1 |
1181 |
sfurman |
/* DWARF debugging format support for GDB.
|
2 |
|
|
Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
3 |
|
|
2001, 2002
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
|
6 |
|
|
mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
|
7 |
|
|
|
8 |
|
|
This file is part of GDB.
|
9 |
|
|
|
10 |
|
|
This program is free software; you can redistribute it and/or modify
|
11 |
|
|
it under the terms of the GNU General Public License as published by
|
12 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
13 |
|
|
(at your option) any later version.
|
14 |
|
|
|
15 |
|
|
This program is distributed in the hope that it will be useful,
|
16 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
17 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
18 |
|
|
GNU General Public License for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with this program; if not, write to the Free Software
|
22 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
23 |
|
|
|
24 |
|
|
/*
|
25 |
|
|
|
26 |
|
|
FIXME: Do we need to generate dependencies in partial symtabs?
|
27 |
|
|
(Perhaps we don't need to).
|
28 |
|
|
|
29 |
|
|
FIXME: Resolve minor differences between what information we put in the
|
30 |
|
|
partial symbol table and what dbxread puts in. For example, we don't yet
|
31 |
|
|
put enum constants there. And dbxread seems to invent a lot of typedefs
|
32 |
|
|
we never see. Use the new printpsym command to see the partial symbol table
|
33 |
|
|
contents.
|
34 |
|
|
|
35 |
|
|
FIXME: Figure out a better way to tell gdb about the name of the function
|
36 |
|
|
contain the user's entry point (I.E. main())
|
37 |
|
|
|
38 |
|
|
FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
|
39 |
|
|
other things to work on, if you get bored. :-)
|
40 |
|
|
|
41 |
|
|
*/
|
42 |
|
|
|
43 |
|
|
#include "defs.h"
|
44 |
|
|
#include "symtab.h"
|
45 |
|
|
#include "gdbtypes.h"
|
46 |
|
|
#include "symfile.h"
|
47 |
|
|
#include "objfiles.h"
|
48 |
|
|
#include "elf/dwarf.h"
|
49 |
|
|
#include "buildsym.h"
|
50 |
|
|
#include "demangle.h"
|
51 |
|
|
#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
|
52 |
|
|
#include "language.h"
|
53 |
|
|
#include "complaints.h"
|
54 |
|
|
|
55 |
|
|
#include <fcntl.h>
|
56 |
|
|
#include "gdb_string.h"
|
57 |
|
|
|
58 |
|
|
/* Some macros to provide DIE info for complaints. */
|
59 |
|
|
|
60 |
|
|
#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
|
61 |
|
|
#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
|
62 |
|
|
|
63 |
|
|
/* Complaints that can be issued during DWARF debug info reading. */
|
64 |
|
|
|
65 |
|
|
struct complaint no_bfd_get_N =
|
66 |
|
|
{
|
67 |
|
|
"DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
|
68 |
|
|
};
|
69 |
|
|
|
70 |
|
|
struct complaint malformed_die =
|
71 |
|
|
{
|
72 |
|
|
"DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
|
73 |
|
|
};
|
74 |
|
|
|
75 |
|
|
struct complaint bad_die_ref =
|
76 |
|
|
{
|
77 |
|
|
"DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
|
78 |
|
|
};
|
79 |
|
|
|
80 |
|
|
struct complaint unknown_attribute_form =
|
81 |
|
|
{
|
82 |
|
|
"DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
|
83 |
|
|
};
|
84 |
|
|
|
85 |
|
|
struct complaint unknown_attribute_length =
|
86 |
|
|
{
|
87 |
|
|
"DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
|
88 |
|
|
};
|
89 |
|
|
|
90 |
|
|
struct complaint unexpected_fund_type =
|
91 |
|
|
{
|
92 |
|
|
"DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
|
93 |
|
|
};
|
94 |
|
|
|
95 |
|
|
struct complaint unknown_type_modifier =
|
96 |
|
|
{
|
97 |
|
|
"DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
|
98 |
|
|
};
|
99 |
|
|
|
100 |
|
|
struct complaint volatile_ignored =
|
101 |
|
|
{
|
102 |
|
|
"DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
|
103 |
|
|
};
|
104 |
|
|
|
105 |
|
|
struct complaint const_ignored =
|
106 |
|
|
{
|
107 |
|
|
"DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
|
108 |
|
|
};
|
109 |
|
|
|
110 |
|
|
struct complaint botched_modified_type =
|
111 |
|
|
{
|
112 |
|
|
"DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
|
113 |
|
|
};
|
114 |
|
|
|
115 |
|
|
struct complaint op_deref2 =
|
116 |
|
|
{
|
117 |
|
|
"DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
|
118 |
|
|
};
|
119 |
|
|
|
120 |
|
|
struct complaint op_deref4 =
|
121 |
|
|
{
|
122 |
|
|
"DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
|
123 |
|
|
};
|
124 |
|
|
|
125 |
|
|
struct complaint basereg_not_handled =
|
126 |
|
|
{
|
127 |
|
|
"DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
|
128 |
|
|
};
|
129 |
|
|
|
130 |
|
|
struct complaint dup_user_type_allocation =
|
131 |
|
|
{
|
132 |
|
|
"DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
|
133 |
|
|
};
|
134 |
|
|
|
135 |
|
|
struct complaint dup_user_type_definition =
|
136 |
|
|
{
|
137 |
|
|
"DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
|
138 |
|
|
};
|
139 |
|
|
|
140 |
|
|
struct complaint missing_tag =
|
141 |
|
|
{
|
142 |
|
|
"DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
|
143 |
|
|
};
|
144 |
|
|
|
145 |
|
|
struct complaint bad_array_element_type =
|
146 |
|
|
{
|
147 |
|
|
"DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
|
148 |
|
|
};
|
149 |
|
|
|
150 |
|
|
struct complaint subscript_data_items =
|
151 |
|
|
{
|
152 |
|
|
"DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
|
153 |
|
|
};
|
154 |
|
|
|
155 |
|
|
struct complaint unhandled_array_subscript_format =
|
156 |
|
|
{
|
157 |
|
|
"DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
|
158 |
|
|
};
|
159 |
|
|
|
160 |
|
|
struct complaint unknown_array_subscript_format =
|
161 |
|
|
{
|
162 |
|
|
"DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
|
163 |
|
|
};
|
164 |
|
|
|
165 |
|
|
struct complaint not_row_major =
|
166 |
|
|
{
|
167 |
|
|
"DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
|
168 |
|
|
};
|
169 |
|
|
|
170 |
|
|
struct complaint missing_at_name =
|
171 |
|
|
{
|
172 |
|
|
"DIE @ 0x%x, AT_name tag missing", 0, 0
|
173 |
|
|
};
|
174 |
|
|
|
175 |
|
|
typedef unsigned int DIE_REF; /* Reference to a DIE */
|
176 |
|
|
|
177 |
|
|
#ifndef GCC_PRODUCER
|
178 |
|
|
#define GCC_PRODUCER "GNU C "
|
179 |
|
|
#endif
|
180 |
|
|
|
181 |
|
|
#ifndef GPLUS_PRODUCER
|
182 |
|
|
#define GPLUS_PRODUCER "GNU C++ "
|
183 |
|
|
#endif
|
184 |
|
|
|
185 |
|
|
#ifndef LCC_PRODUCER
|
186 |
|
|
#define LCC_PRODUCER "NCR C/C++"
|
187 |
|
|
#endif
|
188 |
|
|
|
189 |
|
|
/* OBSOLETE #ifndef CHILL_PRODUCER */
|
190 |
|
|
/* OBSOLETE #define CHILL_PRODUCER "GNU Chill " */
|
191 |
|
|
/* OBSOLETE #endif */
|
192 |
|
|
|
193 |
|
|
/* Flags to target_to_host() that tell whether or not the data object is
|
194 |
|
|
expected to be signed. Used, for example, when fetching a signed
|
195 |
|
|
integer in the target environment which is used as a signed integer
|
196 |
|
|
in the host environment, and the two environments have different sized
|
197 |
|
|
ints. In this case, *somebody* has to sign extend the smaller sized
|
198 |
|
|
int. */
|
199 |
|
|
|
200 |
|
|
#define GET_UNSIGNED 0 /* No sign extension required */
|
201 |
|
|
#define GET_SIGNED 1 /* Sign extension required */
|
202 |
|
|
|
203 |
|
|
/* Defines for things which are specified in the document "DWARF Debugging
|
204 |
|
|
Information Format" published by UNIX International, Programming Languages
|
205 |
|
|
SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
|
206 |
|
|
|
207 |
|
|
#define SIZEOF_DIE_LENGTH 4
|
208 |
|
|
#define SIZEOF_DIE_TAG 2
|
209 |
|
|
#define SIZEOF_ATTRIBUTE 2
|
210 |
|
|
#define SIZEOF_FORMAT_SPECIFIER 1
|
211 |
|
|
#define SIZEOF_FMT_FT 2
|
212 |
|
|
#define SIZEOF_LINETBL_LENGTH 4
|
213 |
|
|
#define SIZEOF_LINETBL_LINENO 4
|
214 |
|
|
#define SIZEOF_LINETBL_STMT 2
|
215 |
|
|
#define SIZEOF_LINETBL_DELTA 4
|
216 |
|
|
#define SIZEOF_LOC_ATOM_CODE 1
|
217 |
|
|
|
218 |
|
|
#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
|
219 |
|
|
|
220 |
|
|
/* Macros that return the sizes of various types of data in the target
|
221 |
|
|
environment.
|
222 |
|
|
|
223 |
|
|
FIXME: Currently these are just compile time constants (as they are in
|
224 |
|
|
other parts of gdb as well). They need to be able to get the right size
|
225 |
|
|
either from the bfd or possibly from the DWARF info. It would be nice if
|
226 |
|
|
the DWARF producer inserted DIES that describe the fundamental types in
|
227 |
|
|
the target environment into the DWARF info, similar to the way dbx stabs
|
228 |
|
|
producers produce information about their fundamental types. */
|
229 |
|
|
|
230 |
|
|
#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
|
231 |
|
|
#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
|
232 |
|
|
|
233 |
|
|
/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
|
234 |
|
|
FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
|
235 |
|
|
However, the Issue 2 DWARF specification from AT&T defines it as
|
236 |
|
|
a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
|
237 |
|
|
For backwards compatibility with the AT&T compiler produced executables
|
238 |
|
|
we define AT_short_element_list for this variant. */
|
239 |
|
|
|
240 |
|
|
#define AT_short_element_list (0x00f0|FORM_BLOCK2)
|
241 |
|
|
|
242 |
|
|
/* The DWARF debugging information consists of two major pieces,
|
243 |
|
|
one is a block of DWARF Information Entries (DIE's) and the other
|
244 |
|
|
is a line number table. The "struct dieinfo" structure contains
|
245 |
|
|
the information for a single DIE, the one currently being processed.
|
246 |
|
|
|
247 |
|
|
In order to make it easier to randomly access the attribute fields
|
248 |
|
|
of the current DIE, which are specifically unordered within the DIE,
|
249 |
|
|
each DIE is scanned and an instance of the "struct dieinfo"
|
250 |
|
|
structure is initialized.
|
251 |
|
|
|
252 |
|
|
Initialization is done in two levels. The first, done by basicdieinfo(),
|
253 |
|
|
just initializes those fields that are vital to deciding whether or not
|
254 |
|
|
to use this DIE, how to skip past it, etc. The second, done by the
|
255 |
|
|
function completedieinfo(), fills in the rest of the information.
|
256 |
|
|
|
257 |
|
|
Attributes which have block forms are not interpreted at the time
|
258 |
|
|
the DIE is scanned, instead we just save pointers to the start
|
259 |
|
|
of their value fields.
|
260 |
|
|
|
261 |
|
|
Some fields have a flag <name>_p that is set when the value of the
|
262 |
|
|
field is valid (I.E. we found a matching attribute in the DIE). Since
|
263 |
|
|
we may want to test for the presence of some attributes in the DIE,
|
264 |
|
|
such as AT_low_pc, without restricting the values of the field,
|
265 |
|
|
we need someway to note that we found such an attribute.
|
266 |
|
|
|
267 |
|
|
*/
|
268 |
|
|
|
269 |
|
|
typedef char BLOCK;
|
270 |
|
|
|
271 |
|
|
struct dieinfo
|
272 |
|
|
{
|
273 |
|
|
char *die; /* Pointer to the raw DIE data */
|
274 |
|
|
unsigned long die_length; /* Length of the raw DIE data */
|
275 |
|
|
DIE_REF die_ref; /* Offset of this DIE */
|
276 |
|
|
unsigned short die_tag; /* Tag for this DIE */
|
277 |
|
|
unsigned long at_padding;
|
278 |
|
|
unsigned long at_sibling;
|
279 |
|
|
BLOCK *at_location;
|
280 |
|
|
char *at_name;
|
281 |
|
|
unsigned short at_fund_type;
|
282 |
|
|
BLOCK *at_mod_fund_type;
|
283 |
|
|
unsigned long at_user_def_type;
|
284 |
|
|
BLOCK *at_mod_u_d_type;
|
285 |
|
|
unsigned short at_ordering;
|
286 |
|
|
BLOCK *at_subscr_data;
|
287 |
|
|
unsigned long at_byte_size;
|
288 |
|
|
unsigned short at_bit_offset;
|
289 |
|
|
unsigned long at_bit_size;
|
290 |
|
|
BLOCK *at_element_list;
|
291 |
|
|
unsigned long at_stmt_list;
|
292 |
|
|
CORE_ADDR at_low_pc;
|
293 |
|
|
CORE_ADDR at_high_pc;
|
294 |
|
|
unsigned long at_language;
|
295 |
|
|
unsigned long at_member;
|
296 |
|
|
unsigned long at_discr;
|
297 |
|
|
BLOCK *at_discr_value;
|
298 |
|
|
BLOCK *at_string_length;
|
299 |
|
|
char *at_comp_dir;
|
300 |
|
|
char *at_producer;
|
301 |
|
|
unsigned long at_start_scope;
|
302 |
|
|
unsigned long at_stride_size;
|
303 |
|
|
unsigned long at_src_info;
|
304 |
|
|
char *at_prototyped;
|
305 |
|
|
unsigned int has_at_low_pc:1;
|
306 |
|
|
unsigned int has_at_stmt_list:1;
|
307 |
|
|
unsigned int has_at_byte_size:1;
|
308 |
|
|
unsigned int short_element_list:1;
|
309 |
|
|
|
310 |
|
|
/* Kludge to identify register variables */
|
311 |
|
|
|
312 |
|
|
unsigned int isreg;
|
313 |
|
|
|
314 |
|
|
/* Kludge to identify optimized out variables */
|
315 |
|
|
|
316 |
|
|
unsigned int optimized_out;
|
317 |
|
|
|
318 |
|
|
/* Kludge to identify basereg references.
|
319 |
|
|
Nonzero if we have an offset relative to a basereg. */
|
320 |
|
|
|
321 |
|
|
unsigned int offreg;
|
322 |
|
|
|
323 |
|
|
/* Kludge to identify which base register is it relative to. */
|
324 |
|
|
|
325 |
|
|
unsigned int basereg;
|
326 |
|
|
};
|
327 |
|
|
|
328 |
|
|
static int diecount; /* Approximate count of dies for compilation unit */
|
329 |
|
|
static struct dieinfo *curdie; /* For warnings and such */
|
330 |
|
|
|
331 |
|
|
static char *dbbase; /* Base pointer to dwarf info */
|
332 |
|
|
static int dbsize; /* Size of dwarf info in bytes */
|
333 |
|
|
static int dbroff; /* Relative offset from start of .debug section */
|
334 |
|
|
static char *lnbase; /* Base pointer to line section */
|
335 |
|
|
|
336 |
|
|
/* This value is added to each symbol value. FIXME: Generalize to
|
337 |
|
|
the section_offsets structure used by dbxread (once this is done,
|
338 |
|
|
pass the appropriate section number to end_symtab). */
|
339 |
|
|
static CORE_ADDR baseaddr; /* Add to each symbol value */
|
340 |
|
|
|
341 |
|
|
/* The section offsets used in the current psymtab or symtab. FIXME,
|
342 |
|
|
only used to pass one value (baseaddr) at the moment. */
|
343 |
|
|
static struct section_offsets *base_section_offsets;
|
344 |
|
|
|
345 |
|
|
/* We put a pointer to this structure in the read_symtab_private field
|
346 |
|
|
of the psymtab. */
|
347 |
|
|
|
348 |
|
|
struct dwfinfo
|
349 |
|
|
{
|
350 |
|
|
/* Always the absolute file offset to the start of the ".debug"
|
351 |
|
|
section for the file containing the DIE's being accessed. */
|
352 |
|
|
file_ptr dbfoff;
|
353 |
|
|
/* Relative offset from the start of the ".debug" section to the
|
354 |
|
|
first DIE to be accessed. When building the partial symbol
|
355 |
|
|
table, this value will be zero since we are accessing the
|
356 |
|
|
entire ".debug" section. When expanding a partial symbol
|
357 |
|
|
table entry, this value will be the offset to the first
|
358 |
|
|
DIE for the compilation unit containing the symbol that
|
359 |
|
|
triggers the expansion. */
|
360 |
|
|
int dbroff;
|
361 |
|
|
/* The size of the chunk of DIE's being examined, in bytes. */
|
362 |
|
|
int dblength;
|
363 |
|
|
/* The absolute file offset to the line table fragment. Ignored
|
364 |
|
|
when building partial symbol tables, but used when expanding
|
365 |
|
|
them, and contains the absolute file offset to the fragment
|
366 |
|
|
of the ".line" section containing the line numbers for the
|
367 |
|
|
current compilation unit. */
|
368 |
|
|
file_ptr lnfoff;
|
369 |
|
|
};
|
370 |
|
|
|
371 |
|
|
#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
|
372 |
|
|
#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
|
373 |
|
|
#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
|
374 |
|
|
#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
|
375 |
|
|
|
376 |
|
|
/* The generic symbol table building routines have separate lists for
|
377 |
|
|
file scope symbols and all all other scopes (local scopes). So
|
378 |
|
|
we need to select the right one to pass to add_symbol_to_list().
|
379 |
|
|
We do it by keeping a pointer to the correct list in list_in_scope.
|
380 |
|
|
|
381 |
|
|
FIXME: The original dwarf code just treated the file scope as the first
|
382 |
|
|
local scope, and all other local scopes as nested local scopes, and worked
|
383 |
|
|
fine. Check to see if we really need to distinguish these in buildsym.c */
|
384 |
|
|
|
385 |
|
|
struct pending **list_in_scope = &file_symbols;
|
386 |
|
|
|
387 |
|
|
/* DIES which have user defined types or modified user defined types refer to
|
388 |
|
|
other DIES for the type information. Thus we need to associate the offset
|
389 |
|
|
of a DIE for a user defined type with a pointer to the type information.
|
390 |
|
|
|
391 |
|
|
Originally this was done using a simple but expensive algorithm, with an
|
392 |
|
|
array of unsorted structures, each containing an offset/type-pointer pair.
|
393 |
|
|
This array was scanned linearly each time a lookup was done. The result
|
394 |
|
|
was that gdb was spending over half it's startup time munging through this
|
395 |
|
|
array of pointers looking for a structure that had the right offset member.
|
396 |
|
|
|
397 |
|
|
The second attempt used the same array of structures, but the array was
|
398 |
|
|
sorted using qsort each time a new offset/type was recorded, and a binary
|
399 |
|
|
search was used to find the type pointer for a given DIE offset. This was
|
400 |
|
|
even slower, due to the overhead of sorting the array each time a new
|
401 |
|
|
offset/type pair was entered.
|
402 |
|
|
|
403 |
|
|
The third attempt uses a fixed size array of type pointers, indexed by a
|
404 |
|
|
value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
|
405 |
|
|
we can divide any DIE offset by 4 to obtain a unique index into this fixed
|
406 |
|
|
size array. Since each element is a 4 byte pointer, it takes exactly as
|
407 |
|
|
much memory to hold this array as to hold the DWARF info for a given
|
408 |
|
|
compilation unit. But it gets freed as soon as we are done with it.
|
409 |
|
|
This has worked well in practice, as a reasonable tradeoff between memory
|
410 |
|
|
consumption and speed, without having to resort to much more complicated
|
411 |
|
|
algorithms. */
|
412 |
|
|
|
413 |
|
|
static struct type **utypes; /* Pointer to array of user type pointers */
|
414 |
|
|
static int numutypes; /* Max number of user type pointers */
|
415 |
|
|
|
416 |
|
|
/* Maintain an array of referenced fundamental types for the current
|
417 |
|
|
compilation unit being read. For DWARF version 1, we have to construct
|
418 |
|
|
the fundamental types on the fly, since no information about the
|
419 |
|
|
fundamental types is supplied. Each such fundamental type is created by
|
420 |
|
|
calling a language dependent routine to create the type, and then a
|
421 |
|
|
pointer to that type is then placed in the array at the index specified
|
422 |
|
|
by it's FT_<TYPENAME> value. The array has a fixed size set by the
|
423 |
|
|
FT_NUM_MEMBERS compile time constant, which is the number of predefined
|
424 |
|
|
fundamental types gdb knows how to construct. */
|
425 |
|
|
|
426 |
|
|
static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
|
427 |
|
|
|
428 |
|
|
/* Record the language for the compilation unit which is currently being
|
429 |
|
|
processed. We know it once we have seen the TAG_compile_unit DIE,
|
430 |
|
|
and we need it while processing the DIE's for that compilation unit.
