OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [gdb/] [gdbarch.sh] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
#!/bin/sh -u
2
 
3
# Architecture commands for GDB, the GNU debugger.
4
# Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
#
6
# This file is part of GDB.
7
#
8
# This program is free software; you can redistribute it and/or modify
9
# it under the terms of the GNU General Public License as published by
10
# the Free Software Foundation; either version 2 of the License, or
11
# (at your option) any later version.
12
#
13
# This program is distributed in the hope that it will be useful,
14
# but WITHOUT ANY WARRANTY; without even the implied warranty of
15
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
# GNU General Public License for more details.
17
#
18
# You should have received a copy of the GNU General Public License
19
# along with this program; if not, write to the Free Software
20
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
 
22
# Make certain that the script is running in an internationalized
23
# environment.
24
LANG=c ; export LANG
25
LC_ALL=c ; export LC_ALL
26
 
27
 
28
compare_new ()
29
{
30
    file=$1
31
    if test ! -r ${file}
32
    then
33
        echo "${file} missing? cp new-${file} ${file}" 1>&2
34
    elif diff -u ${file} new-${file}
35
    then
36
        echo "${file} unchanged" 1>&2
37
    else
38
        echo "${file} has changed? cp new-${file} ${file}" 1>&2
39
    fi
40
}
41
 
42
 
43
# Format of the input table
44
read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
45
 
46
do_read ()
47
{
48
    comment=""
49
    class=""
50
    while read line
51
    do
52
        if test "${line}" = ""
53
        then
54
            continue
55
        elif test "${line}" = "#" -a "${comment}" = ""
56
        then
57
            continue
58
        elif expr "${line}" : "#" > /dev/null
59
        then
60
            comment="${comment}
61
${line}"
62
        else
63
 
64
            # The semantics of IFS varies between different SH's.  Some
65
            # treat ``::' as three fields while some treat it as just too.
66
            # Work around this by eliminating ``::'' ....
67
            line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
 
69
            OFS="${IFS}" ; IFS="[:]"
70
            eval read ${read} <<EOF
71
${line}
72
EOF
73
            IFS="${OFS}"
74
 
75
            # .... and then going back through each field and strip out those
76
            # that ended up with just that space character.
77
            for r in ${read}
78
            do
79
                if eval test \"\${${r}}\" = \"\ \"
80
                then
81
                    eval ${r}=""
82
                fi
83
            done
84
 
85
            case "${level}" in
86
                1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87
                2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88
                "" ) ;;
89
                * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90
            esac
91
 
92
            case "${class}" in
93
                m ) staticdefault="${predefault}" ;;
94
                M ) staticdefault="0" ;;
95
                * ) test "${staticdefault}" || staticdefault=0 ;;
96
            esac
97
            # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98
            # multi-arch defaults.
99
            # test "${predefault}" || predefault=0
100
 
101
            # come up with a format, use a few guesses for variables
102
            case ":${class}:${fmt}:${print}:" in
103
                :[vV]::: )
104
                    if [ "${returntype}" = int ]
105
                    then
106
                        fmt="%d"
107
                        print="${macro}"
108
                    elif [ "${returntype}" = long ]
109
                    then
110
                        fmt="%ld"
111
                        print="${macro}"
112
                    fi
113
                    ;;
114
            esac
115
            test "${fmt}" || fmt="%ld"
116
            test "${print}" || print="(long) ${macro}"
117
 
118
            case "${invalid_p}" in
119
 
120
                "" )
121
                    if [ -n "${predefault}" ]
122
                    then
123
                        #invalid_p="gdbarch->${function} == ${predefault}"
124
                        valid_p="gdbarch->${function} != ${predefault}"
125
                    else
126
                        #invalid_p="gdbarch->${function} == 0"
127
                        valid_p="gdbarch->${function} != 0"
128
                    fi
129
                    ;;
130
                * ) valid_p="!(${invalid_p})"
131
            esac
132
 
133
            # PREDEFAULT is a valid fallback definition of MEMBER when
134
            # multi-arch is not enabled.  This ensures that the
135
            # default value, when multi-arch is the same as the
136
            # default value when not multi-arch.  POSTDEFAULT is
137
            # always a valid definition of MEMBER as this again
138
            # ensures consistency.
139
 
140
            if [ -n "${postdefault}" ]
141
            then
142
                fallbackdefault="${postdefault}"
143
            elif [ -n "${predefault}" ]
144
            then
145
                fallbackdefault="${predefault}"
146
            else
147
                fallbackdefault="0"
148
            fi
149
 
150
            #NOT YET: See gdbarch.log for basic verification of
151
            # database
152
 
153
            break
154
        fi
155
    done
156
    if [ -n "${class}" ]
157
    then
158
        true
159
    else
160
        false
161
    fi
162
}
163
 
164
 
165
fallback_default_p ()
166
{
167
    [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168
        || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
169
}
170
 
171
class_is_variable_p ()
172
{
173
    case "${class}" in
174
        *v* | *V* ) true ;;
175
        * ) false ;;
176
    esac
177
}
178
 
