OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [bfd/] [coff-sh.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* BFD back-end for Hitachi Super-H COFF binaries.
2
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3
   Free Software Foundation, Inc.
4
   Contributed by Cygnus Support.
5
   Written by Steve Chamberlain, <sac@cygnus.com>.
6
   Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
7
 
8
This file is part of BFD, the Binary File Descriptor library.
9
 
10
This program is free software; you can redistribute it and/or modify
11
it under the terms of the GNU General Public License as published by
12
the Free Software Foundation; either version 2 of the License, or
13
(at your option) any later version.
14
 
15
This program is distributed in the hope that it will be useful,
16
but WITHOUT ANY WARRANTY; without even the implied warranty of
17
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
GNU General Public License for more details.
19
 
20
You should have received a copy of the GNU General Public License
21
along with this program; if not, write to the Free Software
22
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
23
 
24
#include "bfd.h"
25
#include "sysdep.h"
26
#include "libiberty.h"
27
#include "libbfd.h"
28
#include "bfdlink.h"
29
#include "coff/sh.h"
30
#include "coff/internal.h"
31
 
32
#ifdef COFF_WITH_PE
33
#include "coff/pe.h"
34
 
35
#ifndef COFF_IMAGE_WITH_PE
36
static boolean sh_align_load_span
37
  PARAMS ((bfd *, asection *, bfd_byte *,
38
           boolean (*) (bfd *, asection *, PTR, bfd_byte *, bfd_vma),
39
           PTR, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, boolean *));
40
 
41
#define _bfd_sh_align_load_span sh_align_load_span
42
#endif
43
#endif
44
 
45
#include "libcoff.h"
46
 
47
/* Internal functions.  */
48
static bfd_reloc_status_type sh_reloc
49
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
50
static long get_symbol_value PARAMS ((asymbol *));
51
static boolean sh_relax_section
52
  PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
53
static boolean sh_relax_delete_bytes
54
  PARAMS ((bfd *, asection *, bfd_vma, int));
55
#ifndef COFF_IMAGE_WITH_PE
56
static const struct sh_opcode *sh_insn_info PARAMS ((unsigned int));
57
#endif
58
static boolean sh_align_loads
59
  PARAMS ((bfd *, asection *, struct internal_reloc *, bfd_byte *, boolean *));
60
static boolean sh_swap_insns
61
  PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
62
static boolean sh_relocate_section
63
  PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
64
           struct internal_reloc *, struct internal_syment *, asection **));
65
static bfd_byte *sh_coff_get_relocated_section_contents
66
  PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
67
           bfd_byte *, boolean, asymbol **));
68
static reloc_howto_type * sh_coff_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type));
69
 
70
#ifdef COFF_WITH_PE
71
/* Can't build import tables with 2**4 alignment.  */
72
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER    2
73
#else
74
/* Default section alignment to 2**4.  */
75
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER    4
76
#endif
77
 
78
#ifdef COFF_IMAGE_WITH_PE
79
/* Align PE executables.  */
80
#define COFF_PAGE_SIZE 0x1000
81
#endif
82
 
83
/* Generate long file names.  */
84
#define COFF_LONG_FILENAMES
85
 
86
#ifdef COFF_WITH_PE
87
static boolean in_reloc_p PARAMS ((bfd *, reloc_howto_type *));
88
/* Return true if this relocation should
89
   appear in the output .reloc section.  */
90
static boolean in_reloc_p (abfd, howto)
91
     bfd * abfd ATTRIBUTE_UNUSED;
92
     reloc_howto_type * howto;
93
{
94
  return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
95
}
96
#endif
97
 
98
/* The supported relocations.  There are a lot of relocations defined
99
   in coff/internal.h which we do not expect to ever see.  */
100
static reloc_howto_type sh_coff_howtos[] =
101
{
102
  EMPTY_HOWTO (0),
103
  EMPTY_HOWTO (1),
104
#ifdef COFF_WITH_PE
105
  /* Windows CE */
106
  HOWTO (R_SH_IMM32CE,          /* type */
107
         0,                      /* rightshift */
108
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
109
         32,                    /* bitsize */
110
         false,                 /* pc_relative */
111
         0,                      /* bitpos */
112
         complain_overflow_bitfield, /* complain_on_overflow */
113
         sh_reloc,              /* special_function */
114
         "r_imm32ce",           /* name */
115
         true,                  /* partial_inplace */
116
         0xffffffff,            /* src_mask */
117
         0xffffffff,            /* dst_mask */
118
         false),                /* pcrel_offset */
119
#else
120
  EMPTY_HOWTO (2),
121
#endif
122
  EMPTY_HOWTO (3), /* R_SH_PCREL8 */
123
  EMPTY_HOWTO (4), /* R_SH_PCREL16 */
124
  EMPTY_HOWTO (5), /* R_SH_HIGH8 */
125
  EMPTY_HOWTO (6), /* R_SH_IMM24 */
126
  EMPTY_HOWTO (7), /* R_SH_LOW16 */
127
  EMPTY_HOWTO (8),
128
  EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
129
 
130
  HOWTO (R_SH_PCDISP8BY2,       /* type */
131
         1,                     /* rightshift */
132
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
133
         8,                     /* bitsize */
134
         true,                  /* pc_relative */
135
         0,                      /* bitpos */
136
         complain_overflow_signed, /* complain_on_overflow */
137
         sh_reloc,              /* special_function */
138
         "r_pcdisp8by2",        /* name */
139
         true,                  /* partial_inplace */
140
         0xff,                  /* src_mask */
141
         0xff,                  /* dst_mask */
142
         true),                 /* pcrel_offset */
143
 
144
  EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
145
 
146
  HOWTO (R_SH_PCDISP,           /* type */
147
         1,                     /* rightshift */
148
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
149
         12,                    /* bitsize */
150
         true,                  /* pc_relative */
151
         0,                      /* bitpos */
152
         complain_overflow_signed, /* complain_on_overflow */
153
         sh_reloc,              /* special_function */
154
         "r_pcdisp12by2",       /* name */
155
         true,                  /* partial_inplace */
156
         0xfff,                 /* src_mask */
157
         0xfff,                 /* dst_mask */
158
         true),                 /* pcrel_offset */
159
 
160
  EMPTY_HOWTO (13),
161
 
162
  HOWTO (R_SH_IMM32,            /* type */
163
         0,                      /* rightshift */
164
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
165
         32,                    /* bitsize */
166
         false,                 /* pc_relative */
167
         0,                      /* bitpos */
168
         complain_overflow_bitfield, /* complain_on_overflow */
169
         sh_reloc,              /* special_function */
170
         "r_imm32",             /* name */
171
         true,                  /* partial_inplace */
172
         0xffffffff,            /* src_mask */
173
         0xffffffff,            /* dst_mask */
174
         false),                /* pcrel_offset */
175
 
176
  EMPTY_HOWTO (15),
177
#ifdef COFF_WITH_PE
178
  HOWTO (R_SH_IMAGEBASE,        /* type */
179
         0,                      /* rightshift */
180
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
181
         32,                    /* bitsize */
182
         false,                 /* pc_relative */
183
         0,                      /* bitpos */
184
         complain_overflow_bitfield, /* complain_on_overflow */
185
         sh_reloc,              /* special_function */
186
         "rva32",               /* name */
187
         true,                  /* partial_inplace */
188
         0xffffffff,            /* src_mask */
189
         0xffffffff,            /* dst_mask */
190
         false),                /* pcrel_offset */
191
#else
192
  EMPTY_HOWTO (16), /* R_SH_IMM8 */
193
#endif
194
  EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
195
  EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
196
  EMPTY_HOWTO (19), /* R_SH_IMM4 */
197
  EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
198
  EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
199
 
200
  HOWTO (R_SH_PCRELIMM8BY2,     /* type */
201
         1,                     /* rightshift */
202
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
203
         8,                     /* bitsize */
204
         true,                  /* pc_relative */
205
         0,                      /* bitpos */
206
         complain_overflow_unsigned, /* complain_on_overflow */
207
         sh_reloc,              /* special_function */
208
         "r_pcrelimm8by2",      /* name */
209
         true,                  /* partial_inplace */
210
         0xff,                  /* src_mask */
211
         0xff,                  /* dst_mask */
212
         true),                 /* pcrel_offset */
213
 
214
  HOWTO (R_SH_PCRELIMM8BY4,     /* type */
215
         2,                     /* rightshift */
216
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
217
         8,                     /* bitsize */
218
         true,                  /* pc_relative */
219
         0,                      /* bitpos */
220
         complain_overflow_unsigned, /* complain_on_overflow */
221
         sh_reloc,              /* special_function */
222
         "r_pcrelimm8by4",      /* name */
223
         true,                  /* partial_inplace */
224
         0xff,                  /* src_mask */
225
         0xff,                  /* dst_mask */
226
         true),                 /* pcrel_offset */
227
 
228
  HOWTO (R_SH_IMM16,            /* type */
229
         0,                      /* rightshift */
230
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
231
         16,                    /* bitsize */
232
         false,                 /* pc_relative */
233
         0,                      /* bitpos */
234
         complain_overflow_bitfield, /* complain_on_overflow */
235
         sh_reloc,              /* special_function */
236
         "r_imm16",             /* name */
237
         true,                  /* partial_inplace */
238
         0xffff,                /* src_mask */
239
         0xffff,                /* dst_mask */
240
         false),                /* pcrel_offset */
241
 
242
  HOWTO (R_SH_SWITCH16,         /* type */
243
         0,                      /* rightshift */
244
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
245
         16,                    /* bitsize */
246
         false,                 /* pc_relative */
247
         0,                      /* bitpos */
248
         complain_overflow_bitfield, /* complain_on_overflow */
249
         sh_reloc,              /* special_function */
250
         "r_switch16",          /* name */
251
         true,                  /* partial_inplace */
252
         0xffff,                /* src_mask */
253
         0xffff,                /* dst_mask */
254
         false),                /* pcrel_offset */
255
 
256
  HOWTO (R_SH_SWITCH32,         /* type */
257
         0,                      /* rightshift */
258
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
259
         32,                    /* bitsize */
260
         false,                 /* pc_relative */
261
         0,                      /* bitpos */
262
         complain_overflow_bitfield, /* complain_on_overflow */
263
         sh_reloc,              /* special_function */
264
         "r_switch32",          /* name */
265
         true,                  /* partial_inplace */
266
         0xffffffff,            /* src_mask */
267
         0xffffffff,            /* dst_mask */
268
         false),                /* pcrel_offset */
269
 
270
  HOWTO (R_SH_USES,             /* type */
271
         0,                      /* rightshift */
272
         1,                     /* size (0 = byte, 1 = short, 2 = long) */
273
         16,                    /* bitsize */
274
         false,                 /* pc_relative */
275
         0,                      /* bitpos */
276
         complain_overflow_bitfield, /* complain_on_overflow */
277
         sh_reloc,              /* special_function */
278
         "r_uses",              /* name */
279
         true,                  /* partial_inplace */
280
         0xffff,                /* src_mask */
281
         0xffff,                /* dst_mask */
282
         false),                /* pcrel_offset */
283
 
284
  HOWTO (R_SH_COUNT,            /* type */
285
         0,                      /* rightshift */
286
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
287
         32,                    /* bitsize */
288
         false,                 /* pc_relative */
289
         0,                      /* bitpos */
290
         complain_overflow_bitfield, /* complain_on_overflow */
291
         sh_reloc,              /* special_function */
292
         "r_count",             /* name */
293
         true,                  /* partial_inplace */
294
         0xffffffff,            /* src_mask */
295
         0xffffffff,            /* dst_mask */
296
         false),                /* pcrel_offset */
297
 
298
  HOWTO (R_SH_ALIGN,            /* type */
299
         0,                      /* rightshift */
300
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
301
         32,                    /* bitsize */
302
         false,                 /* pc_relative */
303
         0,                      /* bitpos */
304
         complain_overflow_bitfield, /* complain_on_overflow */
305
         sh_reloc,              /* special_function */
306
         "r_align",             /* name */
307
         true,                  /* partial_inplace */
308
         0xffffffff,            /* src_mask */
309
         0xffffffff,            /* dst_mask */
310
         false),                /* pcrel_offset */
311
 
312
  HOWTO (R_SH_CODE,             /* type */
313
         0,                      /* rightshift */
314
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
315
         32,                    /* bitsize */
316
         false,                 /* pc_relative */
317
         0,                      /* bitpos */
318
         complain_overflow_bitfield, /* complain_on_overflow */
319
         sh_reloc,              /* special_function */
320
         "r_code",              /* name */
321
         true,                  /* partial_inplace */
322
         0xffffffff,            /* src_mask */
323
         0xffffffff,            /* dst_mask */
324
         false),                /* pcrel_offset */
325
 
326
  HOWTO (R_SH_DATA,             /* type */
327
         0,                      /* rightshift */
328
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
329
         32,                    /* bitsize */
330
         false,                 /* pc_relative */
331
         0,                      /* bitpos */
332
         complain_overflow_bitfield, /* complain_on_overflow */
333
         sh_reloc,              /* special_function */
334
         "r_data",              /* name */
335
         true,                  /* partial_inplace */
336
         0xffffffff,            /* src_mask */
337
         0xffffffff,            /* dst_mask */
338
         false),                /* pcrel_offset */
339
 
340
  HOWTO (R_SH_LABEL,            /* type */
341
         0,                      /* rightshift */
342
         2,                     /* size (0 = byte, 1 = short, 2 = long) */
343
         32,                    /* bitsize */
344
         false,                 /* pc_relative */
345
         0,                      /* bitpos */
346
         complain_overflow_bitfield, /* complain_on_overflow */
347
         sh_reloc,              /* special_function */
348
         "r_label",             /* name */
349
         true,                  /* partial_inplace */
350
         0xffffffff,            /* src_mask */
351
         0xffffffff,            /* dst_mask */
352
         false),                /* pcrel_offset */
353
 
354
  HOWTO (R_SH_SWITCH8,          /* type */
355
         0,                      /* rightshift */
356
         0,                      /* size (0 = byte, 1 = short, 2 = long) */
357
         8,                     /* bitsize */
358
         false,                 /* pc_relative */
359
         0,                      /* bitpos */
360
         complain_overflow_bitfield, /* complain_on_overflow */
361
         sh_reloc,              /* special_function */
362
         "r_switch8",           /* name */
363
         true,                  /* partial_inplace */
364
         0xff,                  /* src_mask */
365
         0xff,                  /* dst_mask */
366
         false)                 /* pcrel_offset */
367
};
368
 
369
#define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
370
 
371
/* Check for a bad magic number.  */
372
#define BADMAG(x) SHBADMAG(x)
373
 
374
/* Customize coffcode.h (this is not currently used).  */
375
#define SH 1
376
 
377
/* FIXME: This should not be set here.  */
378
#define __A_MAGIC_SET__
379
 
380
#ifndef COFF_WITH_PE
381
/* Swap the r_offset field in and out.  */
382
#define SWAP_IN_RELOC_OFFSET  H_GET_32
383
#define SWAP_OUT_RELOC_OFFSET H_PUT_32
384
 
385
/* Swap out extra information in the reloc structure.  */
386
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst)    \
387
  do                                            \
388
    {                                           \
389
      dst->r_stuff[0] = 'S';                     \
390
      dst->r_stuff[1] = 'C';                    \
391
    }                                           \
392
  while (0)
393
#endif
394
 
395
/* Get the value of a symbol, when performing a relocation.  */
396
 
397
static long
398
get_symbol_value (symbol)
399
     asymbol *symbol;
400
{
401
  bfd_vma relocation;
402
 
403
  if (bfd_is_com_section (symbol->section))
404
    relocation = 0;
405
  else
406
    relocation = (symbol->value +
407
                  symbol->section->output_section->vma +
408
                  symbol->section->output_offset);
409
 
410
  return relocation;
411
}
412
 
413
#ifdef COFF_WITH_PE
414
/* Convert an rtype to howto for the COFF backend linker.
415
   Copied from coff-i386.  */
416
#define coff_rtype_to_howto coff_sh_rtype_to_howto
417
static reloc_howto_type * coff_sh_rtype_to_howto PARAMS ((bfd *, asection *, struct internal_reloc *, struct coff_link_hash_entry *, struct internal_syment *, bfd_vma *));
418
 
419
static reloc_howto_type *
420
coff_sh_rtype_to_howto (abfd, sec, rel, h, sym, addendp)
421
     bfd * abfd ATTRIBUTE_UNUSED;
422
     asection * sec;
423
     struct internal_reloc * rel;
424
     struct coff_link_hash_entry * h;
425
     struct internal_syment * sym;
426
     bfd_vma * addendp;
427
{
428
  reloc_howto_type * howto;
429
 
