1 |
1181 |
sfurman |
/* Get info from stack frames; convert between frames, blocks,
|
2 |
|
|
functions and pc values.
|
3 |
|
|
|
4 |
|
|
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
|
5 |
|
|
1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
|
6 |
|
|
Foundation, Inc.
|
7 |
|
|
|
8 |
|
|
This file is part of GDB.
|
9 |
|
|
|
10 |
|
|
This program is free software; you can redistribute it and/or modify
|
11 |
|
|
it under the terms of the GNU General Public License as published by
|
12 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
13 |
|
|
(at your option) any later version.
|
14 |
|
|
|
15 |
|
|
This program is distributed in the hope that it will be useful,
|
16 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
17 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
18 |
|
|
GNU General Public License for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with this program; if not, write to the Free Software
|
22 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
23 |
|
|
Boston, MA 02111-1307, USA. */
|
24 |
|
|
|
25 |
|
|
#include "defs.h"
|
26 |
|
|
#include "symtab.h"
|
27 |
|
|
#include "bfd.h"
|
28 |
|
|
#include "symfile.h"
|
29 |
|
|
#include "objfiles.h"
|
30 |
|
|
#include "frame.h"
|
31 |
|
|
#include "gdbcore.h"
|
32 |
|
|
#include "value.h" /* for read_register */
|
33 |
|
|
#include "target.h" /* for target_has_stack */
|
34 |
|
|
#include "inferior.h" /* for read_pc */
|
35 |
|
|
#include "annotate.h"
|
36 |
|
|
#include "regcache.h"
|
37 |
|
|
#include "gdb_assert.h"
|
38 |
|
|
|
39 |
|
|
/* Prototypes for exported functions. */
|
40 |
|
|
|
41 |
|
|
static void generic_call_dummy_register_unwind (struct frame_info *frame,
|
42 |
|
|
void **cache,
|
43 |
|
|
int regnum,
|
44 |
|
|
int *optimized,
|
45 |
|
|
enum lval_type *lval,
|
46 |
|
|
CORE_ADDR *addrp,
|
47 |
|
|
int *realnum,
|
48 |
|
|
void *raw_buffer);
|
49 |
|
|
static void frame_saved_regs_register_unwind (struct frame_info *frame,
|
50 |
|
|
void **cache,
|
51 |
|
|
int regnum,
|
52 |
|
|
int *optimized,
|
53 |
|
|
enum lval_type *lval,
|
54 |
|
|
CORE_ADDR *addrp,
|
55 |
|
|
int *realnum,
|
56 |
|
|
void *buffer);
|
57 |
|
|
|
58 |
|
|
|
59 |
|
|
void _initialize_blockframe (void);
|
60 |
|
|
|
61 |
|
|
/* A default FRAME_CHAIN_VALID, in the form that is suitable for most
|
62 |
|
|
targets. If FRAME_CHAIN_VALID returns zero it means that the given
|
63 |
|
|
frame is the outermost one and has no caller. */
|
64 |
|
|
|
65 |
|
|
int
|
66 |
|
|
file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
|
67 |
|
|
{
|
68 |
|
|
return ((chain) != 0
|
69 |
|
|
&& !inside_entry_file (FRAME_SAVED_PC (thisframe)));
|
70 |
|
|
}
|
71 |
|
|
|
72 |
|
|
/* Use the alternate method of avoiding running up off the end of the
|
73 |
|
|
frame chain or following frames back into the startup code. See
|
74 |
|
|
the comments in objfiles.h. */
|
75 |
|
|
|
76 |
|
|
int
|
77 |
|
|
func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
|
78 |
|
|
{
|
79 |
|
|
return ((chain) != 0
|
80 |
|
|
&& !inside_main_func ((thisframe)->pc)
|
81 |
|
|
&& !inside_entry_func ((thisframe)->pc));
|
82 |
|
|
}
|
83 |
|
|
|
84 |
|
|
/* A very simple method of determining a valid frame */
|
85 |
|
|
|
86 |
|
|
int
|
87 |
|
|
nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
|
88 |
|
|
{
|
89 |
|
|
return ((chain) != 0);
|
90 |
|
|
}
|
91 |
|
|
|
92 |
|
|
/* Is ADDR inside the startup file? Note that if your machine
|
93 |
|
|
has a way to detect the bottom of the stack, there is no need
|
94 |
|
|
to call this function from FRAME_CHAIN_VALID; the reason for
|
95 |
|
|
doing so is that some machines have no way of detecting bottom
|
96 |
|
|
of stack.
|
97 |
|
|
|
98 |
|
|
A PC of zero is always considered to be the bottom of the stack. */
|
99 |
|
|
|
100 |
|
|
int
|
101 |
|
|
inside_entry_file (CORE_ADDR addr)
|
102 |
|
|
{
|
103 |
|
|
if (addr == 0)
|
104 |
|
|
return 1;
|
105 |
|
|
if (symfile_objfile == 0)
|
106 |
|
|
return 0;
|
107 |
|
|
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
108 |
|
|
{
|
109 |
|
|
/* Do not stop backtracing if the pc is in the call dummy
|
110 |
|
|
at the entry point. */
|
111 |
|
|
/* FIXME: Won't always work with zeros for the last two arguments */
|
112 |
|
|
if (PC_IN_CALL_DUMMY (addr, 0, 0))
|
113 |
|
|
return 0;
|
114 |
|
|
}
|
115 |
|
|
return (addr >= symfile_objfile->ei.entry_file_lowpc &&
|
116 |
|
|
addr < symfile_objfile->ei.entry_file_highpc);
|
117 |
|
|
}
|
118 |
|
|
|
119 |
|
|
/* Test a specified PC value to see if it is in the range of addresses
|
120 |
|
|
that correspond to the main() function. See comments above for why
|
121 |
|
|
we might want to do this.
|
122 |
|
|
|
123 |
|
|
Typically called from FRAME_CHAIN_VALID.
|
124 |
|
|
|
125 |
|
|
A PC of zero is always considered to be the bottom of the stack. */
|
126 |
|
|
|
127 |
|
|
int
|
128 |
|
|
inside_main_func (CORE_ADDR pc)
|
129 |
|
|
{
|
130 |
|
|
if (pc == 0)
|
131 |
|
|
return 1;
|
132 |
|
|
if (symfile_objfile == 0)
|
133 |
|
|
return 0;
|
134 |
|
|
|
135 |
|
|
/* If the addr range is not set up at symbol reading time, set it up now.
|
136 |
|
|
This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
|
137 |
|
|
it is unable to set it up and symbol reading time. */
|
138 |
|
|
|
139 |
|
|
if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
|
140 |
|
|
symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
|
141 |
|
|
{
|
142 |
|
|
struct symbol *mainsym;
|
143 |
|
|
|
144 |
|
|
mainsym = lookup_symbol (main_name (), NULL, VAR_NAMESPACE, NULL, NULL);
|
145 |
|
|
if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
|
146 |
|
|
{
|
147 |
|
|
symfile_objfile->ei.main_func_lowpc =
|
148 |
|
|
BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
|
149 |
|
|
symfile_objfile->ei.main_func_highpc =
|
150 |
|
|
BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
|
151 |
|
|
}
|
152 |
|
|
}
|
153 |
|
|
return (symfile_objfile->ei.main_func_lowpc <= pc &&
|
154 |
|
|
symfile_objfile->ei.main_func_highpc > pc);
|
155 |
|
|
}
|
156 |
|
|
|
157 |
|
|
/* Test a specified PC value to see if it is in the range of addresses
|
158 |
|
|
that correspond to the process entry point function. See comments
|
159 |
|
|
in objfiles.h for why we might want to do this.
|
160 |
|
|
|
161 |
|
|
Typically called from FRAME_CHAIN_VALID.
|
162 |
|
|
|
163 |
|
|
A PC of zero is always considered to be the bottom of the stack. */
|
164 |
|
|
|
165 |
|
|
int
|
166 |
|
|
inside_entry_func (CORE_ADDR pc)
|
167 |
|
|
{
|
168 |
|
|
if (pc == 0)
|
169 |
|
|
return 1;
|
170 |
|
|
if (symfile_objfile == 0)
|
171 |
|
|
return 0;
|
172 |
|
|
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
173 |
|
|
{
|
174 |
|
|
/* Do not stop backtracing if the pc is in the call dummy
|
175 |
|
|
at the entry point. */
|
176 |
|
|
/* FIXME: Won't always work with zeros for the last two arguments */
|
177 |
|
|
if (PC_IN_CALL_DUMMY (pc, 0, 0))
|
178 |
|
|
return 0;
|
179 |
|
|
}
|
180 |
|
|
return (symfile_objfile->ei.entry_func_lowpc <= pc &&
|
181 |
|
|
symfile_objfile->ei.entry_func_highpc > pc);
|
182 |
|
|
}
|
183 |
|
|
|
184 |
|
|
/* Info about the innermost stack frame (contents of FP register) */
|
185 |
|
|
|
186 |
|
|
static struct frame_info *current_frame;
|
187 |
|
|
|
188 |
|
|
/* Cache for frame addresses already read by gdb. Valid only while
|
189 |
|
|
inferior is stopped. Control variables for the frame cache should
|
190 |
|
|
be local to this module. */
|
191 |
|
|
|
192 |
|
|
static struct obstack frame_cache_obstack;
|
193 |
|
|
|
194 |
|
|
void *
|
195 |
|
|
frame_obstack_alloc (unsigned long size)
|
196 |
|
|
{
|
197 |
|
|
return obstack_alloc (&frame_cache_obstack, size);
|
198 |
|
|
}
|
199 |
|
|
|
200 |
|
|
void
|
201 |
|
|
frame_saved_regs_zalloc (struct frame_info *fi)
|
202 |
|
|
{
|
203 |
|
|
fi->saved_regs = (CORE_ADDR *)
|
204 |
|
|
frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
|
205 |
|
|
memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
|
206 |
|
|
}
|
207 |
|
|
|
208 |
|
|
|
209 |
|
|
/* Return the innermost (currently executing) stack frame. */
|
210 |
|
|
|
211 |
|
|
struct frame_info *
|
212 |
|
|
get_current_frame (void)
|
213 |
|
|
{
|
214 |
|
|
if (current_frame == NULL)
|
215 |
|
|
{
|
216 |
|
|
if (target_has_stack)
|
217 |
|
|
current_frame = create_new_frame (read_fp (), read_pc ());
|
218 |
|
|
else
|
219 |
|
|
error ("No stack.");
|
220 |
|
|
}
|
221 |
|
|
return current_frame;
|
222 |
|
|
}
|
223 |
|
|
|
224 |
|
|
void
|
225 |
|
|
set_current_frame (struct frame_info *frame)
|
226 |
|
|
{
|
227 |
|
|
current_frame = frame;
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
|
231 |
|
|
/* Using the PC, select a mechanism for unwinding a frame returning
|
232 |
|
|
the previous frame. The register unwind function should, on
|
233 |
|
|
demand, initialize the ->context object. */
|
234 |
|
|
|
235 |
|
|
static void
|
236 |
|
|
set_unwind_by_pc (CORE_ADDR pc, CORE_ADDR fp,
|
237 |
|
|
frame_register_unwind_ftype **unwind)
|
238 |
|
|
{
|
239 |
|
|
if (!USE_GENERIC_DUMMY_FRAMES)
|
240 |
|
|
/* Still need to set this to something. The ``info frame'' code
|
241 |
|
|
calls this function to find out where the saved registers are.