179
class_is_function_p ()
180
{
181
    case "${class}" in
182
        *f* | *F* | *m* | *M* ) true ;;
183
        * ) false ;;
184
    esac
185
}
186
 
187
class_is_multiarch_p ()
188
{
189
    case "${class}" in
190
        *m* | *M* ) true ;;
191
        * ) false ;;
192
    esac
193
}
194
 
195
class_is_predicate_p ()
196
{
197
    case "${class}" in
198
        *F* | *V* | *M* ) true ;;
199
        * ) false ;;
200
    esac
201
}
202
 
203
class_is_info_p ()
204
{
205
    case "${class}" in
206
        *i* ) true ;;
207
        * ) false ;;
208
    esac
209
}
210
 
211
 
212
# dump out/verify the doco
213
for field in ${read}
214
do
215
  case ${field} in
216
 
217
    class ) : ;;
218
 
219
        # # -> line disable
220
        # f -> function
221
        #   hiding a function
222
        # F -> function + predicate
223
        #   hiding a function + predicate to test function validity
224
        # v -> variable
225
        #   hiding a variable
226
        # V -> variable + predicate
227
        #   hiding a variable + predicate to test variables validity
228
        # i -> set from info
229
        #   hiding something from the ``struct info'' object
230
        # m -> multi-arch function
231
        #   hiding a multi-arch function (parameterised with the architecture)
232
        # M -> multi-arch function + predicate
233
        #   hiding a multi-arch function + predicate to test function validity
234
 
235
    level ) : ;;
236
 
237
        # See GDB_MULTI_ARCH description.  Having GDB_MULTI_ARCH >=
238
        # LEVEL is a predicate on checking that a given method is
239
        # initialized (using INVALID_P).
240
 
241
    macro ) : ;;
242
 
243
        # The name of the MACRO that this method is to be accessed by.
244
 
245
    returntype ) : ;;
246
 
247
        # For functions, the return type; for variables, the data type
248
 
249
    function ) : ;;
250
 
251
        # For functions, the member function name; for variables, the
252
        # variable name.  Member function names are always prefixed with
253
        # ``gdbarch_'' for name-space purity.
254
 
255
    formal ) : ;;
256
 
257
        # The formal argument list.  It is assumed that the formal
258
        # argument list includes the actual name of each list element.
259
        # A function with no arguments shall have ``void'' as the
260
        # formal argument list.
261
 
262
    actual ) : ;;
263
 
264
        # The list of actual arguments.  The arguments specified shall
265
        # match the FORMAL list given above.  Functions with out
266
        # arguments leave this blank.
267
 
268
    attrib ) : ;;
269
 
270
        # Any GCC attributes that should be attached to the function
271
        # declaration.  At present this field is unused.
272
 
273
    staticdefault ) : ;;
274
 
275
        # To help with the GDB startup a static gdbarch object is
276
        # created.  STATICDEFAULT is the value to insert into that
277
        # static gdbarch object.  Since this a static object only
278
        # simple expressions can be used.
279
 
280
        # If STATICDEFAULT is empty, zero is used.
281
 
282
    predefault ) : ;;
283
 
284
        # An initial value to assign to MEMBER of the freshly
285
        # malloc()ed gdbarch object.  After initialization, the
286
        # freshly malloc()ed object is passed to the target
287
        # architecture code for further updates.
288
 
289
        # If PREDEFAULT is empty, zero is used.
290
 
291
        # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292
        # INVALID_P are specified, PREDEFAULT will be used as the
293
        # default for the non- multi-arch target.
294
 
295
        # A zero PREDEFAULT function will force the fallback to call
296
        # internal_error().
297
 
298
        # Variable declarations can refer to ``gdbarch'' which will
299
        # contain the current architecture.  Care should be taken.
300
 
301
    postdefault ) : ;;
302
 
303
        # A value to assign to MEMBER of the new gdbarch object should
304
        # the target architecture code fail to change the PREDEFAULT
305
        # value.
306
 
307
        # If POSTDEFAULT is empty, no post update is performed.
308
 
309
        # If both INVALID_P and POSTDEFAULT are non-empty then
310
        # INVALID_P will be used to determine if MEMBER should be
311
        # changed to POSTDEFAULT.
312
 
313
        # If a non-empty POSTDEFAULT and a zero INVALID_P are
314
        # specified, POSTDEFAULT will be used as the default for the
315
        # non- multi-arch target (regardless of the value of
316
        # PREDEFAULT).
317
 
318
        # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
 
320
        # Variable declarations can refer to ``gdbarch'' which will
321
        # contain the current architecture.  Care should be taken.
322
 
323
    invalid_p ) : ;;
324
 
325
        # A predicate equation that validates MEMBER.  Non-zero is
326
        # returned if the code creating the new architecture failed to
327
        # initialize MEMBER or the initialized the member is invalid.
328
        # If POSTDEFAULT is non-empty then MEMBER will be updated to
329
        # that value.  If POSTDEFAULT is empty then internal_error()
330
        # is called.
331
 