430
  howto = sh_coff_howtos + rel->r_type;
431
 
432
  *addendp = 0;
433
 
434
  if (howto->pc_relative)
435
    *addendp += sec->vma;
436
 
437
  if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
438
    {
439
      /* This is a common symbol.  The section contents include the
440
         size (sym->n_value) as an addend.  The relocate_section
441
         function will be adding in the final value of the symbol.  We
442
         need to subtract out the current size in order to get the
443
         correct result.  */
444
      BFD_ASSERT (h != NULL);
445
    }
446
 
447
  if (howto->pc_relative)
448
    {
449
      *addendp -= 4;
450
 
451
      /* If the symbol is defined, then the generic code is going to
452
         add back the symbol value in order to cancel out an
453
         adjustment it made to the addend.  However, we set the addend
454
         to 0 at the start of this function.  We need to adjust here,
455
         to avoid the adjustment the generic code will make.  FIXME:
456
         This is getting a bit hackish.  */
457
      if (sym != NULL && sym->n_scnum != 0)
458
        *addendp -= sym->n_value;
459
    }
460
 
461
  if (rel->r_type == R_SH_IMAGEBASE)
462
    *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
463
 
464
  return howto;
465
}
466
 
467
#endif /* COFF_WITH_PE */
468
 
469
/* This structure is used to map BFD reloc codes to SH PE relocs.  */
470
struct shcoff_reloc_map
471
{
472
  bfd_reloc_code_real_type bfd_reloc_val;
473
  unsigned char shcoff_reloc_val;
474
};
475
 
476
#ifdef COFF_WITH_PE
477
/* An array mapping BFD reloc codes to SH PE relocs.  */
478
static const struct shcoff_reloc_map sh_reloc_map[] =
479
{
480
  { BFD_RELOC_32, R_SH_IMM32CE },
481
  { BFD_RELOC_RVA, R_SH_IMAGEBASE },
482
  { BFD_RELOC_CTOR, R_SH_IMM32CE },
483
};
484
#else
485
/* An array mapping BFD reloc codes to SH PE relocs.  */
486
static const struct shcoff_reloc_map sh_reloc_map[] =
487
{
488
  { BFD_RELOC_32, R_SH_IMM32 },
489
  { BFD_RELOC_CTOR, R_SH_IMM32 },
490
};
491
#endif
492
 
493
/* Given a BFD reloc code, return the howto structure for the
494
   corresponding SH PE reloc.  */
495
#define coff_bfd_reloc_type_lookup      sh_coff_reloc_type_lookup
496
 
497
static reloc_howto_type *
498
sh_coff_reloc_type_lookup (abfd, code)
499
     bfd * abfd ATTRIBUTE_UNUSED;
500
     bfd_reloc_code_real_type code;
501
{
502
  unsigned int i;
503
 
504
  for (i = ARRAY_SIZE (sh_reloc_map); i--;)
505
    if (sh_reloc_map[i].bfd_reloc_val == code)
506
      return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
507
 
508
  fprintf (stderr, "SH Error: unknown reloc type %d\n", code);
509
  return NULL;
510
}
511
 
512
/* This macro is used in coffcode.h to get the howto corresponding to
513
   an internal reloc.  */
514
 
515
#define RTYPE2HOWTO(relent, internal)           \
516
  ((relent)->howto =                            \
517
   ((internal)->r_type < SH_COFF_HOWTO_COUNT    \
518
    ? &sh_coff_howtos[(internal)->r_type]       \
519
    : (reloc_howto_type *) NULL))
520
 
521
/* This is the same as the macro in coffcode.h, except that it copies
522
   r_offset into reloc_entry->addend for some relocs.  */
523
#define CALC_ADDEND(abfd, ptr, reloc, cache_ptr)                \
524
  {                                                             \
525
    coff_symbol_type *coffsym = (coff_symbol_type *) NULL;      \
526
    if (ptr && bfd_asymbol_bfd (ptr) != abfd)                   \
527
      coffsym = (obj_symbols (abfd)                             \
528
                 + (cache_ptr->sym_ptr_ptr - symbols));         \
529
    else if (ptr)                                               \
530
      coffsym = coff_symbol_from (abfd, ptr);                   \
531
    if (coffsym != (coff_symbol_type *) NULL                    \
532
        && coffsym->native->u.syment.n_scnum == 0)              \
533
      cache_ptr->addend = 0;                                    \
534
    else if (ptr && bfd_asymbol_bfd (ptr) == abfd               \
535
             && ptr->section != (asection *) NULL)              \
536
      cache_ptr->addend = - (ptr->section->vma + ptr->value);   \
537
    else                                                        \
538
      cache_ptr->addend = 0;                                    \
539
    if ((reloc).r_type == R_SH_SWITCH8                          \
540
        || (reloc).r_type == R_SH_SWITCH16                      \
541
        || (reloc).r_type == R_SH_SWITCH32                      \
542
        || (reloc).r_type == R_SH_USES                          \
543
        || (reloc).r_type == R_SH_COUNT                         \
544
        || (reloc).r_type == R_SH_ALIGN)                        \
545
      cache_ptr->addend = (reloc).r_offset;                     \
546
  }
547
 
548
/* This is the howto function for the SH relocations.  */
549
 
550
static bfd_reloc_status_type
551
sh_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
552
          error_message)
553
     bfd *abfd;
554
     arelent *reloc_entry;
555
     asymbol *symbol_in;
556
     PTR data;
557
     asection *input_section;
558
     bfd *output_bfd;
559
     char **error_message ATTRIBUTE_UNUSED;
560
{
561
  unsigned long insn;
562
  bfd_vma sym_value;
563
  unsigned short r_type;
564
  bfd_vma addr = reloc_entry->address;
565
  bfd_byte *hit_data = addr + (bfd_byte *) data;
566
 
567
  r_type = reloc_entry->howto->type;
568
 
569
  if (output_bfd != NULL)
570
    {
571
      /* Partial linking--do nothing.  */
572
      reloc_entry->address += input_section->output_offset;
573
      return bfd_reloc_ok;
574
    }
575
 
576
  /* Almost all relocs have to do with relaxing.  If any work must be
577
     done for them, it has been done in sh_relax_section.  */
578
  if (r_type != R_SH_IMM32
579
#ifdef COFF_WITH_PE
580
      && r_type != R_SH_IMM32CE
581
      && r_type != R_SH_IMAGEBASE
582
#endif
583
      && (r_type != R_SH_PCDISP
584
          || (symbol_in->flags & BSF_LOCAL) != 0))
585
    return bfd_reloc_ok;
586
 
587
  if (symbol_in != NULL
588
      && bfd_is_und_section (symbol_in->section))
589
    return bfd_reloc_undefined;
590
 
591
  sym_value = get_symbol_value (symbol_in);
592
 
593
  switch (r_type)
594
    {
595
    case R_SH_IMM32:
596
#ifdef COFF_WITH_PE
597
    case R_SH_IMM32CE:
598
#endif
599
      insn = bfd_get_32 (abfd, hit_data);
600
      insn += sym_value + reloc_entry->addend;
601
      bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
602
      break;
603
#ifdef COFF_WITH_PE
604
    case R_SH_IMAGEBASE:
605
      insn = bfd_get_32 (abfd, hit_data);
606
      insn += sym_value + reloc_entry->addend;
607
      insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
608
      bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
609
      break;
610
#endif
611
    case R_SH_PCDISP:
612
      insn = bfd_get_16 (abfd, hit_data);
613
      sym_value += reloc_entry->addend;
614
      sym_value -= (input_section->output_section->vma
615
                    + input_section->output_offset
616
                    + addr
617
                    + 4);
618
      sym_value += (insn & 0xfff) << 1;
619
      if (insn & 0x800)
620
        sym_value -= 0x1000;
621
      insn = (insn & 0xf000) | (sym_value & 0xfff);
622
      bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
623
      if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
624
        return bfd_reloc_overflow;
625
      break;
626
    default:
627
      abort ();
628
      break;
629
    }
630
 
631
  return bfd_reloc_ok;
632
}
633
 
634
#define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
635
 
636
/* We can do relaxing.  */
637
#define coff_bfd_relax_section sh_relax_section
638
 
639
/* We use the special COFF backend linker.  */
640
#define coff_relocate_section sh_relocate_section
641
 
642
/* When relaxing, we need to use special code to get the relocated
643
   section contents.  */
644
#define coff_bfd_get_relocated_section_contents \
645
  sh_coff_get_relocated_section_contents
646
 
647
#include "coffcode.h"
648
 
649
/* This function handles relaxing on the SH.
650
 
651
   Function calls on the SH look like this:
652
 
653
       movl  L1,r0
654
       ...
655
       jsr   @r0
656
       ...
657
     L1:
658
       .long function
659
 
660
   The compiler and assembler will cooperate to create R_SH_USES
661
   relocs on the jsr instructions.  The r_offset field of the
662
   R_SH_USES reloc is the PC relative offset to the instruction which
663
   loads the register (the r_offset field is computed as though it
664
   were a jump instruction, so the offset value is actually from four
665
   bytes past the instruction).  The linker can use this reloc to
666
   determine just which function is being called, and thus decide
667
   whether it is possible to replace the jsr with a bsr.
668
 
669
   If multiple function calls are all based on a single register load
670
   (i.e., the same function is called multiple times), the compiler
671
   guarantees that each function call will have an R_SH_USES reloc.
672
   Therefore, if the linker is able to convert each R_SH_USES reloc
673
   which refers to that address, it can safely eliminate the register
674
   load.
675
 
676
   When the assembler creates an R_SH_USES reloc, it examines it to
677
   determine which address is being loaded (L1 in the above example).
678
   It then counts the number of references to that address, and
679
   creates an R_SH_COUNT reloc at that address.  The r_offset field of
680
   the R_SH_COUNT reloc will be the number of references.  If the
681
   linker is able to eliminate a register load, it can use the
682
   R_SH_COUNT reloc to see whether it can also eliminate the function
683
   address.
684
 
685
   SH relaxing also handles another, unrelated, matter.  On the SH, if
686
   a load or store instruction is not aligned on a four byte boundary,
687
   the memory cycle interferes with the 32 bit instruction fetch,
688
   causing a one cycle bubble in the pipeline.  Therefore, we try to
689
   align load and store instructions on four byte boundaries if we
690
   can, by swapping them with one of the adjacent instructions.  */
691
 
692
static boolean
693
sh_relax_section (abfd, sec, link_info, again)
694
     bfd *abfd;
695
     asection *sec;
696
     struct bfd_link_info *link_info;
697
     boolean *again;
698
{
699
  struct internal_reloc *internal_relocs;
700
  struct internal_reloc *free_relocs = NULL;
701
  boolean have_code;
702
  struct internal_reloc *irel, *irelend;
703
  bfd_byte *contents = NULL;
704
  bfd_byte *free_contents = NULL;
705
 
706
  *again = false;
707
 
708
  if (link_info->relocateable
709
      || (sec->flags & SEC_RELOC) == 0
710
      || sec->reloc_count == 0)
711
    return true;
712
 
713
  /* If this is the first time we have been called for this section,
714
     initialize the cooked size.  */
715
  if (sec->_cooked_size == 0)
716
    sec->_cooked_size = sec->_raw_size;
717
 
718
  internal_relocs = (_bfd_coff_read_internal_relocs
719
                     (abfd, sec, link_info->keep_memory,
720
                      (bfd_byte *) NULL, false,
721
                      (struct internal_reloc *) NULL));
722
  if (internal_relocs == NULL)
723
    goto error_return;
724
  if (! link_info->keep_memory)
725
    free_relocs = internal_relocs;
726
 
727
  have_code = false;
728
 
729
  irelend = internal_relocs + sec->reloc_count;
730
  for (irel = internal_relocs; irel < irelend; irel++)
731
    {
732
      bfd_vma laddr, paddr, symval;
733
      unsigned short insn;
734
      struct internal_reloc *irelfn, *irelscan, *irelcount;
735
      struct internal_syment sym;
736
      bfd_signed_vma foff;
737
 
738
      if (irel->r_type == R_SH_CODE)
739
        have_code = true;
740
 
741
      if (irel->r_type != R_SH_USES)
742
        continue;
743
 
744
      /* Get the section contents.  */
745
      if (contents == NULL)
746
        {
747
          if (coff_section_data (abfd, sec) != NULL
748
              && coff_section_data (abfd, sec)->contents != NULL)
749
            contents = coff_section_data (abfd, sec)->contents;
750
          else
751
            {
752
              contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
753
              if (contents == NULL)
754
                goto error_return;
755
              free_contents = contents;
756
 
757
              if (! bfd_get_section_contents (abfd, sec, contents,
758
                                              (file_ptr) 0, sec->_raw_size))
759
                goto error_return;
760
            }
761
        }
762
 
763
      /* The r_offset field of the R_SH_USES reloc will point us to
764
         the register load.  The 4 is because the r_offset field is
765
         computed as though it were a jump offset, which are based
766
         from 4 bytes after the jump instruction.  */
767
      laddr = irel->r_vaddr - sec->vma + 4;
768
      /* Careful to sign extend the 32-bit offset.  */
769
      laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
770
      if (laddr >= sec->_raw_size)
771
        {
772
          (*_bfd_error_handler) ("%s: 0x%lx: warning: bad R_SH_USES offset",
773
                                 bfd_archive_filename (abfd),
774
                                 (unsigned long) irel->r_vaddr);
775
          continue;
776
        }
777
      insn = bfd_get_16 (abfd, contents + laddr);
778
 
779
      /* If the instruction is not mov.l NN,rN, we don't know what to do.  */
780
      if ((insn & 0xf000) != 0xd000)
781
        {
782
          ((*_bfd_error_handler)
783
           ("%s: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
784
            bfd_archive_filename (abfd), (unsigned long) irel->r_vaddr, insn));
785
          continue;
786
        }
787
 
788
      /* Get the address from which the register is being loaded.  The
789
         displacement in the mov.l instruction is quadrupled.  It is a
790
         displacement from four bytes after the movl instruction, but,
791
         before adding in the PC address, two least significant bits
792
         of the PC are cleared.  We assume that the section is aligned
793
         on a four byte boundary.  */
794
      paddr = insn & 0xff;
795
      paddr *= 4;
796
      paddr += (laddr + 4) &~ (bfd_vma) 3;
797
      if (paddr >= sec->_raw_size)
798
        {
799
          ((*_bfd_error_handler)
800
           ("%s: 0x%lx: warning: bad R_SH_USES load offset",
801
            bfd_archive_filename (abfd), (unsigned long) irel->r_vaddr));
802
          continue;
803
        }
804
 
805
      /* Get the reloc for the address from which the register is
806
         being loaded.  This reloc will tell us which function is
807
         actually being called.  */
808
      paddr += sec->vma;
809
      for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
810
        if (irelfn->r_vaddr == paddr
811
#ifdef COFF_WITH_PE
812
            && (irelfn->r_type == R_SH_IMM32
813
                || irelfn->r_type == R_SH_IMM32CE
814
                || irelfn->r_type == R_SH_IMAGEBASE))
815
 
816
#else
817
            && irelfn->r_type == R_SH_IMM32)
818
#endif
819
          break;
820
      if (irelfn >= irelend)
821
        {
822
          ((*_bfd_error_handler)
823
           ("%s: 0x%lx: warning: could not find expected reloc",
824
            bfd_archive_filename (abfd), (unsigned long) paddr));
825
          continue;
826
        }
827
 
828
      /* Get the value of the symbol referred to by the reloc.  */
829
      if (! _bfd_coff_get_external_symbols (abfd))
830
        goto error_return;
831
      bfd_coff_swap_sym_in (abfd,
832
                            ((bfd_byte *) obj_coff_external_syms (abfd)
833
                             + (irelfn->r_symndx
834
                                * bfd_coff_symesz (abfd))),
835
                            &sym);
836
      if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
837
        {
838
          ((*_bfd_error_handler)
839
           ("%s: 0x%lx: warning: symbol in unexpected section",
840
            bfd_archive_filename (abfd), (unsigned long) paddr));
841
          continue;
842
        }
843
 
844
      if (sym.n_sclass != C_EXT)
845
        {
846
          symval = (sym.n_value
847
                    - sec->vma
848
                    + sec->output_section->vma
849
                    + sec->output_offset);
850
        }
851
      else
852
        {
853
          struct coff_link_hash_entry *h;
854
 
855
          h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
856
          BFD_ASSERT (h != NULL);
857
          if (h->root.type != bfd_link_hash_defined
858
              && h->root.type != bfd_link_hash_defweak)
859
            {
860
              /* This appears to be a reference to an undefined
861
                 symbol.  Just ignore it--it will be caught by the
862
                 regular reloc processing.  */
863
              continue;
864
            }
865
 
866
          symval = (h->root.u.def.value
867
                    + h->root.u.def.section->output_section->vma
868
                    + h->root.u.def.section->output_offset);
869
        }
870
 