|
242 |
|
|
Hopefully this is robust enough to stop any core dumps and
|
243 |
|
|
return vaguely correct values.. */
|
244 |
|
|
*unwind = frame_saved_regs_register_unwind;
|
245 |
|
|
else if (PC_IN_CALL_DUMMY (pc, fp, fp))
|
246 |
|
|
*unwind = generic_call_dummy_register_unwind;
|
247 |
|
|
else
|
248 |
|
|
*unwind = frame_saved_regs_register_unwind;
|
249 |
|
|
}
|
250 |
|
|
|
251 |
|
|
/* Create an arbitrary (i.e. address specified by user) or innermost frame.
|
252 |
|
|
Always returns a non-NULL value. */
|
253 |
|
|
|
254 |
|
|
struct frame_info *
|
255 |
|
|
create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
|
256 |
|
|
{
|
257 |
|
|
struct frame_info *fi;
|
258 |
|
|
char *name;
|
259 |
|
|
|
260 |
|
|
fi = (struct frame_info *)
|
261 |
|
|
obstack_alloc (&frame_cache_obstack,
|
262 |
|
|
sizeof (struct frame_info));
|
263 |
|
|
|
264 |
|
|
/* Zero all fields by default. */
|
265 |
|
|
memset (fi, 0, sizeof (struct frame_info));
|
266 |
|
|
|
267 |
|
|
fi->frame = addr;
|
268 |
|
|
fi->pc = pc;
|
269 |
|
|
find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
|
270 |
|
|
fi->signal_handler_caller = PC_IN_SIGTRAMP (fi->pc, name);
|
271 |
|
|
|
272 |
|
|
if (INIT_EXTRA_FRAME_INFO_P ())
|
273 |
|
|
INIT_EXTRA_FRAME_INFO (0, fi);
|
274 |
|
|
|
275 |
|
|
/* Select/initialize an unwind function. */
|
276 |
|
|
set_unwind_by_pc (fi->pc, fi->frame, &fi->register_unwind);
|
277 |
|
|
|
278 |
|
|
return fi;
|
279 |
|
|
}
|
280 |
|
|
|
281 |
|
|
/* Return the frame that FRAME calls (NULL if FRAME is the innermost
|
282 |
|
|
frame). */
|
283 |
|
|
|
284 |
|
|
struct frame_info *
|
285 |
|
|
get_next_frame (struct frame_info *frame)
|
286 |
|
|
{
|
287 |
|
|
return frame->next;
|
288 |
|
|
}
|
289 |
|
|
|
290 |
|
|
/* Flush the entire frame cache. */
|
291 |
|
|
|
292 |
|
|
void
|
293 |
|
|
flush_cached_frames (void)
|
294 |
|
|
{
|
295 |
|
|
/* Since we can't really be sure what the first object allocated was */
|
296 |
|
|
obstack_free (&frame_cache_obstack, 0);
|
297 |
|
|
obstack_init (&frame_cache_obstack);
|
298 |
|
|
|
299 |
|
|
current_frame = NULL; /* Invalidate cache */
|
300 |
|
|
select_frame (NULL);
|
301 |
|
|
annotate_frames_invalid ();
|
302 |
|
|
}
|
303 |
|
|
|
304 |
|
|
/* Flush the frame cache, and start a new one if necessary. */
|
305 |
|
|
|
306 |
|
|
void
|
307 |
|
|
reinit_frame_cache (void)
|
308 |
|
|
{
|
309 |
|
|
flush_cached_frames ();
|
310 |
|
|
|
311 |
|
|
/* FIXME: The inferior_ptid test is wrong if there is a corefile. */
|
312 |
|
|
if (PIDGET (inferior_ptid) != 0)
|
313 |
|
|
{
|
314 |
|
|
select_frame (get_current_frame ());
|
315 |
|
|
}
|
316 |
|
|
}
|
317 |
|
|
|
318 |
|
|
/* Return nonzero if the function for this frame lacks a prologue. Many
|
319 |
|
|
machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
|
320 |
|
|
function. */
|
321 |
|
|
|
322 |
|
|
int
|
323 |
|
|
frameless_look_for_prologue (struct frame_info *frame)
|
324 |
|
|
{
|
325 |
|
|
CORE_ADDR func_start, after_prologue;
|
326 |
|
|
|
327 |
|
|
func_start = get_pc_function_start (frame->pc);
|
328 |
|
|
if (func_start)
|
329 |
|
|
{
|
330 |
|
|
func_start += FUNCTION_START_OFFSET;
|
331 |
|
|
/* This is faster, since only care whether there *is* a
|
332 |
|
|
prologue, not how long it is. */
|
333 |
|
|
return PROLOGUE_FRAMELESS_P (func_start);
|
334 |
|
|
}
|
335 |
|
|
else if (frame->pc == 0)
|
336 |
|
|
/* A frame with a zero PC is usually created by dereferencing a
|
337 |
|
|
NULL function pointer, normally causing an immediate core dump
|
338 |
|
|
of the inferior. Mark function as frameless, as the inferior
|
339 |
|
|
has no chance of setting up a stack frame. */
|
340 |
|
|
return 1;
|
341 |
|
|
else
|
342 |
|
|
/* If we can't find the start of the function, we don't really
|
343 |
|
|
know whether the function is frameless, but we should be able
|
344 |
|
|
to get a reasonable (i.e. best we can do under the
|
345 |
|
|
circumstances) backtrace by saying that it isn't. */
|
346 |
|
|
return 0;
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
/* Return a structure containing various interesting information
|
350 |
|
|
about the frame that called NEXT_FRAME. Returns NULL
|
351 |
|
|
if there is no such frame. */
|
352 |
|
|
|
353 |
|
|
struct frame_info *
|
354 |
|
|
get_prev_frame (struct frame_info *next_frame)
|
355 |
|
|
{
|
356 |
|
|
CORE_ADDR address = 0;
|
357 |
|
|
struct frame_info *prev;
|
358 |
|
|
int fromleaf = 0;
|
359 |
|
|
char *name;
|
360 |
|
|
|
361 |
|
|
/* If the requested entry is in the cache, return it.
|
362 |
|
|
Otherwise, figure out what the address should be for the entry
|
363 |
|
|
we're about to add to the cache. */
|
364 |
|
|
|
365 |
|
|
if (!next_frame)
|
366 |
|
|
{
|
367 |
|
|
#if 0
|
368 |
|
|
/* This screws value_of_variable, which just wants a nice clean
|
369 |
|
|
NULL return from block_innermost_frame if there are no frames.
|
370 |
|
|
I don't think I've ever seen this message happen otherwise.
|
371 |
|
|
And returning NULL here is a perfectly legitimate thing to do. */
|
372 |
|
|
if (!current_frame)
|
373 |
|
|
{
|
374 |
|
|
error ("You haven't set up a process's stack to examine.");
|
375 |
|
|
}
|
376 |
|
|
#endif
|
377 |
|
|
|
378 |
|
|
return current_frame;
|
379 |
|
|
}
|
380 |
|
|
|
381 |
|
|
/* If we have the prev one, return it */
|
382 |
|
|
if (next_frame->prev)
|
383 |
|
|
return next_frame->prev;
|
384 |
|
|
|
385 |
|
|
/* On some machines it is possible to call a function without
|
386 |
|
|
setting up a stack frame for it. On these machines, we
|
387 |
|
|
define this macro to take two args; a frameinfo pointer
|
388 |
|
|
identifying a frame and a variable to set or clear if it is
|
389 |
|
|
or isn't leafless. */
|
390 |
|
|
|
391 |
|
|
/* Still don't want to worry about this except on the innermost
|
392 |
|
|
frame. This macro will set FROMLEAF if NEXT_FRAME is a
|
393 |
|
|
frameless function invocation. */
|
394 |
|
|
if (!(next_frame->next))
|
395 |
|
|
{
|
396 |
|
|
fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame);
|
397 |
|
|
if (fromleaf)
|
398 |
|
|
address = FRAME_FP (next_frame);
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
if (!fromleaf)
|
402 |
|
|
{
|
403 |
|
|
/* Two macros defined in tm.h specify the machine-dependent
|
404 |
|
|
actions to be performed here.
|
405 |
|
|
First, get the frame's chain-pointer.
|
406 |
|
|
If that is zero, the frame is the outermost frame or a leaf
|
407 |
|
|
called by the outermost frame. This means that if start
|
408 |
|
|
calls main without a frame, we'll return 0 (which is fine
|
409 |
|
|
anyway).
|
410 |
|
|
|
411 |
|
|
Nope; there's a problem. This also returns when the current
|
412 |
|
|
routine is a leaf of main. This is unacceptable. We move
|
413 |
|
|
this to after the ffi test; I'd rather have backtraces from
|
414 |
|
|
start go curfluy than have an abort called from main not show
|
415 |
|
|
main. */
|
416 |
|
|
address = FRAME_CHAIN (next_frame);
|
417 |
|
|
|
418 |
|
|
/* FIXME: cagney/2002-06-08: There should be two tests here.