332
        # If INVALID_P is empty, a check that MEMBER is no longer
333
        # equal to PREDEFAULT is used.
334
 
335
        # The expression ``0'' disables the INVALID_P check making
336
        # PREDEFAULT a legitimate value.
337
 
338
        # See also PREDEFAULT and POSTDEFAULT.
339
 
340
    fmt ) : ;;
341
 
342
        # printf style format string that can be used to print out the
343
        # MEMBER.  Sometimes "%s" is useful.  For functions, this is
344
        # ignored and the function address is printed.
345
 
346
        # If FMT is empty, ``%ld'' is used.
347
 
348
    print ) : ;;
349
 
350
        # An optional equation that casts MEMBER to a value suitable
351
        # for formatting by FMT.
352
 
353
        # If PRINT is empty, ``(long)'' is used.
354
 
355
    print_p ) : ;;
356
 
357
        # An optional indicator for any predicte to wrap around the
358
        # print member code.
359
 
360
        #   () -> Call a custom function to do the dump.
361
        #   exp -> Wrap print up in ``if (${print_p}) ...
362
        #   ``'' -> No predicate
363
 
364
        # If PRINT_P is empty, ``1'' is always used.
365
 
366
    description ) : ;;
367
 
368
        # Currently unused.
369
 
370
    *)
371
        echo "Bad field ${field}"
372
        exit 1;;
373
  esac
374
done
375
 
376
 
377
function_list ()
378
{
379
  # See below (DOCO) for description of each field
380
  cat <<EOF
381
i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
382
#
383
i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
384
# Number of bits in a char or unsigned char for the target machine.
385
# Just like CHAR_BIT in <limits.h> but describes the target machine.
386
# v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387
#
388
# Number of bits in a short or unsigned short for the target machine.
389
v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390
# Number of bits in an int or unsigned int for the target machine.
391
v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392
# Number of bits in a long or unsigned long for the target machine.
393
v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394
# Number of bits in a long long or unsigned long long for the target
395
# machine.
396
v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397
# Number of bits in a float for the target machine.
398
v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399
# Number of bits in a double for the target machine.
400
v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401
# Number of bits in a long double for the target machine.
402
v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
403
# For most targets, a pointer on the target and its representation as an
404
# address in GDB have the same size and "look the same".  For such a
405
# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406
# / addr_bit will be set from it.
407
#
408
# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409
# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410
#
411
# ptr_bit is the size of a pointer on the target
412
v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
413
# addr_bit is the size of a target address as represented in gdb
414
v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
415
# Number of bits in a BFD_VMA for the target object file format.
416
v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
417
#
418
# One if \`char' acts like \`signed char', zero if \`unsigned char'.
419
v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
420
#
421
f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422
f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
423
f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
424
f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425
f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
426
# Function for getting target's idea of a frame pointer.  FIXME: GDB's
427
# whole scheme for dealing with "frames" and "frame pointers" needs a
428
# serious shakedown.
429
f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
430
#
431
M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
432
M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
433
#
434
v:2:NUM_REGS:int:num_regs::::0:-1
435
# This macro gives the number of pseudo-registers that live in the
436
# register namespace but do not get fetched or stored on the target.
437
# These pseudo-registers may be aliases for other registers,
438
# combinations of other registers, or they may be computed by GDB.
439
v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
440
 