|
431 |
|
|
It is eventually saved in the symtab structure, but we don't finalize
|
432 |
|
|
the symtab struct until we have processed all the DIE's for the
|
433 |
|
|
compilation unit. We also need to get and save a pointer to the
|
434 |
|
|
language struct for this language, so we can call the language
|
435 |
|
|
dependent routines for doing things such as creating fundamental
|
436 |
|
|
types. */
|
437 |
|
|
|
438 |
|
|
static enum language cu_language;
|
439 |
|
|
static const struct language_defn *cu_language_defn;
|
440 |
|
|
|
441 |
|
|
/* Forward declarations of static functions so we don't have to worry
|
442 |
|
|
about ordering within this file. */
|
443 |
|
|
|
444 |
|
|
static void free_utypes (PTR);
|
445 |
|
|
|
446 |
|
|
static int attribute_size (unsigned int);
|
447 |
|
|
|
448 |
|
|
static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
|
449 |
|
|
|
450 |
|
|
static void add_enum_psymbol (struct dieinfo *, struct objfile *);
|
451 |
|
|
|
452 |
|
|
static void handle_producer (char *);
|
453 |
|
|
|
454 |
|
|
static void
|
455 |
|
|
read_file_scope (struct dieinfo *, char *, char *, struct objfile *);
|
456 |
|
|
|
457 |
|
|
static void
|
458 |
|
|
read_func_scope (struct dieinfo *, char *, char *, struct objfile *);
|
459 |
|
|
|
460 |
|
|
static void
|
461 |
|
|
read_lexical_block_scope (struct dieinfo *, char *, char *, struct objfile *);
|
462 |
|
|
|
463 |
|
|
static void scan_partial_symbols (char *, char *, struct objfile *);
|
464 |
|
|
|
465 |
|
|
static void
|
466 |
|
|
scan_compilation_units (char *, char *, file_ptr, file_ptr, struct objfile *);
|
467 |
|
|
|
468 |
|
|
static void add_partial_symbol (struct dieinfo *, struct objfile *);
|
469 |
|
|
|
470 |
|
|
static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
|
471 |
|
|
|
472 |
|
|
static void completedieinfo (struct dieinfo *, struct objfile *);
|
473 |
|
|
|
474 |
|
|
static void dwarf_psymtab_to_symtab (struct partial_symtab *);
|
475 |
|
|
|
476 |
|
|
static void psymtab_to_symtab_1 (struct partial_symtab *);
|
477 |
|
|
|
478 |
|
|
static void read_ofile_symtab (struct partial_symtab *);
|
479 |
|
|
|
480 |
|
|
static void process_dies (char *, char *, struct objfile *);
|
481 |
|
|
|
482 |
|
|
static void
|
483 |
|
|
read_structure_scope (struct dieinfo *, char *, char *, struct objfile *);
|
484 |
|
|
|
485 |
|
|
static struct type *decode_array_element_type (char *);
|
486 |
|
|
|
487 |
|
|
static struct type *decode_subscript_data_item (char *, char *);
|
488 |
|
|
|
489 |
|
|
static void dwarf_read_array_type (struct dieinfo *);
|
490 |
|
|
|
491 |
|
|
static void read_tag_pointer_type (struct dieinfo *dip);
|
492 |
|
|
|
493 |
|
|
static void read_tag_string_type (struct dieinfo *dip);
|
494 |
|
|
|
495 |
|
|
static void read_subroutine_type (struct dieinfo *, char *, char *);
|
496 |
|
|
|
497 |
|
|
static void
|
498 |
|
|
read_enumeration (struct dieinfo *, char *, char *, struct objfile *);
|
499 |
|
|
|
500 |
|
|
static struct type *struct_type (struct dieinfo *, char *, char *,
|
501 |
|
|
struct objfile *);
|
502 |
|
|
|
503 |
|
|
static struct type *enum_type (struct dieinfo *, struct objfile *);
|
504 |
|
|
|
505 |
|
|
static void decode_line_numbers (char *);
|
506 |
|
|
|
507 |
|
|
static struct type *decode_die_type (struct dieinfo *);
|
508 |
|
|
|
509 |
|
|
static struct type *decode_mod_fund_type (char *);
|
510 |
|
|
|
511 |
|
|
static struct type *decode_mod_u_d_type (char *);
|
512 |
|
|
|
513 |
|
|
static struct type *decode_modified_type (char *, unsigned int, int);
|
514 |
|
|
|
515 |
|
|
static struct type *decode_fund_type (unsigned int);
|
516 |
|
|
|
517 |
|
|
static char *create_name (char *, struct obstack *);
|
518 |
|
|
|
519 |
|
|
static struct type *lookup_utype (DIE_REF);
|
520 |
|
|
|
521 |
|
|
static struct type *alloc_utype (DIE_REF, struct type *);
|
522 |
|
|
|
523 |
|
|
static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
|
524 |
|
|
|
525 |
|
|
static void
|
526 |
|
|
synthesize_typedef (struct dieinfo *, struct objfile *, struct type *);
|
527 |
|
|
|
528 |
|
|
static int locval (struct dieinfo *);
|
529 |
|
|
|
530 |
|
|
static void set_cu_language (struct dieinfo *);
|
531 |
|
|
|
532 |
|
|
static struct type *dwarf_fundamental_type (struct objfile *, int);
|
533 |
|
|
|
534 |
|
|
|
535 |
|
|
/*
|
536 |
|
|
|
537 |
|
|
LOCAL FUNCTION
|
538 |
|
|
|
539 |
|
|
dwarf_fundamental_type -- lookup or create a fundamental type
|
540 |
|
|
|
541 |
|
|
SYNOPSIS
|
542 |
|
|
|
543 |
|
|
struct type *
|
544 |
|
|
dwarf_fundamental_type (struct objfile *objfile, int typeid)
|
545 |
|
|
|
546 |
|
|
DESCRIPTION
|
547 |
|
|
|
548 |
|
|
DWARF version 1 doesn't supply any fundamental type information,
|
549 |
|
|
so gdb has to construct such types. It has a fixed number of
|
550 |
|
|
fundamental types that it knows how to construct, which is the
|
551 |
|
|
union of all types that it knows how to construct for all languages
|
552 |
|
|
that it knows about. These are enumerated in gdbtypes.h.
|
553 |
|
|
|
554 |
|
|
As an example, assume we find a DIE that references a DWARF
|
555 |
|
|
fundamental type of FT_integer. We first look in the ftypes
|
556 |
|
|
array to see if we already have such a type, indexed by the
|
557 |
|
|
gdb internal value of FT_INTEGER. If so, we simply return a
|
558 |
|
|
pointer to that type. If not, then we ask an appropriate
|
559 |
|
|
language dependent routine to create a type FT_INTEGER, using
|
560 |
|
|
defaults reasonable for the current target machine, and install
|
561 |
|
|
that type in ftypes for future reference.
|
562 |
|
|
|
563 |
|
|
RETURNS
|
564 |
|
|
|
565 |
|
|
Pointer to a fundamental type.
|
566 |
|
|
|
567 |
|
|
*/
|
568 |
|
|
|
569 |
|
|
static struct type *
|
570 |
|
|
dwarf_fundamental_type (struct objfile *objfile, int typeid)
|
571 |
|
|
{
|
572 |
|
|
if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
|
573 |
|
|
{
|
574 |
|
|
error ("internal error - invalid fundamental type id %d", typeid);
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
/* Look for this particular type in the fundamental type vector. If one is
|
578 |
|
|
not found, create and install one appropriate for the current language
|
579 |
|
|
and the current target machine. */
|
580 |
|
|
|
581 |
|
|
if (ftypes[typeid] == NULL)
|
582 |
|
|
{
|
583 |
|
|
ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
|
584 |
|
|
}
|
585 |
|
|
|
586 |
|
|
return (ftypes[typeid]);
|
587 |
|
|
}
|
588 |
|
|
|
589 |
|
|
/*
|
590 |
|
|
|
591 |
|
|
LOCAL FUNCTION
|
592 |
|
|
|
593 |
|
|
set_cu_language -- set local copy of language for compilation unit
|
594 |
|
|
|
595 |
|
|
SYNOPSIS
|
596 |
|
|
|
597 |
|
|
void
|
598 |
|
|
set_cu_language (struct dieinfo *dip)
|
599 |
|
|
|
600 |
|
|
DESCRIPTION
|
601 |
|
|
|
602 |
|
|
Decode the language attribute for a compilation unit DIE and
|
603 |
|
|
remember what the language was. We use this at various times
|
604 |
|
|
when processing DIE's for a given compilation unit.
|
605 |
|
|
|
606 |
|
|
RETURNS
|
607 |
|
|
|
608 |
|
|
No return value.
|
609 |
|
|
|
610 |
|
|
*/
|
611 |
|
|
|
612 |
|
|
static void
|
613 |
|
|
set_cu_language (struct dieinfo *dip)
|
614 |
|
|
{
|
615 |
|
|
switch (dip->at_language)
|
616 |
|
|
{
|
617 |
|
|
case LANG_C89:
|
618 |
|
|
case LANG_C:
|
619 |
|
|
cu_language = language_c;
|
620 |
|
|
break;
|
621 |
|
|
case LANG_C_PLUS_PLUS:
|
622 |
|
|
cu_language = language_cplus;
|
623 |
|
|
break;
|
624 |
|
|
/* OBSOLETE case LANG_CHILL: */
|
625 |
|
|
/* OBSOLETE cu_language = language_chill; */
|
626 |
|
|
/* OBSOLETE break; */
|
627 |
|
|
case LANG_MODULA2:
|
628 |
|
|
cu_language = language_m2;
|
629 |
|
|
break;
|
630 |
|
|
case LANG_FORTRAN77:
|
631 |
|
|
case LANG_FORTRAN90:
|
632 |
|
|
cu_language = language_fortran;
|
633 |
|
|
break;
|
634 |
|
|
case LANG_ADA83:
|
635 |
|
|
case LANG_COBOL74:
|
636 |
|
|
case LANG_COBOL85:
|
637 |
|
|
case LANG_PASCAL83:
|
638 |
|
|
/* We don't know anything special about these yet. */
|
639 |
|
|
cu_language = language_unknown;
|
640 |
|
|
break;
|
641 |
|
|
default:
|
642 |
|
|
/* If no at_language, try to deduce one from the filename */
|
643 |
|
|
cu_language = deduce_language_from_filename (dip->at_name);
|
644 |
|
|
break;
|
645 |
|
|
}
|
646 |
|
|
cu_language_defn = language_def (cu_language);
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
/*
|
650 |
|
|
|
651 |
|
|
GLOBAL FUNCTION
|
652 |
|
|
|
653 |
|
|
dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
|
654 |
|
|
|
655 |
|
|
SYNOPSIS
|
656 |
|
|
|
657 |
|
|
void dwarf_build_psymtabs (struct objfile *objfile,
|
658 |
|
|
int mainline, file_ptr dbfoff, unsigned int dbfsize,
|
659 |
|
|
file_ptr lnoffset, unsigned int lnsize)
|
660 |
|
|
|
661 |
|
|
DESCRIPTION
|
662 |
|
|
|
663 |
|
|
This function is called upon to build partial symtabs from files
|
664 |
|
|
containing DIE's (Dwarf Information Entries) and DWARF line numbers.
|
665 |
|
|
|
666 |
|
|
It is passed a bfd* containing the DIES
|
667 |
|
|
and line number information, the corresponding filename for that
|
668 |
|
|
file, a base address for relocating the symbols, a flag indicating
|
669 |
|
|
whether or not this debugging information is from a "main symbol
|
670 |
|
|
table" rather than a shared library or dynamically linked file,
|
671 |
|
|
and file offset/size pairs for the DIE information and line number
|
672 |
|
|
information.
|
673 |
|
|
|
674 |
|
|
RETURNS
|
675 |
|
|
|
676 |
|
|
No return value.
|
677 |
|
|
|
678 |
|
|
*/
|
679 |
|
|
|
680 |
|
|
void
|
681 |
|
|
dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
|
682 |
|
|
unsigned int dbfsize, file_ptr lnoffset,
|
683 |
|
|
unsigned int lnsize)
|
684 |
|
|
{
|
685 |
|
|
bfd *abfd = objfile->obfd;
|
686 |
|
|
struct cleanup *back_to;
|
687 |
|
|
|
688 |
|
|
current_objfile = objfile;
|
689 |
|
|
dbsize = dbfsize;
|
690 |
|
|
dbbase = xmalloc (dbsize);
|
691 |
|
|
dbroff = 0;
|
692 |
|
|
if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
|
693 |
|
|
(bfd_bread (dbbase, dbsize, abfd) != dbsize))
|
694 |
|
|
{
|
695 |
|
|
xfree (dbbase);
|
696 |
|
|
error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
|
697 |
|
|
}
|
698 |
|
|
back_to = make_cleanup (xfree, dbbase);
|
699 |
|
|
|
700 |
|
|
/* If we are reinitializing, or if we have never loaded syms yet, init.
|
701 |
|
|
Since we have no idea how many DIES we are looking at, we just guess
|
702 |
|
|
some arbitrary value. */
|
703 |
|
|
|
704 |
|
|
if (mainline
|
705 |
|
|
|| (objfile->global_psymbols.size == 0
|
706 |
|
|
&& objfile->static_psymbols.size == 0))
|
707 |
|
|
{
|
708 |
|
|
init_psymbol_list (objfile, 1024);
|
709 |
|
|
}
|
710 |
|
|
|
711 |
|
|
/* Save the relocation factor where everybody can see it. */
|
712 |
|
|
|
713 |
|
|
base_section_offsets = objfile->section_offsets;
|
714 |
|
|
baseaddr = ANOFFSET (objfile->section_offsets, 0);
|
715 |
|
|
|
716 |
|
|
/* Follow the compilation unit sibling chain, building a partial symbol
|
717 |
|
|
table entry for each one. Save enough information about each compilation
|
718 |
|
|
unit to locate the full DWARF information later. */
|
719 |
|
|
|
720 |
|
|
scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
|
721 |
|
|
|
722 |
|
|
do_cleanups (back_to);
|
723 |
|
|
current_objfile = NULL;
|
724 |
|
|
}
|
725 |
|
|
|
726 |
|
|
/*
|
727 |
|
|
|
728 |
|
|
LOCAL FUNCTION
|
729 |
|
|
|
730 |
|
|
read_lexical_block_scope -- process all dies in a lexical block
|
731 |
|
|
|
732 |
|
|
SYNOPSIS
|
733 |
|
|
|
734 |
|
|
static void read_lexical_block_scope (struct dieinfo *dip,
|
735 |
|
|
char *thisdie, char *enddie)
|
736 |
|
|
|
737 |
|
|
DESCRIPTION
|
738 |
|
|
|
739 |
|
|
Process all the DIES contained within a lexical block scope.
|
740 |
|
|
Start a new scope, process the dies, and then close the scope.
|
741 |
|
|
|
742 |
|
|
*/
|
743 |
|
|
|
744 |
|
|
static void
|
745 |
|
|
read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
|
746 |
|
|
struct objfile *objfile)
|
747 |
|
|
{
|
748 |
|
|
register struct context_stack *new;
|
749 |
|
|
|
750 |
|
|
push_context (0, dip->at_low_pc);
|
751 |
|
|
process_dies (thisdie + dip->die_length, enddie, objfile);
|
752 |
|
|
new = pop_context ();
|
753 |
|
|
if (local_symbols != NULL)
|
754 |
|
|
{
|
755 |
|
|
finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
|
756 |
|
|
dip->at_high_pc, objfile);
|
757 |
|
|
}
|
758 |
|
|
local_symbols = new->locals;
|
759 |
|
|
}
|
760 |
|
|
|
761 |
|
|
/*
|
762 |
|
|
|
763 |
|
|
LOCAL FUNCTION
|
764 |
|
|
|
765 |
|
|
lookup_utype -- look up a user defined type from die reference
|
766 |
|
|
|
767 |
|
|
SYNOPSIS
|
768 |
|
|
|
769 |
|
|
static type *lookup_utype (DIE_REF die_ref)
|
770 |
|
|
|
771 |
|
|
DESCRIPTION
|
772 |
|
|
|
773 |
|
|
Given a DIE reference, lookup the user defined type associated with
|
774 |
|
|
that DIE, if it has been registered already. If not registered, then
|
775 |
|
|
return NULL. Alloc_utype() can be called to register an empty
|
776 |
|
|
type for this reference, which will be filled in later when the
|
777 |
|
|
actual referenced DIE is processed.
|
778 |
|
|
*/
|
779 |
|
|
|
780 |
|
|
static struct type *
|
781 |
|
|
lookup_utype (DIE_REF die_ref)
|
782 |
|
|
{
|
783 |
|
|
struct type *type = NULL;
|
784 |
|
|
int utypeidx;
|
785 |
|
|
|
786 |
|
|
utypeidx = (die_ref - dbroff) / 4;
|
787 |
|
|
if ((utypeidx < 0) || (utypeidx >= numutypes))
|
788 |
|
|
{
|
789 |
|
|
complain (&bad_die_ref, DIE_ID, DIE_NAME);
|
790 |
|
|
}
|
791 |
|
|
else
|
792 |
|
|
{
|
793 |
|
|
type = *(utypes + utypeidx);
|
794 |
|
|
}
|
795 |
|
|
return (type);
|
796 |
|
|
}
|
797 |
|
|
|
798 |
|
|
|
799 |
|
|
/*
|
800 |
|
|
|
801 |
|
|
LOCAL FUNCTION
|
802 |
|
|
|
803 |
|
|
alloc_utype -- add a user defined type for die reference
|
804 |
|
|
|
805 |
|
|
SYNOPSIS
|
806 |
|
|
|
807 |
|
|
static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
|
808 |
|
|
|
809 |
|
|
DESCRIPTION
|
810 |
|
|
|
811 |
|
|
Given a die reference DIE_REF, and a possible pointer to a user
|
812 |
|
|
defined type UTYPEP, register that this reference has a user
|
813 |
|
|
defined type and either use the specified type in UTYPEP or
|
814 |
|
|
make a new empty type that will be filled in later.
|
815 |
|
|
|
816 |
|
|
We should only be called after calling lookup_utype() to verify that
|
817 |
|
|
there is not currently a type registered for DIE_REF.
|
818 |
|
|
*/
|
819 |
|
|
|
820 |
|
|
static struct type *
|
821 |
|
|
alloc_utype (DIE_REF die_ref, struct type *utypep)
|
822 |
|
|
{
|
823 |
|
|
struct type **typep;
|
824 |
|
|
int utypeidx;
|
825 |
|
|
|
826 |
|
|
utypeidx = (die_ref - dbroff) / 4;
|
827 |
|
|
typep = utypes + utypeidx;
|
828 |
|
|
if ((utypeidx < 0) || (utypeidx >= numutypes))
|
829 |
|
|
{
|
830 |
|
|
utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
|
831 |
|
|
complain (&bad_die_ref, DIE_ID, DIE_NAME);
|
832 |
|
|
}
|
833 |
|
|
else if (*typep != NULL)
|
834 |
|
|
{
|
835 |
|
|
utypep = *typep;
|
836 |
|
|
complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
|
837 |
|
|
}
|
838 |
|
|
else
|
839 |
|
|
{
|
840 |
|
|
if (utypep == NULL)
|
841 |
|
|
{
|
842 |
|
|
utypep = alloc_type (current_objfile);
|
843 |
|
|
}
|
844 |
|
|
*typep = utypep;
|
845 |
|
|
}
|
846 |
|
|
return (utypep);
|
847 |
|
|
}
|
848 |
|
|
|
849 |
|
|
/*
|
850 |
|
|
|
851 |
|
|
LOCAL FUNCTION
|
852 |
|
|
|
853 |
|
|
free_utypes -- free the utypes array and reset pointer & count
|
854 |
|
|
|
855 |
|
|
SYNOPSIS
|
856 |
|
|
|
857 |
|
|
static void free_utypes (PTR dummy)
|
858 |
|
|
|
859 |
|
|
DESCRIPTION
|
860 |
|
|
|
861 |
|
|
Called via do_cleanups to free the utypes array, reset the pointer to NULL,
|
862 |
|
|
and set numutypes back to zero. This ensures that the utypes does not get
|
863 |
|
|
referenced after being freed.
|
864 |
|
|
*/
|
865 |
|
|
|
866 |
|
|
static void
|
867 |
|
|
free_utypes (PTR dummy)
|
868 |
|
|
{
|
869 |
|
|
xfree (utypes);
|
870 |
|
|
utypes = NULL;
|
871 |
|
|
numutypes = 0;
|
872 |
|
|
}
|
873 |
|
|
|
874 |
|
|
|
875 |
|
|
/*
|
876 |
|
|
|
877 |
|
|
LOCAL FUNCTION
|
878 |
|
|
|
879 |
|
|
decode_die_type -- return a type for a specified die
|
880 |
|
|
|
881 |
|
|
SYNOPSIS
|
882 |
|
|
|
883 |
|
|
static struct type *decode_die_type (struct dieinfo *dip)
|
884 |
|
|
|
885 |
|
|
DESCRIPTION
|
886 |
|
|
|
887 |
|
|
Given a pointer to a die information structure DIP, decode the
|
888 |
|
|
type of the die and return a pointer to the decoded type. All
|
889 |
|
|
dies without specific types default to type int.
|
890 |
|
|
*/
|
891 |
|
|
|
892 |
|
|
static struct type *
|
893 |
|
|
decode_die_type (struct dieinfo *dip)
|
894 |
|
|
{
|
895 |
|
|
struct type *type = NULL;
|
896 |
|
|
|
897 |
|
|
if (dip->at_fund_type != 0)
|
898 |
|
|
{
|
899 |
|
|
type = decode_fund_type (dip->at_fund_type);
|
900 |
|
|
}
|
901 |
|
|
else if (dip->at_mod_fund_type != NULL)
|
902 |
|
|
{
|
903 |
|
|
type = decode_mod_fund_type (dip->at_mod_fund_type);
|
904 |
|
|
}
|
905 |
|
|
else if (dip->at_user_def_type)
|
906 |
|
|
{
|
907 |
|
|
if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
|
908 |
|
|
{
|
909 |
|
|
type = alloc_utype (dip->at_user_def_type, NULL);
|
910 |
|
|
}
|
911 |
|
|
}
|
912 |
|
|
else if (dip->at_mod_u_d_type)
|
913 |
|
|
{
|
914 |
|
|
type = decode_mod_u_d_type (dip->at_mod_u_d_type);
|
915 |
|
|
}
|
916 |
|
|
else
|
917 |
|
|
{
|
918 |
|
|
type = dwarf_fundamental_type (current_objfile, FT_VOID);
|
919 |
|
|
}
|
920 |
|
|
return (type);
|
921 |
|
|
}
|
922 |
|
|
|
923 |
|
|
/*
|
924 |
|
|
|
925 |
|
|
LOCAL FUNCTION
|
926 |
|
|
|
927 |
|
|
struct_type -- compute and return the type for a struct or union
|
928 |
|
|
|
929 |
|
|
SYNOPSIS
|
930 |
|
|
|
931 |
|
|
static struct type *struct_type (struct dieinfo *dip, char *thisdie,
|
932 |
|
|
char *enddie, struct objfile *objfile)
|
933 |
|
|
|
934 |
|
|
DESCRIPTION
|
935 |
|
|
|
936 |
|
|
Given pointer to a die information structure for a die which
|
937 |
|
|
defines a union or structure (and MUST define one or the other),
|
938 |
|
|
and pointers to the raw die data that define the range of dies which
|
939 |
|
|
define the members, compute and return the user defined type for the
|
940 |
|
|
structure or union.