|
419 |
|
|
The first would check for a valid frame chain based on a user
|
420 |
|
|
selectable policy. The default being ``stop at main'' (as
|
421 |
|
|
implemented by generic_func_frame_chain_valid()). Other
|
422 |
|
|
policies would be available - stop at NULL, .... The second
|
423 |
|
|
test, if provided by the target architecture, would check for
|
424 |
|
|
more exotic cases - most target architectures wouldn't bother
|
425 |
|
|
with this second case. */
|
426 |
|
|
if (!FRAME_CHAIN_VALID (address, next_frame))
|
427 |
|
|
return 0;
|
428 |
|
|
}
|
429 |
|
|
if (address == 0)
|
430 |
|
|
return 0;
|
431 |
|
|
|
432 |
|
|
prev = (struct frame_info *)
|
433 |
|
|
obstack_alloc (&frame_cache_obstack,
|
434 |
|
|
sizeof (struct frame_info));
|
435 |
|
|
|
436 |
|
|
/* Zero all fields by default. */
|
437 |
|
|
memset (prev, 0, sizeof (struct frame_info));
|
438 |
|
|
|
439 |
|
|
if (next_frame)
|
440 |
|
|
next_frame->prev = prev;
|
441 |
|
|
prev->next = next_frame;
|
442 |
|
|
prev->frame = address;
|
443 |
|
|
prev->level = next_frame->level + 1;
|
444 |
|
|
|
445 |
|
|
/* This change should not be needed, FIXME! We should
|
446 |
|
|
determine whether any targets *need* INIT_FRAME_PC to happen
|
447 |
|
|
after INIT_EXTRA_FRAME_INFO and come up with a simple way to
|
448 |
|
|
express what goes on here.
|
449 |
|
|
|
450 |
|
|
INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
|
451 |
|
|
(where the PC is already set up) and here (where it isn't).
|
452 |
|
|
INIT_FRAME_PC is only called from here, always after
|
453 |
|
|
INIT_EXTRA_FRAME_INFO.
|
454 |
|
|
|
455 |
|
|
The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
|
456 |
|
|
value (which hasn't been set yet). Some other machines appear to
|
457 |
|
|
require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
|
458 |
|
|
|
459 |
|
|
We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
|
460 |
|
|
an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
|
461 |
|
|
|
462 |
|
|
Assuming that some machines need INIT_FRAME_PC after
|
463 |
|
|
INIT_EXTRA_FRAME_INFO, one possible scheme:
|
464 |
|
|
|
465 |
|
|
SETUP_INNERMOST_FRAME()
|
466 |
|
|
Default version is just create_new_frame (read_fp ()),
|
467 |
|
|
read_pc ()). Machines with extra frame info would do that (or the
|
468 |
|
|
local equivalent) and then set the extra fields.
|
469 |
|
|
SETUP_ARBITRARY_FRAME(argc, argv)
|
470 |
|
|
Only change here is that create_new_frame would no longer init extra
|
471 |
|
|
frame info; SETUP_ARBITRARY_FRAME would have to do that.
|
472 |
|
|
INIT_PREV_FRAME(fromleaf, prev)
|
473 |
|
|
Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
|
474 |
|
|
also return a flag saying whether to keep the new frame, or
|
475 |
|
|
whether to discard it, because on some machines (e.g. mips) it
|
476 |
|
|
is really awkward to have FRAME_CHAIN_VALID called *before*
|
477 |
|
|
INIT_EXTRA_FRAME_INFO (there is no good way to get information
|
478 |
|
|
deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
|
479 |
|
|
std_frame_pc(fromleaf, prev)
|
480 |
|
|
This is the default setting for INIT_PREV_FRAME. It just does what
|
481 |
|
|
the default INIT_FRAME_PC does. Some machines will call it from
|
482 |
|
|
INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
|
483 |
|
|
Some machines won't use it.
|
484 |
|
|
kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
|
485 |
|
|
|
486 |
|
|
INIT_FRAME_PC_FIRST (fromleaf, prev);
|
487 |
|
|
|
488 |
|
|
if (INIT_EXTRA_FRAME_INFO_P ())
|
489 |
|
|
INIT_EXTRA_FRAME_INFO (fromleaf, prev);
|
490 |
|
|
|
491 |
|
|
/* This entry is in the frame queue now, which is good since
|
492 |
|
|
FRAME_SAVED_PC may use that queue to figure out its value
|
493 |
|
|
(see tm-sparc.h). We want the pc saved in the inferior frame. */
|
494 |
|
|
INIT_FRAME_PC (fromleaf, prev);
|
495 |
|
|
|
496 |
|
|
/* If ->frame and ->pc are unchanged, we are in the process of getting
|
497 |
|
|
ourselves into an infinite backtrace. Some architectures check this
|
498 |
|
|
in FRAME_CHAIN or thereabouts, but it seems like there is no reason
|
499 |
|
|
this can't be an architecture-independent check. */
|
500 |
|
|
if (next_frame != NULL)
|
501 |
|
|
{
|
502 |
|
|
if (prev->frame == next_frame->frame
|
503 |
|
|
&& prev->pc == next_frame->pc)
|
504 |
|
|
{
|
505 |
|
|
next_frame->prev = NULL;
|
506 |
|
|
obstack_free (&frame_cache_obstack, prev);
|
507 |
|
|
return NULL;
|
508 |
|
|
}
|
509 |
|
|
}
|
510 |
|
|
|
511 |
|
|
/* Initialize the code used to unwind the frame PREV based on the PC
|
512 |
|
|
(and probably other architectural information). The PC lets you
|
513 |
|
|
check things like the debug info at that point (dwarf2cfi?) and
|
514 |
|
|
use that to decide how the frame should be unwound. */
|
515 |
|
|
set_unwind_by_pc (prev->pc, prev->frame, &prev->register_unwind);
|
516 |
|
|
|
517 |
|
|
find_pc_partial_function (prev->pc, &name,
|
518 |
|
|
(CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
|
519 |
|
|
if (PC_IN_SIGTRAMP (prev->pc, name))
|
520 |
|
|
prev->signal_handler_caller = 1;
|
521 |
|
|
|
522 |
|
|
return prev;
|
523 |
|
|
}
|
524 |
|
|
|
525 |
|
|
CORE_ADDR
|
526 |
|
|
get_frame_pc (struct frame_info *frame)
|
527 |
|
|
{
|
528 |
|
|
return frame->pc;
|
529 |
|
|
}
|
530 |
|
|
|
531 |
|
|
/* return the address of the PC for the given FRAME, ie the current PC value
|
532 |
|
|
if FRAME is the innermost frame, or the address adjusted to point to the
|
533 |
|
|
call instruction if not. */
|
534 |
|
|
|
535 |
|
|
CORE_ADDR
|
536 |
|
|
frame_address_in_block (struct frame_info *frame)
|
537 |
|
|
{
|
538 |
|
|
CORE_ADDR pc = frame->pc;
|
539 |
|
|
|
540 |
|
|
/* If we are not in the innermost frame, and we are not interrupted
|
541 |
|
|
by a signal, frame->pc points to the instruction following the
|
542 |
|
|
call. As a consequence, we need to get the address of the previous
|
543 |
|
|
instruction. Unfortunately, this is not straightforward to do, so
|
544 |
|
|
we just use the address minus one, which is a good enough
|
545 |
|
|
approximation. */
|
546 |
|
|
if (frame->next != 0 && frame->next->signal_handler_caller == 0)
|
547 |
|
|
--pc;
|
548 |
|
|
|
549 |
|
|
return pc;
|
550 |
|
|
}
|
551 |
|
|
|
552 |
|
|
#ifdef FRAME_FIND_SAVED_REGS
|
553 |
|
|
/* XXX - deprecated. This is a compatibility function for targets
|
554 |
|
|
that do not yet implement FRAME_INIT_SAVED_REGS. */
|
555 |
|
|
/* Find the addresses in which registers are saved in FRAME. */
|
556 |
|
|
|
557 |
|
|
void
|
558 |
|
|
get_frame_saved_regs (struct frame_info *frame,
|
559 |
|
|
struct frame_saved_regs *saved_regs_addr)
|
560 |
|
|
{
|
561 |
|
|
if (frame->saved_regs == NULL)
|
562 |
|
|
{
|
563 |
|
|
frame->saved_regs = (CORE_ADDR *)
|
564 |
|
|
frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
|
565 |
|
|
}
|
566 |
|
|
if (saved_regs_addr == NULL)
|
567 |
|
|
{
|
568 |
|
|
struct frame_saved_regs saved_regs;
|
569 |
|
|
FRAME_FIND_SAVED_REGS (frame, saved_regs);
|
570 |
|
|
memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS);
|
571 |
|
|
}
|
572 |
|
|
else
|
573 |
|
|
{
|
574 |
|
|
FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
|
575 |
|
|
memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS);
|
576 |
|
|
}
|
577 |
|
|
}
|
578 |
|
|
#endif
|
579 |
|
|
|
580 |
|
|
/* Return the innermost lexical block in execution
|
581 |
|
|
in a specified stack frame. The frame address is assumed valid.
|
582 |
|
|
|
583 |
|
|
If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
|
584 |
|
|
address we used to choose the block. We use this to find a source
|
585 |
|
|
line, to decide which macro definitions are in scope.