441
# GDB's standard (or well known) register numbers.  These can map onto
442
# a real register or a pseudo (computed) register or not be defined at
443
# all (-1).
444
v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445
v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446
v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
447
v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
448
v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449
v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450
# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
451
f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
452
# Provide a default mapping from a ecoff register number to a gdb REGNUM.
453
f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
454
# Provide a default mapping from a DWARF register number to a gdb REGNUM.
455
f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
456
# Convert from an sdb register number to an internal gdb register number.
457
# This should be defined in tm.h, if REGISTER_NAMES is not set up
458
# to map one to one onto the sdb register numbers.
459
f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
460
f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
461
f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
462
v:2:REGISTER_SIZE:int:register_size::::0:-1
463
v:2:REGISTER_BYTES:int:register_bytes::::0:-1
464
f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
465
f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
466
v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
467
f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
468
v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
469
f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
470
#
471
F:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
472
m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
473
M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
474
M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
475
# MAP a GDB RAW register number onto a simulator register number.  See
476
# also include/...-sim.h.
477
f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
478
F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
479
f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
480
f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
481
# setjmp/longjmp support.
482
F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
483
#
484
# Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
485
# much better but at least they are vaguely consistent).  The headers
486
# and body contain convoluted #if/#else sequences for determine how
487
# things should be compiled.  Instead of trying to mimic that
488
# behaviour here (and hence entrench it further) gdbarch simply
489
# reqires that these methods be set up from the word go.  This also
490
# avoids any potential problems with moving beyond multi-arch partial.
491
v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
492
v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
493
f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
494
v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
495
v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
496
v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
497
v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
498
f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
499
v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
500
v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
501
v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
502
v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
503
v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
504
f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
505
f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
506
f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
507
#
508
v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
509
v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
510
f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
511
f:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval:::generic_unwind_get_saved_register::0
512
#
513
f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
514
f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
515
f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
516
#
517
f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
518
f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
519
f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
520
#
521
f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
522
f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
523
F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
524
#
525
f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
526
f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
527
f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
528
F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
529
f:2:POP_FRAME:void:pop_frame:void:-:::0
530
#
531
f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
532
#
533
f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
534
f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
535
f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
536
f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
537
#
538
F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
539
F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
540
f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
541
#
542
f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
543
F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
544
#
545
f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
546
f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
547
f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
548
f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
549
f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
550
f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
551
v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
552
f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
553
v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
554
#
555
f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
556
#
557
v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
558
f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
559
f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
560
# Define a default FRAME_CHAIN_VALID, in the form that is suitable for
561
# most targets.  If FRAME_CHAIN_VALID returns zero it means that the
562
# given frame is the outermost one and has no caller.
563
#
564
# XXXX - both default and alternate frame_chain_valid functions are
565
# deprecated.  New code should use dummy frames and one of the generic
566
# functions.
567
f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
568
f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
569
f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
570
f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
571
f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
572
f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
573
#
574
F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
575
v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
576
F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
577
F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
578
v:2:PARM_BOUNDARY:int:parm_boundary
579
#
580
v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
581
v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
582
v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
583
f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
584
# On some machines there are bits in addresses which are not really
585
# part of the address, but are used by the kernel, the hardware, etc.
586
# for special purposes.  ADDR_BITS_REMOVE takes out any such bits so
587
# we get a "real" address such as one would find in a symbol table.
588
# This is used only for addresses of instructions, and even then I'm
589
# not sure it's used in all contexts.  It exists to deal with there
590
# being a few stray bits in the PC which would mislead us, not as some
591
# sort of generic thing to handle alignment or segmentation (it's
592
# possible it should be in TARGET_READ_PC instead).
593
f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
594
# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
595
# ADDR_BITS_REMOVE.
596
f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
597
# FIXME/cagney/2001-01-18: This should be split in two.  A target method that indicates if
598
# the target needs software single step.  An ISA method to implement it.
599
#
600
# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
601
# using the breakpoint system instead of blatting memory directly (as with rs6000).
602
#
603
# FIXME/cagney/2001-01-18: The logic is backwards.  It should be asking if the target can
604
# single step.  If not, then implement single step using breakpoints.
605
F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
606
f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
607
f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
608
 
609
 
610
# For SVR4 shared libraries, each call goes through a small piece of
611
# trampoline code in the ".plt" section.  IN_SOLIB_CALL_TRAMPOLINE evaluates
612
# to nonzero if we are currently stopped in one of these.
613
f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
614
 
615
# Some systems also have trampoline code for returning from shared libs.
616
f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
617
 
618
# Sigtramp is a routine that the kernel calls (which then calls the
619
# signal handler).  On most machines it is a library routine that is
620
# linked into the executable.
621
#
622
# This macro, given a program counter value and the name of the
623
# function in which that PC resides (which can be null if the name is
624
# not known), returns nonzero if the PC and name show that we are in
625
# sigtramp.
626
#
627
# On most machines just see if the name is sigtramp (and if we have
628
# no name, assume we are not in sigtramp).
629
#
630
# FIXME: cagney/2002-04-21: The function find_pc_partial_function
631
# calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
632
# This means PC_IN_SIGTRAMP function can't be implemented by doing its
633
# own local NAME lookup.
634
#
635
# FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
636
# Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
637
# does not.
638
f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
639
# A target might have problems with watchpoints as soon as the stack
640
# frame of the current function has been destroyed.  This mostly happens
641
# as the first action in a funtion's epilogue.  in_function_epilogue_p()
642
# is defined to return a non-zero value if either the given addr is one
643
# instruction after the stack destroying instruction up to the trailing
644
# return instruction or if we can figure out that the stack frame has
645
# already been invalidated regardless of the value of addr.  Targets
646
# which don't suffer from that problem could just let this functionality
647
# untouched.
648
m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
649
# Given a vector of command-line arguments, return a newly allocated
650
# string which, when passed to the create_inferior function, will be
651
# parsed (on Unix systems, by the shell) to yield the same vector.
652
# This function should call error() if the argument vector is not
653
# representable for this target or if this target does not support
654
# command-line arguments.
655
# ARGC is the number of elements in the vector.
656
# ARGV is an array of strings, one per argument.
657
m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
658
F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
659
f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
660
f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
661
EOF
662
}
663
 