871
      symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
872
 
873
      /* See if this function call can be shortened.  */
874
      foff = (symval
875
              - (irel->r_vaddr
876
                 - sec->vma
877
                 + sec->output_section->vma
878
                 + sec->output_offset
879
                 + 4));
880
      if (foff < -0x1000 || foff >= 0x1000)
881
        {
882
          /* After all that work, we can't shorten this function call.  */
883
          continue;
884
        }
885
 
886
      /* Shorten the function call.  */
887
 
888
      /* For simplicity of coding, we are going to modify the section
889
         contents, the section relocs, and the BFD symbol table.  We
890
         must tell the rest of the code not to free up this
891
         information.  It would be possible to instead create a table
892
         of changes which have to be made, as is done in coff-mips.c;
893
         that would be more work, but would require less memory when
894
         the linker is run.  */
895
 
896
      if (coff_section_data (abfd, sec) == NULL)
897
        {
898
          bfd_size_type amt = sizeof (struct coff_section_tdata);
899
          sec->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
900
          if (sec->used_by_bfd == NULL)
901
            goto error_return;
902
        }
903
 
904
      coff_section_data (abfd, sec)->relocs = internal_relocs;
905
      coff_section_data (abfd, sec)->keep_relocs = true;
906
      free_relocs = NULL;
907
 
908
      coff_section_data (abfd, sec)->contents = contents;
909
      coff_section_data (abfd, sec)->keep_contents = true;
910
      free_contents = NULL;
911
 
912
      obj_coff_keep_syms (abfd) = true;
913
 
914
      /* Replace the jsr with a bsr.  */
915
 
916
      /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
917
         replace the jsr with a bsr.  */
918
      irel->r_type = R_SH_PCDISP;
919
      irel->r_symndx = irelfn->r_symndx;
920
      if (sym.n_sclass != C_EXT)
921
        {
922
          /* If this needs to be changed because of future relaxing,
923
             it will be handled here like other internal PCDISP
924
             relocs.  */
925
          bfd_put_16 (abfd,
926
                      (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
927
                      contents + irel->r_vaddr - sec->vma);
928
        }
929
      else
930
        {
931
          /* We can't fully resolve this yet, because the external
932
             symbol value may be changed by future relaxing.  We let
933
             the final link phase handle it.  */
934
          bfd_put_16 (abfd, (bfd_vma) 0xb000,
935
                      contents + irel->r_vaddr - sec->vma);
936
        }
937
 
938
      /* See if there is another R_SH_USES reloc referring to the same
939
         register load.  */
940
      for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
941
        if (irelscan->r_type == R_SH_USES
942
            && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
943
          break;
944
      if (irelscan < irelend)
945
        {
946
          /* Some other function call depends upon this register load,
947
             and we have not yet converted that function call.
948
             Indeed, we may never be able to convert it.  There is
949
             nothing else we can do at this point.  */
950
          continue;
951
        }
952
 
953
      /* Look for a R_SH_COUNT reloc on the location where the
954
         function address is stored.  Do this before deleting any
955
         bytes, to avoid confusion about the address.  */
956
      for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
957
        if (irelcount->r_vaddr == paddr
958
            && irelcount->r_type == R_SH_COUNT)
959
          break;
960
 
961
      /* Delete the register load.  */
962
      if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
963
        goto error_return;
964
 
965
      /* That will change things, so, just in case it permits some
966
         other function call to come within range, we should relax
967
         again.  Note that this is not required, and it may be slow.  */
968
      *again = true;
969
 
970
      /* Now check whether we got a COUNT reloc.  */
971
      if (irelcount >= irelend)
972
        {
973
          ((*_bfd_error_handler)
974
           ("%s: 0x%lx: warning: could not find expected COUNT reloc",
975
            bfd_archive_filename (abfd), (unsigned long) paddr));
976
          continue;
977
        }
978
 
979
      /* The number of uses is stored in the r_offset field.  We've
980
         just deleted one.  */
981
      if (irelcount->r_offset == 0)
982
        {
983
          ((*_bfd_error_handler) ("%s: 0x%lx: warning: bad count",
984
                                  bfd_archive_filename (abfd),
985
                                  (unsigned long) paddr));
986
          continue;
987
        }
988
 
989
      --irelcount->r_offset;
990
 
991
      /* If there are no more uses, we can delete the address.  Reload
992
         the address from irelfn, in case it was changed by the
993
         previous call to sh_relax_delete_bytes.  */
994
      if (irelcount->r_offset == 0)
995
        {
996
          if (! sh_relax_delete_bytes (abfd, sec,
997
                                       irelfn->r_vaddr - sec->vma, 4))
998
            goto error_return;
999
        }
1000
 
1001
      /* We've done all we can with that function call.  */
1002
    }
1003
 
1004
  /* Look for load and store instructions that we can align on four
1005
     byte boundaries.  */
1006
  if (have_code)
1007
    {
1008
      boolean swapped;
1009
 
1010
      /* Get the section contents.  */
1011
      if (contents == NULL)
1012
        {
1013
          if (coff_section_data (abfd, sec) != NULL
1014
              && coff_section_data (abfd, sec)->contents != NULL)
1015
            contents = coff_section_data (abfd, sec)->contents;
1016
          else
1017
            {
1018
              contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
1019
              if (contents == NULL)
1020
                goto error_return;
1021
              free_contents = contents;
1022
 
1023
              if (! bfd_get_section_contents (abfd, sec, contents,
1024
                                              (file_ptr) 0, sec->_raw_size))
1025
                goto error_return;
1026
            }
1027
        }
1028
 
1029
      if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1030
        goto error_return;
1031
 
1032
      if (swapped)
1033
        {
1034
          if (coff_section_data (abfd, sec) == NULL)
1035
            {
1036
              bfd_size_type amt = sizeof (struct coff_section_tdata);
1037
              sec->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
1038
              if (sec->used_by_bfd == NULL)
1039
                goto error_return;
1040
            }
1041
 
1042
          coff_section_data (abfd, sec)->relocs = internal_relocs;
1043
          coff_section_data (abfd, sec)->keep_relocs = true;
1044
          free_relocs = NULL;
1045
 
1046
          coff_section_data (abfd, sec)->contents = contents;
1047
          coff_section_data (abfd, sec)->keep_contents = true;
1048
          free_contents = NULL;
1049
 
1050
          obj_coff_keep_syms (abfd) = true;
1051
        }
1052
    }
1053
 
1054
  if (free_relocs != NULL)
1055
    {
1056
      free (free_relocs);
1057
      free_relocs = NULL;
1058
    }
1059
 
1060
  if (free_contents != NULL)
1061
    {
1062
      if (! link_info->keep_memory)
1063
        free (free_contents);
1064
      else
1065
        {
1066
          /* Cache the section contents for coff_link_input_bfd.  */
1067
          if (coff_section_data (abfd, sec) == NULL)
1068
            {
1069
              bfd_size_type amt = sizeof (struct coff_section_tdata);
1070
              sec->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
1071
              if (sec->used_by_bfd == NULL)
1072
                goto error_return;
1073
              coff_section_data (abfd, sec)->relocs = NULL;
1074
            }
1075
          coff_section_data (abfd, sec)->contents = contents;
1076
        }
1077
    }
1078
 
1079
  return true;
1080
 
1081
 error_return:
1082
  if (free_relocs != NULL)
1083
    free (free_relocs);
1084
  if (free_contents != NULL)
1085
    free (free_contents);
1086
  return false;
1087
}
1088
 
1089
/* Delete some bytes from a section while relaxing.  */
1090
 
1091
static boolean
1092
sh_relax_delete_bytes (abfd, sec, addr, count)
1093
     bfd *abfd;
1094
     asection *sec;
1095
     bfd_vma addr;
1096
     int count;
1097
{
1098
  bfd_byte *contents;
1099
  struct internal_reloc *irel, *irelend;
1100
  struct internal_reloc *irelalign;
1101
  bfd_vma toaddr;
1102
  bfd_byte *esym, *esymend;
1103
  bfd_size_type symesz;
1104
  struct coff_link_hash_entry **sym_hash;
1105
  asection *o;
1106
 
1107
  contents = coff_section_data (abfd, sec)->contents;
1108
 
1109
  /* The deletion must stop at the next ALIGN reloc for an aligment
1110
     power larger than the number of bytes we are deleting.  */
1111
 
1112
  irelalign = NULL;
1113
  toaddr = sec->_cooked_size;
1114
 
1115
  irel = coff_section_data (abfd, sec)->relocs;
1116
  irelend = irel + sec->reloc_count;
1117
  for (; irel < irelend; irel++)
1118
    {
1119
      if (irel->r_type == R_SH_ALIGN
1120
          && irel->r_vaddr - sec->vma > addr
1121
          && count < (1 << irel->r_offset))
1122
        {
1123
          irelalign = irel;
1124
          toaddr = irel->r_vaddr - sec->vma;
1125
          break;
1126
        }
1127
    }
1128
 
1129
  /* Actually delete the bytes.  */
1130
  memmove (contents + addr, contents + addr + count,
1131
           (size_t) (toaddr - addr - count));
1132
  if (irelalign == NULL)
1133
    sec->_cooked_size -= count;
1134
  else
1135
    {
1136
      int i;
1137
 
1138
#define NOP_OPCODE (0x0009)
1139
 
1140
      BFD_ASSERT ((count & 1) == 0);
1141
      for (i = 0; i < count; i += 2)
1142
        bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
1143
    }
1144
 
1145
  /* Adjust all the relocs.  */
1146
  for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1147
    {
1148
      bfd_vma nraddr, stop;
1149
      bfd_vma start = 0;
1150
      int insn = 0;
1151
      struct internal_syment sym;
1152
      int off, adjust, oinsn;
1153
      bfd_signed_vma voff = 0;
1154
      boolean overflow;
1155
 
1156
      /* Get the new reloc address.  */
1157
      nraddr = irel->r_vaddr - sec->vma;
1158
      if ((irel->r_vaddr - sec->vma > addr
1159
           && irel->r_vaddr - sec->vma < toaddr)
1160
          || (irel->r_type == R_SH_ALIGN
1161
              && irel->r_vaddr - sec->vma == toaddr))
1162
        nraddr -= count;
1163
 
1164
      /* See if this reloc was for the bytes we have deleted, in which
1165
         case we no longer care about it.  Don't delete relocs which
1166
         represent addresses, though.  */
1167
      if (irel->r_vaddr - sec->vma >= addr
1168
          && irel->r_vaddr - sec->vma < addr + count
1169
          && irel->r_type != R_SH_ALIGN
1170
          && irel->r_type != R_SH_CODE
1171
          && irel->r_type != R_SH_DATA
1172
          && irel->r_type != R_SH_LABEL)
1173
        irel->r_type = R_SH_UNUSED;
1174
 
1175
      /* If this is a PC relative reloc, see if the range it covers
1176
         includes the bytes we have deleted.  */
1177
      switch (irel->r_type)
1178
        {
1179
        default:
1180
          break;
1181
 
1182
        case R_SH_PCDISP8BY2:
1183
        case R_SH_PCDISP:
1184
        case R_SH_PCRELIMM8BY2:
1185
        case R_SH_PCRELIMM8BY4:
1186
          start = irel->r_vaddr - sec->vma;
1187
          insn = bfd_get_16 (abfd, contents + nraddr);
1188
          break;
1189
        }
1190
 
1191
      switch (irel->r_type)
1192
        {
1193
        default:
1194
          start = stop = addr;
1195
          break;
1196
 
1197
        case R_SH_IMM32:
1198
#ifdef COFF_WITH_PE
1199
        case R_SH_IMM32CE:
1200
        case R_SH_IMAGEBASE:
1201
#endif
1202
          /* If this reloc is against a symbol defined in this
1203
             section, and the symbol will not be adjusted below, we
1204
             must check the addend to see it will put the value in
1205
             range to be adjusted, and hence must be changed.  */
1206
          bfd_coff_swap_sym_in (abfd,
1207
                                ((bfd_byte *) obj_coff_external_syms (abfd)
1208
                                 + (irel->r_symndx
1209
                                    * bfd_coff_symesz (abfd))),
1210
                                &sym);
1211
          if (sym.n_sclass != C_EXT
1212
              && sym.n_scnum == sec->target_index
1213
              && ((bfd_vma) sym.n_value <= addr
1214
                  || (bfd_vma) sym.n_value >= toaddr))
1215
            {
1216
              bfd_vma val;
1217
 
1218
              val = bfd_get_32 (abfd, contents + nraddr);
1219
              val += sym.n_value;
1220
              if (val > addr && val < toaddr)
1221
                bfd_put_32 (abfd, val - count, contents + nraddr);
1222
            }
1223
          start = stop = addr;
1224
          break;
1225
 
1226
        case R_SH_PCDISP8BY2:
1227
          off = insn & 0xff;
1228
          if (off & 0x80)
1229
            off -= 0x100;
1230
          stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1231
          break;
1232
 
1233
        case R_SH_PCDISP:
1234
          bfd_coff_swap_sym_in (abfd,
1235
                                ((bfd_byte *) obj_coff_external_syms (abfd)
1236
                                 + (irel->r_symndx
1237
                                    * bfd_coff_symesz (abfd))),
1238
                                &sym);
1239
          if (sym.n_sclass == C_EXT)
1240
            start = stop = addr;
1241
          else
1242
            {
1243
              off = insn & 0xfff;
1244
              if (off & 0x800)
1245
                off -= 0x1000;
1246
              stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1247
            }
1248
          break;
1249
 
1250
        case R_SH_PCRELIMM8BY2:
1251
          off = insn & 0xff;
1252
          stop = start + 4 + off * 2;
1253
          break;
1254
 
1255
        case R_SH_PCRELIMM8BY4:
1256
          off = insn & 0xff;
1257
          stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1258
          break;
1259
 
1260
        case R_SH_SWITCH8:
1261
        case R_SH_SWITCH16:
1262
        case R_SH_SWITCH32:
1263
          /* These relocs types represent
1264
               .word L2-L1
1265
             The r_offset field holds the difference between the reloc
1266
             address and L1.  That is the start of the reloc, and
1267
             adding in the contents gives us the top.  We must adjust
1268
             both the r_offset field and the section contents.  */
1269
 
1270
          start = irel->r_vaddr - sec->vma;
1271
          stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1272
 
1273
          if (start > addr
1274
              && start < toaddr
1275
              && (stop <= addr || stop >= toaddr))
1276
            irel->r_offset += count;
1277
          else if (stop > addr
1278
                   && stop < toaddr
1279
                   && (start <= addr || start >= toaddr))
1280
            irel->r_offset -= count;
1281
 
1282
          start = stop;
1283
 
1284
          if (irel->r_type == R_SH_SWITCH16)
1285
            voff = bfd_get_signed_16 (abfd, contents + nraddr);
1286
          else if (irel->r_type == R_SH_SWITCH8)
1287
            voff = bfd_get_8 (abfd, contents + nraddr);
1288
          else
1289
            voff = bfd_get_signed_32 (abfd, contents + nraddr);
1290
          stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1291
 
1292
          break;
1293
 
1294
        case R_SH_USES:
1295
          start = irel->r_vaddr - sec->vma;
1296
          stop = (bfd_vma) ((bfd_signed_vma) start
1297
                            + (long) irel->r_offset
1298
                            + 4);
1299
          break;
1300
        }
1301
 
1302
      if (start > addr
1303
          && start < toaddr
1304
          && (stop <= addr || stop >= toaddr))
1305
        adjust = count;
1306
      else if (stop > addr
1307
               && stop < toaddr
1308
               && (start <= addr || start >= toaddr))
1309
        adjust = - count;
1310
      else
1311
        adjust = 0;
1312
 
1313
      if (adjust != 0)
1314
        {
1315
          oinsn = insn;
1316
          overflow = false;
1317
          switch (irel->r_type)
1318
            {
1319
            default:
1320
              abort ();
1321
              break;
1322
 
1323
            case R_SH_PCDISP8BY2:
1324
            case R_SH_PCRELIMM8BY2:
1325
              insn += adjust / 2;
1326
              if ((oinsn & 0xff00) != (insn & 0xff00))
1327
                overflow = true;
1328
              bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1329
              break;
1330
 
1331
            case R_SH_PCDISP:
1332
              insn += adjust / 2;
1333
              if ((oinsn & 0xf000) != (insn & 0xf000))
1334
                overflow = true;
1335
              bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1336
              break;
1337
 
1338
            case R_SH_PCRELIMM8BY4:
1339
              BFD_ASSERT (adjust == count || count >= 4);
1340
              if (count >= 4)
1341
                insn += adjust / 4;
1342
              else
1343
                {
1344
                  if ((irel->r_vaddr & 3) == 0)
1345
                    ++insn;
1346
                }
1347
              if ((oinsn & 0xff00) != (insn & 0xff00))
1348
                overflow = true;
1349
              bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1350
              break;
1351
 
1352
            case R_SH_SWITCH8:
1353
              voff += adjust;
1354
              if (voff < 0 || voff >= 0xff)
1355
                overflow = true;
1356
              bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
1357
              break;
1358
 