|
586 |
|
|
|
587 |
|
|
The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
|
588 |
|
|
PC, and may not really be a valid PC at all. For example, in the
|
589 |
|
|
caller of a function declared to never return, the code at the
|
590 |
|
|
return address will never be reached, so the call instruction may
|
591 |
|
|
be the very last instruction in the block. So the address we use
|
592 |
|
|
to choose the block is actually one byte before the return address
|
593 |
|
|
--- hopefully pointing us at the call instruction, or its delay
|
594 |
|
|
slot instruction. */
|
595 |
|
|
|
596 |
|
|
struct block *
|
597 |
|
|
get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
|
598 |
|
|
{
|
599 |
|
|
const CORE_ADDR pc = frame_address_in_block (frame);
|
600 |
|
|
|
601 |
|
|
if (addr_in_block)
|
602 |
|
|
*addr_in_block = pc;
|
603 |
|
|
|
604 |
|
|
return block_for_pc (pc);
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
struct block *
|
608 |
|
|
get_current_block (CORE_ADDR *addr_in_block)
|
609 |
|
|
{
|
610 |
|
|
CORE_ADDR pc = read_pc ();
|
611 |
|
|
|
612 |
|
|
if (addr_in_block)
|
613 |
|
|
*addr_in_block = pc;
|
614 |
|
|
|
615 |
|
|
return block_for_pc (pc);
|
616 |
|
|
}
|
617 |
|
|
|
618 |
|
|
CORE_ADDR
|
619 |
|
|
get_pc_function_start (CORE_ADDR pc)
|
620 |
|
|
{
|
621 |
|
|
register struct block *bl;
|
622 |
|
|
register struct symbol *symbol;
|
623 |
|
|
register struct minimal_symbol *msymbol;
|
624 |
|
|
CORE_ADDR fstart;
|
625 |
|
|
|
626 |
|
|
if ((bl = block_for_pc (pc)) != NULL &&
|
627 |
|
|
(symbol = block_function (bl)) != NULL)
|
628 |
|
|
{
|
629 |
|
|
bl = SYMBOL_BLOCK_VALUE (symbol);
|
630 |
|
|
fstart = BLOCK_START (bl);
|
631 |
|
|
}
|
632 |
|
|
else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
|
633 |
|
|
{
|
634 |
|
|
fstart = SYMBOL_VALUE_ADDRESS (msymbol);
|
635 |
|
|
if (!find_pc_section (fstart))
|
636 |
|
|
return 0;
|
637 |
|
|
}
|
638 |
|
|
else
|
639 |
|
|
{
|
640 |
|
|
fstart = 0;
|
641 |
|
|
}
|
642 |
|
|
return (fstart);
|
643 |
|
|
}
|
644 |
|
|
|
645 |
|
|
/* Return the symbol for the function executing in frame FRAME. */
|
646 |
|
|
|
647 |
|
|
struct symbol *
|
648 |
|
|
get_frame_function (struct frame_info *frame)
|
649 |
|
|
{
|
650 |
|
|
register struct block *bl = get_frame_block (frame, 0);
|
651 |
|
|
if (bl == 0)
|
652 |
|
|
return 0;
|
653 |
|
|
return block_function (bl);
|
654 |
|
|
}
|
655 |
|
|
|
656 |
|
|
|
657 |
|
|
/* Return the blockvector immediately containing the innermost lexical block
|
658 |
|
|
containing the specified pc value and section, or 0 if there is none.
|
659 |
|
|
PINDEX is a pointer to the index value of the block. If PINDEX
|
660 |
|
|
is NULL, we don't pass this information back to the caller. */
|
661 |
|
|
|
662 |
|
|
struct blockvector *
|
663 |
|
|
blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
|
664 |
|
|
int *pindex, struct symtab *symtab)
|
665 |
|
|
{
|
666 |
|
|
register struct block *b;
|
667 |
|
|
register int bot, top, half;
|
668 |
|
|
struct blockvector *bl;
|
669 |
|
|
|
670 |
|
|
if (symtab == 0) /* if no symtab specified by caller */
|
671 |
|
|
{
|
672 |
|
|
/* First search all symtabs for one whose file contains our pc */
|
673 |
|
|
if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
|
674 |
|
|
return 0;
|
675 |
|
|
}
|
676 |
|
|
|
677 |
|
|
bl = BLOCKVECTOR (symtab);
|
678 |
|
|
b = BLOCKVECTOR_BLOCK (bl, 0);
|
679 |
|
|
|
680 |
|
|
/* Then search that symtab for the smallest block that wins. */
|
681 |
|
|
/* Use binary search to find the last block that starts before PC. */
|
682 |
|
|
|
683 |
|
|
bot = 0;
|
684 |
|
|
top = BLOCKVECTOR_NBLOCKS (bl);
|
685 |
|
|
|
686 |
|
|
while (top - bot > 1)
|
687 |
|
|
{
|
688 |
|
|
half = (top - bot + 1) >> 1;
|
689 |
|
|
b = BLOCKVECTOR_BLOCK (bl, bot + half);
|
690 |
|
|
if (BLOCK_START (b) <= pc)
|
691 |
|
|
bot += half;
|
692 |
|
|
else
|
693 |
|
|
top = bot + half;
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
/* Now search backward for a block that ends after PC. */
|
697 |
|
|
|
698 |
|
|
while (bot >= 0)
|
699 |
|
|
{
|
700 |
|
|
b = BLOCKVECTOR_BLOCK (bl, bot);
|
701 |
|
|
if (BLOCK_END (b) > pc)
|
702 |
|
|
{
|
703 |
|
|
if (pindex)
|
704 |
|
|
*pindex = bot;
|
705 |
|
|
return bl;
|
706 |
|
|
}
|
707 |
|
|
bot--;
|
708 |
|
|
}
|
709 |
|
|
return 0;
|
710 |
|
|
}
|
711 |
|
|
|
712 |
|
|
/* Return the blockvector immediately containing the innermost lexical block
|
713 |
|
|
containing the specified pc value, or 0 if there is none.
|
714 |
|
|
Backward compatibility, no section. */
|
715 |
|
|
|
716 |
|
|
struct blockvector *
|
717 |
|
|
blockvector_for_pc (register CORE_ADDR pc, int *pindex)
|
718 |
|
|
{
|
719 |
|
|
return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
|
720 |
|
|
pindex, NULL);
|
721 |
|
|
}
|
722 |
|
|
|
723 |
|
|
/* Return the innermost lexical block containing the specified pc value
|
724 |
|
|
in the specified section, or 0 if there is none. */
|
725 |
|
|
|
726 |
|
|
struct block *
|
727 |
|
|
block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
|
728 |
|
|
{
|
729 |
|
|
register struct blockvector *bl;
|
730 |
|
|
int index;
|
731 |
|
|
|
732 |
|
|
bl = blockvector_for_pc_sect (pc, section, &index, NULL);
|
733 |
|
|
if (bl)
|
734 |
|
|
return BLOCKVECTOR_BLOCK (bl, index);
|
735 |
|
|
return 0;
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
/* Return the innermost lexical block containing the specified pc value,
|
739 |
|
|
or 0 if there is none. Backward compatibility, no section. */
|
740 |
|
|
|
741 |
|
|
struct block *
|
742 |
|
|
block_for_pc (register CORE_ADDR pc)
|
743 |
|
|
{
|
744 |
|
|
return block_for_pc_sect (pc, find_pc_mapped_section (pc));
|
745 |
|
|
}
|
746 |
|
|
|
747 |
|
|
/* Return the function containing pc value PC in section SECTION.
|
748 |
|
|
Returns 0 if function is not known. */
|
749 |
|
|
|
750 |
|
|
struct symbol *
|
751 |
|
|
find_pc_sect_function (CORE_ADDR pc, struct sec *section)
|
752 |
|
|
{
|
753 |
|
|
register struct block *b = block_for_pc_sect (pc, section);
|
754 |
|
|
if (b == 0)
|
755 |
|
|
return 0;
|
756 |
|
|
return block_function (b);
|
757 |
|
|
}
|
758 |
|
|
|
759 |
|
|
/* Return the function containing pc value PC.
|
760 |
|
|
Returns 0 if function is not known. Backward compatibility, no section */
|
761 |
|
|
|
762 |
|
|
struct symbol *
|
763 |
|
|
find_pc_function (CORE_ADDR pc)
|
764 |
|
|
{
|
765 |
|
|
return find_pc_sect_function (pc, find_pc_mapped_section (pc));
|
766 |
|
|
}
|
767 |
|
|
|
768 |
|
|
/* These variables are used to cache the most recent result
|
769 |
|
|
* of find_pc_partial_function. */
|
770 |
|
|
|
771 |
|
|
static CORE_ADDR cache_pc_function_low = 0;
|
772 |
|
|
static CORE_ADDR cache_pc_function_high = 0;
|
773 |
|
|
static char *cache_pc_function_name = 0;
|
774 |
|
|
static struct sec *cache_pc_function_section = NULL;
|
775 |
|
|
|
776 |
|
|
/* Clear cache, e.g. when symbol table is discarded. */
|
777 |
|
|
|
778 |
|
|
void
|
779 |
|
|
clear_pc_function_cache (void)
|
780 |
|
|
{
|
781 |
|
|
cache_pc_function_low = 0;
|
782 |
|
|
cache_pc_function_high = 0;
|
783 |
|
|
cache_pc_function_name = (char *) 0;
|
784 |
|
|
cache_pc_function_section = NULL;
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
/* Finds the "function" (text symbol) that is smaller than PC but
|
788 |
|
|
greatest of all of the potential text symbols in SECTION. Sets
|
789 |
|
|
*NAME and/or *ADDRESS conditionally if that pointer is non-null.