664
#
665
# The .log file
666
#
667
exec > new-gdbarch.log
668
function_list | while do_read
669
do
670
    cat <<EOF
671
${class} ${macro}(${actual})
672
  ${returntype} ${function} ($formal)${attrib}
673
EOF
674
    for r in ${read}
675
    do
676
        eval echo \"\ \ \ \ ${r}=\${${r}}\"
677
    done
678
#    #fallbackdefault=${fallbackdefault}
679
#    #valid_p=${valid_p}
680
#EOF
681
    if class_is_predicate_p && fallback_default_p
682
    then
683
        echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
684
        kill $$
685
        exit 1
686
    fi
687
    if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
688
    then
689
        echo "Error: postdefault is useless when invalid_p=0" 1>&2
690
        kill $$
691
        exit 1
692
    fi
693
    if class_is_multiarch_p
694
    then
695
        if class_is_predicate_p ; then :
696
        elif test "x${predefault}" = "x"
697
        then
698
            echo "Error: pure multi-arch function must have a predefault" 1>&2
699
            kill $$
700
            exit 1
701
        fi
702
    fi
703
    echo ""
704
done
705
 
706
exec 1>&2
707
compare_new gdbarch.log
708
 
709
 
710
copyright ()
711
{
712
cat <<EOF
713
/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
714
 
715
/* Dynamic architecture support for GDB, the GNU debugger.
716
   Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
717
 
718
   This file is part of GDB.
719
 
720
   This program is free software; you can redistribute it and/or modify
721
   it under the terms of the GNU General Public License as published by
722
   the Free Software Foundation; either version 2 of the License, or
723
   (at your option) any later version.
724
 
725
   This program is distributed in the hope that it will be useful,
726
   but WITHOUT ANY WARRANTY; without even the implied warranty of
727
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
728
   GNU General Public License for more details.
729
 
730
   You should have received a copy of the GNU General Public License
731
   along with this program; if not, write to the Free Software
732
   Foundation, Inc., 59 Temple Place - Suite 330,
733
   Boston, MA 02111-1307, USA.  */
734
 
735
/* This file was created with the aid of \`\`gdbarch.sh''.
736
 
737
   The Bourne shell script \`\`gdbarch.sh'' creates the files
738
   \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
739
   against the existing \`\`gdbarch.[hc]''.  Any differences found
740
   being reported.
741
 
742
   If editing this file, please also run gdbarch.sh and merge any
743
   changes into that script. Conversely, when making sweeping changes
744
   to this file, modifying gdbarch.sh and using its output may prove
745
   easier. */
746
 
747
EOF
748
}
749
 
750
#
751
# The .h file
752
#
753
 
754
exec > new-gdbarch.h
755
copyright
756
cat <<EOF
757
#ifndef GDBARCH_H
758
#define GDBARCH_H
759
 
760
#include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
761
#if !GDB_MULTI_ARCH
762
/* Pull in function declarations refered to, indirectly, via macros.  */
763
#include "value.h" /* For default_coerce_float_to_double which is referenced by a macro.  */
764
#include "inferior.h"           /* For unsigned_address_to_pointer().  */
765
#endif
766
 
767
struct frame_info;
768
struct value;
769
struct objfile;
770
struct minimal_symbol;
771
struct regcache;
772
 
773
extern struct gdbarch *current_gdbarch;
774
 
775
 
776
/* If any of the following are defined, the target wasn't correctly
777
   converted. */
778
 
779
#if GDB_MULTI_ARCH
780
#if defined (EXTRA_FRAME_INFO)
781
#error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
782
#endif
783
#endif
784
 
785
#if GDB_MULTI_ARCH
786
#if defined (FRAME_FIND_SAVED_REGS)
787
#error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
788
#endif
789
#endif
790
 
791
#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
792
#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
793
#endif
794
EOF
795
 
796
# function typedef's
797
printf "\n"
798
printf "\n"
799
printf "/* The following are pre-initialized by GDBARCH. */\n"
800
function_list | while do_read
801
do
802
    if class_is_info_p
803
    then
804
        printf "\n"
805
        printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
806
        printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
807
        printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
808
        printf "#error \"Non multi-arch definition of ${macro}\"\n"
809
        printf "#endif\n"
810
        printf "#if GDB_MULTI_ARCH\n"
811
        printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
812
        printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
813
        printf "#endif\n"
814
        printf "#endif\n"
815
    fi
816
done
817
 