1359
            case R_SH_SWITCH16:
1360
              voff += adjust;
1361
              if (voff < - 0x8000 || voff >= 0x8000)
1362
                overflow = true;
1363
              bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1364
              break;
1365
 
1366
            case R_SH_SWITCH32:
1367
              voff += adjust;
1368
              bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1369
              break;
1370
 
1371
            case R_SH_USES:
1372
              irel->r_offset += adjust;
1373
              break;
1374
            }
1375
 
1376
          if (overflow)
1377
            {
1378
              ((*_bfd_error_handler)
1379
               ("%s: 0x%lx: fatal: reloc overflow while relaxing",
1380
                bfd_archive_filename (abfd), (unsigned long) irel->r_vaddr));
1381
              bfd_set_error (bfd_error_bad_value);
1382
              return false;
1383
            }
1384
        }
1385
 
1386
      irel->r_vaddr = nraddr + sec->vma;
1387
    }
1388
 
1389
  /* Look through all the other sections.  If there contain any IMM32
1390
     relocs against internal symbols which we are not going to adjust
1391
     below, we may need to adjust the addends.  */
1392
  for (o = abfd->sections; o != NULL; o = o->next)
1393
    {
1394
      struct internal_reloc *internal_relocs;
1395
      struct internal_reloc *irelscan, *irelscanend;
1396
      bfd_byte *ocontents;
1397
 
1398
      if (o == sec
1399
          || (o->flags & SEC_RELOC) == 0
1400
          || o->reloc_count == 0)
1401
        continue;
1402
 
1403
      /* We always cache the relocs.  Perhaps, if info->keep_memory is
1404
         false, we should free them, if we are permitted to, when we
1405
         leave sh_coff_relax_section.  */
1406
      internal_relocs = (_bfd_coff_read_internal_relocs
1407
                         (abfd, o, true, (bfd_byte *) NULL, false,
1408
                          (struct internal_reloc *) NULL));
1409
      if (internal_relocs == NULL)
1410
        return false;
1411
 
1412
      ocontents = NULL;
1413
      irelscanend = internal_relocs + o->reloc_count;
1414
      for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1415
        {
1416
          struct internal_syment sym;
1417
 
1418
#ifdef COFF_WITH_PE
1419
          if (irelscan->r_type != R_SH_IMM32
1420
              && irelscan->r_type != R_SH_IMAGEBASE
1421
              && irelscan->r_type != R_SH_IMM32CE)
1422
#else
1423
          if (irelscan->r_type != R_SH_IMM32)
1424
#endif
1425
            continue;
1426
 
1427
          bfd_coff_swap_sym_in (abfd,
1428
                                ((bfd_byte *) obj_coff_external_syms (abfd)
1429
                                 + (irelscan->r_symndx
1430
                                    * bfd_coff_symesz (abfd))),
1431
                                &sym);
1432
          if (sym.n_sclass != C_EXT
1433
              && sym.n_scnum == sec->target_index
1434
              && ((bfd_vma) sym.n_value <= addr
1435
                  || (bfd_vma) sym.n_value >= toaddr))
1436
            {
1437
              bfd_vma val;
1438
 
1439
              if (ocontents == NULL)
1440
                {
1441
                  if (coff_section_data (abfd, o)->contents != NULL)
1442
                    ocontents = coff_section_data (abfd, o)->contents;
1443
                  else
1444
                    {
1445
                      /* We always cache the section contents.
1446
                         Perhaps, if info->keep_memory is false, we
1447
                         should free them, if we are permitted to,
1448
                         when we leave sh_coff_relax_section.  */
1449
                      ocontents = (bfd_byte *) bfd_malloc (o->_raw_size);
1450
                      if (ocontents == NULL)
1451
                        return false;
1452
                      if (! bfd_get_section_contents (abfd, o, ocontents,
1453
                                                      (file_ptr) 0,
1454
                                                      o->_raw_size))
1455
                        return false;
1456
                      coff_section_data (abfd, o)->contents = ocontents;
1457
                    }
1458
                }
1459
 
1460
              val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1461
              val += sym.n_value;
1462
              if (val > addr && val < toaddr)
1463
                bfd_put_32 (abfd, val - count,
1464
                            ocontents + irelscan->r_vaddr - o->vma);
1465
 
1466
              coff_section_data (abfd, o)->keep_contents = true;
1467
            }
1468
        }
1469
    }
1470
 
1471
  /* Adjusting the internal symbols will not work if something has
1472
     already retrieved the generic symbols.  It would be possible to
1473
     make this work by adjusting the generic symbols at the same time.
1474
     However, this case should not arise in normal usage.  */
1475
  if (obj_symbols (abfd) != NULL
1476
      || obj_raw_syments (abfd) != NULL)
1477
    {
1478
      ((*_bfd_error_handler)
1479
       ("%s: fatal: generic symbols retrieved before relaxing",
1480
        bfd_archive_filename (abfd)));
1481
      bfd_set_error (bfd_error_invalid_operation);
1482
      return false;
1483
    }
1484
 
1485
  /* Adjust all the symbols.  */
1486
  sym_hash = obj_coff_sym_hashes (abfd);
1487
  symesz = bfd_coff_symesz (abfd);
1488
  esym = (bfd_byte *) obj_coff_external_syms (abfd);
1489
  esymend = esym + obj_raw_syment_count (abfd) * symesz;
1490
  while (esym < esymend)
1491
    {
1492
      struct internal_syment isym;
1493
 
1494
      bfd_coff_swap_sym_in (abfd, (PTR) esym, (PTR) &isym);
1495
 
1496
      if (isym.n_scnum == sec->target_index
1497
          && (bfd_vma) isym.n_value > addr
1498
          && (bfd_vma) isym.n_value < toaddr)
1499
        {
1500
          isym.n_value -= count;
1501
 
1502
          bfd_coff_swap_sym_out (abfd, (PTR) &isym, (PTR) esym);
1503
 
1504
          if (*sym_hash != NULL)
1505
            {
1506
              BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1507
                          || (*sym_hash)->root.type == bfd_link_hash_defweak);
1508
              BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1509
                          && (*sym_hash)->root.u.def.value < toaddr);
1510
              (*sym_hash)->root.u.def.value -= count;
1511
            }
1512
        }
1513
 
1514
      esym += (isym.n_numaux + 1) * symesz;
1515
      sym_hash += isym.n_numaux + 1;
1516
    }
1517
 
1518
  /* See if we can move the ALIGN reloc forward.  We have adjusted
1519
     r_vaddr for it already.  */
1520
  if (irelalign != NULL)
1521
    {
1522
      bfd_vma alignto, alignaddr;
1523
 
1524
      alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1525
      alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1526
                             1 << irelalign->r_offset);
1527
      if (alignto != alignaddr)
1528
        {
1529
          /* Tail recursion.  */
1530
          return sh_relax_delete_bytes (abfd, sec, alignaddr,
1531
                                        (int) (alignto - alignaddr));
1532
        }
1533
    }
1534
 
1535
  return true;
1536
}
1537
 
1538
/* This is yet another version of the SH opcode table, used to rapidly
1539
   get information about a particular instruction.  */
1540
 
1541
/* The opcode map is represented by an array of these structures.  The
1542
   array is indexed by the high order four bits in the instruction.  */
1543
 
1544
struct sh_major_opcode
1545
{
1546
  /* A pointer to the instruction list.  This is an array which
1547
     contains all the instructions with this major opcode.  */
1548
  const struct sh_minor_opcode *minor_opcodes;
1549
  /* The number of elements in minor_opcodes.  */
1550
  unsigned short count;
1551
};
1552
 
1553
/* This structure holds information for a set of SH opcodes.  The
1554
   instruction code is anded with the mask value, and the resulting
1555
   value is used to search the order opcode list.  */
1556
 
1557
struct sh_minor_opcode
1558
{
1559
  /* The sorted opcode list.  */
1560
  const struct sh_opcode *opcodes;
1561
  /* The number of elements in opcodes.  */
1562
  unsigned short count;
1563
  /* The mask value to use when searching the opcode list.  */
1564
  unsigned short mask;
1565
};
1566
 
1567
/* This structure holds information for an SH instruction.  An array
1568
   of these structures is sorted in order by opcode.  */
1569
 
1570
struct sh_opcode
1571
{
1572
  /* The code for this instruction, after it has been anded with the
1573
     mask value in the sh_major_opcode structure.  */
1574
  unsigned short opcode;
1575
  /* Flags for this instruction.  */
1576
  unsigned long flags;
1577
};
1578
 
1579
/* Flag which appear in the sh_opcode structure.  */
1580
 
1581
/* This instruction loads a value from memory.  */
1582
#define LOAD (0x1)
1583
 
1584
/* This instruction stores a value to memory.  */
1585
#define STORE (0x2)
1586
 
1587
/* This instruction is a branch.  */
1588
#define BRANCH (0x4)
1589
 
1590
/* This instruction has a delay slot.  */
1591
#define DELAY (0x8)
1592
 
1593
/* This instruction uses the value in the register in the field at
1594
   mask 0x0f00 of the instruction.  */
1595
#define USES1 (0x10)
1596
#define USES1_REG(x) ((x & 0x0f00) >> 8)
1597
 
1598
/* This instruction uses the value in the register in the field at
1599
   mask 0x00f0 of the instruction.  */
1600
#define USES2 (0x20)
1601
#define USES2_REG(x) ((x & 0x00f0) >> 4)
1602
 
1603
/* This instruction uses the value in register 0.  */
1604
#define USESR0 (0x40)
1605
 
1606
/* This instruction sets the value in the register in the field at
1607
   mask 0x0f00 of the instruction.  */
1608
#define SETS1 (0x80)
1609
#define SETS1_REG(x) ((x & 0x0f00) >> 8)
1610
 
1611
/* This instruction sets the value in the register in the field at
1612
   mask 0x00f0 of the instruction.  */
1613
#define SETS2 (0x100)
1614
#define SETS2_REG(x) ((x & 0x00f0) >> 4)
1615
 
1616
/* This instruction sets register 0.  */
1617
#define SETSR0 (0x200)
1618
 
1619
/* This instruction sets a special register.  */
1620
#define SETSSP (0x400)
1621
 
1622
/* This instruction uses a special register.  */
1623
#define USESSP (0x800)
1624
 
1625
/* This instruction uses the floating point register in the field at
1626
   mask 0x0f00 of the instruction.  */
1627
#define USESF1 (0x1000)
1628
#define USESF1_REG(x) ((x & 0x0f00) >> 8)
1629
 
1630
/* This instruction uses the floating point register in the field at
1631
   mask 0x00f0 of the instruction.  */
1632
#define USESF2 (0x2000)
1633
#define USESF2_REG(x) ((x & 0x00f0) >> 4)
1634
 
1635
/* This instruction uses floating point register 0.  */
1636
#define USESF0 (0x4000)
1637
 
1638
/* This instruction sets the floating point register in the field at
1639
   mask 0x0f00 of the instruction.  */
1640
#define SETSF1 (0x8000)
1641
#define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1642
 
1643
#define USESAS (0x10000)
1644
#define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1645
#define USESR8 (0x20000)
1646
#define SETSAS (0x40000)
1647
#define SETSAS_REG(x) USESAS_REG (x)
1648
 
1649
#ifndef COFF_IMAGE_WITH_PE
1650
static boolean sh_insn_uses_reg
1651
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1652
static boolean sh_insn_sets_reg
1653
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1654
static boolean sh_insn_uses_or_sets_reg
1655
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1656
static boolean sh_insn_uses_freg
1657
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1658
static boolean sh_insn_sets_freg
1659
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1660
static boolean sh_insn_uses_or_sets_freg
1661
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int));
1662
static boolean sh_insns_conflict
1663
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
1664
           const struct sh_opcode *));
1665
static boolean sh_load_use
1666
  PARAMS ((unsigned int, const struct sh_opcode *, unsigned int,
1667
           const struct sh_opcode *));
1668
#endif
1669
/* The opcode maps.  */
1670
 
1671
#define MAP(a) a, sizeof a / sizeof a[0]
1672
 
1673
static const struct sh_opcode sh_opcode00[] =
1674
{
1675
  { 0x0008, SETSSP },                   /* clrt */
1676
  { 0x0009, 0 },                 /* nop */
1677
  { 0x000b, BRANCH | DELAY | USESSP },  /* rts */
1678
  { 0x0018, SETSSP },                   /* sett */
1679
  { 0x0019, SETSSP },                   /* div0u */
1680
  { 0x001b, 0 },                 /* sleep */
1681
  { 0x0028, SETSSP },                   /* clrmac */
1682
  { 0x002b, BRANCH | DELAY | SETSSP },  /* rte */
1683
  { 0x0038, USESSP | SETSSP },          /* ldtlb */
1684
  { 0x0048, SETSSP },                   /* clrs */
1685
  { 0x0058, SETSSP }                    /* sets */
1686
};
1687
 
1688
static const struct sh_opcode sh_opcode01[] =
1689
{
1690
  { 0x0003, BRANCH | DELAY | USES1 | SETSSP },  /* bsrf rn */
1691
  { 0x000a, SETS1 | USESSP },                   /* sts mach,rn */
1692
  { 0x001a, SETS1 | USESSP },                   /* sts macl,rn */
1693
  { 0x0023, BRANCH | DELAY | USES1 },           /* braf rn */
1694
  { 0x0029, SETS1 | USESSP },                   /* movt rn */
1695
  { 0x002a, SETS1 | USESSP },                   /* sts pr,rn */
1696
  { 0x005a, SETS1 | USESSP },                   /* sts fpul,rn */
1697
  { 0x006a, SETS1 | USESSP },                   /* sts fpscr,rn / sts dsr,rn */
1698
  { 0x0083, LOAD | USES1 },                     /* pref @rn */
1699
  { 0x007a, SETS1 | USESSP },                   /* sts a0,rn */
1700
  { 0x008a, SETS1 | USESSP },                   /* sts x0,rn */
1701
  { 0x009a, SETS1 | USESSP },                   /* sts x1,rn */
1702
  { 0x00aa, SETS1 | USESSP },                   /* sts y0,rn */
1703
  { 0x00ba, SETS1 | USESSP }                    /* sts y1,rn */
1704
};
1705
 
1706
/* These sixteen instructions can be handled with one table entry below.  */
1707
#if 0
1708
  { 0x0002, SETS1 | USESSP },                   /* stc sr,rn */
1709
  { 0x0012, SETS1 | USESSP },                   /* stc gbr,rn */
1710
  { 0x0022, SETS1 | USESSP },                   /* stc vbr,rn */
1711
  { 0x0032, SETS1 | USESSP },                   /* stc ssr,rn */
1712
  { 0x0042, SETS1 | USESSP },                   /* stc spc,rn */
1713
  { 0x0052, SETS1 | USESSP },                   /* stc mod,rn */
1714
  { 0x0062, SETS1 | USESSP },                   /* stc rs,rn */
1715
  { 0x0072, SETS1 | USESSP },                   /* stc re,rn */
1716
  { 0x0082, SETS1 | USESSP },                   /* stc r0_bank,rn */
1717
  { 0x0092, SETS1 | USESSP },                   /* stc r1_bank,rn */
1718
  { 0x00a2, SETS1 | USESSP },                   /* stc r2_bank,rn */
1719
  { 0x00b2, SETS1 | USESSP },                   /* stc r3_bank,rn */
1720
  { 0x00c2, SETS1 | USESSP },                   /* stc r4_bank,rn */
1721
  { 0x00d2, SETS1 | USESSP },                   /* stc r5_bank,rn */
1722
  { 0x00e2, SETS1 | USESSP },                   /* stc r6_bank,rn */
1723
  { 0x00f2, SETS1 | USESSP }                    /* stc r7_bank,rn */
1724
#endif
1725
 
1726
static const struct sh_opcode sh_opcode02[] =
1727
{
1728
  { 0x0002, SETS1 | USESSP },                   /* stc <special_reg>,rn */
1729
  { 0x0004, STORE | USES1 | USES2 | USESR0 },   /* mov.b rm,@(r0,rn) */
1730
  { 0x0005, STORE | USES1 | USES2 | USESR0 },   /* mov.w rm,@(r0,rn) */
1731
  { 0x0006, STORE | USES1 | USES2 | USESR0 },   /* mov.l rm,@(r0,rn) */
1732
  { 0x0007, SETSSP | USES1 | USES2 },           /* mul.l rm,rn */
1733
  { 0x000c, LOAD | SETS1 | USES2 | USESR0 },    /* mov.b @(r0,rm),rn */
1734
  { 0x000d, LOAD | SETS1 | USES2 | USESR0 },    /* mov.w @(r0,rm),rn */
1735
  { 0x000e, LOAD | SETS1 | USES2 | USESR0 },    /* mov.l @(r0,rm),rn */
1736
  { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1737
};
1738
 