|
790 |
|
|
If ENDADDR is non-null, then set *ENDADDR to be the end of the
|
791 |
|
|
function (exclusive), but passing ENDADDR as non-null means that
|
792 |
|
|
the function might cause symbols to be read. This function either
|
793 |
|
|
succeeds or fails (not halfway succeeds). If it succeeds, it sets
|
794 |
|
|
*NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
|
795 |
|
|
If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
|
796 |
|
|
returns 0. */
|
797 |
|
|
|
798 |
|
|
int
|
799 |
|
|
find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
|
800 |
|
|
CORE_ADDR *address, CORE_ADDR *endaddr)
|
801 |
|
|
{
|
802 |
|
|
struct partial_symtab *pst;
|
803 |
|
|
struct symbol *f;
|
804 |
|
|
struct minimal_symbol *msymbol;
|
805 |
|
|
struct partial_symbol *psb;
|
806 |
|
|
struct obj_section *osect;
|
807 |
|
|
int i;
|
808 |
|
|
CORE_ADDR mapped_pc;
|
809 |
|
|
|
810 |
|
|
mapped_pc = overlay_mapped_address (pc, section);
|
811 |
|
|
|
812 |
|
|
if (mapped_pc >= cache_pc_function_low
|
813 |
|
|
&& mapped_pc < cache_pc_function_high
|
814 |
|
|
&& section == cache_pc_function_section)
|
815 |
|
|
goto return_cached_value;
|
816 |
|
|
|
817 |
|
|
/* If sigtramp is in the u area, it counts as a function (especially
|
818 |
|
|
important for step_1). */
|
819 |
|
|
#if defined SIGTRAMP_START
|
820 |
|
|
if (PC_IN_SIGTRAMP (mapped_pc, (char *) NULL))
|
821 |
|
|
{
|
822 |
|
|
cache_pc_function_low = SIGTRAMP_START (mapped_pc);
|
823 |
|
|
cache_pc_function_high = SIGTRAMP_END (mapped_pc);
|
824 |
|
|
cache_pc_function_name = "<sigtramp>";
|
825 |
|
|
cache_pc_function_section = section;
|
826 |
|
|
goto return_cached_value;
|
827 |
|
|
}
|
828 |
|
|
#endif
|
829 |
|
|
|
830 |
|
|
msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
|
831 |
|
|
pst = find_pc_sect_psymtab (mapped_pc, section);
|
832 |
|
|
if (pst)
|
833 |
|
|
{
|
834 |
|
|
/* Need to read the symbols to get a good value for the end address. */
|
835 |
|
|
if (endaddr != NULL && !pst->readin)
|
836 |
|
|
{
|
837 |
|
|
/* Need to get the terminal in case symbol-reading produces
|
838 |
|
|
output. */
|
839 |
|
|
target_terminal_ours_for_output ();
|
840 |
|
|
PSYMTAB_TO_SYMTAB (pst);
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
if (pst->readin)
|
844 |
|
|
{
|
845 |
|
|
/* Checking whether the msymbol has a larger value is for the
|
846 |
|
|
"pathological" case mentioned in print_frame_info. */
|
847 |
|
|
f = find_pc_sect_function (mapped_pc, section);
|
848 |
|
|
if (f != NULL
|
849 |
|
|
&& (msymbol == NULL
|
850 |
|
|
|| (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
|
851 |
|
|
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
852 |
|
|
{
|
853 |
|
|
cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
|
854 |
|
|
cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
|
855 |
|
|
cache_pc_function_name = SYMBOL_NAME (f);
|
856 |
|
|
cache_pc_function_section = section;
|
857 |
|
|
goto return_cached_value;
|
858 |
|
|
}
|
859 |
|
|
}
|
860 |
|
|
else
|
861 |
|
|
{
|
862 |
|
|
/* Now that static symbols go in the minimal symbol table, perhaps
|
863 |
|
|
we could just ignore the partial symbols. But at least for now
|
864 |
|
|
we use the partial or minimal symbol, whichever is larger. */
|
865 |
|
|
psb = find_pc_sect_psymbol (pst, mapped_pc, section);
|
866 |
|
|
|
867 |
|
|
if (psb
|
868 |
|
|
&& (msymbol == NULL ||
|
869 |
|
|
(SYMBOL_VALUE_ADDRESS (psb)
|
870 |
|
|
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
871 |
|
|
{
|
872 |
|
|
/* This case isn't being cached currently. */
|
873 |
|
|
if (address)
|
874 |
|
|
*address = SYMBOL_VALUE_ADDRESS (psb);
|
875 |
|
|
if (name)
|
876 |
|
|
*name = SYMBOL_NAME (psb);
|
877 |
|
|
/* endaddr non-NULL can't happen here. */
|
878 |
|
|
return 1;
|
879 |
|
|
}
|
880 |
|
|
}
|
881 |
|
|
}
|
882 |
|
|
|
883 |
|
|
/* Not in the normal symbol tables, see if the pc is in a known section.
|
884 |
|
|
If it's not, then give up. This ensures that anything beyond the end
|
885 |
|
|
of the text seg doesn't appear to be part of the last function in the
|
886 |
|
|
text segment. */
|
887 |
|
|
|
888 |
|
|
osect = find_pc_sect_section (mapped_pc, section);
|
889 |
|
|
|
890 |
|
|
if (!osect)
|
891 |
|
|
msymbol = NULL;
|
892 |
|
|
|
893 |
|
|
/* Must be in the minimal symbol table. */
|
894 |
|
|
if (msymbol == NULL)
|
895 |
|
|
{
|
896 |
|
|
/* No available symbol. */
|
897 |
|
|
if (name != NULL)
|
898 |
|
|
*name = 0;
|
899 |
|
|
if (address != NULL)
|
900 |
|
|
*address = 0;
|
901 |
|
|
if (endaddr != NULL)
|
902 |
|
|
*endaddr = 0;
|
903 |
|
|
return 0;
|
904 |
|
|
}
|
905 |
|
|
|
906 |
|
|
cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
|
907 |
|
|
cache_pc_function_name = SYMBOL_NAME (msymbol);
|
908 |
|
|
cache_pc_function_section = section;
|
909 |
|
|
|
910 |
|
|
/* Use the lesser of the next minimal symbol in the same section, or
|
911 |
|
|
the end of the section, as the end of the function. */
|
912 |
|
|
|
913 |
|
|
/* Step over other symbols at this same address, and symbols in
|
914 |
|
|
other sections, to find the next symbol in this section with
|
915 |
|
|
a different address. */
|
916 |
|
|
|
917 |
|
|
for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
|
918 |
|
|
{
|
919 |
|
|
if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
|
920 |
|
|
&& SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
|
921 |
|
|
break;
|
922 |
|
|
}
|
923 |
|
|
|
924 |
|
|
if (SYMBOL_NAME (msymbol + i) != NULL
|
925 |
|
|
&& SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
|
926 |
|
|
cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
|
927 |
|
|
else
|
928 |
|
|
/* We got the start address from the last msymbol in the objfile.
|
929 |
|
|
So the end address is the end of the section. */
|
930 |
|
|
cache_pc_function_high = osect->endaddr;
|
931 |
|
|
|
932 |
|
|
return_cached_value:
|
933 |
|
|
|
934 |
|
|
if (address)
|
935 |
|
|
{
|
936 |
|
|
if (pc_in_unmapped_range (pc, section))
|
937 |
|
|
*address = overlay_unmapped_address (cache_pc_function_low, section);
|
938 |
|
|
else
|
939 |
|
|
*address = cache_pc_function_low;
|
940 |
|
|
}
|
941 |
|
|
|
942 |
|
|
if (name)
|
943 |
|
|
*name = cache_pc_function_name;
|
944 |
|
|
|
945 |
|
|
if (endaddr)
|
946 |
|
|
{
|
947 |
|
|
if (pc_in_unmapped_range (pc, section))
|
948 |
|
|
{
|
949 |
|
|
/* Because the high address is actually beyond the end of
|
950 |
|
|
the function (and therefore possibly beyond the end of
|
951 |
|
|
the overlay), we must actually convert (high - 1) and
|
952 |
|
|
then add one to that. */
|
953 |
|
|
|
954 |
|
|
*endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
|
955 |
|
|
section);
|
956 |
|
|
}
|
957 |
|
|
else
|
958 |
|
|
*endaddr = cache_pc_function_high;
|
959 |
|
|
}
|
960 |
|
|
|
961 |
|
|
return 1;
|
962 |
|
|
}
|
963 |
|
|
|
964 |
|
|
/* Backward compatibility, no section argument. */
|
965 |
|
|
|
966 |
|
|
int
|
967 |
|
|
find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
|
968 |
|
|
CORE_ADDR *endaddr)
|
969 |
|
|
{
|
970 |
|
|
asection *section;
|
971 |
|
|
|
972 |
|
|
section = find_pc_overlay (pc);
|
973 |
|
|
return find_pc_sect_partial_function (pc, section, name, address, endaddr);
|
974 |
|
|
}
|
975 |
|
|
|
976 |
|
|
/* Return the innermost stack frame executing inside of BLOCK,
|
977 |
|
|
or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
|
978 |
|
|
|
979 |
|
|
struct frame_info *
|
980 |
|
|
block_innermost_frame (struct block *block)
|
981 |
|
|
{
|
982 |
|
|
struct frame_info *frame;
|
983 |
|
|
register CORE_ADDR start;
|
984 |
|
|
register CORE_ADDR end;
|
985 |
|
|
CORE_ADDR calling_pc;
|
986 |
|
|
|
987 |
|
|
if (block == NULL)
|
988 |
|
|
return NULL;
|
989 |
|
|
|
990 |
|
|
start = BLOCK_START (block);
|
991 |
|
|
end = BLOCK_END (block);
|
992 |
|
|
|
993 |
|
|
frame = NULL;
|
994 |
|
|
while (1)
|
995 |
|
|
{
|
996 |
|
|
frame = get_prev_frame (frame);
|
997 |
|
|
if (frame == NULL)
|
998 |
|
|
return NULL;
|
999 |
|
|
calling_pc = frame_address_in_block (frame);
|
1000 |
|
|
if (calling_pc >= start && calling_pc < end)
|
1001 |
|
|
return frame;
|
1002 |
|
|
}
|
1003 |
|
|
}
|
1004 |
|
|
|
1005 |
|
|
/* Return the full FRAME which corresponds to the given CORE_ADDR
|
1006 |
|
|
or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
|
1007 |
|
|
|
1008 |
|
|
struct frame_info *
|
1009 |
|
|
find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
|
1010 |
|
|
{
|
1011 |
|
|
struct frame_info *frame = NULL;
|
1012 |
|
|
|
1013 |
|
|
if (frame_addr == (CORE_ADDR) 0)
|
1014 |
|
|
return NULL;
|
1015 |
|
|
|
1016 |
|
|
while (1)
|
1017 |
|
|
{
|
1018 |
|
|
frame = get_prev_frame (frame);
|
1019 |
|
|
if (frame == NULL)
|
1020 |
|
|
return NULL;
|
1021 |
|
|
if (FRAME_FP (frame) == frame_addr)
|
1022 |
|
|
return frame;
|
1023 |
|
|
}
|
1024 |
|
|
}
|
1025 |
|
|
|
1026 |
|
|
#ifdef SIGCONTEXT_PC_OFFSET
|
1027 |
|
|
/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
|
1028 |
|
|
|
1029 |
|
|
CORE_ADDR
|
1030 |
|
|
sigtramp_saved_pc (struct frame_info *frame)
|
1031 |
|
|
{
|
1032 |
|
|
CORE_ADDR sigcontext_addr;
|
1033 |
|
|
char *buf;
|
1034 |
|
|
int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
|
1035 |
|
|
int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
|
1036 |
|
|
|
1037 |
|
|
buf = alloca (ptrbytes);
|
1038 |
|
|
/* Get sigcontext address, it is the third parameter on the stack. */
|
1039 |
|
|
if (frame->next)
|
1040 |
|
|
sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
|
1041 |
|
|
+ FRAME_ARGS_SKIP
|
1042 |
|
|
+ sigcontext_offs,
|
1043 |
|
|
ptrbytes);
|
1044 |
|
|
else
|
1045 |
|
|
sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
|
1046 |
|
|
+ sigcontext_offs,
|
1047 |
|
|
ptrbytes);
|
1048 |
|
|
|
1049 |
|
|
/* Don't cause a memory_error when accessing sigcontext in case the stack
|
1050 |
|
|
layout has changed or the stack is corrupt. */
|
1051 |
|
|
target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
|
1052 |
|
|
return extract_unsigned_integer (buf, ptrbytes);
|
1053 |
|
|
}
|
1054 |
|
|
#endif /* SIGCONTEXT_PC_OFFSET */
|
1055 |
|
|
|
1056 |
|
|
|
1057 |
|
|
/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
|
1058 |
|
|
below is for infrun.c, which may give the macro a pc without that
|
1059 |
|
|
subtracted out. */
|
1060 |
|
|
|
1061 |
|
|
extern CORE_ADDR text_end;
|
1062 |
|
|
|
1063 |
|
|
int
|
1064 |
|
|
pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
|
1065 |
|
|
CORE_ADDR frame_address)
|
1066 |
|
|
{
|
1067 |
|
|
return ((pc) >= text_end - CALL_DUMMY_LENGTH
|
1068 |
|
|
&& (pc) <= text_end + DECR_PC_AFTER_BREAK);
|
1069 |
|
|
}
|
1070 |
|
|
|
1071 |
|
|
int
|
1072 |
|
|
pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
|
1073 |
|
|
CORE_ADDR frame_address)
|
1074 |
|
|
{
|
1075 |
|
|
return ((pc) >= text_end
|
1076 |
|
|
&& (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
|
1077 |
|
|
}
|
1078 |
|
|
|
1079 |
|
|
/* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
|
1080 |
|
|
top of the stack frame which we are checking, where "bottom" and
|
1081 |
|
|
"top" refer to some section of memory which contains the code for
|
1082 |
|
|
the call dummy. Calls to this macro assume that the contents of
|
1083 |
|
|
SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
|
1084 |
|
|
are the things to pass.