818
# function typedef's
819
printf "\n"
820
printf "\n"
821
printf "/* The following are initialized by the target dependent code. */\n"
822
function_list | while do_read
823
do
824
    if [ -n "${comment}" ]
825
    then
826
        echo "${comment}" | sed \
827
            -e '2 s,#,/*,' \
828
            -e '3,$ s,#,  ,' \
829
            -e '$ s,$, */,'
830
    fi
831
    if class_is_multiarch_p
832
    then
833
        if class_is_predicate_p
834
        then
835
            printf "\n"
836
            printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
837
        fi
838
    else
839
        if class_is_predicate_p
840
        then
841
            printf "\n"
842
            printf "#if defined (${macro})\n"
843
            printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
844
            #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
845
            printf "#if !defined (${macro}_P)\n"
846
            printf "#define ${macro}_P() (1)\n"
847
            printf "#endif\n"
848
            printf "#endif\n"
849
            printf "\n"
850
            printf "/* Default predicate for non- multi-arch targets. */\n"
851
            printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
852
            printf "#define ${macro}_P() (0)\n"
853
            printf "#endif\n"
854
            printf "\n"
855
            printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
856
            printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
857
            printf "#error \"Non multi-arch definition of ${macro}\"\n"
858
            printf "#endif\n"
859
            printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
860
            printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
861
            printf "#endif\n"
862
        fi
863
    fi
864
    if class_is_variable_p
865
    then
866
        if fallback_default_p || class_is_predicate_p
867
        then
868
            printf "\n"
869
            printf "/* Default (value) for non- multi-arch platforms. */\n"
870
            printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
871
            echo "#define ${macro} (${fallbackdefault})" \
872
                | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
873
            printf "#endif\n"
874
        fi
875
        printf "\n"
876
        printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
877
        printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
878
        printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
879
        printf "#error \"Non multi-arch definition of ${macro}\"\n"
880
        printf "#endif\n"
881
        printf "#if GDB_MULTI_ARCH\n"
882
        printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
883
        printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
884
        printf "#endif\n"
885
        printf "#endif\n"
886
    fi
887
    if class_is_function_p
888
    then
889
        if class_is_multiarch_p ; then :
890
        elif fallback_default_p || class_is_predicate_p
891
        then
892
            printf "\n"
893
            printf "/* Default (function) for non- multi-arch platforms. */\n"
894
            printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
895
            if [ "x${fallbackdefault}" = "x0" ]
896
            then
897
                printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
898
            else
899
                # FIXME: Should be passing current_gdbarch through!
900
                echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
901
                    | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
902
            fi
903
            printf "#endif\n"
904
        fi
905
        printf "\n"
906
        if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
907
        then
908
            printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
909
        elif class_is_multiarch_p
910
        then
911
            printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
912
        else
913
            printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
914
        fi
915
        if [ "x${formal}" = "xvoid" ]
916
        then
917
          printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
918
        else
919
          printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
920
        fi
921
        printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
922
        if class_is_multiarch_p ; then :
923
        else
924
            printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
925
            printf "#error \"Non multi-arch definition of ${macro}\"\n"
926
            printf "#endif\n"
927
            printf "#if GDB_MULTI_ARCH\n"
928
            printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
929
            if [ "x${actual}" = "x" ]
930
            then
931
                printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
932
            elif [ "x${actual}" = "x-" ]
933
            then
934
                printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
935
            else
936
                printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
937
            fi
938
            printf "#endif\n"
939
            printf "#endif\n"
940
        fi
941
    fi
942
done
943
 
944
# close it off
945
cat <<EOF
946
 
947
extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
948
 
949
 
950
/* Mechanism for co-ordinating the selection of a specific
951
   architecture.
952
 
953
   GDB targets (*-tdep.c) can register an interest in a specific
954
   architecture.  Other GDB components can register a need to maintain
955
   per-architecture data.
956
 
957
   The mechanisms below ensures that there is only a loose connection
958
   between the set-architecture command and the various GDB
959
   components.  Each component can independently register their need
960
   to maintain architecture specific data with gdbarch.
961
 
962
   Pragmatics:
963
 
964
   Previously, a single TARGET_ARCHITECTURE_HOOK was provided.  It
965
   didn't scale.
966
 
967
   The more traditional mega-struct containing architecture specific
968
   data for all the various GDB components was also considered.  Since
969
   GDB is built from a variable number of (fairly independent)
970
   components it was determined that the global aproach was not
971
   applicable. */
972
 
973
 
974
/* Register a new architectural family with GDB.
975
 
976
   Register support for the specified ARCHITECTURE with GDB.  When
977
   gdbarch determines that the specified architecture has been
978
   selected, the corresponding INIT function is called.
979
 
980
   --
981
 
982
   The INIT function takes two parameters: INFO which contains the
983
   information available to gdbarch about the (possibly new)
984
   architecture; ARCHES which is a list of the previously created
985
   \`\`struct gdbarch'' for this architecture.
986
 
987
   The INFO parameter is, as far as possible, be pre-initialized with
988
   information obtained from INFO.ABFD or the previously selected
989
   architecture.
990
 
991
   The ARCHES parameter is a linked list (sorted most recently used)
992
   of all the previously created architures for this architecture
993
   family.  The (possibly NULL) ARCHES->gdbarch can used to access
994
   values from the previously selected architecture for this
995
   architecture family.  The global \`\`current_gdbarch'' shall not be
996
   used.
997
 
998
   The INIT function shall return any of: NULL - indicating that it
999
   doesn't recognize the selected architecture; an existing \`\`struct
1000
   gdbarch'' from the ARCHES list - indicating that the new
1001
   architecture is just a synonym for an earlier architecture (see
1002
   gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1003
   - that describes the selected architecture (see gdbarch_alloc()).
1004
 
1005
   The DUMP_TDEP function shall print out all target specific values.
1006
   Care should be taken to ensure that the function works in both the
1007
   multi-arch and non- multi-arch cases. */
1008
 
1009
struct gdbarch_list
1010
{
1011
  struct gdbarch *gdbarch;
1012
  struct gdbarch_list *next;
1013
};
1014
 