1739
static const struct sh_minor_opcode sh_opcode0[] =
1740
{
1741
  { MAP (sh_opcode00), 0xffff },
1742
  { MAP (sh_opcode01), 0xf0ff },
1743
  { MAP (sh_opcode02), 0xf00f }
1744
};
1745
 
1746
static const struct sh_opcode sh_opcode10[] =
1747
{
1748
  { 0x1000, STORE | USES1 | USES2 }     /* mov.l rm,@(disp,rn) */
1749
};
1750
 
1751
static const struct sh_minor_opcode sh_opcode1[] =
1752
{
1753
  { MAP (sh_opcode10), 0xf000 }
1754
};
1755
 
1756
static const struct sh_opcode sh_opcode20[] =
1757
{
1758
  { 0x2000, STORE | USES1 | USES2 },            /* mov.b rm,@rn */
1759
  { 0x2001, STORE | USES1 | USES2 },            /* mov.w rm,@rn */
1760
  { 0x2002, STORE | USES1 | USES2 },            /* mov.l rm,@rn */
1761
  { 0x2004, STORE | SETS1 | USES1 | USES2 },    /* mov.b rm,@-rn */
1762
  { 0x2005, STORE | SETS1 | USES1 | USES2 },    /* mov.w rm,@-rn */
1763
  { 0x2006, STORE | SETS1 | USES1 | USES2 },    /* mov.l rm,@-rn */
1764
  { 0x2007, SETSSP | USES1 | USES2 | USESSP },  /* div0s */
1765
  { 0x2008, SETSSP | USES1 | USES2 },           /* tst rm,rn */
1766
  { 0x2009, SETS1 | USES1 | USES2 },            /* and rm,rn */
1767
  { 0x200a, SETS1 | USES1 | USES2 },            /* xor rm,rn */
1768
  { 0x200b, SETS1 | USES1 | USES2 },            /* or rm,rn */
1769
  { 0x200c, SETSSP | USES1 | USES2 },           /* cmp/str rm,rn */
1770
  { 0x200d, SETS1 | USES1 | USES2 },            /* xtrct rm,rn */
1771
  { 0x200e, SETSSP | USES1 | USES2 },           /* mulu.w rm,rn */
1772
  { 0x200f, SETSSP | USES1 | USES2 }            /* muls.w rm,rn */
1773
};
1774
 
1775
static const struct sh_minor_opcode sh_opcode2[] =
1776
{
1777
  { MAP (sh_opcode20), 0xf00f }
1778
};
1779
 
1780
static const struct sh_opcode sh_opcode30[] =
1781
{
1782
  { 0x3000, SETSSP | USES1 | USES2 },           /* cmp/eq rm,rn */
1783
  { 0x3002, SETSSP | USES1 | USES2 },           /* cmp/hs rm,rn */
1784
  { 0x3003, SETSSP | USES1 | USES2 },           /* cmp/ge rm,rn */
1785
  { 0x3004, SETSSP | USESSP | USES1 | USES2 },  /* div1 rm,rn */
1786
  { 0x3005, SETSSP | USES1 | USES2 },           /* dmulu.l rm,rn */
1787
  { 0x3006, SETSSP | USES1 | USES2 },           /* cmp/hi rm,rn */
1788
  { 0x3007, SETSSP | USES1 | USES2 },           /* cmp/gt rm,rn */
1789
  { 0x3008, SETS1 | USES1 | USES2 },            /* sub rm,rn */
1790
  { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1791
  { 0x300b, SETS1 | SETSSP | USES1 | USES2 },   /* subv rm,rn */
1792
  { 0x300c, SETS1 | USES1 | USES2 },            /* add rm,rn */
1793
  { 0x300d, SETSSP | USES1 | USES2 },           /* dmuls.l rm,rn */
1794
  { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1795
  { 0x300f, SETS1 | SETSSP | USES1 | USES2 }    /* addv rm,rn */
1796
};
1797
 
1798
static const struct sh_minor_opcode sh_opcode3[] =
1799
{
1800
  { MAP (sh_opcode30), 0xf00f }
1801
};
1802
 
1803
static const struct sh_opcode sh_opcode40[] =
1804
{
1805
  { 0x4000, SETS1 | SETSSP | USES1 },           /* shll rn */
1806
  { 0x4001, SETS1 | SETSSP | USES1 },           /* shlr rn */
1807
  { 0x4002, STORE | SETS1 | USES1 | USESSP },   /* sts.l mach,@-rn */
1808
  { 0x4004, SETS1 | SETSSP | USES1 },           /* rotl rn */
1809
  { 0x4005, SETS1 | SETSSP | USES1 },           /* rotr rn */
1810
  { 0x4006, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,mach */
1811
  { 0x4008, SETS1 | USES1 },                    /* shll2 rn */
1812
  { 0x4009, SETS1 | USES1 },                    /* shlr2 rn */
1813
  { 0x400a, SETSSP | USES1 },                   /* lds rm,mach */
1814
  { 0x400b, BRANCH | DELAY | USES1 },           /* jsr @rn */
1815
  { 0x4010, SETS1 | SETSSP | USES1 },           /* dt rn */
1816
  { 0x4011, SETSSP | USES1 },                   /* cmp/pz rn */
1817
  { 0x4012, STORE | SETS1 | USES1 | USESSP },   /* sts.l macl,@-rn */
1818
  { 0x4014, SETSSP | USES1 },                   /* setrc rm */
1819
  { 0x4015, SETSSP | USES1 },                   /* cmp/pl rn */
1820
  { 0x4016, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,macl */
1821
  { 0x4018, SETS1 | USES1 },                    /* shll8 rn */
1822
  { 0x4019, SETS1 | USES1 },                    /* shlr8 rn */
1823
  { 0x401a, SETSSP | USES1 },                   /* lds rm,macl */
1824
  { 0x401b, LOAD | SETSSP | USES1 },            /* tas.b @rn */
1825
  { 0x4020, SETS1 | SETSSP | USES1 },           /* shal rn */
1826
  { 0x4021, SETS1 | SETSSP | USES1 },           /* shar rn */
1827
  { 0x4022, STORE | SETS1 | USES1 | USESSP },   /* sts.l pr,@-rn */
1828
  { 0x4024, SETS1 | SETSSP | USES1 | USESSP },  /* rotcl rn */
1829
  { 0x4025, SETS1 | SETSSP | USES1 | USESSP },  /* rotcr rn */
1830
  { 0x4026, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,pr */
1831
  { 0x4028, SETS1 | USES1 },                    /* shll16 rn */
1832
  { 0x4029, SETS1 | USES1 },                    /* shlr16 rn */
1833
  { 0x402a, SETSSP | USES1 },                   /* lds rm,pr */
1834
  { 0x402b, BRANCH | DELAY | USES1 },           /* jmp @rn */
1835
  { 0x4052, STORE | SETS1 | USES1 | USESSP },   /* sts.l fpul,@-rn */
1836
  { 0x4056, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,fpul */
1837
  { 0x405a, SETSSP | USES1 },                   /* lds.l rm,fpul */
1838
  { 0x4062, STORE | SETS1 | USES1 | USESSP },   /* sts.l fpscr / dsr,@-rn */
1839
  { 0x4066, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,fpscr / dsr */
1840
  { 0x406a, SETSSP | USES1 },                   /* lds rm,fpscr / lds rm,dsr */
1841
  { 0x4072, STORE | SETS1 | USES1 | USESSP },   /* sts.l a0,@-rn */
1842
  { 0x4076, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,a0 */
1843
  { 0x407a, SETSSP | USES1 },                   /* lds.l rm,a0 */
1844
  { 0x4082, STORE | SETS1 | USES1 | USESSP },   /* sts.l x0,@-rn */
1845
  { 0x4086, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,x0 */
1846
  { 0x408a, SETSSP | USES1 },                   /* lds.l rm,x0 */
1847
  { 0x4092, STORE | SETS1 | USES1 | USESSP },   /* sts.l x1,@-rn */
1848
  { 0x4096, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,x1 */
1849
  { 0x409a, SETSSP | USES1 },                   /* lds.l rm,x1 */
1850
  { 0x40a2, STORE | SETS1 | USES1 | USESSP },   /* sts.l y0,@-rn */
1851
  { 0x40a6, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,y0 */
1852
  { 0x40aa, SETSSP | USES1 },                   /* lds.l rm,y0 */
1853
  { 0x40b2, STORE | SETS1 | USES1 | USESSP },   /* sts.l y1,@-rn */
1854
  { 0x40b6, LOAD | SETS1 | SETSSP | USES1 },    /* lds.l @rm+,y1 */
1855
  { 0x40ba, SETSSP | USES1 }                    /* lds.l rm,y1 */
1856
#if 0 /* These groups sixteen insns can be
1857
         handled with one table entry each below.  */
1858
  { 0x4003, STORE | SETS1 | USES1 | USESSP },   /* stc.l sr,@-rn */
1859
  { 0x4013, STORE | SETS1 | USES1 | USESSP },   /* stc.l gbr,@-rn */
1860
  { 0x4023, STORE | SETS1 | USES1 | USESSP },   /* stc.l vbr,@-rn */
1861
  { 0x4033, STORE | SETS1 | USES1 | USESSP },   /* stc.l ssr,@-rn */
1862
  { 0x4043, STORE | SETS1 | USES1 | USESSP },   /* stc.l spc,@-rn */
1863
  { 0x4053, STORE | SETS1 | USES1 | USESSP },   /* stc.l mod,@-rn */
1864
  { 0x4063, STORE | SETS1 | USES1 | USESSP },   /* stc.l rs,@-rn */
1865
  { 0x4073, STORE | SETS1 | USES1 | USESSP },   /* stc.l re,@-rn */
1866
  { 0x4083, STORE | SETS1 | USES1 | USESSP },   /* stc.l r0_bank,@-rn */
1867
  ..
1868
  { 0x40f3, STORE | SETS1 | USES1 | USESSP },   /* stc.l r7_bank,@-rn */
1869
 
1870
  { 0x4007, LOAD | SETS1 | SETSSP | USES1 },    /* ldc.l @rm+,sr */
1871
  { 0x4017, LOAD | SETS1 | SETSSP | USES1 },    /* ldc.l @rm+,gbr */
1872
  { 0x4027, LOAD | SETS1 | SETSSP | USES1 },    /* ldc.l @rm+,vbr */
1873
  { 0x4037, LOAD | SETS1 | SETSSP | USES1 },    /* ldc.l @rm+,ssr */
1874
  { 0x4047, LOAD | SETS1 | SETSSP | USES1 },    /* ldc.l @rm+,spc */
1875
  { 0x4057, LOAD | SETS1 | SETSSP | USES1 },    /* ldc.l @rm+,mod */
1876
  { 0x4067, LOAD | SETS1 | SETSSP | USES1 },    /* ldc.l @rm+,rs */
1877
  { 0x4077, LOAD | SETS1 | SETSSP | USES1 },    /* ldc.l @rm+,re */
1878
  { 0x4087, LOAD | SETS1 | SETSSP | USES1 },    /* ldc.l @rm+,r0_bank */
1879
  ..
1880
  { 0x40f7, LOAD | SETS1 | SETSSP | USES1 },    /* ldc.l @rm+,r7_bank */
1881
 
1882
  { 0x400e, SETSSP | USES1 },                   /* ldc rm,sr */
1883
  { 0x401e, SETSSP | USES1 },                   /* ldc rm,gbr */
1884
  { 0x402e, SETSSP | USES1 },                   /* ldc rm,vbr */
1885
  { 0x403e, SETSSP | USES1 },                   /* ldc rm,ssr */
1886
  { 0x404e, SETSSP | USES1 },                   /* ldc rm,spc */
1887
  { 0x405e, SETSSP | USES1 },                   /* ldc rm,mod */
1888
  { 0x406e, SETSSP | USES1 },                   /* ldc rm,rs */
1889
  { 0x407e, SETSSP | USES1 }                    /* ldc rm,re */
1890
  { 0x408e, SETSSP | USES1 }                    /* ldc rm,r0_bank */
1891
  ..
1892
  { 0x40fe, SETSSP | USES1 }                    /* ldc rm,r7_bank */
1893
#endif
1894
};
1895
 
1896
static const struct sh_opcode sh_opcode41[] =
1897
{
1898
  { 0x4003, STORE | SETS1 | USES1 | USESSP },   /* stc.l <special_reg>,@-rn */
1899
  { 0x4007, LOAD | SETS1 | SETSSP | USES1 },    /* ldc.l @rm+,<special_reg> */
1900
  { 0x400c, SETS1 | USES1 | USES2 },            /* shad rm,rn */
1901
  { 0x400d, SETS1 | USES1 | USES2 },            /* shld rm,rn */
1902
  { 0x400e, SETSSP | USES1 },                   /* ldc rm,<special_reg> */
1903
  { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1904
};
1905
 
1906
static const struct sh_minor_opcode sh_opcode4[] =
1907
{
1908
  { MAP (sh_opcode40), 0xf0ff },
1909
  { MAP (sh_opcode41), 0xf00f }
1910
};
1911
 
1912
static const struct sh_opcode sh_opcode50[] =
1913
{
1914
  { 0x5000, LOAD | SETS1 | USES2 }      /* mov.l @(disp,rm),rn */
1915
};
1916
 
1917
static const struct sh_minor_opcode sh_opcode5[] =
1918
{
1919
  { MAP (sh_opcode50), 0xf000 }
1920
};
1921
 
1922
static const struct sh_opcode sh_opcode60[] =
1923
{
1924
  { 0x6000, LOAD | SETS1 | USES2 },             /* mov.b @rm,rn */
1925
  { 0x6001, LOAD | SETS1 | USES2 },             /* mov.w @rm,rn */
1926
  { 0x6002, LOAD | SETS1 | USES2 },             /* mov.l @rm,rn */
1927
  { 0x6003, SETS1 | USES2 },                    /* mov rm,rn */
1928
  { 0x6004, LOAD | SETS1 | SETS2 | USES2 },     /* mov.b @rm+,rn */
1929
  { 0x6005, LOAD | SETS1 | SETS2 | USES2 },     /* mov.w @rm+,rn */
1930
  { 0x6006, LOAD | SETS1 | SETS2 | USES2 },     /* mov.l @rm+,rn */
1931
  { 0x6007, SETS1 | USES2 },                    /* not rm,rn */
1932
  { 0x6008, SETS1 | USES2 },                    /* swap.b rm,rn */
1933
  { 0x6009, SETS1 | USES2 },                    /* swap.w rm,rn */
1934
  { 0x600a, SETS1 | SETSSP | USES2 | USESSP },  /* negc rm,rn */
1935
  { 0x600b, SETS1 | USES2 },                    /* neg rm,rn */
1936
  { 0x600c, SETS1 | USES2 },                    /* extu.b rm,rn */
1937
  { 0x600d, SETS1 | USES2 },                    /* extu.w rm,rn */
1938
  { 0x600e, SETS1 | USES2 },                    /* exts.b rm,rn */
1939
  { 0x600f, SETS1 | USES2 }                     /* exts.w rm,rn */
1940
};
1941
 
1942
static const struct sh_minor_opcode sh_opcode6[] =
1943
{
1944
  { MAP (sh_opcode60), 0xf00f }
1945
};
1946
 
1947
static const struct sh_opcode sh_opcode70[] =
1948
{
1949
  { 0x7000, SETS1 | USES1 }             /* add #imm,rn */
1950
};
1951
 
1952
static const struct sh_minor_opcode sh_opcode7[] =
1953
{
1954
  { MAP (sh_opcode70), 0xf000 }
1955
};
1956
 
1957
static const struct sh_opcode sh_opcode80[] =
1958
{
1959
  { 0x8000, STORE | USES2 | USESR0 },   /* mov.b r0,@(disp,rn) */
1960
  { 0x8100, STORE | USES2 | USESR0 },   /* mov.w r0,@(disp,rn) */
1961
  { 0x8200, SETSSP },                   /* setrc #imm */
1962
  { 0x8400, LOAD | SETSR0 | USES2 },    /* mov.b @(disp,rm),r0 */
1963
  { 0x8500, LOAD | SETSR0 | USES2 },    /* mov.w @(disp,rn),r0 */
1964
  { 0x8800, SETSSP | USESR0 },          /* cmp/eq #imm,r0 */
1965
  { 0x8900, BRANCH | USESSP },          /* bt label */
1966
  { 0x8b00, BRANCH | USESSP },          /* bf label */
1967
  { 0x8c00, SETSSP },                   /* ldrs @(disp,pc) */
1968
  { 0x8d00, BRANCH | DELAY | USESSP },  /* bt/s label */
1969
  { 0x8e00, SETSSP },                   /* ldre @(disp,pc) */
1970
  { 0x8f00, BRANCH | DELAY | USESSP }   /* bf/s label */
1971
};
1972
 
1973
static const struct sh_minor_opcode sh_opcode8[] =
1974
{
1975
  { MAP (sh_opcode80), 0xff00 }
1976
};
1977
 