|
1085 |
|
|
|
1086 |
|
|
This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
|
1087 |
|
|
have that meaning, but the 29k doesn't use ON_STACK. This could be
|
1088 |
|
|
fixed by generalizing this scheme, perhaps by passing in a frame
|
1089 |
|
|
and adding a few fields, at least on machines which need them for
|
1090 |
|
|
PC_IN_CALL_DUMMY.
|
1091 |
|
|
|
1092 |
|
|
Something simpler, like checking for the stack segment, doesn't work,
|
1093 |
|
|
since various programs (threads implementations, gcc nested function
|
1094 |
|
|
stubs, etc) may either allocate stack frames in another segment, or
|
1095 |
|
|
allocate other kinds of code on the stack. */
|
1096 |
|
|
|
1097 |
|
|
int
|
1098 |
|
|
pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
|
1099 |
|
|
{
|
1100 |
|
|
return (INNER_THAN ((sp), (pc))
|
1101 |
|
|
&& (frame_address != 0)
|
1102 |
|
|
&& INNER_THAN ((pc), (frame_address)));
|
1103 |
|
|
}
|
1104 |
|
|
|
1105 |
|
|
int
|
1106 |
|
|
pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
|
1107 |
|
|
CORE_ADDR frame_address)
|
1108 |
|
|
{
|
1109 |
|
|
return ((pc) >= CALL_DUMMY_ADDRESS ()
|
1110 |
|
|
&& (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
|
1111 |
|
|
}
|
1112 |
|
|
|
1113 |
|
|
|
1114 |
|
|
/*
|
1115 |
|
|
* GENERIC DUMMY FRAMES
|
1116 |
|
|
*
|
1117 |
|
|
* The following code serves to maintain the dummy stack frames for
|
1118 |
|
|
* inferior function calls (ie. when gdb calls into the inferior via
|
1119 |
|
|
* call_function_by_hand). This code saves the machine state before
|
1120 |
|
|
* the call in host memory, so we must maintain an independent stack
|
1121 |
|
|
* and keep it consistant etc. I am attempting to make this code
|
1122 |
|
|
* generic enough to be used by many targets.
|
1123 |
|
|
*
|
1124 |
|
|
* The cheapest and most generic way to do CALL_DUMMY on a new target
|
1125 |
|
|
* is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to
|
1126 |
|
|
* zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember
|
1127 |
|
|
* to define PUSH_RETURN_ADDRESS, because no call instruction will be
|
1128 |
|
|
* being executed by the target. Also FRAME_CHAIN_VALID as
|
1129 |
|
|
* generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as
|
1130 |
|
|
* generic_fix_call_dummy. */
|
1131 |
|
|
|
1132 |
|
|
/* Dummy frame. This saves the processor state just prior to setting
|
1133 |
|
|
up the inferior function call. Older targets save the registers
|
1134 |
|
|
on the target stack (but that really slows down function calls). */
|
1135 |
|
|
|
1136 |
|
|
struct dummy_frame
|
1137 |
|
|
{
|
1138 |
|
|
struct dummy_frame *next;
|
1139 |
|
|
|
1140 |
|
|
CORE_ADDR pc;
|
1141 |
|
|
CORE_ADDR fp;
|
1142 |
|
|
CORE_ADDR sp;
|
1143 |
|
|
CORE_ADDR top;
|
1144 |
|
|
struct regcache *regcache;
|
1145 |
|
|
|
1146 |
|
|
/* Address range of the call dummy code. Look for PC in the range
|
1147 |
|
|
[LO..HI) (after allowing for DECR_PC_AFTER_BREAK). */
|
1148 |
|
|
CORE_ADDR call_lo;
|
1149 |
|
|
CORE_ADDR call_hi;
|
1150 |
|
|
};
|
1151 |
|
|
|
1152 |
|
|
static struct dummy_frame *dummy_frame_stack = NULL;
|
1153 |
|
|
|
1154 |
|
|
/* Function: find_dummy_frame(pc, fp, sp)
|
1155 |
|
|
|
1156 |
|
|
Search the stack of dummy frames for one matching the given PC, FP
|
1157 |
|
|
and SP. Unlike PC_IN_CALL_DUMMY, this function doesn't need to
|
1158 |
|
|
adjust for DECR_PC_AFTER_BREAK. This is because it is only legal
|
1159 |
|
|
to call this function after the PC has been adjusted. */
|
1160 |
|
|
|
1161 |
|
|
static struct regcache *
|
1162 |
|
|
generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
|
1163 |
|
|
{
|
1164 |
|
|
struct dummy_frame *dummyframe;
|
1165 |
|
|
|
1166 |
|
|
for (dummyframe = dummy_frame_stack; dummyframe != NULL;
|
1167 |
|
|
dummyframe = dummyframe->next)
|
1168 |
|
|
if ((pc >= dummyframe->call_lo && pc < dummyframe->call_hi)
|
1169 |
|
|
&& (fp == dummyframe->fp
|
1170 |
|
|
|| fp == dummyframe->sp
|
1171 |
|
|
|| fp == dummyframe->top))
|
1172 |
|
|
/* The frame in question lies between the saved fp and sp, inclusive */
|
1173 |
|
|
return dummyframe->regcache;
|
1174 |
|
|
|
1175 |
|
|
return 0;
|
1176 |
|
|
}
|
1177 |
|
|
|
1178 |
|
|
char *
|
1179 |
|
|
deprecated_generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
|
1180 |
|
|
{
|
1181 |
|
|
struct regcache *regcache = generic_find_dummy_frame (pc, fp);
|
1182 |
|
|
if (regcache == NULL)
|
1183 |
|
|
return NULL;
|
1184 |
|
|
return deprecated_grub_regcache_for_registers (regcache);
|
1185 |
|
|
}
|
1186 |
|
|
|
1187 |
|
|
/* Function: pc_in_call_dummy (pc, sp, fp)
|
1188 |
|
|
|
1189 |
|
|
Return true if the PC falls in a dummy frame created by gdb for an
|
1190 |
|
|
inferior call. The code below which allows DECR_PC_AFTER_BREAK is
|
1191 |
|
|
for infrun.c, which may give the function a PC without that
|
1192 |
|
|
subtracted out. */
|
1193 |
|
|
|
1194 |
|
|
int
|
1195 |
|
|
generic_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
|
1196 |
|
|
{
|
1197 |
|
|
struct dummy_frame *dummyframe;
|
1198 |
|
|
for (dummyframe = dummy_frame_stack;
|
1199 |
|
|
dummyframe != NULL;
|
1200 |
|
|
dummyframe = dummyframe->next)
|
1201 |
|
|
{
|
1202 |
|
|
if ((pc >= dummyframe->call_lo)
|
1203 |
|
|
&& (pc < dummyframe->call_hi + DECR_PC_AFTER_BREAK))
|
1204 |
|
|
return 1;
|
1205 |
|
|
}
|
1206 |
|
|
return 0;
|
1207 |
|
|
}
|
1208 |
|
|
|
1209 |
|
|
/* Function: read_register_dummy
|
1210 |
|
|
Find a saved register from before GDB calls a function in the inferior */
|
1211 |
|
|
|
1212 |
|
|
CORE_ADDR
|
1213 |
|
|
generic_read_register_dummy (CORE_ADDR pc, CORE_ADDR fp, int regno)
|
1214 |
|
|
{
|
1215 |
|
|
struct regcache *dummy_regs = generic_find_dummy_frame (pc, fp);
|
1216 |
|
|
|
1217 |
|
|
if (dummy_regs)
|
1218 |
|
|
{
|
1219 |
|
|
/* NOTE: cagney/2002-08-12: Replaced a call to
|
1220 |
|
|
regcache_raw_read_as_address() with a call to
|
1221 |
|
|
regcache_cooked_read_unsigned(). The old, ...as_address
|
1222 |
|
|
function was eventually calling extract_unsigned_integer (via
|
1223 |
|
|
extract_address) to unpack the registers value. The below is
|
1224 |
|
|
doing an unsigned extract so that it is functionally
|
1225 |
|
|
equivalent. The read needs to be cooked as, otherwise, it
|
1226 |
|
|
will never correctly return the value of a register in the
|
1227 |
|
|
[NUM_REGS .. NUM_REGS+NUM_PSEUDO_REGS) range. */
|
1228 |
|
|
ULONGEST val;
|
1229 |
|
|
regcache_cooked_read_unsigned (dummy_regs, regno, &val);
|
1230 |
|
|
return val;
|
1231 |
|
|
}
|
1232 |
|
|
else
|
1233 |
|
|
return 0;
|
1234 |
|
|
}
|
1235 |
|
|
|
1236 |
|
|
/* Save all the registers on the dummy frame stack. Most ports save the
|
1237 |
|
|
registers on the target stack. This results in lots of unnecessary memory
|
1238 |
|
|
references, which are slow when debugging via a serial line. Instead, we
|
1239 |
|
|
save all the registers internally, and never write them to the stack. The
|
1240 |
|
|
registers get restored when the called function returns to the entry point,