|
941 |
|
|
*/
|
942 |
|
|
|
943 |
|
|
static struct type *
|
944 |
|
|
struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
|
945 |
|
|
struct objfile *objfile)
|
946 |
|
|
{
|
947 |
|
|
struct type *type;
|
948 |
|
|
struct nextfield
|
949 |
|
|
{
|
950 |
|
|
struct nextfield *next;
|
951 |
|
|
struct field field;
|
952 |
|
|
};
|
953 |
|
|
struct nextfield *list = NULL;
|
954 |
|
|
struct nextfield *new;
|
955 |
|
|
int nfields = 0;
|
956 |
|
|
int n;
|
957 |
|
|
struct dieinfo mbr;
|
958 |
|
|
char *nextdie;
|
959 |
|
|
int anonymous_size;
|
960 |
|
|
|
961 |
|
|
if ((type = lookup_utype (dip->die_ref)) == NULL)
|
962 |
|
|
{
|
963 |
|
|
/* No forward references created an empty type, so install one now */
|
964 |
|
|
type = alloc_utype (dip->die_ref, NULL);
|
965 |
|
|
}
|
966 |
|
|
INIT_CPLUS_SPECIFIC (type);
|
967 |
|
|
switch (dip->die_tag)
|
968 |
|
|
{
|
969 |
|
|
case TAG_class_type:
|
970 |
|
|
TYPE_CODE (type) = TYPE_CODE_CLASS;
|
971 |
|
|
break;
|
972 |
|
|
case TAG_structure_type:
|
973 |
|
|
TYPE_CODE (type) = TYPE_CODE_STRUCT;
|
974 |
|
|
break;
|
975 |
|
|
case TAG_union_type:
|
976 |
|
|
TYPE_CODE (type) = TYPE_CODE_UNION;
|
977 |
|
|
break;
|
978 |
|
|
default:
|
979 |
|
|
/* Should never happen */
|
980 |
|
|
TYPE_CODE (type) = TYPE_CODE_UNDEF;
|
981 |
|
|
complain (&missing_tag, DIE_ID, DIE_NAME);
|
982 |
|
|
break;
|
983 |
|
|
}
|
984 |
|
|
/* Some compilers try to be helpful by inventing "fake" names for
|
985 |
|
|
anonymous enums, structures, and unions, like "~0fake" or ".0fake".
|
986 |
|
|
Thanks, but no thanks... */
|
987 |
|
|
if (dip->at_name != NULL
|
988 |
|
|
&& *dip->at_name != '~'
|
989 |
|
|
&& *dip->at_name != '.')
|
990 |
|
|
{
|
991 |
|
|
TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
|
992 |
|
|
"", "", dip->at_name);
|
993 |
|
|
}
|
994 |
|
|
/* Use whatever size is known. Zero is a valid size. We might however
|
995 |
|
|
wish to check has_at_byte_size to make sure that some byte size was
|
996 |
|
|
given explicitly, but DWARF doesn't specify that explicit sizes of
|
997 |
|
|
zero have to present, so complaining about missing sizes should
|
998 |
|
|
probably not be the default. */
|
999 |
|
|
TYPE_LENGTH (type) = dip->at_byte_size;
|
1000 |
|
|
thisdie += dip->die_length;
|
1001 |
|
|
while (thisdie < enddie)
|
1002 |
|
|
{
|
1003 |
|
|
basicdieinfo (&mbr, thisdie, objfile);
|
1004 |
|
|
completedieinfo (&mbr, objfile);
|
1005 |
|
|
if (mbr.die_length <= SIZEOF_DIE_LENGTH)
|
1006 |
|
|
{
|
1007 |
|
|
break;
|
1008 |
|
|
}
|
1009 |
|
|
else if (mbr.at_sibling != 0)
|
1010 |
|
|
{
|
1011 |
|
|
nextdie = dbbase + mbr.at_sibling - dbroff;
|
1012 |
|
|
}
|
1013 |
|
|
else
|
1014 |
|
|
{
|
1015 |
|
|
nextdie = thisdie + mbr.die_length;
|
1016 |
|
|
}
|
1017 |
|
|
switch (mbr.die_tag)
|
1018 |
|
|
{
|
1019 |
|
|
case TAG_member:
|
1020 |
|
|
/* Get space to record the next field's data. */
|
1021 |
|
|
new = (struct nextfield *) alloca (sizeof (struct nextfield));
|
1022 |
|
|
new->next = list;
|
1023 |
|
|
list = new;
|
1024 |
|
|
/* Save the data. */
|
1025 |
|
|
list->field.name =
|
1026 |
|
|
obsavestring (mbr.at_name, strlen (mbr.at_name),
|
1027 |
|
|
&objfile->type_obstack);
|
1028 |
|
|
FIELD_TYPE (list->field) = decode_die_type (&mbr);
|
1029 |
|
|
FIELD_BITPOS (list->field) = 8 * locval (&mbr);
|
1030 |
|
|
/* Handle bit fields. */
|
1031 |
|
|
FIELD_BITSIZE (list->field) = mbr.at_bit_size;
|
1032 |
|
|
if (BITS_BIG_ENDIAN)
|
1033 |
|
|
{
|
1034 |
|
|
/* For big endian bits, the at_bit_offset gives the
|
1035 |
|
|
additional bit offset from the MSB of the containing
|
1036 |
|
|
anonymous object to the MSB of the field. We don't
|
1037 |
|
|
have to do anything special since we don't need to
|
1038 |
|
|
know the size of the anonymous object. */
|
1039 |
|
|
FIELD_BITPOS (list->field) += mbr.at_bit_offset;
|
1040 |
|
|
}
|
1041 |
|
|
else
|
1042 |
|
|
{
|
1043 |
|
|
/* For little endian bits, we need to have a non-zero
|
1044 |
|
|
at_bit_size, so that we know we are in fact dealing
|
1045 |
|
|
with a bitfield. Compute the bit offset to the MSB
|
1046 |
|
|
of the anonymous object, subtract off the number of
|
1047 |
|
|
bits from the MSB of the field to the MSB of the
|
1048 |
|
|
object, and then subtract off the number of bits of
|
1049 |
|
|
the field itself. The result is the bit offset of
|
1050 |
|
|
the LSB of the field. */
|
1051 |
|
|
if (mbr.at_bit_size > 0)
|
1052 |
|
|
{
|
1053 |
|
|
if (mbr.has_at_byte_size)
|
1054 |
|
|
{
|
1055 |
|
|
/* The size of the anonymous object containing
|
1056 |
|
|
the bit field is explicit, so use the
|
1057 |
|
|
indicated size (in bytes). */
|
1058 |
|
|
anonymous_size = mbr.at_byte_size;
|
1059 |
|
|
}
|
1060 |
|
|
else
|
1061 |
|
|
{
|
1062 |
|
|
/* The size of the anonymous object containing
|
1063 |
|
|
the bit field matches the size of an object
|
1064 |
|
|
of the bit field's type. DWARF allows
|
1065 |
|
|
at_byte_size to be left out in such cases, as
|
1066 |
|
|
a debug information size optimization. */
|
1067 |
|
|
anonymous_size = TYPE_LENGTH (list->field.type);
|
1068 |
|
|
}
|
1069 |
|
|
FIELD_BITPOS (list->field) +=
|
1070 |
|
|
anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
|
1071 |
|
|
}
|
1072 |
|
|
}
|
1073 |
|
|
nfields++;
|
1074 |
|
|
break;
|
1075 |
|
|
default:
|
1076 |
|
|
process_dies (thisdie, nextdie, objfile);
|
1077 |
|
|
break;
|
1078 |
|
|
}
|
1079 |
|
|
thisdie = nextdie;
|
1080 |
|
|
}
|
1081 |
|
|
/* Now create the vector of fields, and record how big it is. We may
|
1082 |
|
|
not even have any fields, if this DIE was generated due to a reference
|
1083 |
|
|
to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
|
1084 |
|
|
set, which clues gdb in to the fact that it needs to search elsewhere
|
1085 |
|
|
for the full structure definition. */
|
1086 |
|
|
if (nfields == 0)
|
1087 |
|
|
{
|
1088 |
|
|
TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
|
1089 |
|
|
}
|
1090 |
|
|
else
|
1091 |
|
|
{
|
1092 |
|
|
TYPE_NFIELDS (type) = nfields;
|
1093 |
|
|
TYPE_FIELDS (type) = (struct field *)
|
1094 |
|
|
TYPE_ALLOC (type, sizeof (struct field) * nfields);
|
1095 |
|
|
/* Copy the saved-up fields into the field vector. */
|
1096 |
|
|
for (n = nfields; list; list = list->next)
|
1097 |
|
|
{
|
1098 |
|
|
TYPE_FIELD (type, --n) = list->field;
|
1099 |
|
|
}
|
1100 |
|
|
}
|
1101 |
|
|
return (type);
|
1102 |
|
|
}
|
1103 |
|
|
|
1104 |
|
|
/*
|
1105 |
|
|
|
1106 |
|
|
LOCAL FUNCTION
|
1107 |
|
|
|
1108 |
|
|
read_structure_scope -- process all dies within struct or union
|
1109 |
|
|
|
1110 |
|
|
SYNOPSIS
|
1111 |
|
|
|
1112 |
|
|
static void read_structure_scope (struct dieinfo *dip,
|
1113 |
|
|
char *thisdie, char *enddie, struct objfile *objfile)
|
1114 |
|
|
|
1115 |
|
|
DESCRIPTION
|
1116 |
|
|
|
1117 |
|
|
Called when we find the DIE that starts a structure or union
|
1118 |
|
|
scope (definition) to process all dies that define the members
|
1119 |
|
|
of the structure or union. DIP is a pointer to the die info
|
1120 |
|
|
struct for the DIE that names the structure or union.
|
1121 |
|
|
|
1122 |
|
|
NOTES
|
1123 |
|
|
|
1124 |
|
|
Note that we need to call struct_type regardless of whether or not
|
1125 |
|
|
the DIE has an at_name attribute, since it might be an anonymous
|
1126 |
|
|
structure or union. This gets the type entered into our set of
|
1127 |
|
|
user defined types.
|
1128 |
|
|
|
1129 |
|
|
However, if the structure is incomplete (an opaque struct/union)
|
1130 |
|
|
then suppress creating a symbol table entry for it since gdb only
|
1131 |
|
|
wants to find the one with the complete definition. Note that if
|
1132 |
|
|
it is complete, we just call new_symbol, which does it's own
|
1133 |
|
|
checking about whether the struct/union is anonymous or not (and
|
1134 |
|
|
suppresses creating a symbol table entry itself).
|
1135 |
|
|
|
1136 |
|
|
*/
|
1137 |
|
|
|
1138 |
|
|
static void
|
1139 |
|
|
read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
|
1140 |
|
|
struct objfile *objfile)
|
1141 |
|
|
{
|
1142 |
|
|
struct type *type;
|
1143 |
|
|
struct symbol *sym;
|
1144 |
|
|
|
1145 |
|
|
type = struct_type (dip, thisdie, enddie, objfile);
|
1146 |
|
|
if (!TYPE_STUB (type))
|
1147 |
|
|
{
|
1148 |
|
|
sym = new_symbol (dip, objfile);
|
1149 |
|
|
if (sym != NULL)
|
1150 |
|
|
{
|
1151 |
|
|
SYMBOL_TYPE (sym) = type;
|
1152 |
|
|
if (cu_language == language_cplus)
|
1153 |
|
|
{
|
1154 |
|
|
synthesize_typedef (dip, objfile, type);
|
1155 |
|
|
}
|
1156 |
|
|
}
|
1157 |
|
|
}
|
1158 |
|
|
}
|
1159 |
|
|
|
1160 |
|
|
/*
|
1161 |
|
|
|
1162 |
|
|
LOCAL FUNCTION
|
1163 |
|
|
|
1164 |
|
|
decode_array_element_type -- decode type of the array elements
|
1165 |
|
|
|
1166 |
|
|
SYNOPSIS
|
1167 |
|
|
|
1168 |
|
|
static struct type *decode_array_element_type (char *scan, char *end)
|
1169 |
|
|
|
1170 |
|
|
DESCRIPTION
|
1171 |
|
|
|
1172 |
|
|
As the last step in decoding the array subscript information for an
|
1173 |
|
|
array DIE, we need to decode the type of the array elements. We are
|
1174 |
|
|
passed a pointer to this last part of the subscript information and
|
1175 |
|
|
must return the appropriate type. If the type attribute is not
|
1176 |
|
|
recognized, just warn about the problem and return type int.
|
1177 |
|
|
*/
|
1178 |
|
|
|
1179 |
|
|
static struct type *
|
1180 |
|
|
decode_array_element_type (char *scan)
|
1181 |
|
|
{
|
1182 |
|
|
struct type *typep;
|
1183 |
|
|
DIE_REF die_ref;
|
1184 |
|
|
unsigned short attribute;
|
1185 |
|
|
unsigned short fundtype;
|
1186 |
|
|
int nbytes;
|
1187 |
|
|
|
1188 |
|
|
attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
|
1189 |
|
|
current_objfile);
|
1190 |
|
|
scan += SIZEOF_ATTRIBUTE;
|
1191 |
|
|
if ((nbytes = attribute_size (attribute)) == -1)
|
1192 |
|
|
{
|
1193 |
|
|
complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
|
1194 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
|
1195 |
|
|
}
|
1196 |
|
|
else
|
1197 |
|
|
{
|
1198 |
|
|
switch (attribute)
|
1199 |
|
|
{
|
1200 |
|
|
case AT_fund_type:
|
1201 |
|
|
fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
|
1202 |
|
|
current_objfile);
|
1203 |
|
|
typep = decode_fund_type (fundtype);
|
1204 |
|
|
break;
|
1205 |
|
|
case AT_mod_fund_type:
|
1206 |
|
|
typep = decode_mod_fund_type (scan);
|
1207 |
|
|
break;
|
1208 |
|
|
case AT_user_def_type:
|
1209 |
|
|
die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
|
1210 |
|
|
current_objfile);
|
1211 |
|
|
if ((typep = lookup_utype (die_ref)) == NULL)
|
1212 |
|
|
{
|
1213 |
|
|
typep = alloc_utype (die_ref, NULL);
|
1214 |
|
|
}
|
1215 |
|
|
break;
|
1216 |
|
|
case AT_mod_u_d_type:
|
1217 |
|
|
typep = decode_mod_u_d_type (scan);
|
1218 |
|
|
break;
|
1219 |
|
|
default:
|
1220 |
|
|
complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
|
1221 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
|
1222 |
|
|
break;
|
1223 |
|
|
}
|
1224 |
|
|
}
|
1225 |
|
|
return (typep);
|
1226 |
|
|
}
|
1227 |
|
|
|
1228 |
|
|
/*
|
1229 |
|
|
|
1230 |
|
|
LOCAL FUNCTION
|
1231 |
|
|
|
1232 |
|
|
decode_subscript_data_item -- decode array subscript item
|
1233 |
|
|
|
1234 |
|
|
SYNOPSIS
|
1235 |
|
|
|
1236 |
|
|
static struct type *
|
1237 |
|
|
decode_subscript_data_item (char *scan, char *end)
|
1238 |
|
|
|
1239 |
|
|
DESCRIPTION
|
1240 |
|
|
|
1241 |
|
|
The array subscripts and the data type of the elements of an
|
1242 |
|
|
array are described by a list of data items, stored as a block
|
1243 |
|
|
of contiguous bytes. There is a data item describing each array
|
1244 |
|
|
dimension, and a final data item describing the element type.
|
1245 |
|
|
The data items are ordered the same as their appearance in the
|
1246 |
|
|
source (I.E. leftmost dimension first, next to leftmost second,
|
1247 |
|
|
etc).
|
1248 |
|
|
|
1249 |
|
|
The data items describing each array dimension consist of four
|
1250 |
|
|
parts: (1) a format specifier, (2) type type of the subscript
|
1251 |
|
|
index, (3) a description of the low bound of the array dimension,
|
1252 |
|
|
and (4) a description of the high bound of the array dimension.
|
1253 |
|
|
|
1254 |
|
|
The last data item is the description of the type of each of
|
1255 |
|
|
the array elements.
|
1256 |
|
|
|
1257 |
|
|
We are passed a pointer to the start of the block of bytes
|
1258 |
|
|
containing the remaining data items, and a pointer to the first
|
1259 |
|
|
byte past the data. This function recursively decodes the
|
1260 |
|
|
remaining data items and returns a type.
|
1261 |
|
|
|
1262 |
|
|
If we somehow fail to decode some data, we complain about it
|
1263 |
|
|
and return a type "array of int".
|
1264 |
|
|
|
1265 |
|
|
BUGS
|
1266 |
|
|
FIXME: This code only implements the forms currently used
|
1267 |
|
|
by the AT&T and GNU C compilers.
|
1268 |
|
|
|
1269 |
|
|
The end pointer is supplied for error checking, maybe we should
|
1270 |
|
|
use it for that...
|
1271 |
|
|
*/
|
1272 |
|
|
|
1273 |
|
|
static struct type *
|
1274 |
|
|
decode_subscript_data_item (char *scan, char *end)
|
1275 |
|
|
{
|
1276 |
|
|
struct type *typep = NULL; /* Array type we are building */
|
1277 |
|
|
struct type *nexttype; /* Type of each element (may be array) */
|
1278 |
|
|
struct type *indextype; /* Type of this index */
|
1279 |
|
|
struct type *rangetype;
|
1280 |
|
|
unsigned int format;
|
1281 |
|
|
unsigned short fundtype;
|
1282 |
|
|
unsigned long lowbound;
|
1283 |
|
|
unsigned long highbound;
|
1284 |
|
|
int nbytes;
|
1285 |
|
|
|
1286 |
|
|
format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
|
1287 |
|
|
current_objfile);
|
1288 |
|
|
scan += SIZEOF_FORMAT_SPECIFIER;
|
1289 |
|
|
switch (format)
|
1290 |
|
|
{
|
1291 |
|
|
case FMT_ET:
|
1292 |
|
|
typep = decode_array_element_type (scan);
|
1293 |
|
|
break;
|
1294 |
|
|
case FMT_FT_C_C:
|
1295 |
|
|
fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
|
1296 |
|
|
current_objfile);
|
1297 |
|
|
indextype = decode_fund_type (fundtype);
|
1298 |
|
|
scan += SIZEOF_FMT_FT;
|
1299 |
|
|
nbytes = TARGET_FT_LONG_SIZE (current_objfile);
|
1300 |
|
|
lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
|
1301 |
|
|
scan += nbytes;
|
1302 |
|
|
highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
|
1303 |
|
|
scan += nbytes;
|
1304 |
|
|
nexttype = decode_subscript_data_item (scan, end);
|
1305 |
|
|
if (nexttype == NULL)
|
1306 |
|
|
{
|
1307 |
|
|
/* Munged subscript data or other problem, fake it. */
|
1308 |
|
|
complain (&subscript_data_items, DIE_ID, DIE_NAME);
|
1309 |
|
|
nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
|
1310 |
|
|
}
|
1311 |
|
|
rangetype = create_range_type ((struct type *) NULL, indextype,
|
1312 |
|
|
lowbound, highbound);
|
1313 |
|
|
typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
|
1314 |
|
|
break;
|
1315 |
|
|
case FMT_FT_C_X:
|
1316 |
|
|
case FMT_FT_X_C:
|
1317 |
|
|
case FMT_FT_X_X:
|
1318 |
|
|
case FMT_UT_C_C:
|
1319 |
|
|
case FMT_UT_C_X:
|
1320 |
|
|
case FMT_UT_X_C:
|
1321 |
|
|
case FMT_UT_X_X:
|
1322 |
|
|
complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
|
1323 |
|
|
nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
|
1324 |
|
|
rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
|
1325 |
|
|
typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
|
1326 |
|
|
break;
|
1327 |
|
|
default:
|
1328 |
|
|
complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
|
1329 |
|
|
nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
|
1330 |
|
|
rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
|
1331 |
|
|
typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
|
1332 |
|
|
break;
|
1333 |
|
|
}
|
1334 |
|
|
return (typep);
|
1335 |
|
|
}
|
1336 |
|
|
|
1337 |
|
|
/*
|
1338 |
|
|
|
1339 |
|
|
LOCAL FUNCTION
|
1340 |
|
|
|
1341 |
|
|
dwarf_read_array_type -- read TAG_array_type DIE
|
1342 |
|
|
|
1343 |
|
|
SYNOPSIS
|
1344 |
|
|
|
1345 |
|
|
static void dwarf_read_array_type (struct dieinfo *dip)
|
1346 |
|
|
|
1347 |
|
|
DESCRIPTION
|
1348 |
|
|
|
1349 |
|
|
Extract all information from a TAG_array_type DIE and add to
|
1350 |
|
|
the user defined type vector.
|
1351 |
|
|
*/
|
1352 |
|
|
|
1353 |
|
|
static void
|
1354 |
|
|
dwarf_read_array_type (struct dieinfo *dip)
|
1355 |
|
|
{
|
1356 |
|
|
struct type *type;
|
1357 |
|
|
struct type *utype;
|
1358 |
|
|
char *sub;
|
1359 |
|
|
char *subend;
|
1360 |
|
|
unsigned short blocksz;
|
1361 |
|
|
int nbytes;
|
1362 |
|
|
|
1363 |
|
|
if (dip->at_ordering != ORD_row_major)
|
1364 |
|
|
{
|
1365 |
|
|
/* FIXME: Can gdb even handle column major arrays? */
|
1366 |
|
|
complain (¬_row_major, DIE_ID, DIE_NAME);
|
1367 |
|
|
}
|
1368 |
|
|
if ((sub = dip->at_subscr_data) != NULL)
|
1369 |
|
|
{
|
1370 |
|
|
nbytes = attribute_size (AT_subscr_data);
|
1371 |
|
|
blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
|
1372 |
|
|
subend = sub + nbytes + blocksz;
|
1373 |
|
|
sub += nbytes;
|
1374 |
|
|
type = decode_subscript_data_item (sub, subend);
|
1375 |
|
|
if ((utype = lookup_utype (dip->die_ref)) == NULL)
|
1376 |
|
|
{
|
1377 |
|
|
/* Install user defined type that has not been referenced yet. */
|
1378 |
|
|
alloc_utype (dip->die_ref, type);
|
1379 |
|
|
}
|
1380 |
|
|
else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
|
1381 |
|
|
{
|
1382 |
|
|
/* Ick! A forward ref has already generated a blank type in our
|
1383 |
|
|
slot, and this type probably already has things pointing to it
|
1384 |
|
|
(which is what caused it to be created in the first place).
|
1385 |
|
|
If it's just a place holder we can plop our fully defined type
|
1386 |
|
|
on top of it. We can't recover the space allocated for our
|
1387 |
|
|
new type since it might be on an obstack, but we could reuse
|
1388 |
|
|
it if we kept a list of them, but it might not be worth it
|
1389 |
|
|
(FIXME). */
|
1390 |
|
|
*utype = *type;
|
1391 |
|
|
}
|
1392 |
|
|
else
|
1393 |
|
|
{
|
1394 |
|
|
/* Double ick! Not only is a type already in our slot, but
|
1395 |
|
|
someone has decorated it. Complain and leave it alone. */
|
1396 |
|
|
complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
|
1397 |
|
|
}
|
1398 |
|
|
}
|
1399 |
|
|
}
|
1400 |
|
|
|
1401 |
|
|
/*
|
1402 |
|
|
|
1403 |
|
|
LOCAL FUNCTION
|
1404 |
|
|
|
1405 |
|
|
read_tag_pointer_type -- read TAG_pointer_type DIE
|
1406 |
|
|
|
1407 |
|
|
SYNOPSIS
|
1408 |
|
|
|
1409 |
|
|
static void read_tag_pointer_type (struct dieinfo *dip)
|
1410 |
|
|
|
1411 |
|
|
DESCRIPTION
|
1412 |
|
|
|
1413 |
|
|
Extract all information from a TAG_pointer_type DIE and add to
|
1414 |
|
|
the user defined type vector.