1978
static const struct sh_opcode sh_opcode90[] =
1979
{
1980
  { 0x9000, LOAD | SETS1 }      /* mov.w @(disp,pc),rn */
1981
};
1982
 
1983
static const struct sh_minor_opcode sh_opcode9[] =
1984
{
1985
  { MAP (sh_opcode90), 0xf000 }
1986
};
1987
 
1988
static const struct sh_opcode sh_opcodea0[] =
1989
{
1990
  { 0xa000, BRANCH | DELAY }    /* bra label */
1991
};
1992
 
1993
static const struct sh_minor_opcode sh_opcodea[] =
1994
{
1995
  { MAP (sh_opcodea0), 0xf000 }
1996
};
1997
 
1998
static const struct sh_opcode sh_opcodeb0[] =
1999
{
2000
  { 0xb000, BRANCH | DELAY }    /* bsr label */
2001
};
2002
 
2003
static const struct sh_minor_opcode sh_opcodeb[] =
2004
{
2005
  { MAP (sh_opcodeb0), 0xf000 }
2006
};
2007
 
2008
static const struct sh_opcode sh_opcodec0[] =
2009
{
2010
  { 0xc000, STORE | USESR0 | USESSP },          /* mov.b r0,@(disp,gbr) */
2011
  { 0xc100, STORE | USESR0 | USESSP },          /* mov.w r0,@(disp,gbr) */
2012
  { 0xc200, STORE | USESR0 | USESSP },          /* mov.l r0,@(disp,gbr) */
2013
  { 0xc300, BRANCH | USESSP },                  /* trapa #imm */
2014
  { 0xc400, LOAD | SETSR0 | USESSP },           /* mov.b @(disp,gbr),r0 */
2015
  { 0xc500, LOAD | SETSR0 | USESSP },           /* mov.w @(disp,gbr),r0 */
2016
  { 0xc600, LOAD | SETSR0 | USESSP },           /* mov.l @(disp,gbr),r0 */
2017
  { 0xc700, SETSR0 },                           /* mova @(disp,pc),r0 */
2018
  { 0xc800, SETSSP | USESR0 },                  /* tst #imm,r0 */
2019
  { 0xc900, SETSR0 | USESR0 },                  /* and #imm,r0 */
2020
  { 0xca00, SETSR0 | USESR0 },                  /* xor #imm,r0 */
2021
  { 0xcb00, SETSR0 | USESR0 },                  /* or #imm,r0 */
2022
  { 0xcc00, LOAD | SETSSP | USESR0 | USESSP },  /* tst.b #imm,@(r0,gbr) */
2023
  { 0xcd00, LOAD | STORE | USESR0 | USESSP },   /* and.b #imm,@(r0,gbr) */
2024
  { 0xce00, LOAD | STORE | USESR0 | USESSP },   /* xor.b #imm,@(r0,gbr) */
2025
  { 0xcf00, LOAD | STORE | USESR0 | USESSP }    /* or.b #imm,@(r0,gbr) */
2026
};
2027
 
2028
static const struct sh_minor_opcode sh_opcodec[] =
2029
{
2030
  { MAP (sh_opcodec0), 0xff00 }
2031
};
2032
 
2033
static const struct sh_opcode sh_opcoded0[] =
2034
{
2035
  { 0xd000, LOAD | SETS1 }              /* mov.l @(disp,pc),rn */
2036
};
2037
 
2038
static const struct sh_minor_opcode sh_opcoded[] =
2039
{
2040
  { MAP (sh_opcoded0), 0xf000 }
2041
};
2042
 
2043
static const struct sh_opcode sh_opcodee0[] =
2044
{
2045
  { 0xe000, SETS1 }             /* mov #imm,rn */
2046
};
2047
 
2048
static const struct sh_minor_opcode sh_opcodee[] =
2049
{
2050
  { MAP (sh_opcodee0), 0xf000 }
2051
};
2052
 
2053
static const struct sh_opcode sh_opcodef0[] =
2054
{
2055
  { 0xf000, SETSF1 | USESF1 | USESF2 },         /* fadd fm,fn */
2056
  { 0xf001, SETSF1 | USESF1 | USESF2 },         /* fsub fm,fn */
2057
  { 0xf002, SETSF1 | USESF1 | USESF2 },         /* fmul fm,fn */
2058
  { 0xf003, SETSF1 | USESF1 | USESF2 },         /* fdiv fm,fn */
2059
  { 0xf004, SETSSP | USESF1 | USESF2 },         /* fcmp/eq fm,fn */
2060
  { 0xf005, SETSSP | USESF1 | USESF2 },         /* fcmp/gt fm,fn */
2061
  { 0xf006, LOAD | SETSF1 | USES2 | USESR0 },   /* fmov.s @(r0,rm),fn */
2062
  { 0xf007, STORE | USES1 | USESF2 | USESR0 },  /* fmov.s fm,@(r0,rn) */
2063
  { 0xf008, LOAD | SETSF1 | USES2 },            /* fmov.s @rm,fn */
2064
  { 0xf009, LOAD | SETS2 | SETSF1 | USES2 },    /* fmov.s @rm+,fn */
2065
  { 0xf00a, STORE | USES1 | USESF2 },           /* fmov.s fm,@rn */
2066
  { 0xf00b, STORE | SETS1 | USES1 | USESF2 },   /* fmov.s fm,@-rn */
2067
  { 0xf00c, SETSF1 | USESF2 },                  /* fmov fm,fn */
2068
  { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
2069
};
2070
 
2071
static const struct sh_opcode sh_opcodef1[] =
2072
{
2073
  { 0xf00d, SETSF1 | USESSP },  /* fsts fpul,fn */
2074
  { 0xf01d, SETSSP | USESF1 },  /* flds fn,fpul */
2075
  { 0xf02d, SETSF1 | USESSP },  /* float fpul,fn */
2076
  { 0xf03d, SETSSP | USESF1 },  /* ftrc fn,fpul */
2077
  { 0xf04d, SETSF1 | USESF1 },  /* fneg fn */
2078
  { 0xf05d, SETSF1 | USESF1 },  /* fabs fn */
2079
  { 0xf06d, SETSF1 | USESF1 },  /* fsqrt fn */
2080
  { 0xf07d, SETSSP | USESF1 },  /* ftst/nan fn */
2081
  { 0xf08d, SETSF1 },           /* fldi0 fn */
2082
  { 0xf09d, SETSF1 }            /* fldi1 fn */
2083
};
2084
 
2085
static const struct sh_minor_opcode sh_opcodef[] =
2086
{
2087
  { MAP (sh_opcodef0), 0xf00f },
2088
  { MAP (sh_opcodef1), 0xf0ff }
2089
};
2090
 
2091
#ifndef COFF_IMAGE_WITH_PE
2092
static struct sh_major_opcode sh_opcodes[] =
2093
{
2094
  { MAP (sh_opcode0) },
2095
  { MAP (sh_opcode1) },
2096
  { MAP (sh_opcode2) },
2097
  { MAP (sh_opcode3) },
2098
  { MAP (sh_opcode4) },
2099
  { MAP (sh_opcode5) },
2100
  { MAP (sh_opcode6) },
2101
  { MAP (sh_opcode7) },
2102
  { MAP (sh_opcode8) },
2103
  { MAP (sh_opcode9) },
2104
  { MAP (sh_opcodea) },
2105
  { MAP (sh_opcodeb) },
2106
  { MAP (sh_opcodec) },
2107
  { MAP (sh_opcoded) },
2108
  { MAP (sh_opcodee) },
2109
  { MAP (sh_opcodef) }
2110
};
2111
#endif
2112
 
2113
/* The double data transfer / parallel processing insns are not
2114
   described here.  This will cause sh_align_load_span to leave them alone.  */
2115
 
2116
static const struct sh_opcode sh_dsp_opcodef0[] =
2117
{
2118
  { 0xf400, USESAS | SETSAS | LOAD | SETSSP },  /* movs.x @-as,ds */
2119
  { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
2120
  { 0xf404, USESAS | LOAD | SETSSP },           /* movs.x @as,ds */
2121
  { 0xf405, USESAS | STORE | USESSP },          /* movs.x ds,@as */
2122
  { 0xf408, USESAS | SETSAS | LOAD | SETSSP },  /* movs.x @as+,ds */
2123
  { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
2124
  { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
2125
  { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
2126
};
2127
 
2128
static const struct sh_minor_opcode sh_dsp_opcodef[] =
2129
{
2130
  { MAP (sh_dsp_opcodef0), 0xfc0d }
2131
};
2132
 
2133
#ifndef COFF_IMAGE_WITH_PE
2134
/* Given an instruction, return a pointer to the corresponding
2135
   sh_opcode structure.  Return NULL if the instruction is not
2136
   recognized.  */
2137
 
2138
static const struct sh_opcode *
2139
sh_insn_info (insn)
2140
     unsigned int insn;
2141
{
2142
  const struct sh_major_opcode *maj;
2143
  const struct sh_minor_opcode *min, *minend;
2144
 
2145
  maj = &sh_opcodes[(insn & 0xf000) >> 12];
2146
  min = maj->minor_opcodes;
2147
  minend = min + maj->count;
2148
  for (; min < minend; min++)
2149
    {
2150
      unsigned int l;
2151
      const struct sh_opcode *op, *opend;
2152
 
2153
      l = insn & min->mask;
2154
      op = min->opcodes;
2155
      opend = op + min->count;
2156
 
2157
      /* Since the opcodes tables are sorted, we could use a binary
2158
         search here if the count were above some cutoff value.  */
2159
      for (; op < opend; op++)
2160
        if (op->opcode == l)
2161
          return op;
2162
    }
2163
 
2164
  return NULL;
2165
}
2166
 
2167
/* See whether an instruction uses or sets a general purpose register */
2168
 
2169
static boolean
2170
sh_insn_uses_or_sets_reg (insn, op, reg)
2171
     unsigned int insn;
2172
     const struct sh_opcode *op;
2173
     unsigned int reg;
2174
{
2175
  if (sh_insn_uses_reg (insn, op, reg))
2176
    return true;
2177
 
2178
  return sh_insn_sets_reg (insn, op, reg);
2179
}
2180
 
2181
/* See whether an instruction uses a general purpose register.  */
2182
 
2183
static boolean
2184
sh_insn_uses_reg (insn, op, reg)
2185
     unsigned int insn;
2186
     const struct sh_opcode *op;
2187
     unsigned int reg;
2188
{
2189
  unsigned int f;
2190
 
2191
  f = op->flags;
2192
 
2193
  if ((f & USES1) != 0
2194
      && USES1_REG (insn) == reg)
2195
    return true;
2196
  if ((f & USES2) != 0
2197
      && USES2_REG (insn) == reg)
2198
    return true;
2199
  if ((f & USESR0) != 0
2200
      && reg == 0)
2201
    return true;
2202
  if ((f & USESAS) && reg == USESAS_REG (insn))
2203
    return true;
2204
  if ((f & USESR8) && reg == 8)
2205
    return true;
2206
 
2207
  return false;
2208
}
2209
 
2210
/* See whether an instruction sets a general purpose register.  */
2211
 
2212
static boolean
2213
sh_insn_sets_reg (insn, op, reg)
2214
     unsigned int insn;
2215
     const struct sh_opcode *op;
2216
     unsigned int reg;
2217
{
2218
  unsigned int f;
2219
 
2220
  f = op->flags;
2221
 
2222
  if ((f & SETS1) != 0
2223
      && SETS1_REG (insn) == reg)
2224
    return true;
2225
  if ((f & SETS2) != 0
2226
      && SETS2_REG (insn) == reg)
2227
    return true;
2228
  if ((f & SETSR0) != 0
2229
      && reg == 0)
2230
    return true;
2231
  if ((f & SETSAS) && reg == SETSAS_REG (insn))
2232
    return true;
2233
 
2234
  return false;
2235
}
2236
 
2237
/* See whether an instruction uses or sets a floating point register */
2238
 
2239
static boolean
2240
sh_insn_uses_or_sets_freg (insn, op, reg)
2241
     unsigned int insn;
2242
     const struct sh_opcode *op;
2243
     unsigned int reg;
2244
{
2245
  if (sh_insn_uses_freg (insn, op, reg))
2246
    return true;
2247
 
2248
  return sh_insn_sets_freg (insn, op, reg);
2249
}
2250
 
2251
/* See whether an instruction uses a floating point register.  */
2252
 
2253
static boolean
2254
sh_insn_uses_freg (insn, op, freg)
2255
     unsigned int insn;
2256
     const struct sh_opcode *op;
2257
     unsigned int freg;
2258
{
2259
  unsigned int f;
2260
 
2261
  f = op->flags;
2262
 
2263
  /* We can't tell if this is a double-precision insn, so just play safe
2264
     and assume that it might be.  So not only have we test FREG against
2265
     itself, but also even FREG against FREG+1 - if the using insn uses
2266
     just the low part of a double precision value - but also an odd
2267
     FREG against FREG-1 -  if the setting insn sets just the low part
2268
     of a double precision value.
2269
     So what this all boils down to is that we have to ignore the lowest
2270
     bit of the register number.  */
2271
 
2272
  if ((f & USESF1) != 0
2273
      && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
2274
    return true;
2275
  if ((f & USESF2) != 0
2276
      && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
2277
    return true;
2278
  if ((f & USESF0) != 0
2279
      && freg == 0)
2280
    return true;
2281
 
2282
  return false;
2283
}
2284
 
2285
/* See whether an instruction sets a floating point register.  */
2286
 
2287
static boolean
2288
sh_insn_sets_freg (insn, op, freg)
2289
     unsigned int insn;
2290
     const struct sh_opcode *op;
2291
     unsigned int freg;
2292
{
2293
  unsigned int f;
2294
 
2295
  f = op->flags;
2296
 
2297
  /* We can't tell if this is a double-precision insn, so just play safe
2298
     and assume that it might be.  So not only have we test FREG against
2299
     itself, but also even FREG against FREG+1 - if the using insn uses
2300
     just the low part of a double precision value - but also an odd
2301
     FREG against FREG-1 -  if the setting insn sets just the low part
2302
     of a double precision value.
2303
     So what this all boils down to is that we have to ignore the lowest
2304
     bit of the register number.  */
2305
 
2306
  if ((f & SETSF1) != 0
2307
      && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
2308
    return true;
2309
 
2310
  return false;
2311
}
2312
 
2313
/* See whether instructions I1 and I2 conflict, assuming I1 comes
2314
   before I2.  OP1 and OP2 are the corresponding sh_opcode structures.
2315
   This should return true if there is a conflict, or false if the
2316
   instructions can be swapped safely.  */
2317
 
2318
static boolean
2319
sh_insns_conflict (i1, op1, i2, op2)
2320
     unsigned int i1;
2321
     const struct sh_opcode *op1;
2322
     unsigned int i2;
2323
     const struct sh_opcode *op2;
2324
{
2325
  unsigned int f1, f2;
2326
 
2327
  f1 = op1->flags;
2328
  f2 = op2->flags;
2329
 
2330
  /* Load of fpscr conflicts with floating point operations.
2331
     FIXME: shouldn't test raw opcodes here.  */
2332
  if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2333
      || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
2334
    return true;
2335
 
2336
  if ((f1 & (BRANCH | DELAY)) != 0
2337
      || (f2 & (BRANCH | DELAY)) != 0)
2338
    return true;
2339
 
2340
  if (((f1 | f2) & SETSSP)
2341
      && (f1 & (SETSSP | USESSP))
2342
      && (f2 & (SETSSP | USESSP)))
2343
    return true;
2344
 
2345
  if ((f1 & SETS1) != 0
2346
      && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
2347
    return true;
2348
  if ((f1 & SETS2) != 0
2349
      && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
2350
    return true;
2351
  if ((f1 & SETSR0) != 0
2352
      && sh_insn_uses_or_sets_reg (i2, op2, 0))
2353
    return true;
2354
  if ((f1 & SETSAS)
2355
      && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
2356
    return true;
2357
  if ((f1 & SETSF1) != 0
2358
      && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
2359
    return true;
2360
 
2361
  if ((f2 & SETS1) != 0
2362
      && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
2363
    return true;
2364
  if ((f2 & SETS2) != 0
2365
      && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
2366
    return true;
2367
  if ((f2 & SETSR0) != 0
2368
      && sh_insn_uses_or_sets_reg (i1, op1, 0))
2369
    return true;
2370
  if ((f2 & SETSAS)
2371
      && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
2372
    return true;
2373
  if ((f2 & SETSF1) != 0
2374
      && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
2375
    return true;
2376
 
2377
  /* The instructions do not conflict.  */
2378
  return false;
2379
}
2380
 
2381
/* I1 is a load instruction, and I2 is some other instruction.  Return
2382
   true if I1 loads a register which I2 uses.  */
2383
 