|
1241 |
|
|
where a breakpoint is laying in wait. */
|
1242 |
|
|
|
1243 |
|
|
void
|
1244 |
|
|
generic_push_dummy_frame (void)
|
1245 |
|
|
{
|
1246 |
|
|
struct dummy_frame *dummy_frame;
|
1247 |
|
|
CORE_ADDR fp = (get_current_frame ())->frame;
|
1248 |
|
|
|
1249 |
|
|
/* check to see if there are stale dummy frames,
|
1250 |
|
|
perhaps left over from when a longjump took us out of a
|
1251 |
|
|
function that was called by the debugger */
|
1252 |
|
|
|
1253 |
|
|
dummy_frame = dummy_frame_stack;
|
1254 |
|
|
while (dummy_frame)
|
1255 |
|
|
if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
|
1256 |
|
|
{
|
1257 |
|
|
dummy_frame_stack = dummy_frame->next;
|
1258 |
|
|
regcache_xfree (dummy_frame->regcache);
|
1259 |
|
|
xfree (dummy_frame);
|
1260 |
|
|
dummy_frame = dummy_frame_stack;
|
1261 |
|
|
}
|
1262 |
|
|
else
|
1263 |
|
|
dummy_frame = dummy_frame->next;
|
1264 |
|
|
|
1265 |
|
|
dummy_frame = xmalloc (sizeof (struct dummy_frame));
|
1266 |
|
|
dummy_frame->regcache = regcache_xmalloc (current_gdbarch);
|
1267 |
|
|
|
1268 |
|
|
dummy_frame->pc = read_pc ();
|
1269 |
|
|
dummy_frame->sp = read_sp ();
|
1270 |
|
|
dummy_frame->top = dummy_frame->sp;
|
1271 |
|
|
dummy_frame->fp = fp;
|
1272 |
|
|
regcache_cpy (dummy_frame->regcache, current_regcache);
|
1273 |
|
|
dummy_frame->next = dummy_frame_stack;
|
1274 |
|
|
dummy_frame_stack = dummy_frame;
|
1275 |
|
|
}
|
1276 |
|
|
|
1277 |
|
|
void
|
1278 |
|
|
generic_save_dummy_frame_tos (CORE_ADDR sp)
|
1279 |
|
|
{
|
1280 |
|
|
dummy_frame_stack->top = sp;
|
1281 |
|
|
}
|
1282 |
|
|
|
1283 |
|
|
/* Record the upper/lower bounds on the address of the call dummy. */
|
1284 |
|
|
|
1285 |
|
|
void
|
1286 |
|
|
generic_save_call_dummy_addr (CORE_ADDR lo, CORE_ADDR hi)
|
1287 |
|
|
{
|
1288 |
|
|
dummy_frame_stack->call_lo = lo;
|
1289 |
|
|
dummy_frame_stack->call_hi = hi;
|
1290 |
|
|
}
|
1291 |
|
|
|
1292 |
|
|
/* Restore the machine state from either the saved dummy stack or a
|
1293 |
|
|
real stack frame. */
|
1294 |
|
|
|
1295 |
|
|
void
|
1296 |
|
|
generic_pop_current_frame (void (*popper) (struct frame_info * frame))
|
1297 |
|
|
{
|
1298 |
|
|
struct frame_info *frame = get_current_frame ();
|
1299 |
|
|
|
1300 |
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
1301 |
|
|
generic_pop_dummy_frame ();
|
1302 |
|
|
else
|
1303 |
|
|
(*popper) (frame);
|
1304 |
|
|
}
|
1305 |
|
|
|
1306 |
|
|
/* Function: pop_dummy_frame
|
1307 |
|
|
Restore the machine state from a saved dummy stack frame. */
|
1308 |
|
|
|
1309 |
|
|
void
|
1310 |
|
|
generic_pop_dummy_frame (void)
|
1311 |
|
|
{
|
1312 |
|
|
struct dummy_frame *dummy_frame = dummy_frame_stack;
|
1313 |
|
|
|
1314 |
|
|
/* FIXME: what if the first frame isn't the right one, eg..
|
1315 |
|
|
because one call-by-hand function has done a longjmp into another one? */
|
1316 |
|
|
|
1317 |
|
|
if (!dummy_frame)
|
1318 |
|
|
error ("Can't pop dummy frame!");
|
1319 |
|
|
dummy_frame_stack = dummy_frame->next;
|
1320 |
|
|
regcache_cpy (current_regcache, dummy_frame->regcache);
|
1321 |
|
|
flush_cached_frames ();
|
1322 |
|
|
|
1323 |
|
|
regcache_xfree (dummy_frame->regcache);
|
1324 |
|
|
xfree (dummy_frame);
|
1325 |
|
|
}
|
1326 |
|
|
|
1327 |
|
|
/* Function: frame_chain_valid
|
1328 |
|
|
Returns true for a user frame or a call_function_by_hand dummy frame,
|
1329 |
|
|
and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
|
1330 |
|
|
|
1331 |
|
|
int
|
1332 |
|
|
generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
|
1333 |
|
|
{
|
1334 |
|
|
if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
|
1335 |
|
|
return 1; /* don't prune CALL_DUMMY frames */
|
1336 |
|
|
else /* fall back to default algorithm (see frame.h) */
|
1337 |
|
|
return (fp != 0
|
1338 |
|
|
&& (INNER_THAN (fi->frame, fp) || fi->frame == fp)
|
1339 |
|
|
&& !inside_entry_file (FRAME_SAVED_PC (fi)));
|
1340 |
|
|
}
|
1341 |
|
|
|
1342 |
|
|
int
|
1343 |
|
|
generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
|
1344 |
|
|
{
|
1345 |
|
|
if (USE_GENERIC_DUMMY_FRAMES
|
1346 |
|
|
&& PC_IN_CALL_DUMMY ((fi)->pc, 0, 0))
|
1347 |
|
|
return 1; /* don't prune CALL_DUMMY frames */
|
1348 |
|
|
else /* fall back to default algorithm (see frame.h) */
|
1349 |
|
|
return (fp != 0
|
1350 |
|
|
&& (INNER_THAN (fi->frame, fp) || fi->frame == fp)
|
1351 |
|
|
&& !inside_main_func ((fi)->pc)
|
1352 |
|
|
&& !inside_entry_func ((fi)->pc));
|
1353 |
|
|
}
|
1354 |
|
|
|
1355 |
|
|
/* Function: fix_call_dummy
|
1356 |
|
|
Stub function. Generic dummy frames typically do not need to fix
|
1357 |
|
|
the frame being created */
|
1358 |
|
|
|
1359 |
|
|
void
|
1360 |
|
|
generic_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
|
1361 |
|
|
struct value **args, struct type *type, int gcc_p)
|
1362 |
|
|
{
|
1363 |
|
|
return;
|
1364 |
|
|
}
|
1365 |
|
|
|
1366 |
|
|
/* Given a call-dummy dummy-frame, return the registers. Here the
|
1367 |
|
|
register value is taken from the local copy of the register buffer. */
|
1368 |
|
|
|
1369 |
|
|
static void
|
1370 |
|
|
generic_call_dummy_register_unwind (struct frame_info *frame, void **cache,
|
1371 |
|
|
int regnum, int *optimized,
|
1372 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
1373 |
|
|
int *realnum, void *bufferp)
|
1374 |
|
|
{
|
1375 |
|
|
gdb_assert (frame != NULL);
|
1376 |
|
|
gdb_assert (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame));
|
1377 |
|
|
|
1378 |
|
|
/* Describe the register's location. Generic dummy frames always
|
1379 |
|
|
have the register value in an ``expression''. */
|
1380 |
|
|
*optimized = 0;
|
1381 |
|
|
*lvalp = not_lval;
|
1382 |
|
|
*addrp = 0;
|
1383 |
|
|
*realnum = -1;
|
1384 |
|
|
|
1385 |
|
|
/* If needed, find and return the value of the register. */
|
1386 |
|
|
if (bufferp != NULL)
|
1387 |
|
|
{
|
1388 |
|
|
struct regcache *registers;
|
1389 |
|
|
#if 1
|
1390 |
|
|
/* Get the address of the register buffer that contains all the
|
1391 |
|
|
saved registers for this dummy frame. Cache that address. */
|
1392 |
|
|
registers = (*cache);
|
1393 |
|
|
if (registers == NULL)
|
1394 |
|
|
{
|
1395 |
|
|
registers = generic_find_dummy_frame (frame->pc, frame->frame);
|
1396 |
|
|
(*cache) = registers;
|
1397 |
|
|
}
|
1398 |
|
|
#else
|
1399 |
|
|
/* Get the address of the register buffer that contains the
|
1400 |
|
|
saved registers and then extract the value from that. */
|
1401 |
|
|
registers = generic_find_dummy_frame (frame->pc, frame->frame);
|
1402 |
|
|
#endif
|
1403 |
|
|
gdb_assert (registers != NULL);
|
1404 |
|
|
/* Return the actual value. */
|
1405 |
|
|
/* Use the regcache_cooked_read() method so that it, on the fly,
|
1406 |
|
|
constructs either a raw or pseudo register from the raw
|
1407 |
|
|
register cache. */
|
1408 |
|
|
regcache_cooked_read (registers, regnum, bufferp);
|
1409 |
|
|
}
|
1410 |
|
|
}
|
1411 |
|
|
|
1412 |
|
|
/* Return the register saved in the simplistic ``saved_regs'' cache.