|
1415 |
|
|
*/
|
1416 |
|
|
|
1417 |
|
|
static void
|
1418 |
|
|
read_tag_pointer_type (struct dieinfo *dip)
|
1419 |
|
|
{
|
1420 |
|
|
struct type *type;
|
1421 |
|
|
struct type *utype;
|
1422 |
|
|
|
1423 |
|
|
type = decode_die_type (dip);
|
1424 |
|
|
if ((utype = lookup_utype (dip->die_ref)) == NULL)
|
1425 |
|
|
{
|
1426 |
|
|
utype = lookup_pointer_type (type);
|
1427 |
|
|
alloc_utype (dip->die_ref, utype);
|
1428 |
|
|
}
|
1429 |
|
|
else
|
1430 |
|
|
{
|
1431 |
|
|
TYPE_TARGET_TYPE (utype) = type;
|
1432 |
|
|
TYPE_POINTER_TYPE (type) = utype;
|
1433 |
|
|
|
1434 |
|
|
/* We assume the machine has only one representation for pointers! */
|
1435 |
|
|
/* FIXME: Possably a poor assumption */
|
1436 |
|
|
TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
|
1437 |
|
|
TYPE_CODE (utype) = TYPE_CODE_PTR;
|
1438 |
|
|
}
|
1439 |
|
|
}
|
1440 |
|
|
|
1441 |
|
|
/*
|
1442 |
|
|
|
1443 |
|
|
LOCAL FUNCTION
|
1444 |
|
|
|
1445 |
|
|
read_tag_string_type -- read TAG_string_type DIE
|
1446 |
|
|
|
1447 |
|
|
SYNOPSIS
|
1448 |
|
|
|
1449 |
|
|
static void read_tag_string_type (struct dieinfo *dip)
|
1450 |
|
|
|
1451 |
|
|
DESCRIPTION
|
1452 |
|
|
|
1453 |
|
|
Extract all information from a TAG_string_type DIE and add to
|
1454 |
|
|
the user defined type vector. It isn't really a user defined
|
1455 |
|
|
type, but it behaves like one, with other DIE's using an
|
1456 |
|
|
AT_user_def_type attribute to reference it.
|
1457 |
|
|
*/
|
1458 |
|
|
|
1459 |
|
|
static void
|
1460 |
|
|
read_tag_string_type (struct dieinfo *dip)
|
1461 |
|
|
{
|
1462 |
|
|
struct type *utype;
|
1463 |
|
|
struct type *indextype;
|
1464 |
|
|
struct type *rangetype;
|
1465 |
|
|
unsigned long lowbound = 0;
|
1466 |
|
|
unsigned long highbound;
|
1467 |
|
|
|
1468 |
|
|
if (dip->has_at_byte_size)
|
1469 |
|
|
{
|
1470 |
|
|
/* A fixed bounds string */
|
1471 |
|
|
highbound = dip->at_byte_size - 1;
|
1472 |
|
|
}
|
1473 |
|
|
else
|
1474 |
|
|
{
|
1475 |
|
|
/* A varying length string. Stub for now. (FIXME) */
|
1476 |
|
|
highbound = 1;
|
1477 |
|
|
}
|
1478 |
|
|
indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
|
1479 |
|
|
rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
|
1480 |
|
|
highbound);
|
1481 |
|
|
|
1482 |
|
|
utype = lookup_utype (dip->die_ref);
|
1483 |
|
|
if (utype == NULL)
|
1484 |
|
|
{
|
1485 |
|
|
/* No type defined, go ahead and create a blank one to use. */
|
1486 |
|
|
utype = alloc_utype (dip->die_ref, (struct type *) NULL);
|
1487 |
|
|
}
|
1488 |
|
|
else
|
1489 |
|
|
{
|
1490 |
|
|
/* Already a type in our slot due to a forward reference. Make sure it
|
1491 |
|
|
is a blank one. If not, complain and leave it alone. */
|
1492 |
|
|
if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
|
1493 |
|
|
{
|
1494 |
|
|
complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
|
1495 |
|
|
return;
|
1496 |
|
|
}
|
1497 |
|
|
}
|
1498 |
|
|
|
1499 |
|
|
/* Create the string type using the blank type we either found or created. */
|
1500 |
|
|
utype = create_string_type (utype, rangetype);
|
1501 |
|
|
}
|
1502 |
|
|
|
1503 |
|
|
/*
|
1504 |
|
|
|
1505 |
|
|
LOCAL FUNCTION
|
1506 |
|
|
|
1507 |
|
|
read_subroutine_type -- process TAG_subroutine_type dies
|
1508 |
|
|
|
1509 |
|
|
SYNOPSIS
|
1510 |
|
|
|
1511 |
|
|
static void read_subroutine_type (struct dieinfo *dip, char thisdie,
|
1512 |
|
|
char *enddie)
|
1513 |
|
|
|
1514 |
|
|
DESCRIPTION
|
1515 |
|
|
|
1516 |
|
|
Handle DIES due to C code like:
|
1517 |
|
|
|
1518 |
|
|
struct foo {
|
1519 |
|
|
int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
|
1520 |
|
|
int b;
|
1521 |
|
|
};
|
1522 |
|
|
|
1523 |
|
|
NOTES
|
1524 |
|
|
|
1525 |
|
|
The parameter DIES are currently ignored. See if gdb has a way to
|
1526 |
|
|
include this info in it's type system, and decode them if so. Is
|
1527 |
|
|
this what the type structure's "arg_types" field is for? (FIXME)
|
1528 |
|
|
*/
|
1529 |
|
|
|
1530 |
|
|
static void
|
1531 |
|
|
read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
|
1532 |
|
|
{
|
1533 |
|
|
struct type *type; /* Type that this function returns */
|
1534 |
|
|
struct type *ftype; /* Function that returns above type */
|
1535 |
|
|
|
1536 |
|
|
/* Decode the type that this subroutine returns */
|
1537 |
|
|
|
1538 |
|
|
type = decode_die_type (dip);
|
1539 |
|
|
|
1540 |
|
|
/* Check to see if we already have a partially constructed user
|
1541 |
|
|
defined type for this DIE, from a forward reference. */
|
1542 |
|
|
|
1543 |
|
|
if ((ftype = lookup_utype (dip->die_ref)) == NULL)
|
1544 |
|
|
{
|
1545 |
|
|
/* This is the first reference to one of these types. Make
|
1546 |
|
|
a new one and place it in the user defined types. */
|
1547 |
|
|
ftype = lookup_function_type (type);
|
1548 |
|
|
alloc_utype (dip->die_ref, ftype);
|
1549 |
|
|
}
|
1550 |
|
|
else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
|
1551 |
|
|
{
|
1552 |
|
|
/* We have an existing partially constructed type, so bash it
|
1553 |
|
|
into the correct type. */
|
1554 |
|
|
TYPE_TARGET_TYPE (ftype) = type;
|
1555 |
|
|
TYPE_LENGTH (ftype) = 1;
|
1556 |
|
|
TYPE_CODE (ftype) = TYPE_CODE_FUNC;
|
1557 |
|
|
}
|
1558 |
|
|
else
|
1559 |
|
|
{
|
1560 |
|
|
complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
|
1561 |
|
|
}
|
1562 |
|
|
}
|
1563 |
|
|
|
1564 |
|
|
/*
|
1565 |
|
|
|
1566 |
|
|
LOCAL FUNCTION
|
1567 |
|
|
|
1568 |
|
|
read_enumeration -- process dies which define an enumeration
|
1569 |
|
|
|
1570 |
|
|
SYNOPSIS
|
1571 |
|
|
|
1572 |
|
|
static void read_enumeration (struct dieinfo *dip, char *thisdie,
|
1573 |
|
|
char *enddie, struct objfile *objfile)
|
1574 |
|
|
|
1575 |
|
|
DESCRIPTION
|
1576 |
|
|
|
1577 |
|
|
Given a pointer to a die which begins an enumeration, process all
|
1578 |
|
|
the dies that define the members of the enumeration.
|
1579 |
|
|
|
1580 |
|
|
NOTES
|
1581 |
|
|
|
1582 |
|
|
Note that we need to call enum_type regardless of whether or not we
|
1583 |
|
|
have a symbol, since we might have an enum without a tag name (thus
|
1584 |
|
|
no symbol for the tagname).
|
1585 |
|
|
*/
|
1586 |
|
|
|
1587 |
|
|
static void
|
1588 |
|
|
read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
|
1589 |
|
|
struct objfile *objfile)
|
1590 |
|
|
{
|
1591 |
|
|
struct type *type;
|
1592 |
|
|
struct symbol *sym;
|
1593 |
|
|
|
1594 |
|
|
type = enum_type (dip, objfile);
|
1595 |
|
|
sym = new_symbol (dip, objfile);
|
1596 |
|
|
if (sym != NULL)
|
1597 |
|
|
{
|
1598 |
|
|
SYMBOL_TYPE (sym) = type;
|
1599 |
|
|
if (cu_language == language_cplus)
|
1600 |
|
|
{
|
1601 |
|
|
synthesize_typedef (dip, objfile, type);
|
1602 |
|
|
}
|
1603 |
|
|
}
|
1604 |
|
|
}
|
1605 |
|
|
|
1606 |
|
|
/*
|
1607 |
|
|
|
1608 |
|
|
LOCAL FUNCTION
|
1609 |
|
|
|
1610 |
|
|
enum_type -- decode and return a type for an enumeration
|
1611 |
|
|
|
1612 |
|
|
SYNOPSIS
|
1613 |
|
|
|
1614 |
|
|
static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
|
1615 |
|
|
|
1616 |
|
|
DESCRIPTION
|
1617 |
|
|
|
1618 |
|
|
Given a pointer to a die information structure for the die which
|
1619 |
|
|
starts an enumeration, process all the dies that define the members
|
1620 |
|
|
of the enumeration and return a type pointer for the enumeration.
|
1621 |
|
|
|
1622 |
|
|
At the same time, for each member of the enumeration, create a
|
1623 |
|
|
symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
|
1624 |
|
|
and give it the type of the enumeration itself.
|
1625 |
|
|
|
1626 |
|
|
NOTES
|
1627 |
|
|
|
1628 |
|
|
Note that the DWARF specification explicitly mandates that enum
|
1629 |
|
|
constants occur in reverse order from the source program order,
|
1630 |
|
|
for "consistency" and because this ordering is easier for many
|
1631 |
|
|
compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
|
1632 |
|
|
Entries). Because gdb wants to see the enum members in program
|
1633 |
|
|
source order, we have to ensure that the order gets reversed while
|
1634 |
|
|
we are processing them.
|
1635 |
|
|
*/
|
1636 |
|
|
|
1637 |
|
|
static struct type *
|
1638 |
|
|
enum_type (struct dieinfo *dip, struct objfile *objfile)
|
1639 |
|
|
{
|
1640 |
|
|
struct type *type;
|
1641 |
|
|
struct nextfield
|
1642 |
|
|
{
|
1643 |
|
|
struct nextfield *next;
|
1644 |
|
|
struct field field;
|
1645 |
|
|
};
|
1646 |
|
|
struct nextfield *list = NULL;
|
1647 |
|
|
struct nextfield *new;
|
1648 |
|
|
int nfields = 0;
|
1649 |
|
|
int n;
|
1650 |
|
|
char *scan;
|
1651 |
|
|
char *listend;
|
1652 |
|
|
unsigned short blocksz;
|
1653 |
|
|
struct symbol *sym;
|
1654 |
|
|
int nbytes;
|
1655 |
|
|
int unsigned_enum = 1;
|
1656 |
|
|
|
1657 |
|
|
if ((type = lookup_utype (dip->die_ref)) == NULL)
|
1658 |
|
|
{
|
1659 |
|
|
/* No forward references created an empty type, so install one now */
|
1660 |
|
|
type = alloc_utype (dip->die_ref, NULL);
|
1661 |
|
|
}
|
1662 |
|
|
TYPE_CODE (type) = TYPE_CODE_ENUM;
|
1663 |
|
|
/* Some compilers try to be helpful by inventing "fake" names for
|
1664 |
|
|
anonymous enums, structures, and unions, like "~0fake" or ".0fake".
|
1665 |
|
|
Thanks, but no thanks... */
|
1666 |
|
|
if (dip->at_name != NULL
|
1667 |
|
|
&& *dip->at_name != '~'
|
1668 |
|
|
&& *dip->at_name != '.')
|
1669 |
|
|
{
|
1670 |
|
|
TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
|
1671 |
|
|
"", "", dip->at_name);
|
1672 |
|
|
}
|
1673 |
|
|
if (dip->at_byte_size != 0)
|
1674 |
|
|
{
|
1675 |
|
|
TYPE_LENGTH (type) = dip->at_byte_size;
|
1676 |
|
|
}
|
1677 |
|
|
if ((scan = dip->at_element_list) != NULL)
|
1678 |
|
|
{
|
1679 |
|
|
if (dip->short_element_list)
|
1680 |
|
|
{
|
1681 |
|
|
nbytes = attribute_size (AT_short_element_list);
|
1682 |
|
|
}
|
1683 |
|
|
else
|
1684 |
|
|
{
|
1685 |
|
|
nbytes = attribute_size (AT_element_list);
|
1686 |
|
|
}
|
1687 |
|
|
blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
|
1688 |
|
|
listend = scan + nbytes + blocksz;
|
1689 |
|
|
scan += nbytes;
|
1690 |
|
|
while (scan < listend)
|
1691 |
|
|
{
|
1692 |
|
|
new = (struct nextfield *) alloca (sizeof (struct nextfield));
|
1693 |
|
|
new->next = list;
|
1694 |
|
|
list = new;
|
1695 |
|
|
FIELD_TYPE (list->field) = NULL;
|
1696 |
|
|
FIELD_BITSIZE (list->field) = 0;
|
1697 |
|
|
FIELD_BITPOS (list->field) =
|
1698 |
|
|
target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
|
1699 |
|
|
objfile);
|
1700 |
|
|
scan += TARGET_FT_LONG_SIZE (objfile);
|
1701 |
|
|
list->field.name = obsavestring (scan, strlen (scan),
|
1702 |
|
|
&objfile->type_obstack);
|
1703 |
|
|
scan += strlen (scan) + 1;
|
1704 |
|
|
nfields++;
|
1705 |
|
|
/* Handcraft a new symbol for this enum member. */
|
1706 |
|
|
sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
|
1707 |
|
|
sizeof (struct symbol));
|
1708 |
|
|
memset (sym, 0, sizeof (struct symbol));
|
1709 |
|
|
SYMBOL_NAME (sym) = create_name (list->field.name,
|
1710 |
|
|
&objfile->symbol_obstack);
|
1711 |
|
|
SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
|
1712 |
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
1713 |
|
|
SYMBOL_CLASS (sym) = LOC_CONST;
|
1714 |
|
|
SYMBOL_TYPE (sym) = type;
|
1715 |
|
|
SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
|
1716 |
|
|
if (SYMBOL_VALUE (sym) < 0)
|
1717 |
|
|
unsigned_enum = 0;
|
1718 |
|
|
add_symbol_to_list (sym, list_in_scope);
|
1719 |
|
|
}
|
1720 |
|
|
/* Now create the vector of fields, and record how big it is. This is
|
1721 |
|
|
where we reverse the order, by pulling the members off the list in
|
1722 |
|
|
reverse order from how they were inserted. If we have no fields
|
1723 |
|
|
(this is apparently possible in C++) then skip building a field
|
1724 |
|
|
vector. */
|
1725 |
|
|
if (nfields > 0)
|
1726 |
|
|
{
|
1727 |
|
|
if (unsigned_enum)
|
1728 |
|
|
TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
|
1729 |
|
|
TYPE_NFIELDS (type) = nfields;
|
1730 |
|
|
TYPE_FIELDS (type) = (struct field *)
|
1731 |
|
|
obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
|
1732 |
|
|
/* Copy the saved-up fields into the field vector. */
|
1733 |
|
|
for (n = 0; (n < nfields) && (list != NULL); list = list->next)
|
1734 |
|
|
{
|
1735 |
|
|
TYPE_FIELD (type, n++) = list->field;
|
1736 |
|
|
}
|
1737 |
|
|
}
|
1738 |
|
|
}
|
1739 |
|
|
return (type);
|
1740 |
|
|
}
|
1741 |
|
|
|
1742 |
|
|
/*
|
1743 |
|
|
|
1744 |
|
|
LOCAL FUNCTION
|
1745 |
|
|
|
1746 |
|
|
read_func_scope -- process all dies within a function scope
|
1747 |
|
|
|
1748 |
|
|
DESCRIPTION
|
1749 |
|
|
|
1750 |
|
|
Process all dies within a given function scope. We are passed
|
1751 |
|
|
a die information structure pointer DIP for the die which
|
1752 |
|
|
starts the function scope, and pointers into the raw die data
|
1753 |
|
|
that define the dies within the function scope.
|
1754 |
|
|
|
1755 |
|
|
For now, we ignore lexical block scopes within the function.
|
1756 |
|
|
The problem is that AT&T cc does not define a DWARF lexical
|
1757 |
|
|
block scope for the function itself, while gcc defines a
|
1758 |
|
|
lexical block scope for the function. We need to think about
|
1759 |
|
|
how to handle this difference, or if it is even a problem.
|
1760 |
|
|
(FIXME)
|
1761 |
|
|
*/
|
1762 |
|
|
|
1763 |
|
|
static void
|
1764 |
|
|
read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
|
1765 |
|
|
struct objfile *objfile)
|
1766 |
|
|
{
|
1767 |
|
|
register struct context_stack *new;
|
1768 |
|
|
|
1769 |
|
|
/* AT_name is absent if the function is described with an
|
1770 |
|
|
AT_abstract_origin tag.
|
1771 |
|
|
Ignore the function description for now to avoid GDB core dumps.
|
1772 |
|
|
FIXME: Add code to handle AT_abstract_origin tags properly. */
|
1773 |
|
|
if (dip->at_name == NULL)
|
1774 |
|
|
{
|
1775 |
|
|
complain (&missing_at_name, DIE_ID);
|
1776 |
|
|
return;
|
1777 |
|
|
}
|
1778 |
|
|
|
1779 |
|
|
if (objfile->ei.entry_point >= dip->at_low_pc &&
|
1780 |
|
|
objfile->ei.entry_point < dip->at_high_pc)
|
1781 |
|
|
{
|
1782 |
|
|
objfile->ei.entry_func_lowpc = dip->at_low_pc;
|
1783 |
|
|
objfile->ei.entry_func_highpc = dip->at_high_pc;
|
1784 |
|
|
}
|
1785 |
|
|
new = push_context (0, dip->at_low_pc);
|
1786 |
|
|
new->name = new_symbol (dip, objfile);
|
1787 |
|
|
list_in_scope = &local_symbols;
|
1788 |
|
|
process_dies (thisdie + dip->die_length, enddie, objfile);
|
1789 |
|
|
new = pop_context ();
|
1790 |
|
|
/* Make a block for the local symbols within. */
|
1791 |
|
|
finish_block (new->name, &local_symbols, new->old_blocks,
|
1792 |
|
|
new->start_addr, dip->at_high_pc, objfile);
|
1793 |
|
|
list_in_scope = &file_symbols;
|
1794 |
|
|
}
|
1795 |
|
|
|
1796 |
|
|
|
1797 |
|
|
/*
|
1798 |
|
|
|
1799 |
|
|
LOCAL FUNCTION
|
1800 |
|
|
|
1801 |
|
|
handle_producer -- process the AT_producer attribute
|
1802 |
|
|
|
1803 |
|
|
DESCRIPTION
|
1804 |
|
|
|
1805 |
|
|
Perform any operations that depend on finding a particular
|
1806 |
|
|
AT_producer attribute.
|
1807 |
|
|
|
1808 |
|
|
*/
|
1809 |
|
|
|
1810 |
|
|
static void
|
1811 |
|
|
handle_producer (char *producer)
|
1812 |
|
|
{
|
1813 |
|
|
|
1814 |
|
|
/* If this compilation unit was compiled with g++ or gcc, then set the
|
1815 |
|
|
processing_gcc_compilation flag. */
|
1816 |
|
|
|
1817 |
|
|
if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
|
1818 |
|
|
{
|
1819 |
|
|
char version = producer[strlen (GCC_PRODUCER)];
|
1820 |
|
|
processing_gcc_compilation = (version == '2' ? 2 : 1);
|
1821 |
|
|
}
|
1822 |
|
|
else
|
1823 |
|
|
{
|
1824 |
|
|
processing_gcc_compilation =
|
1825 |
|
|
STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER));
|
1826 |
|
|
/* OBSOLETE || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER)); */
|
1827 |
|
|
}
|
1828 |
|
|
|
1829 |
|
|
/* Select a demangling style if we can identify the producer and if
|
1830 |
|
|
the current style is auto. We leave the current style alone if it
|
1831 |
|
|
is not auto. We also leave the demangling style alone if we find a
|
1832 |
|
|
gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
|
1833 |
|
|
|
1834 |
|
|
if (AUTO_DEMANGLING)
|
1835 |
|
|
{
|
1836 |
|
|
if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
|
1837 |
|
|
{
|
1838 |
|
|
#if 0
|
1839 |
|
|
/* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
|
1840 |
|
|
know whether it will use the old style or v3 mangling. */
|
1841 |
|
|
set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
|
1842 |
|
|
#endif
|
1843 |
|
|
}
|
1844 |
|
|
else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
|
1845 |
|
|
{
|
1846 |
|
|
set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
|
1847 |
|
|
}
|
1848 |
|
|
}
|
1849 |
|
|
}
|
1850 |
|
|
|
1851 |
|
|
|
1852 |
|
|
/*
|
1853 |
|
|
|
1854 |
|
|
LOCAL FUNCTION
|
1855 |
|
|
|
1856 |
|
|
read_file_scope -- process all dies within a file scope
|
1857 |
|
|
|
1858 |
|
|
DESCRIPTION
|
1859 |
|
|
|
1860 |
|
|
Process all dies within a given file scope. We are passed a
|
1861 |
|
|
pointer to the die information structure for the die which
|
1862 |
|
|
starts the file scope, and pointers into the raw die data which
|
1863 |
|
|
mark the range of dies within the file scope.
|
1864 |
|
|
|
1865 |
|
|
When the partial symbol table is built, the file offset for the line
|
1866 |
|
|
number table for each compilation unit is saved in the partial symbol
|
1867 |
|
|
table entry for that compilation unit. As the symbols for each
|
1868 |
|
|
compilation unit are read, the line number table is read into memory
|
1869 |
|
|
and the variable lnbase is set to point to it. Thus all we have to
|
1870 |
|
|
do is use lnbase to access the line number table for the current
|
1871 |
|
|
compilation unit.