2384
static boolean
2385
sh_load_use (i1, op1, i2, op2)
2386
     unsigned int i1;
2387
     const struct sh_opcode *op1;
2388
     unsigned int i2;
2389
     const struct sh_opcode *op2;
2390
{
2391
  unsigned int f1;
2392
 
2393
  f1 = op1->flags;
2394
 
2395
  if ((f1 & LOAD) == 0)
2396
    return false;
2397
 
2398
  /* If both SETS1 and SETSSP are set, that means a load to a special
2399
     register using postincrement addressing mode, which we don't care
2400
     about here.  */
2401
  if ((f1 & SETS1) != 0
2402
      && (f1 & SETSSP) == 0
2403
      && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
2404
    return true;
2405
 
2406
  if ((f1 & SETSR0) != 0
2407
      && sh_insn_uses_reg (i2, op2, 0))
2408
    return true;
2409
 
2410
  if ((f1 & SETSF1) != 0
2411
      && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
2412
    return true;
2413
 
2414
  return false;
2415
}
2416
 
2417
/* Try to align loads and stores within a span of memory.  This is
2418
   called by both the ELF and the COFF sh targets.  ABFD and SEC are
2419
   the BFD and section we are examining.  CONTENTS is the contents of
2420
   the section.  SWAP is the routine to call to swap two instructions.
2421
   RELOCS is a pointer to the internal relocation information, to be
2422
   passed to SWAP.  PLABEL is a pointer to the current label in a
2423
   sorted list of labels; LABEL_END is the end of the list.  START and
2424
   STOP are the range of memory to examine.  If a swap is made,
2425
   *PSWAPPED is set to true.  */
2426
 
2427
#ifdef COFF_WITH_PE
2428
static
2429
#endif
2430
boolean
2431
_bfd_sh_align_load_span (abfd, sec, contents, swap, relocs,
2432
                         plabel, label_end, start, stop, pswapped)
2433
     bfd *abfd;
2434
     asection *sec;
2435
     bfd_byte *contents;
2436
     boolean (*swap) PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
2437
     PTR relocs;
2438
     bfd_vma **plabel;
2439
     bfd_vma *label_end;
2440
     bfd_vma start;
2441
     bfd_vma stop;
2442
     boolean *pswapped;
2443
{
2444
  int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2445
             || abfd->arch_info->mach == bfd_mach_sh3_dsp);
2446
  bfd_vma i;
2447
 
2448
  /* The SH4 has a Harvard architecture, hence aligning loads is not
2449
     desirable.  In fact, it is counter-productive, since it interferes
2450
     with the schedules generated by the compiler.  */
2451
  if (abfd->arch_info->mach == bfd_mach_sh4)
2452
    return true;
2453
 
2454
  /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2455
     instructions.  */
2456
  if (dsp)
2457
    {
2458
      sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
2459
      sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef;
2460
    }
2461
 
2462
  /* Instructions should be aligned on 2 byte boundaries.  */
2463
  if ((start & 1) == 1)
2464
    ++start;
2465
 
2466
  /* Now look through the unaligned addresses.  */
2467
  i = start;
2468
  if ((i & 2) == 0)
2469
    i += 2;
2470
  for (; i < stop; i += 4)
2471
    {
2472
      unsigned int insn;
2473
      const struct sh_opcode *op;
2474
      unsigned int prev_insn = 0;
2475
      const struct sh_opcode *prev_op = NULL;
2476
 
2477
      insn = bfd_get_16 (abfd, contents + i);
2478
      op = sh_insn_info (insn);
2479
      if (op == NULL
2480
          || (op->flags & (LOAD | STORE)) == 0)
2481
        continue;
2482
 
2483
      /* This is a load or store which is not on a four byte boundary.  */
2484
 
2485
      while (*plabel < label_end && **plabel < i)
2486
        ++*plabel;
2487
 
2488
      if (i > start)
2489
        {
2490
          prev_insn = bfd_get_16 (abfd, contents + i - 2);
2491
          /* If INSN is the field b of a parallel processing insn, it is not
2492
             a load / store after all.  Note that the test here might mistake
2493
             the field_b of a pcopy insn for the starting code of a parallel
2494
             processing insn; this might miss a swapping opportunity, but at
2495
             least we're on the safe side.  */
2496
          if (dsp && (prev_insn & 0xfc00) == 0xf800)
2497
            continue;
2498
 
2499
          /* Check if prev_insn is actually the field b of a parallel
2500
             processing insn.  Again, this can give a spurious match
2501
             after a pcopy.  */
2502
          if (dsp && i - 2 > start)
2503
            {
2504
              unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
2505
 
2506
              if ((pprev_insn & 0xfc00) == 0xf800)
2507
                prev_op = NULL;
2508
              else
2509
                prev_op = sh_insn_info (prev_insn);
2510
            }
2511
          else
2512
            prev_op = sh_insn_info (prev_insn);
2513
 
2514
          /* If the load/store instruction is in a delay slot, we
2515
             can't swap.  */
2516
          if (prev_op == NULL
2517
              || (prev_op->flags & DELAY) != 0)
2518
            continue;
2519
        }
2520
      if (i > start
2521
          && (*plabel >= label_end || **plabel != i)
2522
          && prev_op != NULL
2523
          && (prev_op->flags & (LOAD | STORE)) == 0
2524
          && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2525
        {
2526
          boolean ok;
2527
 
2528
          /* The load/store instruction does not have a label, and
2529
             there is a previous instruction; PREV_INSN is not
2530
             itself a load/store instruction, and PREV_INSN and
2531
             INSN do not conflict.  */
2532
 
2533
          ok = true;
2534
 
2535
          if (i >= start + 4)
2536
            {
2537
              unsigned int prev2_insn;
2538
              const struct sh_opcode *prev2_op;
2539
 
2540
              prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2541
              prev2_op = sh_insn_info (prev2_insn);
2542
 
2543
              /* If the instruction before PREV_INSN has a delay
2544
                 slot--that is, PREV_INSN is in a delay slot--we
2545
                 can not swap.  */
2546
              if (prev2_op == NULL
2547
                  || (prev2_op->flags & DELAY) != 0)
2548
                ok = false;
2549
 
2550
              /* If the instruction before PREV_INSN is a load,
2551
                 and it sets a register which INSN uses, then
2552
                 putting INSN immediately after PREV_INSN will
2553
                 cause a pipeline bubble, so there is no point to
2554
                 making the swap.  */
2555
              if (ok
2556
                  && (prev2_op->flags & LOAD) != 0
2557
                  && sh_load_use (prev2_insn, prev2_op, insn, op))
2558
                ok = false;
2559
            }
2560
 
2561
          if (ok)
2562
            {
2563
              if (! (*swap) (abfd, sec, relocs, contents, i - 2))
2564
                return false;
2565
              *pswapped = true;
2566
              continue;
2567
            }
2568
        }
2569
 
2570
      while (*plabel < label_end && **plabel < i + 2)
2571
        ++*plabel;
2572
 
2573
      if (i + 2 < stop
2574
          && (*plabel >= label_end || **plabel != i + 2))
2575
        {
2576
          unsigned int next_insn;
2577
          const struct sh_opcode *next_op;
2578
 
2579
          /* There is an instruction after the load/store
2580
             instruction, and it does not have a label.  */
2581
          next_insn = bfd_get_16 (abfd, contents + i + 2);
2582
          next_op = sh_insn_info (next_insn);
2583
          if (next_op != NULL
2584
              && (next_op->flags & (LOAD | STORE)) == 0
2585
              && ! sh_insns_conflict (insn, op, next_insn, next_op))
2586
            {
2587
              boolean ok;
2588
 
2589
              /* NEXT_INSN is not itself a load/store instruction,
2590
                 and it does not conflict with INSN.  */
2591
 
2592
              ok = true;
2593
 
2594
              /* If PREV_INSN is a load, and it sets a register
2595
                 which NEXT_INSN uses, then putting NEXT_INSN
2596
                 immediately after PREV_INSN will cause a pipeline
2597
                 bubble, so there is no reason to make this swap.  */
2598
              if (prev_op != NULL
2599
                  && (prev_op->flags & LOAD) != 0
2600
                  && sh_load_use (prev_insn, prev_op, next_insn, next_op))
2601
                ok = false;
2602
 
2603
              /* If INSN is a load, and it sets a register which
2604
                 the insn after NEXT_INSN uses, then doing the
2605
                 swap will cause a pipeline bubble, so there is no
2606
                 reason to make the swap.  However, if the insn
2607
                 after NEXT_INSN is itself a load or store
2608
                 instruction, then it is misaligned, so
2609
                 optimistically hope that it will be swapped
2610
                 itself, and just live with the pipeline bubble if
2611
                 it isn't.  */
2612
              if (ok
2613
                  && i + 4 < stop
2614
                  && (op->flags & LOAD) != 0)
2615
                {
2616
                  unsigned int next2_insn;
2617
                  const struct sh_opcode *next2_op;
2618
 
2619
                  next2_insn = bfd_get_16 (abfd, contents + i + 4);
2620
                  next2_op = sh_insn_info (next2_insn);
2621
                  if ((next2_op->flags & (LOAD | STORE)) == 0
2622
                      && sh_load_use (insn, op, next2_insn, next2_op))
2623
                    ok = false;
2624
                }
2625
 
2626
              if (ok)
2627
                {
2628
                  if (! (*swap) (abfd, sec, relocs, contents, i))
2629
                    return false;
2630
                  *pswapped = true;
2631
                  continue;
2632
                }
2633
            }
2634
        }
2635
    }
2636
 
2637
  return true;
2638
}
2639
#endif /* not COFF_IMAGE_WITH_PE */
2640
 
2641
/* Look for loads and stores which we can align to four byte
2642
   boundaries.  See the longer comment above sh_relax_section for why
2643
   this is desirable.  This sets *PSWAPPED if some instruction was
2644
   swapped.  */
2645
 
2646
static boolean
2647
sh_align_loads (abfd, sec, internal_relocs, contents, pswapped)
2648
     bfd *abfd;
2649
     asection *sec;
2650
     struct internal_reloc *internal_relocs;
2651
     bfd_byte *contents;
2652
     boolean *pswapped;
2653
{
2654
  struct internal_reloc *irel, *irelend;
2655
  bfd_vma *labels = NULL;
2656
  bfd_vma *label, *label_end;
2657
  bfd_size_type amt;
2658
 
2659
  *pswapped = false;
2660
 
2661
  irelend = internal_relocs + sec->reloc_count;
2662
 
2663
  /* Get all the addresses with labels on them.  */
2664
  amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2665
  labels = (bfd_vma *) bfd_malloc (amt);
2666
  if (labels == NULL)
2667
    goto error_return;
2668
  label_end = labels;
2669
  for (irel = internal_relocs; irel < irelend; irel++)
2670
    {
2671
      if (irel->r_type == R_SH_LABEL)
2672
        {
2673
          *label_end = irel->r_vaddr - sec->vma;
2674
          ++label_end;
2675
        }
2676
    }
2677
 
2678
  /* Note that the assembler currently always outputs relocs in
2679
     address order.  If that ever changes, this code will need to sort
2680
     the label values and the relocs.  */
2681
 
2682
  label = labels;
2683
 
2684
  for (irel = internal_relocs; irel < irelend; irel++)
2685
    {
2686
      bfd_vma start, stop;
2687
 
2688
      if (irel->r_type != R_SH_CODE)
2689
        continue;
2690
 
2691
      start = irel->r_vaddr - sec->vma;
2692
 
2693
      for (irel++; irel < irelend; irel++)
2694
        if (irel->r_type == R_SH_DATA)
2695
          break;
2696
      if (irel < irelend)
2697
        stop = irel->r_vaddr - sec->vma;
2698
      else
2699
        stop = sec->_cooked_size;
2700
 
2701
      if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2702
                                     (PTR) internal_relocs, &label,
2703
                                     label_end, start, stop, pswapped))
2704
        goto error_return;
2705
    }
2706
 
2707
  free (labels);
2708
 
2709
  return true;
2710
 
2711
 error_return:
2712
  if (labels != NULL)
2713
    free (labels);
2714
  return false;
2715
}
2716
 
2717
/* Swap two SH instructions.  */
2718
 
2719
static boolean
2720
sh_swap_insns (abfd, sec, relocs, contents, addr)
2721
     bfd *abfd;
2722
     asection *sec;
2723
     PTR relocs;
2724
     bfd_byte *contents;
2725
     bfd_vma addr;
2726
{
2727
  struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2728
  unsigned short i1, i2;
2729
  struct internal_reloc *irel, *irelend;
2730
 
2731
  /* Swap the instructions themselves.  */
2732
  i1 = bfd_get_16 (abfd, contents + addr);
2733
  i2 = bfd_get_16 (abfd, contents + addr + 2);
2734
  bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2735
  bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
2736
 
2737
  /* Adjust all reloc addresses.  */
2738
  irelend = internal_relocs + sec->reloc_count;
2739
  for (irel = internal_relocs; irel < irelend; irel++)
2740
    {
2741
      int type, add;
2742
 
2743
      /* There are a few special types of relocs that we don't want to
2744
         adjust.  These relocs do not apply to the instruction itself,
2745
         but are only associated with the address.  */
2746
      type = irel->r_type;
2747
      if (type == R_SH_ALIGN
2748
          || type == R_SH_CODE
2749
          || type == R_SH_DATA
2750
          || type == R_SH_LABEL)
2751
        continue;
2752
 
2753
      /* If an R_SH_USES reloc points to one of the addresses being
2754
         swapped, we must adjust it.  It would be incorrect to do this
2755
         for a jump, though, since we want to execute both
2756
         instructions after the jump.  (We have avoided swapping
2757
         around a label, so the jump will not wind up executing an
2758
         instruction it shouldn't).  */
2759
      if (type == R_SH_USES)
2760
        {
2761
          bfd_vma off;
2762
 
2763
          off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2764
          if (off == addr)
2765
            irel->r_offset += 2;
2766
          else if (off == addr + 2)
2767
            irel->r_offset -= 2;
2768
        }
2769
 
2770
      if (irel->r_vaddr - sec->vma == addr)
2771
        {
2772
          irel->r_vaddr += 2;
2773
          add = -2;
2774
        }
2775
      else if (irel->r_vaddr - sec->vma == addr + 2)
2776
        {
2777
          irel->r_vaddr -= 2;
2778
          add = 2;
2779
        }
2780
      else
2781
        add = 0;
2782
 
2783
      if (add != 0)
2784
        {
2785
          bfd_byte *loc;
2786
          unsigned short insn, oinsn;
2787
          boolean overflow;
2788
 
2789
          loc = contents + irel->r_vaddr - sec->vma;
2790
          overflow = false;
2791
          switch (type)
2792
            {
2793
            default:
2794
              break;
2795
 
2796
            case R_SH_PCDISP8BY2:
2797
            case R_SH_PCRELIMM8BY2:
2798
              insn = bfd_get_16 (abfd, loc);
2799
              oinsn = insn;
2800
              insn += add / 2;
2801
              if ((oinsn & 0xff00) != (insn & 0xff00))
2802
                overflow = true;
2803
              bfd_put_16 (abfd, (bfd_vma) insn, loc);
2804
              break;
2805
 
2806
            case R_SH_PCDISP:
2807
              insn = bfd_get_16 (abfd, loc);
2808
              oinsn = insn;
2809
              insn += add / 2;
2810
              if ((oinsn & 0xf000) != (insn & 0xf000))
2811
                overflow = true;
2812
              bfd_put_16 (abfd, (bfd_vma) insn, loc);
2813
              break;
2814
 
2815
            case R_SH_PCRELIMM8BY4:
2816
              /* This reloc ignores the least significant 3 bits of
2817
                 the program counter before adding in the offset.
2818
                 This means that if ADDR is at an even address, the
2819
                 swap will not affect the offset.  If ADDR is an at an
2820
                 odd address, then the instruction will be crossing a
2821
                 four byte boundary, and must be adjusted.  */
2822
              if ((addr & 3) != 0)
2823
                {
2824
                  insn = bfd_get_16 (abfd, loc);
2825
                  oinsn = insn;
2826
                  insn += add / 2;
2827
                  if ((oinsn & 0xff00) != (insn & 0xff00))
2828
                    overflow = true;
2829
                  bfd_put_16 (abfd, (bfd_vma) insn, loc);
2830
                }
2831
 
2832
              break;
2833
            }
2834
 
2835
          if (overflow)
2836
            {
2837
              ((*_bfd_error_handler)
2838
               ("%s: 0x%lx: fatal: reloc overflow while relaxing",
2839
                bfd_archive_filename (abfd), (unsigned long) irel->r_vaddr));
2840
              bfd_set_error (bfd_error_bad_value);
2841
              return false;
2842
            }
2843
        }
2844
    }
2845
 
2846
  return true;
2847
}
2848
 
2849
/* This is a modification of _bfd_coff_generic_relocate_section, which
2850
   will handle SH relaxing.  */
2851
 