1015
struct gdbarch_info
1016
{
1017
  /* Use default: NULL (ZERO). */
1018
  const struct bfd_arch_info *bfd_arch_info;
1019
 
1020
  /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO).  */
1021
  int byte_order;
1022
 
1023
  /* Use default: NULL (ZERO). */
1024
  bfd *abfd;
1025
 
1026
  /* Use default: NULL (ZERO). */
1027
  struct gdbarch_tdep_info *tdep_info;
1028
};
1029
 
1030
typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1031
typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1032
 
1033
/* DEPRECATED - use gdbarch_register() */
1034
extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1035
 
1036
extern void gdbarch_register (enum bfd_architecture architecture,
1037
                              gdbarch_init_ftype *,
1038
                              gdbarch_dump_tdep_ftype *);
1039
 
1040
 
1041
/* Return a freshly allocated, NULL terminated, array of the valid
1042
   architecture names.  Since architectures are registered during the
1043
   _initialize phase this function only returns useful information
1044
   once initialization has been completed. */
1045
 
1046
extern const char **gdbarch_printable_names (void);
1047
 
1048
 
1049
/* Helper function.  Search the list of ARCHES for a GDBARCH that
1050
   matches the information provided by INFO. */
1051
 
1052
extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches,  const struct gdbarch_info *info);
1053
 
1054
 
1055
/* Helper function.  Create a preliminary \`\`struct gdbarch''.  Perform
1056
   basic initialization using values obtained from the INFO andTDEP
1057
   parameters.  set_gdbarch_*() functions are called to complete the
1058
   initialization of the object. */
1059
 
1060
extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1061
 
1062
 
1063
/* Helper function.  Free a partially-constructed \`\`struct gdbarch''.
1064
   It is assumed that the caller freeds the \`\`struct
1065
   gdbarch_tdep''. */
1066
 
1067
extern void gdbarch_free (struct gdbarch *);
1068
 
1069
 
1070
/* Helper function. Force an update of the current architecture.
1071
 
1072
   The actual architecture selected is determined by INFO, \`\`(gdb) set
1073
   architecture'' et.al., the existing architecture and BFD's default
1074
   architecture.  INFO should be initialized to zero and then selected
1075
   fields should be updated.
1076
 
1077
   Returns non-zero if the update succeeds */
1078
 
1079
extern int gdbarch_update_p (struct gdbarch_info info);
1080
 
1081
 
1082
 
1083
/* Register per-architecture data-pointer.
1084
 
1085
   Reserve space for a per-architecture data-pointer.  An identifier
1086
   for the reserved data-pointer is returned.  That identifer should
1087
   be saved in a local static variable.
1088
 
1089
   The per-architecture data-pointer is either initialized explicitly
1090
   (set_gdbarch_data()) or implicitly (by INIT() via a call to
1091
   gdbarch_data()).  FREE() is called to delete either an existing
1092
   data-pointer overridden by set_gdbarch_data() or when the
1093
   architecture object is being deleted.
1094
 
1095
   When a previously created architecture is re-selected, the
1096
   per-architecture data-pointer for that previous architecture is
1097
   restored.  INIT() is not re-called.
1098
 
1099
   Multiple registrarants for any architecture are allowed (and
1100
   strongly encouraged).  */
1101
 
1102
struct gdbarch_data;
1103
 
1104
typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1105
typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1106
                                        void *pointer);
1107
extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1108
                                                   gdbarch_data_free_ftype *free);
1109
extern void set_gdbarch_data (struct gdbarch *gdbarch,
1110
                              struct gdbarch_data *data,
1111
                              void *pointer);
1112
 
1113
extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1114
 
1115
 
1116
/* Register per-architecture memory region.
1117
 
1118
   Provide a memory-region swap mechanism.  Per-architecture memory
1119
   region are created.  These memory regions are swapped whenever the
1120
   architecture is changed.  For a new architecture, the memory region
1121
   is initialized with zero (0) and the INIT function is called.
1122
 
1123
   Memory regions are swapped / initialized in the order that they are
1124
   registered.  NULL DATA and/or INIT values can be specified.
1125
 
1126
   New code should use register_gdbarch_data(). */
1127
 
1128
typedef void (gdbarch_swap_ftype) (void);
1129
extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1130
#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1131
 
1132
 
1133
 
1134
/* The target-system-dependent byte order is dynamic */
1135
 
1136
extern int target_byte_order;
1137
#ifndef TARGET_BYTE_ORDER
1138
#define TARGET_BYTE_ORDER (target_byte_order + 0)
1139
#endif
1140
 
1141
extern int target_byte_order_auto;
1142
#ifndef TARGET_BYTE_ORDER_AUTO
1143
#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1144
#endif
1145
 
1146
 
1147
 
1148
/* The target-system-dependent BFD architecture is dynamic */
1149
 
1150
extern int target_architecture_auto;
1151
#ifndef TARGET_ARCHITECTURE_AUTO
1152
#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1153
#endif
1154
 