|
1872 |
|
|
*/
|
1873 |
|
|
|
1874 |
|
|
static void
|
1875 |
|
|
read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
|
1876 |
|
|
struct objfile *objfile)
|
1877 |
|
|
{
|
1878 |
|
|
struct cleanup *back_to;
|
1879 |
|
|
struct symtab *symtab;
|
1880 |
|
|
|
1881 |
|
|
if (objfile->ei.entry_point >= dip->at_low_pc &&
|
1882 |
|
|
objfile->ei.entry_point < dip->at_high_pc)
|
1883 |
|
|
{
|
1884 |
|
|
objfile->ei.entry_file_lowpc = dip->at_low_pc;
|
1885 |
|
|
objfile->ei.entry_file_highpc = dip->at_high_pc;
|
1886 |
|
|
}
|
1887 |
|
|
set_cu_language (dip);
|
1888 |
|
|
if (dip->at_producer != NULL)
|
1889 |
|
|
{
|
1890 |
|
|
handle_producer (dip->at_producer);
|
1891 |
|
|
}
|
1892 |
|
|
numutypes = (enddie - thisdie) / 4;
|
1893 |
|
|
utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
|
1894 |
|
|
back_to = make_cleanup (free_utypes, NULL);
|
1895 |
|
|
memset (utypes, 0, numutypes * sizeof (struct type *));
|
1896 |
|
|
memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
|
1897 |
|
|
start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
|
1898 |
|
|
record_debugformat ("DWARF 1");
|
1899 |
|
|
decode_line_numbers (lnbase);
|
1900 |
|
|
process_dies (thisdie + dip->die_length, enddie, objfile);
|
1901 |
|
|
|
1902 |
|
|
symtab = end_symtab (dip->at_high_pc, objfile, 0);
|
1903 |
|
|
if (symtab != NULL)
|
1904 |
|
|
{
|
1905 |
|
|
symtab->language = cu_language;
|
1906 |
|
|
}
|
1907 |
|
|
do_cleanups (back_to);
|
1908 |
|
|
}
|
1909 |
|
|
|
1910 |
|
|
/*
|
1911 |
|
|
|
1912 |
|
|
LOCAL FUNCTION
|
1913 |
|
|
|
1914 |
|
|
process_dies -- process a range of DWARF Information Entries
|
1915 |
|
|
|
1916 |
|
|
SYNOPSIS
|
1917 |
|
|
|
1918 |
|
|
static void process_dies (char *thisdie, char *enddie,
|
1919 |
|
|
struct objfile *objfile)
|
1920 |
|
|
|
1921 |
|
|
DESCRIPTION
|
1922 |
|
|
|
1923 |
|
|
Process all DIE's in a specified range. May be (and almost
|
1924 |
|
|
certainly will be) called recursively.
|
1925 |
|
|
*/
|
1926 |
|
|
|
1927 |
|
|
static void
|
1928 |
|
|
process_dies (char *thisdie, char *enddie, struct objfile *objfile)
|
1929 |
|
|
{
|
1930 |
|
|
char *nextdie;
|
1931 |
|
|
struct dieinfo di;
|
1932 |
|
|
|
1933 |
|
|
while (thisdie < enddie)
|
1934 |
|
|
{
|
1935 |
|
|
basicdieinfo (&di, thisdie, objfile);
|
1936 |
|
|
if (di.die_length < SIZEOF_DIE_LENGTH)
|
1937 |
|
|
{
|
1938 |
|
|
break;
|
1939 |
|
|
}
|
1940 |
|
|
else if (di.die_tag == TAG_padding)
|
1941 |
|
|
{
|
1942 |
|
|
nextdie = thisdie + di.die_length;
|
1943 |
|
|
}
|
1944 |
|
|
else
|
1945 |
|
|
{
|
1946 |
|
|
completedieinfo (&di, objfile);
|
1947 |
|
|
if (di.at_sibling != 0)
|
1948 |
|
|
{
|
1949 |
|
|
nextdie = dbbase + di.at_sibling - dbroff;
|
1950 |
|
|
}
|
1951 |
|
|
else
|
1952 |
|
|
{
|
1953 |
|
|
nextdie = thisdie + di.die_length;
|
1954 |
|
|
}
|
1955 |
|
|
/* I think that these are always text, not data, addresses. */
|
1956 |
|
|
di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
|
1957 |
|
|
di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
|
1958 |
|
|
switch (di.die_tag)
|
1959 |
|
|
{
|
1960 |
|
|
case TAG_compile_unit:
|
1961 |
|
|
/* Skip Tag_compile_unit if we are already inside a compilation
|
1962 |
|
|
unit, we are unable to handle nested compilation units
|
1963 |
|
|
properly (FIXME). */
|
1964 |
|
|
if (current_subfile == NULL)
|
1965 |
|
|
read_file_scope (&di, thisdie, nextdie, objfile);
|
1966 |
|
|
else
|
1967 |
|
|
nextdie = thisdie + di.die_length;
|
1968 |
|
|
break;
|
1969 |
|
|
case TAG_global_subroutine:
|
1970 |
|
|
case TAG_subroutine:
|
1971 |
|
|
if (di.has_at_low_pc)
|
1972 |
|
|
{
|
1973 |
|
|
read_func_scope (&di, thisdie, nextdie, objfile);
|
1974 |
|
|
}
|
1975 |
|
|
break;
|
1976 |
|
|
case TAG_lexical_block:
|
1977 |
|
|
read_lexical_block_scope (&di, thisdie, nextdie, objfile);
|
1978 |
|
|
break;
|
1979 |
|
|
case TAG_class_type:
|
1980 |
|
|
case TAG_structure_type:
|
1981 |
|
|
case TAG_union_type:
|
1982 |
|
|
read_structure_scope (&di, thisdie, nextdie, objfile);
|
1983 |
|
|
break;
|
1984 |
|
|
case TAG_enumeration_type:
|
1985 |
|
|
read_enumeration (&di, thisdie, nextdie, objfile);
|
1986 |
|
|
break;
|
1987 |
|
|
case TAG_subroutine_type:
|
1988 |
|
|
read_subroutine_type (&di, thisdie, nextdie);
|
1989 |
|
|
break;
|
1990 |
|
|
case TAG_array_type:
|
1991 |
|
|
dwarf_read_array_type (&di);
|
1992 |
|
|
break;
|
1993 |
|
|
case TAG_pointer_type:
|
1994 |
|
|
read_tag_pointer_type (&di);
|
1995 |
|
|
break;
|
1996 |
|
|
case TAG_string_type:
|
1997 |
|
|
read_tag_string_type (&di);
|
1998 |
|
|
break;
|
1999 |
|
|
default:
|
2000 |
|
|
new_symbol (&di, objfile);
|
2001 |
|
|
break;
|
2002 |
|
|
}
|
2003 |
|
|
}
|
2004 |
|
|
thisdie = nextdie;
|
2005 |
|
|
}
|
2006 |
|
|
}
|
2007 |
|
|
|
2008 |
|
|
/*
|
2009 |
|
|
|
2010 |
|
|
LOCAL FUNCTION
|
2011 |
|
|
|
2012 |
|
|
decode_line_numbers -- decode a line number table fragment
|
2013 |
|
|
|
2014 |
|
|
SYNOPSIS
|
2015 |
|
|
|
2016 |
|
|
static void decode_line_numbers (char *tblscan, char *tblend,
|
2017 |
|
|
long length, long base, long line, long pc)
|
2018 |
|
|
|
2019 |
|
|
DESCRIPTION
|
2020 |
|
|
|
2021 |
|
|
Translate the DWARF line number information to gdb form.
|
2022 |
|
|
|
2023 |
|
|
The ".line" section contains one or more line number tables, one for
|
2024 |
|
|
each ".line" section from the objects that were linked.
|
2025 |
|
|
|
2026 |
|
|
The AT_stmt_list attribute for each TAG_source_file entry in the
|
2027 |
|
|
".debug" section contains the offset into the ".line" section for the
|
2028 |
|
|
start of the table for that file.
|
2029 |
|
|
|
2030 |
|
|
The table itself has the following structure:
|
2031 |
|
|
|
2032 |
|
|
<table length><base address><source statement entry>
|
2033 |
|
|
4 bytes 4 bytes 10 bytes
|
2034 |
|
|
|
2035 |
|
|
The table length is the total size of the table, including the 4 bytes
|
2036 |
|
|
for the length information.
|
2037 |
|
|
|
2038 |
|
|
The base address is the address of the first instruction generated
|
2039 |
|
|
for the source file.
|
2040 |
|
|
|
2041 |
|
|
Each source statement entry has the following structure:
|
2042 |
|
|
|
2043 |
|
|
<line number><statement position><address delta>
|
2044 |
|
|
4 bytes 2 bytes 4 bytes
|
2045 |
|
|
|
2046 |
|
|
The line number is relative to the start of the file, starting with
|
2047 |
|
|
line 1.
|
2048 |
|
|
|
2049 |
|
|
The statement position either -1 (0xFFFF) or the number of characters
|
2050 |
|
|
from the beginning of the line to the beginning of the statement.
|
2051 |
|
|
|
2052 |
|
|
The address delta is the difference between the base address and
|
2053 |
|
|
the address of the first instruction for the statement.
|
2054 |
|
|
|
2055 |
|
|
Note that we must copy the bytes from the packed table to our local
|
2056 |
|
|
variables before attempting to use them, to avoid alignment problems
|
2057 |
|
|
on some machines, particularly RISC processors.
|
2058 |
|
|
|
2059 |
|
|
BUGS
|
2060 |
|
|
|
2061 |
|
|
Does gdb expect the line numbers to be sorted? They are now by
|
2062 |
|
|
chance/luck, but are not required to be. (FIXME)
|
2063 |
|
|
|
2064 |
|
|
The line with number 0 is unused, gdb apparently can discover the
|
2065 |
|
|
span of the last line some other way. How? (FIXME)
|
2066 |
|
|
*/
|
2067 |
|
|
|
2068 |
|
|
static void
|
2069 |
|
|
decode_line_numbers (char *linetable)
|
2070 |
|
|
{
|
2071 |
|
|
char *tblscan;
|
2072 |
|
|
char *tblend;
|
2073 |
|
|
unsigned long length;
|
2074 |
|
|
unsigned long base;
|
2075 |
|
|
unsigned long line;
|
2076 |
|
|
unsigned long pc;
|
2077 |
|
|
|
2078 |
|
|
if (linetable != NULL)
|
2079 |
|
|
{
|
2080 |
|
|
tblscan = tblend = linetable;
|
2081 |
|
|
length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
|
2082 |
|
|
current_objfile);
|
2083 |
|
|
tblscan += SIZEOF_LINETBL_LENGTH;
|
2084 |
|
|
tblend += length;
|
2085 |
|
|
base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
|
2086 |
|
|
GET_UNSIGNED, current_objfile);
|
2087 |
|
|
tblscan += TARGET_FT_POINTER_SIZE (objfile);
|
2088 |
|
|
base += baseaddr;
|
2089 |
|
|
while (tblscan < tblend)
|
2090 |
|
|
{
|
2091 |
|
|
line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
|
2092 |
|
|
current_objfile);
|
2093 |
|
|
tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
|
2094 |
|
|
pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
|
2095 |
|
|
current_objfile);
|
2096 |
|
|
tblscan += SIZEOF_LINETBL_DELTA;
|
2097 |
|
|
pc += base;
|
2098 |
|
|
if (line != 0)
|
2099 |
|
|
{
|
2100 |
|
|
record_line (current_subfile, line, pc);
|
2101 |
|
|
}
|
2102 |
|
|
}
|
2103 |
|
|
}
|
2104 |
|
|
}
|
2105 |
|
|
|
2106 |
|
|
/*
|
2107 |
|
|
|
2108 |
|
|
LOCAL FUNCTION
|
2109 |
|
|
|
2110 |
|
|
locval -- compute the value of a location attribute
|
2111 |
|
|
|
2112 |
|
|
SYNOPSIS
|
2113 |
|
|
|
2114 |
|
|
static int locval (struct dieinfo *dip)
|
2115 |
|
|
|
2116 |
|
|
DESCRIPTION
|
2117 |
|
|
|
2118 |
|
|
Given pointer to a string of bytes that define a location, compute
|
2119 |
|
|
the location and return the value.
|
2120 |
|
|
A location description containing no atoms indicates that the
|
2121 |
|
|
object is optimized out. The optimized_out flag is set for those,
|
2122 |
|
|
the return value is meaningless.
|
2123 |
|
|
|
2124 |
|
|
When computing values involving the current value of the frame pointer,
|
2125 |
|
|
the value zero is used, which results in a value relative to the frame
|
2126 |
|
|
pointer, rather than the absolute value. This is what GDB wants
|
2127 |
|
|
anyway.
|
2128 |
|
|
|
2129 |
|
|
When the result is a register number, the isreg flag is set, otherwise
|
2130 |
|
|
it is cleared. This is a kludge until we figure out a better
|
2131 |
|
|
way to handle the problem. Gdb's design does not mesh well with the
|
2132 |
|
|
DWARF notion of a location computing interpreter, which is a shame
|
2133 |
|
|
because the flexibility goes unused.
|
2134 |
|
|
|
2135 |
|
|
NOTES
|
2136 |
|
|
|
2137 |
|
|
Note that stack[0] is unused except as a default error return.
|
2138 |
|
|
Note that stack overflow is not yet handled.
|
2139 |
|
|
*/
|
2140 |
|
|
|
2141 |
|
|
static int
|
2142 |
|
|
locval (struct dieinfo *dip)
|
2143 |
|
|
{
|
2144 |
|
|
unsigned short nbytes;
|
2145 |
|
|
unsigned short locsize;
|
2146 |
|
|
auto long stack[64];
|
2147 |
|
|
int stacki;
|
2148 |
|
|
char *loc;
|
2149 |
|
|
char *end;
|
2150 |
|
|
int loc_atom_code;
|
2151 |
|
|
int loc_value_size;
|
2152 |
|
|
|
2153 |
|
|
loc = dip->at_location;
|
2154 |
|
|
nbytes = attribute_size (AT_location);
|
2155 |
|
|
locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
|
2156 |
|
|
loc += nbytes;
|
2157 |
|
|
end = loc + locsize;
|
2158 |
|
|
stacki = 0;
|
2159 |
|
|
stack[stacki] = 0;
|
2160 |
|
|
dip->isreg = 0;
|
2161 |
|
|
dip->offreg = 0;
|
2162 |
|
|
dip->optimized_out = 1;
|
2163 |
|
|
loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
|
2164 |
|
|
while (loc < end)
|
2165 |
|
|
{
|
2166 |
|
|
dip->optimized_out = 0;
|
2167 |
|
|
loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
|
2168 |
|
|
current_objfile);
|
2169 |
|
|
loc += SIZEOF_LOC_ATOM_CODE;
|
2170 |
|
|
switch (loc_atom_code)
|
2171 |
|
|
{
|
2172 |
|
|
case 0:
|
2173 |
|
|
/* error */
|
2174 |
|
|
loc = end;
|
2175 |
|
|
break;
|
2176 |
|
|
case OP_REG:
|
2177 |
|
|
/* push register (number) */
|
2178 |
|
|
stack[++stacki]
|
2179 |
|
|
= DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
|
2180 |
|
|
GET_UNSIGNED,
|
2181 |
|
|
current_objfile));
|
2182 |
|
|
loc += loc_value_size;
|
2183 |
|
|
dip->isreg = 1;
|
2184 |
|
|
break;
|
2185 |
|
|
case OP_BASEREG:
|
2186 |
|
|
/* push value of register (number) */
|
2187 |
|
|
/* Actually, we compute the value as if register has 0, so the
|
2188 |
|
|
value ends up being the offset from that register. */
|
2189 |
|
|
dip->offreg = 1;
|
2190 |
|
|
dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
|
2191 |
|
|
current_objfile);
|
2192 |
|
|
loc += loc_value_size;
|
2193 |
|
|
stack[++stacki] = 0;
|
2194 |
|
|
break;
|
2195 |
|
|
case OP_ADDR:
|
2196 |
|
|
/* push address (relocated address) */
|
2197 |
|
|
stack[++stacki] = target_to_host (loc, loc_value_size,
|
2198 |
|
|
GET_UNSIGNED, current_objfile);
|
2199 |
|
|
loc += loc_value_size;
|
2200 |
|
|
break;
|
2201 |
|
|
case OP_CONST:
|
2202 |
|
|
/* push constant (number) FIXME: signed or unsigned! */
|
2203 |
|
|
stack[++stacki] = target_to_host (loc, loc_value_size,
|
2204 |
|
|
GET_SIGNED, current_objfile);
|
2205 |
|
|
loc += loc_value_size;
|
2206 |
|
|
break;
|
2207 |
|
|
case OP_DEREF2:
|
2208 |
|
|
/* pop, deref and push 2 bytes (as a long) */
|
2209 |
|
|
complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
|
2210 |
|
|
break;
|
2211 |
|
|
case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
|
2212 |
|
|
complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
|
2213 |
|
|
break;
|
2214 |
|
|
case OP_ADD: /* pop top 2 items, add, push result */
|
2215 |
|
|
stack[stacki - 1] += stack[stacki];
|
2216 |
|
|
stacki--;
|
2217 |
|
|
break;
|
2218 |
|
|
}
|
2219 |
|
|
}
|
2220 |
|
|
return (stack[stacki]);
|
2221 |
|
|
}
|
2222 |
|
|
|
2223 |
|
|
/*
|
2224 |
|
|
|
2225 |
|
|
LOCAL FUNCTION
|
2226 |
|
|
|
2227 |
|
|
read_ofile_symtab -- build a full symtab entry from chunk of DIE's
|
2228 |
|
|
|
2229 |
|
|
SYNOPSIS
|
2230 |
|
|
|
2231 |
|
|
static void read_ofile_symtab (struct partial_symtab *pst)
|
2232 |
|
|
|
2233 |
|
|
DESCRIPTION
|
2234 |
|
|
|
2235 |
|
|
When expanding a partial symbol table entry to a full symbol table
|
2236 |
|
|
entry, this is the function that gets called to read in the symbols
|
2237 |
|
|
for the compilation unit. A pointer to the newly constructed symtab,
|
2238 |
|
|
which is now the new first one on the objfile's symtab list, is
|
2239 |
|
|
stashed in the partial symbol table entry.
|
2240 |
|
|
*/
|
2241 |
|
|
|
2242 |
|
|
static void
|
2243 |
|
|
read_ofile_symtab (struct partial_symtab *pst)
|
2244 |
|
|
{
|
2245 |
|
|
struct cleanup *back_to;
|
2246 |
|
|
unsigned long lnsize;
|
2247 |
|
|
file_ptr foffset;
|
2248 |
|
|
bfd *abfd;
|
2249 |
|
|
char lnsizedata[SIZEOF_LINETBL_LENGTH];
|
2250 |
|
|
|
2251 |
|
|
abfd = pst->objfile->obfd;
|
2252 |
|
|
current_objfile = pst->objfile;
|
2253 |
|
|
|
2254 |
|
|
/* Allocate a buffer for the entire chunk of DIE's for this compilation
|
2255 |
|
|
unit, seek to the location in the file, and read in all the DIE's. */
|
2256 |
|
|
|
2257 |
|
|
diecount = 0;
|
2258 |
|
|
dbsize = DBLENGTH (pst);
|
2259 |
|
|
dbbase = xmalloc (dbsize);
|
2260 |
|
|
dbroff = DBROFF (pst);
|
2261 |
|
|
foffset = DBFOFF (pst) + dbroff;
|
2262 |
|
|
base_section_offsets = pst->section_offsets;
|
2263 |
|
|
baseaddr = ANOFFSET (pst->section_offsets, 0);
|
2264 |
|
|
if (bfd_seek (abfd, foffset, SEEK_SET) ||
|
2265 |
|
|
(bfd_bread (dbbase, dbsize, abfd) != dbsize))
|
2266 |
|
|
{
|
2267 |
|
|
xfree (dbbase);
|
2268 |
|
|
error ("can't read DWARF data");
|
2269 |
|
|
}
|
2270 |
|
|
back_to = make_cleanup (xfree, dbbase);
|
2271 |
|
|
|
2272 |
|
|
/* If there is a line number table associated with this compilation unit
|
2273 |
|
|
then read the size of this fragment in bytes, from the fragment itself.
|
2274 |
|
|
Allocate a buffer for the fragment and read it in for future
|
2275 |
|
|
processing. */
|
2276 |
|
|
|
2277 |
|
|
lnbase = NULL;
|
2278 |
|
|
if (LNFOFF (pst))
|
2279 |
|
|
{
|
2280 |
|
|
if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
|
2281 |
|
|
(bfd_bread ((PTR) lnsizedata, sizeof (lnsizedata), abfd)
|
2282 |
|
|
!= sizeof (lnsizedata)))
|
2283 |
|
|
{
|
2284 |
|
|
error ("can't read DWARF line number table size");
|
2285 |
|
|
}
|
2286 |
|
|
lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
|
2287 |
|
|
GET_UNSIGNED, pst->objfile);
|
2288 |
|
|
lnbase = xmalloc (lnsize);
|
2289 |
|
|
if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
|
2290 |
|
|
(bfd_bread (lnbase, lnsize, abfd) != lnsize))
|
2291 |
|
|
{
|
2292 |
|
|
xfree (lnbase);
|
2293 |
|
|
error ("can't read DWARF line numbers");
|
2294 |
|
|
}
|
2295 |
|
|
make_cleanup (xfree, lnbase);
|
2296 |
|
|
}
|
2297 |
|
|
|
2298 |
|
|
process_dies (dbbase, dbbase + dbsize, pst->objfile);
|
2299 |
|
|
do_cleanups (back_to);
|
2300 |
|
|
current_objfile = NULL;
|
2301 |
|
|
pst->symtab = pst->objfile->symtabs;
|
2302 |
|
|
}
|
2303 |
|
|
|
2304 |
|
|
/*
|
2305 |
|
|
|
2306 |
|
|
LOCAL FUNCTION
|
2307 |
|
|
|
2308 |
|
|
psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
|
2309 |
|
|
|
2310 |
|
|
SYNOPSIS
|
2311 |
|
|
|
2312 |
|
|
static void psymtab_to_symtab_1 (struct partial_symtab *pst)
|
2313 |
|
|
|
2314 |
|
|
DESCRIPTION
|
2315 |
|
|
|
2316 |
|
|
Called once for each partial symbol table entry that needs to be
|
2317 |
|
|
expanded into a full symbol table entry.
