_reloc16_get_value (reloc,
1134
                                                  link_info,
1135
                                                  input_section),
1136
                      vectors_sec->contents + h->offset);
1137
        else if (bfd_get_mach (input_section->owner) == bfd_mach_h8300h
1138
                 || bfd_get_mach (input_section->owner) == bfd_mach_h8300s)
1139
          bfd_put_32 (abfd,
1140
                      bfd_coff_reloc16_get_value (reloc,
1141
                                                  link_info,
1142
                                                  input_section),
1143
                      vectors_sec->contents + h->offset);
1144
        else
1145
          abort ();
1146
 
1147
        /* Gross.  We've already written the contents of the vector section
1148
           before we get here...  So we write it again with the new data.  */
1149
        bfd_set_section_contents (vectors_sec->output_section->owner,
1150
                                  vectors_sec->output_section,
1151
                                  vectors_sec->contents,
1152
                                  (file_ptr) vectors_sec->output_offset,
1153
                                  vectors_sec->_raw_size);
1154
        break;
1155
      }
1156
 
1157
    default:
1158
      abort ();
1159
      break;
1160
 
1161
    }
1162
 
1163
  *src_ptr = src_address;
1164
  *dst_ptr = dst_address;
1165
}
1166
 
1167
/* Routine for the h8300 linker.
1168
 
1169
   This routine is necessary to handle the special R_MEM_INDIRECT
1170
   relocs on the h8300.  It's responsible for generating a vectors
1171
   section and attaching it to an input bfd as well as sizing
1172
   the vectors section.  It also creates our vectors hash table.
1173
 
1174
   It uses the generic linker routines to actually add the symbols.
1175
   from this BFD to the bfd linker hash table.  It may add a few
1176
   selected static symbols to the bfd linker hash table.  */
1177
 
1178
static boolean
1179
h8300_bfd_link_add_symbols (abfd, info)
1180
     bfd *abfd;
1181
     struct bfd_link_info *info;
1182
{
1183
  asection *sec;
1184
  struct funcvec_hash_table *funcvec_hash_table;
1185
  bfd_size_type amt;
1186
 
1187
  /* If we haven't created a vectors section, do so now.  */
1188
  if (!h8300_coff_hash_table (info)->vectors_sec)
1189
    {
1190
      flagword flags;
1191
 
1192
      /* Make sure the appropriate flags are set, including SEC_IN_MEMORY.  */
1193
      flags = (SEC_ALLOC | SEC_LOAD
1194
               | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1195
      h8300_coff_hash_table (info)->vectors_sec = bfd_make_section (abfd,
1196
                                                                    ".vectors");
1197
 
1198
      /* If the section wasn't created, or we couldn't set the flags,
1199
         quit quickly now, rather than dieing a painful death later.  */
1200
      if (! h8300_coff_hash_table (info)->vectors_sec
1201
          || ! bfd_set_section_flags (abfd,
1202
                                      h8300_coff_hash_table(info)->vectors_sec,
1203
                                      flags))
1204
        return false;
1205
 
1206
      /* Also create the vector hash table.  */
1207
      amt = sizeof (struct funcvec_hash_table);
1208
      funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
1209
 
1210
      if (!funcvec_hash_table)
1211
        return false;
1212
 
1213
      /* And initialize the funcvec hash table.  */
1214
      if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1215
                                    funcvec_hash_newfunc))
1216
        {
1217
          bfd_release (abfd, funcvec_hash_table);
1218
          return false;
1219
        }
1220
 
1221
      /* Store away a pointer to the funcvec hash table.  */
1222
      h8300_coff_hash_table (info)->funcvec_hash_table = funcvec_hash_table;
1223
    }
1224
 
1225
  /* Load up the function vector hash table.  */
1226
  funcvec_hash_table = h8300_coff_hash_table (info)->funcvec_hash_table;
1227
 
1228
  /* Add the symbols using the generic code.  */
1229
  _bfd_generic_link_add_symbols (abfd, info);
1230
 
1231
  /* Now scan the relocs for all the sections in this bfd; create
1232
     additional space in the .vectors section as needed.  */
1233
  for (sec = abfd->sections; sec; sec = sec->next)
1234
    {
1235
      long reloc_size, reloc_count, i;
1236
      asymbol **symbols;
1237
      arelent **relocs;
1238
 