2852
static boolean
2853
sh_relocate_section (output_bfd, info, input_bfd, input_section, contents,
2854
                     relocs, syms, sections)
2855
     bfd *output_bfd ATTRIBUTE_UNUSED;
2856
     struct bfd_link_info *info;
2857
     bfd *input_bfd;
2858
     asection *input_section;
2859
     bfd_byte *contents;
2860
     struct internal_reloc *relocs;
2861
     struct internal_syment *syms;
2862
     asection **sections;
2863
{
2864
  struct internal_reloc *rel;
2865
  struct internal_reloc *relend;
2866
 
2867
  rel = relocs;
2868
  relend = rel + input_section->reloc_count;
2869
  for (; rel < relend; rel++)
2870
    {
2871
      long symndx;
2872
      struct coff_link_hash_entry *h;
2873
      struct internal_syment *sym;
2874
      bfd_vma addend;
2875
      bfd_vma val;
2876
      reloc_howto_type *howto;
2877
      bfd_reloc_status_type rstat;
2878
 
2879
      /* Almost all relocs have to do with relaxing.  If any work must
2880
         be done for them, it has been done in sh_relax_section.  */
2881
      if (rel->r_type != R_SH_IMM32
2882
#ifdef COFF_WITH_PE
2883
          && rel->r_type != R_SH_IMM32CE
2884
          && rel->r_type != R_SH_IMAGEBASE
2885
#endif
2886
          && rel->r_type != R_SH_PCDISP)
2887
        continue;
2888
 
2889
      symndx = rel->r_symndx;
2890
 
2891
      if (symndx == -1)
2892
        {
2893
          h = NULL;
2894
          sym = NULL;
2895
        }
2896
      else
2897
        {
2898
          if (symndx < 0
2899
              || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2900
            {
2901
              (*_bfd_error_handler)
2902
                ("%s: illegal symbol index %ld in relocs",
2903
                 bfd_archive_filename (input_bfd), symndx);
2904
              bfd_set_error (bfd_error_bad_value);
2905
              return false;
2906
            }
2907
          h = obj_coff_sym_hashes (input_bfd)[symndx];
2908
          sym = syms + symndx;
2909
        }
2910
 
2911
      if (sym != NULL && sym->n_scnum != 0)
2912
        addend = - sym->n_value;
2913
      else
2914
        addend = 0;
2915
 
2916
      if (rel->r_type == R_SH_PCDISP)
2917
        addend -= 4;
2918
 
2919
      if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2920
        howto = NULL;
2921
      else
2922
        howto = &sh_coff_howtos[rel->r_type];
2923
 
2924
      if (howto == NULL)
2925
        {
2926
          bfd_set_error (bfd_error_bad_value);
2927
          return false;
2928
        }
2929
 
2930
#ifdef COFF_WITH_PE
2931
      if (rel->r_type == R_SH_IMAGEBASE)
2932
        addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2933
#endif
2934
 
2935
      val = 0;
2936
 
2937
      if (h == NULL)
2938
        {
2939
          asection *sec;
2940
 
2941
          /* There is nothing to do for an internal PCDISP reloc.  */
2942
          if (rel->r_type == R_SH_PCDISP)
2943
            continue;
2944
 
2945
          if (symndx == -1)
2946
            {
2947
              sec = bfd_abs_section_ptr;
2948
              val = 0;
2949
            }
2950
          else
2951
            {
2952
              sec = sections[symndx];
2953
              val = (sec->output_section->vma
2954
                     + sec->output_offset
2955
                     + sym->n_value
2956
                     - sec->vma);
2957
            }
2958
        }
2959
      else
2960
        {
2961
          if (h->root.type == bfd_link_hash_defined
2962
              || h->root.type == bfd_link_hash_defweak)
2963
            {
2964
              asection *sec;
2965
 
2966
              sec = h->root.u.def.section;
2967
              val = (h->root.u.def.value
2968
                     + sec->output_section->vma
2969
                     + sec->output_offset);
2970
            }
2971
          else if (! info->relocateable)
2972
            {
2973
              if (! ((*info->callbacks->undefined_symbol)
2974
                     (info, h->root.root.string, input_bfd, input_section,
2975
                      rel->r_vaddr - input_section->vma, true)))
2976
                return false;
2977
            }
2978
        }
2979
 
2980
      rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2981
                                        contents,
2982
                                        rel->r_vaddr - input_section->vma,
2983
                                        val, addend);
2984
 
2985
      switch (rstat)
2986
        {
2987
        default:
2988
          abort ();
2989
        case bfd_reloc_ok:
2990
          break;
2991
        case bfd_reloc_overflow:
2992
          {
2993
            const char *name;
2994
            char buf[SYMNMLEN + 1];
2995
 
2996
            if (symndx == -1)
2997
              name = "*ABS*";
2998
            else if (h != NULL)
2999
              name = h->root.root.string;
3000
            else if (sym->_n._n_n._n_zeroes == 0
3001
                     && sym->_n._n_n._n_offset != 0)
3002
              name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
3003
            else
3004
              {
3005
                strncpy (buf, sym->_n._n_name, SYMNMLEN);
3006
                buf[SYMNMLEN] = '\0';
3007
                name = buf;
3008
              }
3009
 
3010
            if (! ((*info->callbacks->reloc_overflow)
3011
                   (info, name, howto->name, (bfd_vma) 0, input_bfd,
3012
                    input_section, rel->r_vaddr - input_section->vma)))
3013
              return false;
3014
          }
3015
        }
3016
    }
3017
 
3018
  return true;
3019
}
3020
 
3021
/* This is a version of bfd_generic_get_relocated_section_contents
3022
   which uses sh_relocate_section.  */
3023
 
3024
static bfd_byte *
3025
sh_coff_get_relocated_section_contents (output_bfd, link_info, link_order,
3026
                                        data, relocateable, symbols)
3027
     bfd *output_bfd;
3028
     struct bfd_link_info *link_info;
3029
     struct bfd_link_order *link_order;
3030
     bfd_byte *data;
3031
     boolean relocateable;
3032
     asymbol **symbols;
3033
{
3034
  asection *input_section = link_order->u.indirect.section;
3035
  bfd *input_bfd = input_section->owner;
3036
  asection **sections = NULL;
3037
  struct internal_reloc *internal_relocs = NULL;
3038
  struct internal_syment *internal_syms = NULL;
3039
 
3040
  /* We only need to handle the case of relaxing, or of having a
3041
     particular set of section contents, specially.  */
3042
  if (relocateable
3043
      || coff_section_data (input_bfd, input_section) == NULL
3044
      || coff_section_data (input_bfd, input_section)->contents == NULL)
3045
    return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
3046
                                                       link_order, data,
3047
                                                       relocateable,
3048
                                                       symbols);
3049
 
3050
  memcpy (data, coff_section_data (input_bfd, input_section)->contents,
3051
          (size_t) input_section->_raw_size);
3052
 
3053
  if ((input_section->flags & SEC_RELOC) != 0
3054
      && input_section->reloc_count > 0)
3055
    {
3056
      bfd_size_type symesz = bfd_coff_symesz (input_bfd);
3057
      bfd_byte *esym, *esymend;
3058
      struct internal_syment *isymp;
3059
      asection **secpp;
3060
      bfd_size_type amt;
3061
 
3062
      if (! _bfd_coff_get_external_symbols (input_bfd))
3063
        goto error_return;
3064
 
3065
      internal_relocs = (_bfd_coff_read_internal_relocs
3066
                         (input_bfd, input_section, false, (bfd_byte *) NULL,
3067
                          false, (struct internal_reloc *) NULL));
3068
      if (internal_relocs == NULL)
3069
        goto error_return;
3070
 
3071
      amt = obj_raw_syment_count (input_bfd);
3072
      amt *= sizeof (struct internal_syment);
3073
      internal_syms = (struct internal_syment *) bfd_malloc (amt);
3074
      if (internal_syms == NULL)
3075
        goto error_return;
3076
 
3077
      amt = obj_raw_syment_count (input_bfd);
3078
      amt *= sizeof (asection *);
3079
      sections = (asection **) bfd_malloc (amt);
3080
      if (sections == NULL)
3081
        goto error_return;
3082
 
3083
      isymp = internal_syms;
3084
      secpp = sections;
3085
      esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
3086
      esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
3087
      while (esym < esymend)
3088
        {
3089
          bfd_coff_swap_sym_in (input_bfd, (PTR) esym, (PTR) isymp);
3090
 
3091
          if (isymp->n_scnum != 0)
3092
            *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
3093
          else
3094
            {
3095
              if (isymp->n_value == 0)
3096
                *secpp = bfd_und_section_ptr;
3097
              else
3098
                *secpp = bfd_com_section_ptr;
3099
            }
3100
 
3101
          esym += (isymp->n_numaux + 1) * symesz;
3102
          secpp += isymp->n_numaux + 1;
3103
          isymp += isymp->n_numaux + 1;
3104
        }
3105
 
3106
      if (! sh_relocate_section (output_bfd, link_info, input_bfd,
3107
                                 input_section, data, internal_relocs,
3108
                                 internal_syms, sections))
3109
        goto error_return;
3110
 
3111
      free (sections);
3112
      sections = NULL;
3113
      free (internal_syms);
3114
      internal_syms = NULL;
3115
      free (internal_relocs);
3116
      internal_relocs = NULL;
3117
    }
3118
 
3119
  return data;
3120
 
3121
 error_return:
3122
  if (internal_relocs != NULL)
3123
    free (internal_relocs);
3124
  if (internal_syms != NULL)
3125
    free (internal_syms);
3126
  if (sections != NULL)
3127
    free (sections);
3128
  return NULL;
3129
}
3130
 
3131
/* The target vectors.  */
3132
 
3133
#ifndef TARGET_SHL_SYM
3134
CREATE_BIG_COFF_TARGET_VEC (shcoff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL)
3135
#endif
3136
 
3137
#ifdef TARGET_SHL_SYM
3138
#define TARGET_SYM TARGET_SHL_SYM
3139
#else
3140
#define TARGET_SYM shlcoff_vec
3141
#endif
3142
 
3143
#ifndef TARGET_SHL_NAME
3144
#define TARGET_SHL_NAME "coff-shl"
3145
#endif
3146
 
3147
#ifdef COFF_WITH_PE
3148
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3149
                               SEC_CODE | SEC_DATA, '_', NULL);
3150
#else
3151
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3152
                               0, '_', NULL)
3153
#endif
3154
 
3155
#ifndef TARGET_SHL_SYM
3156
static const bfd_target * coff_small_object_p PARAMS ((bfd *));
3157
static boolean coff_small_new_section_hook PARAMS ((bfd *, asection *));
3158
/* Some people want versions of the SH COFF target which do not align
3159
   to 16 byte boundaries.  We implement that by adding a couple of new
3160
   target vectors.  These are just like the ones above, but they
3161
   change the default section alignment.  To generate them in the
3162
   assembler, use -small.  To use them in the linker, use -b
3163
   coff-sh{l}-small and -oformat coff-sh{l}-small.
3164
 
3165
   Yes, this is a horrible hack.  A general solution for setting
3166
   section alignment in COFF is rather complex.  ELF handles this
3167
   correctly.  */
3168
 
3169
/* Only recognize the small versions if the target was not defaulted.
3170
   Otherwise we won't recognize the non default endianness.  */
3171
 
3172
static const bfd_target *
3173
coff_small_object_p (abfd)
3174
     bfd *abfd;
3175
{
3176
  if (abfd->target_defaulted)
3177
    {
3178
      bfd_set_error (bfd_error_wrong_format);
3179
      return NULL;
3180
    }
3181
  return coff_object_p (abfd);
3182
}
3183
 
3184
/* Set the section alignment for the small versions.  */
3185
 
3186
static boolean
3187
coff_small_new_section_hook (abfd, section)
3188
     bfd *abfd;
3189
     asection *section;
3190
{
3191
  if (! coff_new_section_hook (abfd, section))
3192
    return false;
3193
 
3194
  /* We must align to at least a four byte boundary, because longword
3195
     accesses must be on a four byte boundary.  */
3196
  if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3197
    section->alignment_power = 2;
3198
 
3199
  return true;
3200
}
3201
 
3202
/* This is copied from bfd_coff_std_swap_table so that we can change
3203
   the default section alignment power.  */
3204
 
3205
static const bfd_coff_backend_data bfd_coff_small_swap_table =
3206
{
3207
  coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3208
  coff_swap_aux_out, coff_swap_sym_out,
3209
  coff_swap_lineno_out, coff_swap_reloc_out,
3210
  coff_swap_filehdr_out, coff_swap_aouthdr_out,
3211
  coff_swap_scnhdr_out,
3212
  FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
3213
#ifdef COFF_LONG_FILENAMES
3214
  true,
3215
#else
3216
  false,
3217
#endif
3218
#ifdef COFF_LONG_SECTION_NAMES
3219
  true,
3220
#else
3221
  false,
3222
#endif
3223
  2,
3224
#ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3225
  true,
3226
#else
3227
  false,
3228
#endif
3229
#ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3230
  4,
3231
#else
3232
  2,
3233
#endif
3234
  coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3235
  coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3236
  coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3237
  coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3238
  coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
3239
  coff_classify_symbol, coff_compute_section_file_positions,
3240
  coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3241
  coff_adjust_symndx, coff_link_add_one_symbol,
3242
  coff_link_output_has_begun, coff_final_link_postscript
3243
};
3244
 
3245
#define coff_small_close_and_cleanup \
3246
  coff_close_and_cleanup
3247
#define coff_small_bfd_free_cached_info \
3248
  coff_bfd_free_cached_info
3249
#define coff_small_get_section_contents \
3250
  coff_get_section_contents
3251
#define coff_small_get_section_contents_in_window \
3252
  coff_get_section_contents_in_window
3253
 
3254
extern const bfd_target shlcoff_small_vec;
3255
 
3256
const bfd_target shcoff_small_vec =
3257
{
3258
  "coff-sh-small",              /* name */
3259
  bfd_target_coff_flavour,
3260
  BFD_ENDIAN_BIG,               /* data byte order is big */
3261
  BFD_ENDIAN_BIG,               /* header byte order is big */
3262
 
3263
  (HAS_RELOC | EXEC_P |         /* object flags */
3264
   HAS_LINENO | HAS_DEBUG |
3265
   HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3266
 
3267
  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3268
  '_',                          /* leading symbol underscore */
3269
  '/',                          /* ar_pad_char */
3270
  15,                           /* ar_max_namelen */
3271
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3272
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3273
  bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3274
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3275
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3276
  bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3277
 
3278
  {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3279
     bfd_generic_archive_p, _bfd_dummy_target},
3280
  {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3281
     bfd_false},
3282
  {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3283
     _bfd_write_archive_contents, bfd_false},
3284
 
3285
  BFD_JUMP_TABLE_GENERIC (coff_small),
3286
  BFD_JUMP_TABLE_COPY (coff),
3287
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
3288
  BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3289
  BFD_JUMP_TABLE_SYMBOLS (coff),
3290
  BFD_JUMP_TABLE_RELOCS (coff),
3291
  BFD_JUMP_TABLE_WRITE (coff),
3292
  BFD_JUMP_TABLE_LINK (coff),
3293
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3294
 
3295
  & shlcoff_small_vec,
3296
 
3297
  (PTR) &bfd_coff_small_swap_table
3298
};
3299
 
3300
const bfd_target shlcoff_small_vec =
3301
{
3302
  "coff-shl-small",             /* name */
3303
  bfd_target_coff_flavour,
3304
  BFD_ENDIAN_LITTLE,            /* data byte order is little */
3305
  BFD_ENDIAN_LITTLE,            /* header byte order is little endian too*/
3306
 
3307
  (HAS_RELOC | EXEC_P |         /* object flags */
3308
   HAS_LINENO | HAS_DEBUG |
3309
   HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3310
 
3311
  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3312
  '_',                          /* leading symbol underscore */
3313
  '/',                          /* ar_pad_char */
3314
  15,                           /* ar_max_namelen */
3315
  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3316
  bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3317
  bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3318
  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3319
  bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3320
  bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3321
 
3322
  {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3323
     bfd_generic_archive_p, _bfd_dummy_target},
3324
  {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3325
     bfd_false},
3326
  {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3327
     _bfd_write_archive_contents, bfd_false},
3328
 
3329
  BFD_JUMP_TABLE_GENERIC (coff_small),
3330
  BFD_JUMP_TABLE_COPY (coff),
3331
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
3332
  BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3333
  BFD_JUMP_TABLE_SYMBOLS (coff),
3334
  BFD_JUMP_TABLE_RELOCS (coff),
3335
  BFD_JUMP_TABLE_WRITE (coff),
3336
  BFD_JUMP_TABLE_LINK (coff),
3337
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3338
 
3339
  & shcoff_small_vec,
3340
 
3341
  (PTR) &bfd_coff_small_swap_table
3342
};
3343
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.