|
2318 |
|
|
|
2319 |
|
|
*/
|
2320 |
|
|
|
2321 |
|
|
static void
|
2322 |
|
|
psymtab_to_symtab_1 (struct partial_symtab *pst)
|
2323 |
|
|
{
|
2324 |
|
|
int i;
|
2325 |
|
|
struct cleanup *old_chain;
|
2326 |
|
|
|
2327 |
|
|
if (pst != NULL)
|
2328 |
|
|
{
|
2329 |
|
|
if (pst->readin)
|
2330 |
|
|
{
|
2331 |
|
|
warning ("psymtab for %s already read in. Shouldn't happen.",
|
2332 |
|
|
pst->filename);
|
2333 |
|
|
}
|
2334 |
|
|
else
|
2335 |
|
|
{
|
2336 |
|
|
/* Read in all partial symtabs on which this one is dependent */
|
2337 |
|
|
for (i = 0; i < pst->number_of_dependencies; i++)
|
2338 |
|
|
{
|
2339 |
|
|
if (!pst->dependencies[i]->readin)
|
2340 |
|
|
{
|
2341 |
|
|
/* Inform about additional files that need to be read in. */
|
2342 |
|
|
if (info_verbose)
|
2343 |
|
|
{
|
2344 |
|
|
fputs_filtered (" ", gdb_stdout);
|
2345 |
|
|
wrap_here ("");
|
2346 |
|
|
fputs_filtered ("and ", gdb_stdout);
|
2347 |
|
|
wrap_here ("");
|
2348 |
|
|
printf_filtered ("%s...",
|
2349 |
|
|
pst->dependencies[i]->filename);
|
2350 |
|
|
wrap_here ("");
|
2351 |
|
|
gdb_flush (gdb_stdout); /* Flush output */
|
2352 |
|
|
}
|
2353 |
|
|
psymtab_to_symtab_1 (pst->dependencies[i]);
|
2354 |
|
|
}
|
2355 |
|
|
}
|
2356 |
|
|
if (DBLENGTH (pst)) /* Otherwise it's a dummy */
|
2357 |
|
|
{
|
2358 |
|
|
buildsym_init ();
|
2359 |
|
|
old_chain = make_cleanup (really_free_pendings, 0);
|
2360 |
|
|
read_ofile_symtab (pst);
|
2361 |
|
|
if (info_verbose)
|
2362 |
|
|
{
|
2363 |
|
|
printf_filtered ("%d DIE's, sorting...", diecount);
|
2364 |
|
|
wrap_here ("");
|
2365 |
|
|
gdb_flush (gdb_stdout);
|
2366 |
|
|
}
|
2367 |
|
|
sort_symtab_syms (pst->symtab);
|
2368 |
|
|
do_cleanups (old_chain);
|
2369 |
|
|
}
|
2370 |
|
|
pst->readin = 1;
|
2371 |
|
|
}
|
2372 |
|
|
}
|
2373 |
|
|
}
|
2374 |
|
|
|
2375 |
|
|
/*
|
2376 |
|
|
|
2377 |
|
|
LOCAL FUNCTION
|
2378 |
|
|
|
2379 |
|
|
dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
|
2380 |
|
|
|
2381 |
|
|
SYNOPSIS
|
2382 |
|
|
|
2383 |
|
|
static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
|
2384 |
|
|
|
2385 |
|
|
DESCRIPTION
|
2386 |
|
|
|
2387 |
|
|
This is the DWARF support entry point for building a full symbol
|
2388 |
|
|
table entry from a partial symbol table entry. We are passed a
|
2389 |
|
|
pointer to the partial symbol table entry that needs to be expanded.
|
2390 |
|
|
|
2391 |
|
|
*/
|
2392 |
|
|
|
2393 |
|
|
static void
|
2394 |
|
|
dwarf_psymtab_to_symtab (struct partial_symtab *pst)
|
2395 |
|
|
{
|
2396 |
|
|
|
2397 |
|
|
if (pst != NULL)
|
2398 |
|
|
{
|
2399 |
|
|
if (pst->readin)
|
2400 |
|
|
{
|
2401 |
|
|
warning ("psymtab for %s already read in. Shouldn't happen.",
|
2402 |
|
|
pst->filename);
|
2403 |
|
|
}
|
2404 |
|
|
else
|
2405 |
|
|
{
|
2406 |
|
|
if (DBLENGTH (pst) || pst->number_of_dependencies)
|
2407 |
|
|
{
|
2408 |
|
|
/* Print the message now, before starting serious work, to avoid
|
2409 |
|
|
disconcerting pauses. */
|
2410 |
|
|
if (info_verbose)
|
2411 |
|
|
{
|
2412 |
|
|
printf_filtered ("Reading in symbols for %s...",
|
2413 |
|
|
pst->filename);
|
2414 |
|
|
gdb_flush (gdb_stdout);
|
2415 |
|
|
}
|
2416 |
|
|
|
2417 |
|
|
psymtab_to_symtab_1 (pst);
|
2418 |
|
|
|
2419 |
|
|
#if 0 /* FIXME: Check to see what dbxread is doing here and see if
|
2420 |
|
|
we need to do an equivalent or is this something peculiar to
|
2421 |
|
|
stabs/a.out format.
|
2422 |
|
|
Match with global symbols. This only needs to be done once,
|
2423 |
|
|
after all of the symtabs and dependencies have been read in.
|
2424 |
|
|
*/
|
2425 |
|
|
scan_file_globals (pst->objfile);
|
2426 |
|
|
#endif
|
2427 |
|
|
|
2428 |
|
|
/* Finish up the verbose info message. */
|
2429 |
|
|
if (info_verbose)
|
2430 |
|
|
{
|
2431 |
|
|
printf_filtered ("done.\n");
|
2432 |
|
|
gdb_flush (gdb_stdout);
|
2433 |
|
|
}
|
2434 |
|
|
}
|
2435 |
|
|
}
|
2436 |
|
|
}
|
2437 |
|
|
}
|
2438 |
|
|
|
2439 |
|
|
/*
|
2440 |
|
|
|
2441 |
|
|
LOCAL FUNCTION
|
2442 |
|
|
|
2443 |
|
|
add_enum_psymbol -- add enumeration members to partial symbol table
|
2444 |
|
|
|
2445 |
|
|
DESCRIPTION
|
2446 |
|
|
|
2447 |
|
|
Given pointer to a DIE that is known to be for an enumeration,
|
2448 |
|
|
extract the symbolic names of the enumeration members and add
|
2449 |
|
|
partial symbols for them.
|
2450 |
|
|
*/
|
2451 |
|
|
|
2452 |
|
|
static void
|
2453 |
|
|
add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
|
2454 |
|
|
{
|
2455 |
|
|
char *scan;
|
2456 |
|
|
char *listend;
|
2457 |
|
|
unsigned short blocksz;
|
2458 |
|
|
int nbytes;
|
2459 |
|
|
|
2460 |
|
|
if ((scan = dip->at_element_list) != NULL)
|
2461 |
|
|
{
|
2462 |
|
|
if (dip->short_element_list)
|
2463 |
|
|
{
|
2464 |
|
|
nbytes = attribute_size (AT_short_element_list);
|
2465 |
|
|
}
|
2466 |
|
|
else
|
2467 |
|
|
{
|
2468 |
|
|
nbytes = attribute_size (AT_element_list);
|
2469 |
|
|
}
|
2470 |
|
|
blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
|
2471 |
|
|
scan += nbytes;
|
2472 |
|
|
listend = scan + blocksz;
|
2473 |
|
|
while (scan < listend)
|
2474 |
|
|
{
|
2475 |
|
|
scan += TARGET_FT_LONG_SIZE (objfile);
|
2476 |
|
|
add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
|
2477 |
|
|
&objfile->static_psymbols, 0, 0, cu_language,
|
2478 |
|
|
objfile);
|
2479 |
|
|
scan += strlen (scan) + 1;
|
2480 |
|
|
}
|
2481 |
|
|
}
|
2482 |
|
|
}
|
2483 |
|
|
|
2484 |
|
|
/*
|
2485 |
|
|
|
2486 |
|
|
LOCAL FUNCTION
|
2487 |
|
|
|
2488 |
|
|
add_partial_symbol -- add symbol to partial symbol table
|
2489 |
|
|
|
2490 |
|
|
DESCRIPTION
|
2491 |
|
|
|
2492 |
|
|
Given a DIE, if it is one of the types that we want to
|
2493 |
|
|
add to a partial symbol table, finish filling in the die info
|
2494 |
|
|
and then add a partial symbol table entry for it.
|
2495 |
|
|
|
2496 |
|
|
NOTES
|
2497 |
|
|
|
2498 |
|
|
The caller must ensure that the DIE has a valid name attribute.
|
2499 |
|
|
*/
|
2500 |
|
|
|
2501 |
|
|
static void
|
2502 |
|
|
add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
|
2503 |
|
|
{
|
2504 |
|
|
switch (dip->die_tag)
|
2505 |
|
|
{
|
2506 |
|
|
case TAG_global_subroutine:
|
2507 |
|
|
add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
|
2508 |
|
|
VAR_NAMESPACE, LOC_BLOCK,
|
2509 |
|
|
&objfile->global_psymbols,
|
2510 |
|
|
0, dip->at_low_pc, cu_language, objfile);
|
2511 |
|
|
break;
|
2512 |
|
|
case TAG_global_variable:
|
2513 |
|
|
add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
|
2514 |
|
|
VAR_NAMESPACE, LOC_STATIC,
|
2515 |
|
|
&objfile->global_psymbols,
|
2516 |
|
|
0, 0, cu_language, objfile);
|
2517 |
|
|
break;
|
2518 |
|
|
case TAG_subroutine:
|
2519 |
|
|
add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
|
2520 |
|
|
VAR_NAMESPACE, LOC_BLOCK,
|
2521 |
|
|
&objfile->static_psymbols,
|
2522 |
|
|
0, dip->at_low_pc, cu_language, objfile);
|
2523 |
|
|
break;
|
2524 |
|
|
case TAG_local_variable:
|
2525 |
|
|
add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
|
2526 |
|
|
VAR_NAMESPACE, LOC_STATIC,
|
2527 |
|
|
&objfile->static_psymbols,
|
2528 |
|
|
0, 0, cu_language, objfile);
|
2529 |
|
|
break;
|
2530 |
|
|
case TAG_typedef:
|
2531 |
|
|
add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
|
2532 |
|
|
VAR_NAMESPACE, LOC_TYPEDEF,
|
2533 |
|
|
&objfile->static_psymbols,
|
2534 |
|
|
0, 0, cu_language, objfile);
|
2535 |
|
|
break;
|
2536 |
|
|
case TAG_class_type:
|
2537 |
|
|
case TAG_structure_type:
|
2538 |
|
|
case TAG_union_type:
|
2539 |
|
|
case TAG_enumeration_type:
|
2540 |
|
|
/* Do not add opaque aggregate definitions to the psymtab. */
|
2541 |
|
|
if (!dip->has_at_byte_size)
|
2542 |
|
|
break;
|
2543 |
|
|
add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
|
2544 |
|
|
STRUCT_NAMESPACE, LOC_TYPEDEF,
|
2545 |
|
|
&objfile->static_psymbols,
|
2546 |
|
|
0, 0, cu_language, objfile);
|
2547 |
|
|
if (cu_language == language_cplus)
|
2548 |
|
|
{
|
2549 |
|
|
/* For C++, these implicitly act as typedefs as well. */
|
2550 |
|
|
add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
|
2551 |
|
|
VAR_NAMESPACE, LOC_TYPEDEF,
|
2552 |
|
|
&objfile->static_psymbols,
|
2553 |
|
|
0, 0, cu_language, objfile);
|
2554 |
|
|
}
|
2555 |
|
|
break;
|
2556 |
|
|
}
|
2557 |
|
|
}
|
2558 |
|
|
/* *INDENT-OFF* */
|
2559 |
|
|
/*
|
2560 |
|
|
|
2561 |
|
|
LOCAL FUNCTION
|
2562 |
|
|
|
2563 |
|
|
scan_partial_symbols -- scan DIE's within a single compilation unit
|
2564 |
|
|
|
2565 |
|
|
DESCRIPTION
|
2566 |
|
|
|
2567 |
|
|
Process the DIE's within a single compilation unit, looking for
|
2568 |
|
|
interesting DIE's that contribute to the partial symbol table entry
|
2569 |
|
|
for this compilation unit.
|
2570 |
|
|
|
2571 |
|
|
NOTES
|
2572 |
|
|
|
2573 |
|
|
There are some DIE's that may appear both at file scope and within
|
2574 |
|
|
the scope of a function. We are only interested in the ones at file
|
2575 |
|
|
scope, and the only way to tell them apart is to keep track of the
|
2576 |
|
|
scope. For example, consider the test case:
|
2577 |
|
|
|
2578 |
|
|
static int i;
|
2579 |
|
|
main () { int j; }
|
2580 |
|
|
|
2581 |
|
|
for which the relevant DWARF segment has the structure:
|
2582 |
|
|
|
2583 |
|
|
0x51:
|
2584 |
|
|
0x23 global subrtn sibling 0x9b
|
2585 |
|
|
name main
|
2586 |
|
|
fund_type FT_integer
|
2587 |
|
|
low_pc 0x800004cc
|
2588 |
|
|
high_pc 0x800004d4
|
2589 |
|
|
|
2590 |
|
|
0x74:
|
2591 |
|
|
0x23 local var sibling 0x97
|
2592 |
|
|
name j
|
2593 |
|
|
fund_type FT_integer
|
2594 |
|
|
location OP_BASEREG 0xe
|
2595 |
|
|
OP_CONST 0xfffffffc
|
2596 |
|
|
OP_ADD
|
2597 |
|
|
0x97:
|
2598 |
|
|
0x4
|
2599 |
|
|
|
2600 |
|
|
0x9b:
|
2601 |
|
|
0x1d local var sibling 0xb8
|
2602 |
|
|
name i
|
2603 |
|
|
fund_type FT_integer
|
2604 |
|
|
location OP_ADDR 0x800025dc
|
2605 |
|
|
|
2606 |
|
|
0xb8:
|
2607 |
|
|
0x4
|
2608 |
|
|
|
2609 |
|
|
We want to include the symbol 'i' in the partial symbol table, but
|
2610 |
|
|
not the symbol 'j'. In essence, we want to skip all the dies within
|
2611 |
|
|
the scope of a TAG_global_subroutine DIE.
|
2612 |
|
|
|
2613 |
|
|
Don't attempt to add anonymous structures or unions since they have
|
2614 |
|
|
no name. Anonymous enumerations however are processed, because we
|
2615 |
|
|
want to extract their member names (the check for a tag name is
|
2616 |
|
|
done later).
|
2617 |
|
|
|
2618 |
|
|
Also, for variables and subroutines, check that this is the place
|
2619 |
|
|
where the actual definition occurs, rather than just a reference
|
2620 |
|
|
to an external.
|
2621 |
|
|
*/
|
2622 |
|
|
/* *INDENT-ON* */
|
2623 |
|
|
|
2624 |
|
|
|
2625 |
|
|
|
2626 |
|
|
static void
|
2627 |
|
|
scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
|
2628 |
|
|
{
|
2629 |
|
|
char *nextdie;
|
2630 |
|
|
char *temp;
|
2631 |
|
|
struct dieinfo di;
|
2632 |
|
|
|
2633 |
|
|
while (thisdie < enddie)
|
2634 |
|
|
{
|
2635 |
|
|
basicdieinfo (&di, thisdie, objfile);
|
2636 |
|
|
if (di.die_length < SIZEOF_DIE_LENGTH)
|
2637 |
|
|
{
|
2638 |
|
|
break;
|
2639 |
|
|
}
|
2640 |
|
|
else
|
2641 |
|
|
{
|
2642 |
|
|
nextdie = thisdie + di.die_length;
|
2643 |
|
|
/* To avoid getting complete die information for every die, we
|
2644 |
|
|
only do it (below) for the cases we are interested in. */
|
2645 |
|
|
switch (di.die_tag)
|
2646 |
|
|
{
|
2647 |
|
|
case TAG_global_subroutine:
|
2648 |
|
|
case TAG_subroutine:
|
2649 |
|
|
completedieinfo (&di, objfile);
|
2650 |
|
|
if (di.at_name && (di.has_at_low_pc || di.at_location))
|
2651 |
|
|
{
|
2652 |
|
|
add_partial_symbol (&di, objfile);
|
2653 |
|
|
/* If there is a sibling attribute, adjust the nextdie
|
2654 |
|
|
pointer to skip the entire scope of the subroutine.
|
2655 |
|
|
Apply some sanity checking to make sure we don't
|
2656 |
|
|
overrun or underrun the range of remaining DIE's */
|
2657 |
|
|
if (di.at_sibling != 0)
|
2658 |
|
|
{
|
2659 |
|
|
temp = dbbase + di.at_sibling - dbroff;
|
2660 |
|
|
if ((temp < thisdie) || (temp >= enddie))
|
2661 |
|
|
{
|
2662 |
|
|
complain (&bad_die_ref, DIE_ID, DIE_NAME,
|
2663 |
|
|
di.at_sibling);
|
2664 |
|
|
}
|
2665 |
|
|
else
|
2666 |
|
|
{
|
2667 |
|
|
nextdie = temp;
|
2668 |
|
|
}
|
2669 |
|
|
}
|
2670 |
|
|
}
|
2671 |
|
|
break;
|
2672 |
|
|
case TAG_global_variable:
|
2673 |
|
|
case TAG_local_variable:
|
2674 |
|
|
completedieinfo (&di, objfile);
|
2675 |
|
|
if (di.at_name && (di.has_at_low_pc || di.at_location))
|
2676 |
|
|
{
|
2677 |
|
|
add_partial_symbol (&di, objfile);
|
2678 |
|
|
}
|
2679 |
|
|
break;
|
2680 |
|
|
case TAG_typedef:
|
2681 |
|
|
case TAG_class_type:
|
2682 |
|
|
case TAG_structure_type:
|
2683 |
|
|
case TAG_union_type:
|
2684 |
|
|
completedieinfo (&di, objfile);
|
2685 |
|
|
if (di.at_name)
|
2686 |
|
|
{
|
2687 |
|
|
add_partial_symbol (&di, objfile);
|
2688 |
|
|
}
|
2689 |
|
|
break;
|
2690 |
|
|
case TAG_enumeration_type:
|
2691 |
|
|
completedieinfo (&di, objfile);
|
2692 |
|
|
if (di.at_name)
|
2693 |
|
|
{
|
2694 |
|
|
add_partial_symbol (&di, objfile);
|
2695 |
|
|
}
|
2696 |
|
|
add_enum_psymbol (&di, objfile);
|
2697 |
|
|
break;
|
2698 |
|
|
}
|
2699 |
|
|
}
|
2700 |
|
|
thisdie = nextdie;
|
2701 |
|
|
}
|
2702 |
|
|
}
|
2703 |
|
|
|
2704 |
|
|
/*
|
2705 |
|
|
|
2706 |
|
|
LOCAL FUNCTION
|
2707 |
|
|
|
2708 |
|
|
scan_compilation_units -- build a psymtab entry for each compilation
|
2709 |
|
|
|
2710 |
|
|
DESCRIPTION
|
2711 |
|
|
|
2712 |
|
|
This is the top level dwarf parsing routine for building partial
|
2713 |
|
|
symbol tables.
|
2714 |
|
|
|
2715 |
|
|
It scans from the beginning of the DWARF table looking for the first
|
2716 |
|
|
TAG_compile_unit DIE, and then follows the sibling chain to locate
|
2717 |
|
|
each additional TAG_compile_unit DIE.
|
2718 |
|
|
|
2719 |
|
|
For each TAG_compile_unit DIE it creates a partial symtab structure,
|
2720 |
|
|
calls a subordinate routine to collect all the compilation unit's
|
2721 |
|
|
global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
|
2722 |
|
|
new partial symtab structure into the partial symbol table. It also
|
2723 |
|
|
records the appropriate information in the partial symbol table entry
|
2724 |
|
|
to allow the chunk of DIE's and line number table for this compilation
|
2725 |
|
|
unit to be located and re-read later, to generate a complete symbol
|
2726 |
|
|
table entry for the compilation unit.
|
2727 |
|
|
|
2728 |
|
|
Thus it effectively partitions up a chunk of DIE's for multiple
|
2729 |
|
|
compilation units into smaller DIE chunks and line number tables,
|
2730 |
|
|
and associates them with a partial symbol table entry.
|
2731 |
|
|
|
2732 |
|
|
NOTES
|
2733 |
|
|
|
2734 |
|
|
If any compilation unit has no line number table associated with
|
2735 |
|
|
it for some reason (a missing at_stmt_list attribute, rather than
|
2736 |
|
|
just one with a value of zero, which is valid) then we ensure that
|
2737 |
|
|
the recorded file offset is zero so that the routine which later
|
2738 |
|
|
reads line number table fragments knows that there is no fragment
|
2739 |
|
|
to read.
|
2740 |
|
|
|
2741 |
|
|
RETURNS
|
2742 |
|
|
|
2743 |
|
|
Returns no value.
|
2744 |
|
|
|
2745 |
|
|
*/
|
2746 |
|
|
|
2747 |
|
|
static void
|
2748 |
|
|
scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
|
2749 |
|
|
file_ptr lnoffset, struct objfile *objfile)
|
2750 |
|
|
{
|
2751 |
|
|
char *nextdie;
|
2752 |
|
|
struct dieinfo di;
|
2753 |
|
|
struct partial_symtab *pst;
|
2754 |
|
|
int culength;
|
2755 |
|
|
int curoff;
|
2756 |
|
|
file_ptr curlnoffset;
|
2757 |
|
|
|
2758 |
|
|
while (thisdie < enddie)
|
2759 |
|
|
{
|
2760 |
|
|
basicdieinfo (&di, thisdie, objfile);
|
2761 |
|
|
if (di.die_length < SIZEOF_DIE_LENGTH)
|
2762 |
|
|
{
|
2763 |
|
|
break;
|
2764 |
|
|
}
|
2765 |
|
|
else if (di.die_tag != TAG_compile_unit)
|
2766 |
|
|
{
|
2767 |
|
|
nextdie = thisdie + di.die_length;
|
2768 |
|
|
}
|
2769 |
|
|
else
|
2770 |
|
|
{
|
2771 |
|
|
completedieinfo (&di, objfile);
|
2772 |
|
|
set_cu_language (&di);
|
2773 |
|
|
if (di.at_sibling != 0)
|
2774 |
|
|
{
|
2775 |
|
|
nextdie = dbbase + di.at_sibling - dbroff;
|
2776 |
|
|
}
|
2777 |
|
|
else
|
2778 |
|
|
{
|
2779 |
|
|
nextdie = thisdie + di.die_length;
|
2780 |
|
|
}
|
2781 |
|
|
curoff = thisdie - dbbase;
|
2782 |
|
|
culength = nextdie - thisdie;
|
2783 |
|
|
curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
|
2784 |
|
|
|
2785 |
|
|
/* First allocate a new partial symbol table structure */
|
2786 |
|
|
|
2787 |
|
|
pst = start_psymtab_common (objfile, base_section_offsets,
|
2788 |
|
|
di.at_name, di.at_low_pc,
|
2789 |
|
|
objfile->global_psymbols.next,
|
2790 |
|
|
objfile->static_psymbols.next);
|
2791 |
|
|
|
2792 |
|
|
pst->texthigh = di.at_high_pc;
|
2793 |
|
|
pst->read_symtab_private = (char *)
|
2794 |
|
|
obstack_alloc (&objfile->psymbol_obstack,
|
2795 |
|
|
sizeof (struct dwfinfo));
|
2796 |
|
|
DBFOFF (pst) = dbfoff;
|
2797 |
|
|
DBROFF (pst) = curoff;
|
2798 |
|
|
DBLENGTH (pst) = culength;
|
2799 |
|
|
LNFOFF (pst) = curlnoffset;
|
2800 |
|
|
pst->read_symtab = dwarf_psymtab_to_symtab;
|
2801 |
|
|
|
2802 |
|
|
/* Now look for partial symbols */
|
2803 |
|
|
|
2804 |
|
|
scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
|
2805 |
|
|
|
2806 |
|
|
pst->n_global_syms = objfile->global_psymbols.next -
|
2807 |
|
|
(objfile->global_psymbols.list + pst->globals_offset);
|
2808 |
|
|
pst->n_static_syms = objfile->static_psymbols.next -
|
2809 |
|
|
(objfile->static_psymbols.list + pst->statics_offset);
|
2810 |
|
|
sort_pst_symbols (pst);
|
2811 |
|
|
/* If there is already a psymtab or symtab for a file of this name,
|
2812 |
|
|
remove it. (If there is a symtab, more drastic things also
|
2813 |
|
|
happen.) This happens in VxWorks. */
|
2814 |
|
|
free_named_symtabs (pst->filename);
|
2815 |
|
|
}
|
2816 |
|
|
thisdie = nextdie;
|
2817 |
|
|
}
|
2818 |
|
|
}
|
2819 |
|
|
|
2820 |
|
|
/*
|
2821 |
|
|
|
2822 |
|
|
LOCAL FUNCTION
|
2823 |
|
|
|
2824 |
|
|
new_symbol -- make a symbol table entry for a new symbol
|
2825 |
|
|
|
2826 |
|
|
SYNOPSIS
|
2827 |
|
|
|
2828 |
|
|
static struct symbol *new_symbol (struct dieinfo *dip,
|
2829 |
|
|
struct objfile *objfile)
|
2830 |
|
|
|
2831 |
|
|
DESCRIPTION
|
2832 |
|
|
|
2833 |
|
|
Given a pointer to a DWARF information entry, figure out if we need
|
2834 |
|
|
to make a symbol table entry for it, and if so, create a new entry
|
2835 |
|
|
and return a pointer to it.