|
1413 |
|
|
If the value isn't here AND a value is needed, try the next inner
|
1414 |
|
|
most frame. */
|
1415 |
|
|
|
1416 |
|
|
static void
|
1417 |
|
|
frame_saved_regs_register_unwind (struct frame_info *frame, void **cache,
|
1418 |
|
|
int regnum, int *optimizedp,
|
1419 |
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
1420 |
|
|
int *realnump, void *bufferp)
|
1421 |
|
|
{
|
1422 |
|
|
/* There is always a frame at this point. And THIS is the frame
|
1423 |
|
|
we're interested in. */
|
1424 |
|
|
gdb_assert (frame != NULL);
|
1425 |
|
|
/* If we're using generic dummy frames, we'd better not be in a call
|
1426 |
|
|
dummy. (generic_call_dummy_register_unwind ought to have been called
|
1427 |
|
|
instead.) */
|
1428 |
|
|
gdb_assert (!(USE_GENERIC_DUMMY_FRAMES
|
1429 |
|
|
&& PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)));
|
1430 |
|
|
|
1431 |
|
|
/* Load the saved_regs register cache. */
|
1432 |
|
|
if (frame->saved_regs == NULL)
|
1433 |
|
|
FRAME_INIT_SAVED_REGS (frame);
|
1434 |
|
|
|
1435 |
|
|
if (frame->saved_regs != NULL
|
1436 |
|
|
&& frame->saved_regs[regnum] != 0)
|
1437 |
|
|
{
|
1438 |
|
|
if (regnum == SP_REGNUM)
|
1439 |
|
|
{
|
1440 |
|
|
/* SP register treated specially. */
|
1441 |
|
|
*optimizedp = 0;
|
1442 |
|
|
*lvalp = not_lval;
|
1443 |
|
|
*addrp = 0;
|
1444 |
|
|
*realnump = -1;
|
1445 |
|
|
if (bufferp != NULL)
|
1446 |
|
|
store_address (bufferp, REGISTER_RAW_SIZE (regnum),
|
1447 |
|
|
frame->saved_regs[regnum]);
|
1448 |
|
|
}
|
1449 |
|
|
else
|
1450 |
|
|
{
|
1451 |
|
|
/* Any other register is saved in memory, fetch it but cache
|
1452 |
|
|
a local copy of its value. */
|
1453 |
|
|
*optimizedp = 0;
|
1454 |
|
|
*lvalp = lval_memory;
|
1455 |
|
|
*addrp = frame->saved_regs[regnum];
|
1456 |
|
|
*realnump = -1;
|
1457 |
|
|
if (bufferp != NULL)
|
1458 |
|
|
{
|
1459 |
|
|
#if 1
|
1460 |
|
|
/* Save each register value, as it is read in, in a
|
1461 |
|
|
frame based cache. */
|
1462 |
|
|
void **regs = (*cache);
|
1463 |
|
|
if (regs == NULL)
|
1464 |
|
|
{
|
1465 |
|
|
int sizeof_cache = ((NUM_REGS + NUM_PSEUDO_REGS)
|
1466 |
|
|
* sizeof (void *));
|
1467 |
|
|
regs = frame_obstack_alloc (sizeof_cache);
|
1468 |
|
|
memset (regs, 0, sizeof_cache);
|
1469 |
|
|
(*cache) = regs;
|
1470 |
|
|
}
|
1471 |
|
|
if (regs[regnum] == NULL)
|
1472 |
|
|
{
|
1473 |
|
|
regs[regnum]
|
1474 |
|
|
= frame_obstack_alloc (REGISTER_RAW_SIZE (regnum));
|
1475 |
|
|
read_memory (frame->saved_regs[regnum], regs[regnum],
|
1476 |
|
|
REGISTER_RAW_SIZE (regnum));
|
1477 |
|
|
}
|
1478 |
|
|
memcpy (bufferp, regs[regnum], REGISTER_RAW_SIZE (regnum));
|
1479 |
|
|
#else
|
1480 |
|
|
/* Read the value in from memory. */
|
1481 |
|
|
read_memory (frame->saved_regs[regnum], bufferp,
|
1482 |
|
|
REGISTER_RAW_SIZE (regnum));
|
1483 |
|
|
#endif
|
1484 |
|
|
}
|
1485 |
|
|
}
|
1486 |
|
|
return;
|
1487 |
|
|
}
|
1488 |
|
|
|
1489 |
|
|
/* No luck, assume this and the next frame have the same register
|
1490 |
|
|
value. If a value is needed, pass the request on down the chain;
|
1491 |
|
|
otherwise just return an indication that the value is in the same
|
1492 |
|
|
register as the next frame. */
|
1493 |
|
|
if (bufferp == NULL)
|
1494 |
|
|
{
|
1495 |
|
|
*optimizedp = 0;
|
1496 |
|
|
*lvalp = lval_register;
|
1497 |
|
|
*addrp = 0;
|
1498 |
|
|
*realnump = regnum;
|
1499 |
|
|
}
|
1500 |
|
|
else
|
1501 |
|
|
{
|
1502 |
|
|
frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
|
1503 |
|
|
realnump, bufferp);
|
1504 |
|
|
}
|
1505 |
|
|
}
|
1506 |
|
|
|
1507 |
|
|
/* Function: get_saved_register
|
1508 |
|
|
Find register number REGNUM relative to FRAME and put its (raw,
|
1509 |
|
|
target format) contents in *RAW_BUFFER.
|
1510 |
|
|
|
1511 |
|
|
Set *OPTIMIZED if the variable was optimized out (and thus can't be
|
1512 |
|
|
fetched). Note that this is never set to anything other than zero
|
1513 |
|
|
in this implementation.
|
1514 |
|
|
|
1515 |
|
|
Set *LVAL to lval_memory, lval_register, or not_lval, depending on
|
1516 |
|
|
whether the value was fetched from memory, from a register, or in a
|
1517 |
|
|
strange and non-modifiable way (e.g. a frame pointer which was
|
1518 |
|
|
calculated rather than fetched). We will use not_lval for values
|
1519 |
|
|
fetched from generic dummy frames.
|
1520 |
|
|
|
1521 |
|
|
Set *ADDRP to the address, either in memory or as a REGISTER_BYTE
|
1522 |
|
|
offset into the registers array. If the value is stored in a dummy
|
1523 |
|
|
frame, set *ADDRP to zero.
|
1524 |
|
|
|
1525 |
|
|
To use this implementation, define a function called
|
1526 |
|
|
"get_saved_register" in your target code, which simply passes all
|
1527 |
|
|
of its arguments to this function.
|
1528 |
|
|
|
1529 |
|
|
The argument RAW_BUFFER must point to aligned memory. */
|
1530 |
|
|
|
1531 |
|
|
void
|
1532 |
|
|
generic_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
|
1533 |
|
|
struct frame_info *frame, int regnum,
|
1534 |
|
|
enum lval_type *lval)
|
1535 |
|
|
{
|
1536 |
|
|
if (!target_has_registers)
|
1537 |
|
|
error ("No registers.");
|
1538 |
|
|
|
1539 |
|
|
/* Normal systems don't optimize out things with register numbers. */
|
1540 |
|
|
if (optimized != NULL)
|
1541 |
|
|
*optimized = 0;
|
1542 |
|
|
|
1543 |
|
|
if (addrp) /* default assumption: not found in memory */
|
1544 |
|
|
*addrp = 0;
|
1545 |
|
|
|
1546 |
|
|
/* Note: since the current frame's registers could only have been
|
1547 |
|
|
saved by frames INTERIOR TO the current frame, we skip examining
|
1548 |
|
|
the current frame itself: otherwise, we would be getting the
|
1549 |
|
|
previous frame's registers which were saved by the current frame. */
|
1550 |
|
|
|
1551 |
|
|
while (frame && ((frame = frame->next) != NULL))
|
1552 |
|
|
{
|
1553 |
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
1554 |
|
|
{
|
1555 |
|
|
if (lval) /* found it in a CALL_DUMMY frame */
|
1556 |
|
|
*lval = not_lval;
|
1557 |
|
|
if (raw_buffer)
|
1558 |
|
|
/* FIXME: cagney/2002-06-26: This should be via the
|
1559 |
|
|
gdbarch_register_read() method so that it, on the fly,
|
1560 |
|
|
constructs either a raw or pseudo register from the raw
|
1561 |
|
|
register cache. */
|
1562 |
|
|
regcache_raw_read (generic_find_dummy_frame (frame->pc,
|
1563 |
|
|
frame->frame),
|
1564 |
|
|
regnum, raw_buffer);
|
1565 |
|
|
return;
|
1566 |
|
|
}
|
1567 |
|
|
|
1568 |
|
|
FRAME_INIT_SAVED_REGS (frame);
|
1569 |
|
|
if (frame->saved_regs != NULL
|
1570 |
|
|
&& frame->saved_regs[regnum] != 0)
|
1571 |
|
|
{
|
1572 |
|
|
if (lval) /* found it saved on the stack */
|
1573 |
|
|
*lval = lval_memory;
|
1574 |
|
|
if (regnum == SP_REGNUM)
|
1575 |
|
|
{
|
1576 |
|
|
if (raw_buffer) /* SP register treated specially */
|
1577 |
|
|
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
|
1578 |
|
|
frame->saved_regs[regnum]);
|
1579 |
|
|
}
|
1580 |
|
|
else
|
1581 |
|
|
{
|
1582 |
|
|
if (addrp) /* any other register */
|
1583 |
|
|
*addrp = frame->saved_regs[regnum];
|
1584 |
|
|
if (raw_buffer)
|
1585 |
|
|
read_memory (frame->saved_regs[regnum], raw_buffer,
|
1586 |
|
|
REGISTER_RAW_SIZE (regnum));
|
1587 |
|
|
}
|
1588 |
|
|
return;
|
1589 |
|
|
}
|
1590 |
|
|
}
|
1591 |
|
|
|
1592 |
|
|
/* If we get thru the loop to this point, it means the register was
|
1593 |
|
|
not saved in any frame. Return the actual live-register value. */
|
1594 |
|
|
|
1595 |
|
|
if (lval) /* found it in a live register */
|
1596 |
|
|
*lval = lval_register;
|
1597 |
|
|
if (addrp)
|
1598 |
|
|
*addrp = REGISTER_BYTE (regnum);
|
1599 |
|
|
if (raw_buffer)
|
1600 |
|
|
read_register_gen (regnum, raw_buffer);
|
1601 |
|
|
}
|
1602 |
|
|
|
1603 |
|
|
void
|
1604 |
|
|
_initialize_blockframe (void)
|
1605 |
|
|
{
|
1606 |
|
|
obstack_init (&frame_cache_obstack);
|
1607 |
|
|
}
|