1239
      /* Suck in the relocs, symbols & canonicalize them.  */
1240
      reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1241
      if (reloc_size <= 0)
1242
        continue;
1243
 
1244
      relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1245
      if (!relocs)
1246
        return false;
1247
 
1248
      /* The symbols should have been read in by _bfd_generic link_add_symbols
1249
         call abovec, so we can cheat and use the pointer to them that was
1250
         saved in the above call.  */
1251
      symbols = _bfd_generic_link_get_symbols(abfd);
1252
      reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1253
      if (reloc_count <= 0)
1254
        {
1255
          free (relocs);
1256
          continue;
1257
        }
1258
 
1259
      /* Now walk through all the relocations in this section.  */
1260
      for (i = 0; i < reloc_count; i++)
1261
        {
1262
          arelent *reloc = relocs[i];
1263
          asymbol *symbol = *(reloc->sym_ptr_ptr);
1264
          const char *name;
1265
 
1266
          /* We've got an indirect reloc.  See if we need to add it
1267
             to the function vector table.   At this point, we have
1268
             to add a new entry for each unique symbol referenced
1269
             by an R_MEM_INDIRECT relocation except for a reloc
1270
             against the absolute section symbol.  */
1271
          if (reloc->howto->type == R_MEM_INDIRECT
1272
              && symbol != bfd_abs_section_ptr->symbol)
1273
 
1274
            {
1275
              struct funcvec_hash_table *ftab;
1276
              struct funcvec_hash_entry *h;
1277
 
1278
              name = symbol->name;
1279
              if (symbol->flags & BSF_LOCAL)
1280
                {
1281
                  char *new_name;
1282
 
1283
                  new_name = bfd_malloc ((bfd_size_type) strlen (name) + 9);
1284
                  if (new_name == NULL)
1285
                    abort ();
1286
 
1287
                  strcpy (new_name, name);
1288
                  sprintf (new_name + strlen (name), "_%08x",
1289
                           (int) symbol->section);
1290
                  name = new_name;
1291
                }
1292
 
1293
              /* Look this symbol up in the function vector hash table.  */
1294
              ftab = h8300_coff_hash_table (info)->funcvec_hash_table;
1295
              h = funcvec_hash_lookup (ftab, name, false, false);
1296
 
1297
              /* If this symbol isn't already in the hash table, add
1298
                 it and bump up the size of the hash table.  */
1299
              if (h == NULL)
1300
                {
1301
                  h = funcvec_hash_lookup (ftab, name, true, true);
1302
                  if (h == NULL)
1303
                    {
1304
                      free (relocs);
1305
                      return false;
1306
                    }
1307
 
1308
                  /* Bump the size of the vectors section.  Each vector
1309
                     takes 2 bytes on the h8300 and 4 bytes on the h8300h.  */
1310
                  if (bfd_get_mach (abfd) == bfd_mach_h8300)
1311
                    h8300_coff_hash_table (info)->vectors_sec->_raw_size += 2;
1312
                  else if (bfd_get_mach (abfd) == bfd_mach_h8300h
1313
                           || bfd_get_mach (abfd) == bfd_mach_h8300s)
1314
                    h8300_coff_hash_table (info)->vectors_sec->_raw_size += 4;
1315
                }
1316
            }
1317
        }
1318
 
1319
      /* We're done with the relocations, release them.  */
1320
      free (relocs);
1321
    }
1322
 
1323
  /* Now actually allocate some space for the function vector.  It's
1324
     wasteful to do this more than once, but this is easier.  */
1325
  sec = h8300_coff_hash_table (info)->vectors_sec;
1326
  if (sec->_raw_size != 0)
1327
    {
1328
      /* Free the old contents.  */
1329
      if (sec->contents)
1330
        free (sec->contents);
1331
 
1332
      /* Allocate new contents.  */
1333
      sec->contents = bfd_malloc (sec->_raw_size);
1334
    }
1335
 
1336
  return true;
1337
}
1338
 
1339
#define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1340
#define coff_reloc16_estimate h8300_reloc16_estimate
1341
#define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1342
#define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1343
 
1344
#define COFF_LONG_FILENAMES
1345
#include "coffcode.h"
1346
 
1347
#undef coff_bfd_get_relocated_section_contents
1348
#undef coff_bfd_relax_section
1349
#define coff_bfd_get_relocated_section_contents \
1350
  bfd_coff_reloc16_get_relocated_section_contents
1351
#define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1352
 
1353
CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL)

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.