|
2836 |
|
|
*/
|
2837 |
|
|
|
2838 |
|
|
static struct symbol *
|
2839 |
|
|
new_symbol (struct dieinfo *dip, struct objfile *objfile)
|
2840 |
|
|
{
|
2841 |
|
|
struct symbol *sym = NULL;
|
2842 |
|
|
|
2843 |
|
|
if (dip->at_name != NULL)
|
2844 |
|
|
{
|
2845 |
|
|
sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
|
2846 |
|
|
sizeof (struct symbol));
|
2847 |
|
|
OBJSTAT (objfile, n_syms++);
|
2848 |
|
|
memset (sym, 0, sizeof (struct symbol));
|
2849 |
|
|
SYMBOL_NAME (sym) = create_name (dip->at_name,
|
2850 |
|
|
&objfile->symbol_obstack);
|
2851 |
|
|
/* default assumptions */
|
2852 |
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
2853 |
|
|
SYMBOL_CLASS (sym) = LOC_STATIC;
|
2854 |
|
|
SYMBOL_TYPE (sym) = decode_die_type (dip);
|
2855 |
|
|
|
2856 |
|
|
/* If this symbol is from a C++ compilation, then attempt to cache the
|
2857 |
|
|
demangled form for future reference. This is a typical time versus
|
2858 |
|
|
space tradeoff, that was decided in favor of time because it sped up
|
2859 |
|
|
C++ symbol lookups by a factor of about 20. */
|
2860 |
|
|
|
2861 |
|
|
SYMBOL_LANGUAGE (sym) = cu_language;
|
2862 |
|
|
SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
|
2863 |
|
|
switch (dip->die_tag)
|
2864 |
|
|
{
|
2865 |
|
|
case TAG_label:
|
2866 |
|
|
SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
|
2867 |
|
|
SYMBOL_CLASS (sym) = LOC_LABEL;
|
2868 |
|
|
break;
|
2869 |
|
|
case TAG_global_subroutine:
|
2870 |
|
|
case TAG_subroutine:
|
2871 |
|
|
SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
|
2872 |
|
|
SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
|
2873 |
|
|
if (dip->at_prototyped)
|
2874 |
|
|
TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
|
2875 |
|
|
SYMBOL_CLASS (sym) = LOC_BLOCK;
|
2876 |
|
|
if (dip->die_tag == TAG_global_subroutine)
|
2877 |
|
|
{
|
2878 |
|
|
add_symbol_to_list (sym, &global_symbols);
|
2879 |
|
|
}
|
2880 |
|
|
else
|
2881 |
|
|
{
|
2882 |
|
|
add_symbol_to_list (sym, list_in_scope);
|
2883 |
|
|
}
|
2884 |
|
|
break;
|
2885 |
|
|
case TAG_global_variable:
|
2886 |
|
|
if (dip->at_location != NULL)
|
2887 |
|
|
{
|
2888 |
|
|
SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
|
2889 |
|
|
add_symbol_to_list (sym, &global_symbols);
|
2890 |
|
|
SYMBOL_CLASS (sym) = LOC_STATIC;
|
2891 |
|
|
SYMBOL_VALUE (sym) += baseaddr;
|
2892 |
|
|
}
|
2893 |
|
|
break;
|
2894 |
|
|
case TAG_local_variable:
|
2895 |
|
|
if (dip->at_location != NULL)
|
2896 |
|
|
{
|
2897 |
|
|
int loc = locval (dip);
|
2898 |
|
|
if (dip->optimized_out)
|
2899 |
|
|
{
|
2900 |
|
|
SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
|
2901 |
|
|
}
|
2902 |
|
|
else if (dip->isreg)
|
2903 |
|
|
{
|
2904 |
|
|
SYMBOL_CLASS (sym) = LOC_REGISTER;
|
2905 |
|
|
}
|
2906 |
|
|
else if (dip->offreg)
|
2907 |
|
|
{
|
2908 |
|
|
SYMBOL_CLASS (sym) = LOC_BASEREG;
|
2909 |
|
|
SYMBOL_BASEREG (sym) = dip->basereg;
|
2910 |
|
|
}
|
2911 |
|
|
else
|
2912 |
|
|
{
|
2913 |
|
|
SYMBOL_CLASS (sym) = LOC_STATIC;
|
2914 |
|
|
SYMBOL_VALUE (sym) += baseaddr;
|
2915 |
|
|
}
|
2916 |
|
|
if (SYMBOL_CLASS (sym) == LOC_STATIC)
|
2917 |
|
|
{
|
2918 |
|
|
/* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
|
2919 |
|
|
which may store to a bigger location than SYMBOL_VALUE. */
|
2920 |
|
|
SYMBOL_VALUE_ADDRESS (sym) = loc;
|
2921 |
|
|
}
|
2922 |
|
|
else
|
2923 |
|
|
{
|
2924 |
|
|
SYMBOL_VALUE (sym) = loc;
|
2925 |
|
|
}
|
2926 |
|
|
add_symbol_to_list (sym, list_in_scope);
|
2927 |
|
|
}
|
2928 |
|
|
break;
|
2929 |
|
|
case TAG_formal_parameter:
|
2930 |
|
|
if (dip->at_location != NULL)
|
2931 |
|
|
{
|
2932 |
|
|
SYMBOL_VALUE (sym) = locval (dip);
|
2933 |
|
|
}
|
2934 |
|
|
add_symbol_to_list (sym, list_in_scope);
|
2935 |
|
|
if (dip->isreg)
|
2936 |
|
|
{
|
2937 |
|
|
SYMBOL_CLASS (sym) = LOC_REGPARM;
|
2938 |
|
|
}
|
2939 |
|
|
else if (dip->offreg)
|
2940 |
|
|
{
|
2941 |
|
|
SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
|
2942 |
|
|
SYMBOL_BASEREG (sym) = dip->basereg;
|
2943 |
|
|
}
|
2944 |
|
|
else
|
2945 |
|
|
{
|
2946 |
|
|
SYMBOL_CLASS (sym) = LOC_ARG;
|
2947 |
|
|
}
|
2948 |
|
|
break;
|
2949 |
|
|
case TAG_unspecified_parameters:
|
2950 |
|
|
/* From varargs functions; gdb doesn't seem to have any interest in
|
2951 |
|
|
this information, so just ignore it for now. (FIXME?) */
|
2952 |
|
|
break;
|
2953 |
|
|
case TAG_class_type:
|
2954 |
|
|
case TAG_structure_type:
|
2955 |
|
|
case TAG_union_type:
|
2956 |
|
|
case TAG_enumeration_type:
|
2957 |
|
|
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
2958 |
|
|
SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
|
2959 |
|
|
add_symbol_to_list (sym, list_in_scope);
|
2960 |
|
|
break;
|
2961 |
|
|
case TAG_typedef:
|
2962 |
|
|
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
2963 |
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
2964 |
|
|
add_symbol_to_list (sym, list_in_scope);
|
2965 |
|
|
break;
|
2966 |
|
|
default:
|
2967 |
|
|
/* Not a tag we recognize. Hopefully we aren't processing trash
|
2968 |
|
|
data, but since we must specifically ignore things we don't
|
2969 |
|
|
recognize, there is nothing else we should do at this point. */
|
2970 |
|
|
break;
|
2971 |
|
|
}
|
2972 |
|
|
}
|
2973 |
|
|
return (sym);
|
2974 |
|
|
}
|
2975 |
|
|
|
2976 |
|
|
/*
|
2977 |
|
|
|
2978 |
|
|
LOCAL FUNCTION
|
2979 |
|
|
|
2980 |
|
|
synthesize_typedef -- make a symbol table entry for a "fake" typedef
|
2981 |
|
|
|
2982 |
|
|
SYNOPSIS
|
2983 |
|
|
|
2984 |
|
|
static void synthesize_typedef (struct dieinfo *dip,
|
2985 |
|
|
struct objfile *objfile,
|
2986 |
|
|
struct type *type);
|
2987 |
|
|
|
2988 |
|
|
DESCRIPTION
|
2989 |
|
|
|
2990 |
|
|
Given a pointer to a DWARF information entry, synthesize a typedef
|
2991 |
|
|
for the name in the DIE, using the specified type.
|
2992 |
|
|
|
2993 |
|
|
This is used for C++ class, structs, unions, and enumerations to
|
2994 |
|
|
set up the tag name as a type.
|
2995 |
|
|
|
2996 |
|
|
*/
|
2997 |
|
|
|
2998 |
|
|
static void
|
2999 |
|
|
synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
|
3000 |
|
|
struct type *type)
|
3001 |
|
|
{
|
3002 |
|
|
struct symbol *sym = NULL;
|
3003 |
|
|
|
3004 |
|
|
if (dip->at_name != NULL)
|
3005 |
|
|
{
|
3006 |
|
|
sym = (struct symbol *)
|
3007 |
|
|
obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
|
3008 |
|
|
OBJSTAT (objfile, n_syms++);
|
3009 |
|
|
memset (sym, 0, sizeof (struct symbol));
|
3010 |
|
|
SYMBOL_NAME (sym) = create_name (dip->at_name,
|
3011 |
|
|
&objfile->symbol_obstack);
|
3012 |
|
|
SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
|
3013 |
|
|
SYMBOL_TYPE (sym) = type;
|
3014 |
|
|
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
3015 |
|
|
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
3016 |
|
|
add_symbol_to_list (sym, list_in_scope);
|
3017 |
|
|
}
|
3018 |
|
|
}
|
3019 |
|
|
|
3020 |
|
|
/*
|
3021 |
|
|
|
3022 |
|
|
LOCAL FUNCTION
|
3023 |
|
|
|
3024 |
|
|
decode_mod_fund_type -- decode a modified fundamental type
|
3025 |
|
|
|
3026 |
|
|
SYNOPSIS
|
3027 |
|
|
|
3028 |
|
|
static struct type *decode_mod_fund_type (char *typedata)
|
3029 |
|
|
|
3030 |
|
|
DESCRIPTION
|
3031 |
|
|
|
3032 |
|
|
Decode a block of data containing a modified fundamental
|
3033 |
|
|
type specification. TYPEDATA is a pointer to the block,
|
3034 |
|
|
which starts with a length containing the size of the rest
|
3035 |
|
|
of the block. At the end of the block is a fundmental type
|
3036 |
|
|
code value that gives the fundamental type. Everything
|
3037 |
|
|
in between are type modifiers.
|
3038 |
|
|
|
3039 |
|
|
We simply compute the number of modifiers and call the general
|
3040 |
|
|
function decode_modified_type to do the actual work.
|
3041 |
|
|
*/
|
3042 |
|
|
|
3043 |
|
|
static struct type *
|
3044 |
|
|
decode_mod_fund_type (char *typedata)
|
3045 |
|
|
{
|
3046 |
|
|
struct type *typep = NULL;
|
3047 |
|
|
unsigned short modcount;
|
3048 |
|
|
int nbytes;
|
3049 |
|
|
|
3050 |
|
|
/* Get the total size of the block, exclusive of the size itself */
|
3051 |
|
|
|
3052 |
|
|
nbytes = attribute_size (AT_mod_fund_type);
|
3053 |
|
|
modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
|
3054 |
|
|
typedata += nbytes;
|
3055 |
|
|
|
3056 |
|
|
/* Deduct the size of the fundamental type bytes at the end of the block. */
|
3057 |
|
|
|
3058 |
|
|
modcount -= attribute_size (AT_fund_type);
|
3059 |
|
|
|
3060 |
|
|
/* Now do the actual decoding */
|
3061 |
|
|
|
3062 |
|
|
typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
|
3063 |
|
|
return (typep);
|
3064 |
|
|
}
|
3065 |
|
|
|
3066 |
|
|
/*
|
3067 |
|
|
|
3068 |
|
|
LOCAL FUNCTION
|
3069 |
|
|
|
3070 |
|
|
decode_mod_u_d_type -- decode a modified user defined type
|
3071 |
|
|
|
3072 |
|
|
SYNOPSIS
|
3073 |
|
|
|
3074 |
|
|
static struct type *decode_mod_u_d_type (char *typedata)
|
3075 |
|
|
|
3076 |
|
|
DESCRIPTION
|
3077 |
|
|
|
3078 |
|
|
Decode a block of data containing a modified user defined
|
3079 |
|
|
type specification. TYPEDATA is a pointer to the block,
|
3080 |
|
|
which consists of a two byte length, containing the size
|
3081 |
|
|
of the rest of the block. At the end of the block is a
|
3082 |
|
|
four byte value that gives a reference to a user defined type.
|
3083 |
|
|
Everything in between are type modifiers.
|
3084 |
|
|
|
3085 |
|
|
We simply compute the number of modifiers and call the general
|
3086 |
|
|
function decode_modified_type to do the actual work.
|
3087 |
|
|
*/
|
3088 |
|
|
|
3089 |
|
|
static struct type *
|
3090 |
|
|
decode_mod_u_d_type (char *typedata)
|
3091 |
|
|
{
|
3092 |
|
|
struct type *typep = NULL;
|
3093 |
|
|
unsigned short modcount;
|
3094 |
|
|
int nbytes;
|
3095 |
|
|
|
3096 |
|
|
/* Get the total size of the block, exclusive of the size itself */
|
3097 |
|
|
|
3098 |
|
|
nbytes = attribute_size (AT_mod_u_d_type);
|
3099 |
|
|
modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
|
3100 |
|
|
typedata += nbytes;
|
3101 |
|
|
|
3102 |
|
|
/* Deduct the size of the reference type bytes at the end of the block. */
|
3103 |
|
|
|
3104 |
|
|
modcount -= attribute_size (AT_user_def_type);
|
3105 |
|
|
|
3106 |
|
|
/* Now do the actual decoding */
|
3107 |
|
|
|
3108 |
|
|
typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
|
3109 |
|
|
return (typep);
|
3110 |
|
|
}
|
3111 |
|
|
|
3112 |
|
|
/*
|
3113 |
|
|
|
3114 |
|
|
LOCAL FUNCTION
|
3115 |
|
|
|
3116 |
|
|
decode_modified_type -- decode modified user or fundamental type
|
3117 |
|
|
|
3118 |
|
|
SYNOPSIS
|
3119 |
|
|
|
3120 |
|
|
static struct type *decode_modified_type (char *modifiers,
|
3121 |
|
|
unsigned short modcount, int mtype)
|
3122 |
|
|
|
3123 |
|
|
DESCRIPTION
|
3124 |
|
|
|
3125 |
|
|
Decode a modified type, either a modified fundamental type or
|
3126 |
|
|
a modified user defined type. MODIFIERS is a pointer to the
|
3127 |
|
|
block of bytes that define MODCOUNT modifiers. Immediately
|
3128 |
|
|
following the last modifier is a short containing the fundamental
|
3129 |
|
|
type or a long containing the reference to the user defined
|
3130 |
|
|
type. Which one is determined by MTYPE, which is either
|
3131 |
|
|
AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
|
3132 |
|
|
type we are generating.
|
3133 |
|
|
|
3134 |
|
|
We call ourself recursively to generate each modified type,`
|
3135 |
|
|
until MODCOUNT reaches zero, at which point we have consumed
|
3136 |
|
|
all the modifiers and generate either the fundamental type or
|
3137 |
|
|
user defined type. When the recursion unwinds, each modifier
|
3138 |
|
|
is applied in turn to generate the full modified type.
|
3139 |
|
|
|
3140 |
|
|
NOTES
|
3141 |
|
|
|
3142 |
|
|
If we find a modifier that we don't recognize, and it is not one
|
3143 |
|
|
of those reserved for application specific use, then we issue a
|
3144 |
|
|
warning and simply ignore the modifier.
|
3145 |
|
|
|
3146 |
|
|
BUGS
|
3147 |
|
|
|
3148 |
|
|
We currently ignore MOD_const and MOD_volatile. (FIXME)
|
3149 |
|
|
|
3150 |
|
|
*/
|
3151 |
|
|
|
3152 |
|
|
static struct type *
|
3153 |
|
|
decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
|
3154 |
|
|
{
|
3155 |
|
|
struct type *typep = NULL;
|
3156 |
|
|
unsigned short fundtype;
|
3157 |
|
|
DIE_REF die_ref;
|
3158 |
|
|
char modifier;
|
3159 |
|
|
int nbytes;
|
3160 |
|
|
|
3161 |
|
|
if (modcount == 0)
|
3162 |
|
|
{
|
3163 |
|
|
switch (mtype)
|
3164 |
|
|
{
|
3165 |
|
|
case AT_mod_fund_type:
|
3166 |
|
|
nbytes = attribute_size (AT_fund_type);
|
3167 |
|
|
fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
|
3168 |
|
|
current_objfile);
|
3169 |
|
|
typep = decode_fund_type (fundtype);
|
3170 |
|
|
break;
|
3171 |
|
|
case AT_mod_u_d_type:
|
3172 |
|
|
nbytes = attribute_size (AT_user_def_type);
|
3173 |
|
|
die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
|
3174 |
|
|
current_objfile);
|
3175 |
|
|
if ((typep = lookup_utype (die_ref)) == NULL)
|
3176 |
|
|
{
|
3177 |
|
|
typep = alloc_utype (die_ref, NULL);
|
3178 |
|
|
}
|
3179 |
|
|
break;
|
3180 |
|
|
default:
|
3181 |
|
|
complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
|
3182 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
|
3183 |
|
|
break;
|
3184 |
|
|
}
|
3185 |
|
|
}
|
3186 |
|
|
else
|
3187 |
|
|
{
|
3188 |
|
|
modifier = *modifiers++;
|
3189 |
|
|
typep = decode_modified_type (modifiers, --modcount, mtype);
|
3190 |
|
|
switch (modifier)
|
3191 |
|
|
{
|
3192 |
|
|
case MOD_pointer_to:
|
3193 |
|
|
typep = lookup_pointer_type (typep);
|
3194 |
|
|
break;
|
3195 |
|
|
case MOD_reference_to:
|
3196 |
|
|
typep = lookup_reference_type (typep);
|
3197 |
|
|
break;
|
3198 |
|
|
case MOD_const:
|
3199 |
|
|
complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
|
3200 |
|
|
break;
|
3201 |
|
|
case MOD_volatile:
|
3202 |
|
|
complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
|
3203 |
|
|
break;
|
3204 |
|
|
default:
|
3205 |
|
|
if (!(MOD_lo_user <= (unsigned char) modifier
|
3206 |
|
|
&& (unsigned char) modifier <= MOD_hi_user))
|
3207 |
|
|
{
|
3208 |
|
|
complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
|
3209 |
|
|
}
|
3210 |
|
|
break;
|
3211 |
|
|
}
|
3212 |
|
|
}
|
3213 |
|
|
return (typep);
|
3214 |
|
|
}
|
3215 |
|
|
|
3216 |
|
|
/*
|
3217 |
|
|
|
3218 |
|
|
LOCAL FUNCTION
|
3219 |
|
|
|
3220 |
|
|
decode_fund_type -- translate basic DWARF type to gdb base type
|
3221 |
|
|
|
3222 |
|
|
DESCRIPTION
|
3223 |
|
|
|
3224 |
|
|
Given an integer that is one of the fundamental DWARF types,
|
3225 |
|
|
translate it to one of the basic internal gdb types and return
|
3226 |
|
|
a pointer to the appropriate gdb type (a "struct type *").
|
3227 |
|
|
|
3228 |
|
|
NOTES
|
3229 |
|
|
|
3230 |
|
|
For robustness, if we are asked to translate a fundamental
|
3231 |
|
|
type that we are unprepared to deal with, we return int so
|
3232 |
|
|
callers can always depend upon a valid type being returned,
|
3233 |
|
|
and so gdb may at least do something reasonable by default.
|
3234 |
|
|
If the type is not in the range of those types defined as
|
3235 |
|
|
application specific types, we also issue a warning.
|
3236 |
|
|
*/
|
3237 |
|
|
|
3238 |
|
|
static struct type *
|
3239 |
|
|
decode_fund_type (unsigned int fundtype)
|
3240 |
|
|
{
|
3241 |
|
|
struct type *typep = NULL;
|
3242 |
|
|
|
3243 |
|
|
switch (fundtype)
|
3244 |
|
|
{
|
3245 |
|
|
|
3246 |
|
|
case FT_void:
|
3247 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_VOID);
|
3248 |
|
|
break;
|
3249 |
|
|
|
3250 |
|
|
case FT_boolean: /* Was FT_set in AT&T version */
|
3251 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
|
3252 |
|
|
break;
|
3253 |
|
|
|
3254 |
|
|
case FT_pointer: /* (void *) */
|
3255 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_VOID);
|
3256 |
|
|
typep = lookup_pointer_type (typep);
|
3257 |
|
|
break;
|
3258 |
|
|
|
3259 |
|
|
case FT_char:
|
3260 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
|
3261 |
|
|
break;
|
3262 |
|
|
|
3263 |
|
|
case FT_signed_char:
|
3264 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
|
3265 |
|
|
break;
|
3266 |
|
|
|
3267 |
|
|
case FT_unsigned_char:
|
3268 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
|
3269 |
|
|
break;
|
3270 |
|
|
|
3271 |
|
|
case FT_short:
|
3272 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
|
3273 |
|
|
break;
|
3274 |
|
|
|
3275 |
|
|
case FT_signed_short:
|
3276 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
|
3277 |
|
|
break;
|
3278 |
|
|
|
3279 |
|
|
case FT_unsigned_short:
|
3280 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
|
3281 |
|
|
break;
|
3282 |
|
|
|
3283 |
|
|
case FT_integer:
|
3284 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
|
3285 |
|
|
break;
|
3286 |
|
|
|
3287 |
|
|
case FT_signed_integer:
|
3288 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
|
3289 |
|
|
break;
|
3290 |
|
|
|
3291 |
|
|
case FT_unsigned_integer:
|
3292 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
|
3293 |
|
|
break;
|
3294 |
|
|
|
3295 |
|
|
case FT_long:
|
3296 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_LONG);
|
3297 |
|
|
break;
|
3298 |
|
|
|
3299 |
|
|
case FT_signed_long:
|
3300 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
|
3301 |
|
|
break;
|
3302 |
|
|
|
3303 |
|
|
case FT_unsigned_long:
|
3304 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
|
3305 |
|
|
break;
|
3306 |
|
|
|
3307 |
|
|
case FT_long_long:
|
3308 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
|
3309 |
|
|
break;
|
3310 |
|
|
|
3311 |
|
|
case FT_signed_long_long:
|
3312 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
|
3313 |
|
|
break;
|
3314 |
|
|
|
3315 |
|
|
case FT_unsigned_long_long:
|
3316 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
|
3317 |
|
|
break;
|
3318 |
|
|
|
3319 |
|
|
case FT_float:
|
3320 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
|
3321 |
|
|
break;
|
3322 |
|
|
|
3323 |
|
|
case FT_dbl_prec_float:
|
3324 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
|
3325 |
|
|
break;
|
3326 |
|
|
|
3327 |
|
|
case FT_ext_prec_float:
|
3328 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
|
3329 |
|
|
break;
|
3330 |
|
|
|
3331 |
|
|
case FT_complex:
|
3332 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
|
3333 |
|
|
break;
|
3334 |
|
|
|
3335 |
|
|
case FT_dbl_prec_complex:
|
3336 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
|
3337 |
|
|
break;
|
3338 |
|
|
|
3339 |
|
|
case FT_ext_prec_complex:
|
3340 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
|
3341 |
|
|
break;
|
3342 |
|
|
|
3343 |
|
|
}
|
3344 |
|
|
|
3345 |
|
|
if (typep == NULL)
|
3346 |
|
|
{
|
3347 |
|
|
typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
|
3348 |
|
|
if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
|
3349 |
|
|
{
|
3350 |
|
|
complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
|
3351 |
|
|
}
|
3352 |
|
|
}
|
3353 |
|
|
|
3354 |
|
|
return (typep);
|
3355 |
|
|
}
|
3356 |
|
|
|
3357 |
|
|
/*
|
3358 |
|
|
|
3359 |
|
|
LOCAL FUNCTION
|
3360 |
|
|
|
3361 |
|
|
create_name -- allocate a fresh copy of a string on an obstack
|
3362 |
|
|
|
3363 |
|
|
DESCRIPTION
|
3364 |
|
|
|
3365 |
|
|
Given a pointer to a string and a pointer to an obstack, allocates
|
3366 |
|
|
a fresh copy of the string on the specified obstack.
|
3367 |
|
|
|
3368 |
|
|
*/
|
3369 |
|
|
|
3370 |
|
|
static char *
|
3371 |
|
|
create_name (char *name, struct obstack *obstackp)
|
3372 |
|
|
{
|
3373 |
|
|
int length;
|
3374 |
|
|
char *newname;
|
3375 |
|
|
|
3376 |
|
|
length = strlen (name) + 1;
|
3377 |
|
|
newname = (char *) obstack_alloc (obstackp, length);
|
3378 |
|
|
strcpy (newname, name);
|
3379 |
|
|
return (newname);
|
3380 |
|
|
}
|
3381 |
|
|
|
3382 |
|
|
/*
|
3383 |
|
|
|
3384 |
|
|
LOCAL FUNCTION
|
3385 |
|
|
|
3386 |
|
|
basicdieinfo -- extract the minimal die info from raw die data
|
3387 |
|
|
|
3388 |
|
|
SYNOPSIS
|
3389 |
|
|
|
3390 |
|
|
void basicdieinfo (char *diep, struct dieinfo *dip,
|
3391 |
|
|
struct objfile *objfile)
|
3392 |
|
|
|
3393 |
|
|
DESCRIPTION
|
3394 |
|
|
|
3395 |
|
|
Given a pointer to raw DIE data, and a pointer to an instance of a
|
3396 |
|
|
die info structure, this function extracts the basic information
|
3397 |
|
|
from the DIE data required to continue processing this DIE, along
|
3398 |
|
|
with some bookkeeping information about the DIE.
|
3399 |
|
|
|
3400 |
|
|
The information we absolutely must have includes the DIE tag,
|
3401 |
|
|
and the DIE length. If we need the sibling reference, then we
|
3402 |
|
|
will have to call completedieinfo() to process all the remaining
|
3403 |
|
|
DIE information.
|
3404 |
|
|
|
3405 |
|
|
Note that since there is no guarantee that the data is properly
|
3406 |
|
|
aligned in memory for the type of access required (indirection
|
3407 |
|
|
through anything other than a char pointer), and there is no
|
3408 |
|
|
guarantee that it is in the same byte order as the gdb host,
|
3409 |
|
|
we call a function which deals with both alignment and byte
|
3410 |
|
|
swapping issues. Possibly inefficient, but quite portable.
|
3411 |
|
|
|
3412 |
|
|
We also take care of some other basic things at this point, such
|
3413 |
|
|
as ensuring that the instance of the die info structure starts
|
3414 |
|
|
out completely zero'd and that curdie is initialized for use
|
3415 |
|
|
in error reporting if we have a problem with the current die.
|
3416 |
|
|
|
3417 |
|
|
NOTES
|
3418 |
|
|
|
3419 |
|
|
All DIE's must have at least a valid length, thus the minimum
|
3420 |
|
|
DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
|
3421 |
|
|
DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
|
3422 |
|
|
are forced to be TAG_padding DIES.
|
3423 |
|
|
|
3424 |
|
|
Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
|
3425 |
|
|
that if a padding DIE is used for alignment and the amount needed is
|
3426 |
|
|
less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
|
3427 |
|
|
enough to align to the next alignment boundry.
|
3428 |
|
|
|
3429 |
|
|
We do some basic sanity checking here, such as verifying that the
|
3430 |
|
|
length of the die would not cause it to overrun the recorded end of
|
3431 |
|
|
the buffer holding the DIE info. If we find a DIE that is either
|
3432 |
|
|
too small or too large, we force it's length to zero which should
|
3433 |
|
|
cause the caller to take appropriate action.
|
3434 |
|
|
*/
|
3435 |
|
|
|
3436 |
|
|
static void
|
3437 |
|
|
basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
|
3438 |
|
|
{
|
3439 |
|
|
curdie = dip;
|
3440 |
|
|
memset (dip, 0, sizeof (struct dieinfo));
|
3441 |
|
|
dip->die = diep;
|
3442 |
|
|
dip->die_ref = dbroff + (diep - dbbase);
|
3443 |
|
|
dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
|
3444 |
|
|
objfile);
|
3445 |
|
|
if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
|
3446 |
|
|
((diep + dip->die_length) > (dbbase + dbsize)))
|
3447 |
|
|
{
|
3448 |
|
|
complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length);
|
3449 |
|
|
dip->die_length = 0;
|
3450 |
|
|
}
|
3451 |
|
|
else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
|
3452 |
|
|
{
|
3453 |
|
|
dip->die_tag = TAG_padding;
|
3454 |
|
|
}
|
3455 |
|
|
else
|
3456 |
|
|
{
|
3457 |
|
|
diep += SIZEOF_DIE_LENGTH;
|
3458 |
|
|
dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
|
3459 |
|
|
objfile);
|
3460 |
|
|
}
|
3461 |
|
|
}
|
3462 |
|
|
|
3463 |
|
|
/*
|
3464 |
|
|
|
3465 |
|
|
LOCAL FUNCTION
|
3466 |
|
|
|
3467 |
|
|
completedieinfo -- finish reading the information for a given DIE
|
3468 |
|
|
|
3469 |
|
|
SYNOPSIS
|
3470 |
|
|
|
3471 |
|
|
void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
|
3472 |
|
|
|
3473 |
|
|
DESCRIPTION
|
3474 |
|
|
|
3475 |
|
|
Given a pointer to an already partially initialized die info structure,
|
3476 |
|
|
scan the raw DIE data and finish filling in the die info structure
|
3477 |
|
|
from the various attributes found.
|
3478 |
|
|
|
3479 |
|
|
Note that since there is no guarantee that the data is properly
|
3480 |
|
|
aligned in memory for the type of access required (indirection
|
3481 |
|
|
through anything other than a char pointer), and there is no
|
3482 |
|
|
guarantee that it is in the same byte order as the gdb host,
|
3483 |
|
|
we call a function which deals with both alignment and byte
|
3484 |
|
|
swapping issues. Possibly inefficient, but quite portable.
|
3485 |
|
|
|
3486 |
|
|
NOTES
|
3487 |
|
|
|
3488 |
|
|
Each time we are called, we increment the diecount variable, which
|
3489 |
|
|
keeps an approximate count of the number of dies processed for
|
3490 |
|
|
each compilation unit. This information is presented to the user
|
3491 |
|
|
if the info_verbose flag is set.
|
3492 |
|
|
|
3493 |
|
|
*/
|
3494 |
|
|
|
3495 |
|
|
static void
|
3496 |
|
|
completedieinfo (struct dieinfo *dip, struct objfile *objfile)
|
3497 |
|
|
{
|
3498 |
|
|
char *diep; /* Current pointer into raw DIE data */
|
3499 |
|
|
char *end; /* Terminate DIE scan here */
|
3500 |
|
|
unsigned short attr; /* Current attribute being scanned */
|
3501 |
|
|
unsigned short form; /* Form of the attribute */
|
3502 |
|
|
int nbytes; /* Size of next field to read */
|
3503 |
|
|
|
3504 |
|
|
diecount++;
|
3505 |
|
|
diep = dip->die;
|
3506 |
|
|
end = diep + dip->die_length;
|
3507 |
|
|
diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
|
3508 |
|
|
while (diep < end)
|
3509 |
|
|
{
|
3510 |
|
|
attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
|
3511 |
|
|
diep += SIZEOF_ATTRIBUTE;
|
3512 |
|
|
if ((nbytes = attribute_size (attr)) == -1)
|
3513 |
|
|
{
|
3514 |
|
|
complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
|
3515 |
|
|
diep = end;
|
3516 |
|
|
continue;
|
3517 |
|
|
}
|
3518 |
|
|
switch (attr)
|
3519 |
|
|
{
|
3520 |
|
|
case AT_fund_type:
|
3521 |
|
|
dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3522 |
|
|
objfile);
|
3523 |
|
|
break;
|
3524 |
|
|
case AT_ordering:
|
3525 |
|
|
dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3526 |
|
|
objfile);
|
3527 |
|
|
break;
|
3528 |
|
|
case AT_bit_offset:
|
3529 |
|
|
dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3530 |
|
|
objfile);
|
3531 |
|
|
break;
|
3532 |
|
|
case AT_sibling:
|
3533 |
|
|
dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3534 |
|
|
objfile);
|
3535 |
|
|
break;
|
3536 |
|
|
case AT_stmt_list:
|
3537 |
|
|
dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3538 |
|
|
objfile);
|
3539 |
|
|
dip->has_at_stmt_list = 1;
|
3540 |
|
|
break;
|
3541 |
|
|
case AT_low_pc:
|
3542 |
|
|
dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3543 |
|
|
objfile);
|
3544 |
|
|
dip->at_low_pc += baseaddr;
|
3545 |
|
|
dip->has_at_low_pc = 1;
|
3546 |
|
|
break;
|
3547 |
|
|
case AT_high_pc:
|
3548 |
|
|
dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3549 |
|
|
objfile);
|
3550 |
|
|
dip->at_high_pc += baseaddr;
|
3551 |
|
|
break;
|
3552 |
|
|
case AT_language:
|
3553 |
|
|
dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3554 |
|
|
objfile);
|
3555 |
|
|
break;
|
3556 |
|
|
case AT_user_def_type:
|
3557 |
|
|
dip->at_user_def_type = target_to_host (diep, nbytes,
|
3558 |
|
|
GET_UNSIGNED, objfile);
|
3559 |
|
|
break;
|
3560 |
|
|
case AT_byte_size:
|
3561 |
|
|
dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3562 |
|
|
objfile);
|
3563 |
|
|
dip->has_at_byte_size = 1;
|
3564 |
|
|
break;
|
3565 |
|
|
case AT_bit_size:
|
3566 |
|
|
dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3567 |
|
|
objfile);
|
3568 |
|
|
break;
|
3569 |
|
|
case AT_member:
|
3570 |
|
|
dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3571 |
|
|
objfile);
|
3572 |
|
|
break;
|
3573 |
|
|
case AT_discr:
|
3574 |
|
|
dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3575 |
|
|
objfile);
|
3576 |
|
|
break;
|
3577 |
|
|
case AT_location:
|
3578 |
|
|
dip->at_location = diep;
|
3579 |
|
|
break;
|
3580 |
|
|
case AT_mod_fund_type:
|
3581 |
|
|
dip->at_mod_fund_type = diep;
|
3582 |
|
|
break;
|
3583 |
|
|
case AT_subscr_data:
|
3584 |
|
|
dip->at_subscr_data = diep;
|
3585 |
|
|
break;
|
3586 |
|
|
case AT_mod_u_d_type:
|
3587 |
|
|
dip->at_mod_u_d_type = diep;
|
3588 |
|
|
break;
|
3589 |
|
|
case AT_element_list:
|
3590 |
|
|
dip->at_element_list = diep;
|
3591 |
|
|
dip->short_element_list = 0;
|
3592 |
|
|
break;
|
3593 |
|
|
case AT_short_element_list:
|
3594 |
|
|
dip->at_element_list = diep;
|
3595 |
|
|
dip->short_element_list = 1;
|
3596 |
|
|
break;
|
3597 |
|
|
case AT_discr_value:
|
3598 |
|
|
dip->at_discr_value = diep;
|
3599 |
|
|
break;
|
3600 |
|
|
case AT_string_length:
|
3601 |
|
|
dip->at_string_length = diep;
|
3602 |
|
|
break;
|
3603 |
|
|
case AT_name:
|
3604 |
|
|
dip->at_name = diep;
|
3605 |
|
|
break;
|
3606 |
|
|
case AT_comp_dir:
|
3607 |
|
|
/* For now, ignore any "hostname:" portion, since gdb doesn't
|
3608 |
|
|
know how to deal with it. (FIXME). */
|
3609 |
|
|
dip->at_comp_dir = strrchr (diep, ':');
|
3610 |
|
|
if (dip->at_comp_dir != NULL)
|
3611 |
|
|
{
|
3612 |
|
|
dip->at_comp_dir++;
|
3613 |
|
|
}
|
3614 |
|
|
else
|
3615 |
|
|
{
|
3616 |
|
|
dip->at_comp_dir = diep;
|
3617 |
|
|
}
|
3618 |
|
|
break;
|
3619 |
|
|
case AT_producer:
|
3620 |
|
|
dip->at_producer = diep;
|
3621 |
|
|
break;
|
3622 |
|
|
case AT_start_scope:
|
3623 |
|
|
dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3624 |
|
|
objfile);
|
3625 |
|
|
break;
|
3626 |
|
|
case AT_stride_size:
|
3627 |
|
|
dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3628 |
|
|
objfile);
|
3629 |
|
|
break;
|
3630 |
|
|
case AT_src_info:
|
3631 |
|
|
dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
|
3632 |
|
|
objfile);
|
3633 |
|
|
break;
|
3634 |
|
|
case AT_prototyped:
|
3635 |
|
|
dip->at_prototyped = diep;
|
3636 |
|
|
break;
|
3637 |
|
|
default:
|
3638 |
|
|
/* Found an attribute that we are unprepared to handle. However
|
3639 |
|
|
it is specifically one of the design goals of DWARF that
|
3640 |
|
|
consumers should ignore unknown attributes. As long as the
|
3641 |
|
|
form is one that we recognize (so we know how to skip it),
|
3642 |
|
|
we can just ignore the unknown attribute. */
|
3643 |
|
|
break;
|
3644 |
|
|
}
|
3645 |
|
|
form = FORM_FROM_ATTR (attr);
|
3646 |
|
|
switch (form)
|
3647 |
|
|
{
|
3648 |
|
|
case FORM_DATA2:
|
3649 |
|
|
diep += 2;
|
3650 |
|
|
break;
|
3651 |
|
|
case FORM_DATA4:
|
3652 |
|
|
case FORM_REF:
|
3653 |
|
|
diep += 4;
|
3654 |
|
|
break;
|
3655 |
|
|
case FORM_DATA8:
|
3656 |
|
|
diep += 8;
|
3657 |
|
|
break;
|
3658 |
|
|
case FORM_ADDR:
|
3659 |
|
|
diep += TARGET_FT_POINTER_SIZE (objfile);
|
3660 |
|
|
break;
|
3661 |
|
|
case FORM_BLOCK2:
|
3662 |
|
|
diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
|
3663 |
|
|
break;
|
3664 |
|
|
case FORM_BLOCK4:
|
3665 |
|
|
diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
|
3666 |
|
|
break;
|
3667 |
|
|
case FORM_STRING:
|
3668 |
|
|
diep += strlen (diep) + 1;
|
3669 |
|
|
break;
|
3670 |
|
|
default:
|
3671 |
|
|
complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
|
3672 |
|
|
diep = end;
|
3673 |
|
|
break;
|
3674 |
|
|
}
|
3675 |
|
|
}
|
3676 |
|
|
}
|
3677 |
|
|
|
3678 |
|
|
/*
|
3679 |
|
|
|
3680 |
|
|
LOCAL FUNCTION
|
3681 |
|
|
|
3682 |
|
|
target_to_host -- swap in target data to host
|
3683 |
|
|
|
3684 |
|
|
SYNOPSIS
|
3685 |
|
|
|
3686 |
|
|
target_to_host (char *from, int nbytes, int signextend,
|
3687 |
|
|
struct objfile *objfile)
|
3688 |
|
|
|
3689 |
|
|
DESCRIPTION
|
3690 |
|
|
|
3691 |
|
|
Given pointer to data in target format in FROM, a byte count for
|
3692 |
|
|
the size of the data in NBYTES, a flag indicating whether or not
|
3693 |
|
|
the data is signed in SIGNEXTEND, and a pointer to the current
|
3694 |
|
|
objfile in OBJFILE, convert the data to host format and return
|
3695 |
|
|
the converted value.
|
3696 |
|
|
|
3697 |
|
|
NOTES
|
3698 |
|
|
|
3699 |
|
|
FIXME: If we read data that is known to be signed, and expect to
|
3700 |
|
|
use it as signed data, then we need to explicitly sign extend the
|
3701 |
|
|
result until the bfd library is able to do this for us.
|
3702 |
|
|
|
3703 |
|
|
FIXME: Would a 32 bit target ever need an 8 byte result?
|
3704 |
|
|
|
3705 |
|
|
*/
|
3706 |
|
|
|
3707 |
|
|
static CORE_ADDR
|
3708 |
|
|
target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
|
3709 |
|
|
struct objfile *objfile)
|
3710 |
|
|
{
|
3711 |
|
|
CORE_ADDR rtnval;
|
3712 |
|
|
|
3713 |
|
|
switch (nbytes)
|
3714 |
|
|
{
|
3715 |
|
|
case 8:
|
3716 |
|
|
rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
|
3717 |
|
|
break;
|
3718 |
|
|
case 4:
|
3719 |
|
|
rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
|
3720 |
|
|
break;
|
3721 |
|
|
case 2:
|
3722 |
|
|
rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
|
3723 |
|
|
break;
|
3724 |
|
|
case 1:
|
3725 |
|
|
rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
|
3726 |
|
|
break;
|
3727 |
|
|
default:
|
3728 |
|
|
complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
|
3729 |
|
|
rtnval = 0;
|
3730 |
|
|
break;
|
3731 |
|
|
}
|
3732 |
|
|
return (rtnval);
|
3733 |
|
|
}
|
3734 |
|
|
|
3735 |
|
|
/*
|
3736 |
|
|
|
3737 |
|
|
LOCAL FUNCTION
|
3738 |
|
|
|
3739 |
|
|
attribute_size -- compute size of data for a DWARF attribute
|
3740 |
|
|
|
3741 |
|
|
SYNOPSIS
|
3742 |
|
|
|
3743 |
|
|
static int attribute_size (unsigned int attr)
|
3744 |
|
|
|
3745 |
|
|
DESCRIPTION
|
3746 |
|
|
|
3747 |
|
|
Given a DWARF attribute in ATTR, compute the size of the first
|
3748 |
|
|
piece of data associated with this attribute and return that
|
3749 |
|
|
size.
|
3750 |
|
|
|
3751 |
|
|
Returns -1 for unrecognized attributes.
|
3752 |
|
|
|
3753 |
|
|
*/
|
3754 |
|
|
|
3755 |
|
|
static int
|
3756 |
|
|
attribute_size (unsigned int attr)
|
3757 |
|
|
{
|
3758 |
|
|
int nbytes; /* Size of next data for this attribute */
|
3759 |
|
|
unsigned short form; /* Form of the attribute */
|
3760 |
|
|
|
3761 |
|
|
form = FORM_FROM_ATTR (attr);
|
3762 |
|
|
switch (form)
|
3763 |
|
|
{
|
3764 |
|
|
case FORM_STRING: /* A variable length field is next */
|
3765 |
|
|
nbytes = 0;
|
3766 |
|
|
break;
|
3767 |
|
|
case FORM_DATA2: /* Next 2 byte field is the data itself */
|
3768 |
|
|
case FORM_BLOCK2: /* Next 2 byte field is a block length */
|
3769 |
|
|
nbytes = 2;
|
3770 |
|
|
break;
|
3771 |
|
|
case FORM_DATA4: /* Next 4 byte field is the data itself */
|
3772 |
|
|
case FORM_BLOCK4: /* Next 4 byte field is a block length */
|
3773 |
|
|
case FORM_REF: /* Next 4 byte field is a DIE offset */
|
3774 |
|
|
nbytes = 4;
|
3775 |
|
|
break;
|
3776 |
|
|
case FORM_DATA8: /* Next 8 byte field is the data itself */
|
3777 |
|
|
nbytes = 8;
|
3778 |
|
|
break;
|
3779 |
|
|
case FORM_ADDR: /* Next field size is target sizeof(void *) */
|
3780 |
|
|
nbytes = TARGET_FT_POINTER_SIZE (objfile);
|
3781 |
|
|
break;
|
3782 |
|
|
default:
|
3783 |
|
|
complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
|
3784 |
|
|
nbytes = -1;
|
3785 |
|
|
break;
|
3786 |
|
|
}
|
3787 |
|
|
return (nbytes);
|
3788 |
|
|
}
|