1155
extern const struct bfd_arch_info *target_architecture;
1156
#ifndef TARGET_ARCHITECTURE
1157
#define TARGET_ARCHITECTURE (target_architecture + 0)
1158
#endif
1159
 
1160
 
1161
/* The target-system-dependent disassembler is semi-dynamic */
1162
 
1163
extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
1164
                                unsigned int len, disassemble_info *info);
1165
 
1166
extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1167
                                  disassemble_info *info);
1168
 
1169
extern void dis_asm_print_address (bfd_vma addr,
1170
                                   disassemble_info *info);
1171
 
1172
extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1173
extern disassemble_info tm_print_insn_info;
1174
#ifndef TARGET_PRINT_INSN_INFO
1175
#define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1176
#endif
1177
 
1178
 
1179
 
1180
/* Set the dynamic target-system-dependent parameters (architecture,
1181
   byte-order, ...) using information found in the BFD */
1182
 
1183
extern void set_gdbarch_from_file (bfd *);
1184
 
1185
 
1186
/* Initialize the current architecture to the "first" one we find on
1187
   our list.  */
1188
 
1189
extern void initialize_current_architecture (void);
1190
 
1191
/* For non-multiarched targets, do any initialization of the default
1192
   gdbarch object necessary after the _initialize_MODULE functions
1193
   have run.  */
1194
extern void initialize_non_multiarch (void);
1195
 
1196
/* gdbarch trace variable */
1197
extern int gdbarch_debug;
1198
 
1199
extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1200
 
1201
#endif
1202
EOF
1203
exec 1>&2
1204
#../move-if-change new-gdbarch.h gdbarch.h
1205
compare_new gdbarch.h
1206
 
1207
 
1208
#
1209
# C file
1210
#
1211
 
1212
exec > new-gdbarch.c
1213
copyright
1214
cat <<EOF
1215
 
1216
#include "defs.h"
1217
#include "arch-utils.h"
1218
 
1219
#if GDB_MULTI_ARCH
1220
#include "gdbcmd.h"
1221
#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1222
#else
1223
/* Just include everything in sight so that the every old definition
1224
   of macro is visible. */
1225
#include "gdb_string.h"
1226
#include <ctype.h>
1227
#include "symtab.h"
1228
#include "frame.h"
1229
#include "inferior.h"
1230
#include "breakpoint.h"
1231
#include "gdb_wait.h"
1232
#include "gdbcore.h"
1233
#include "gdbcmd.h"
1234
#include "target.h"
1235
#include "gdbthread.h"
1236
#include "annotate.h"
1237
#include "symfile.h"            /* for overlay functions */
1238
#include "value.h"              /* For old tm.h/nm.h macros.  */
1239
#endif
1240
#include "symcat.h"
1241
 
1242
#include "floatformat.h"
1243
 
1244
#include "gdb_assert.h"
1245
#include "gdb_string.h"
1246
#include "gdb-events.h"
1247
 
1248
/* Static function declarations */
1249
 
1250
static void verify_gdbarch (struct gdbarch *gdbarch);
1251
static void alloc_gdbarch_data (struct gdbarch *);
1252
static void free_gdbarch_data (struct gdbarch *);
1253
static void init_gdbarch_swap (struct gdbarch *);
1254
static void clear_gdbarch_swap (struct gdbarch *);
1255
static void swapout_gdbarch_swap (struct gdbarch *);
1256
static void swapin_gdbarch_swap (struct gdbarch *);
1257
 
1258
/* Non-zero if we want to trace architecture code.  */
1259
 
1260
#ifndef GDBARCH_DEBUG
1261
#define GDBARCH_DEBUG 0
1262
#endif
1263
int gdbarch_debug = GDBARCH_DEBUG;
1264
 
1265
EOF
1266
 
1267
# gdbarch open the gdbarch object
1268
printf "\n"
1269
printf "/* Maintain the struct gdbarch object */\n"
1270
printf "\n"
1271
printf "struct gdbarch\n"
1272
printf "{\n"
1273
printf "  /* Has this architecture been fully initialized?  */\n"
1274
printf "  int initialized_p;\n"
1275
printf "  /* basic architectural information */\n"
1276
function_list | while do_read
1277
do
1278
    if class_is_info_p
1279
    then
1280
        printf "  ${returntype} ${function};\n"
1281
    fi
1282
done
1283
printf "\n"
1284
printf "  /* target specific vector. */\n"
1285
printf "  struct gdbarch_tdep *tdep;\n"
1286
printf "  gdbarch_dump_tdep_ftype *dump_tdep;\n"
1287
printf "\n"
1288
printf "  /* per-architecture data-pointers */\n"
1289
printf "  unsigned nr_data;\n"
1290
printf "  void **data;\n"
1291
printf "\n"
1292
printf "  /* per-architecture swap-regions */\n"
1293
printf "  struct gdbarch_swap *swap;\n"
1294
printf "\n"
1295
cat <<EOF
1296
  /* Multi-arch values.
1297
 
1298
     When extending this structure you must:
1299
 
1300
     Add the field below.
1301
 
1302
     Declare set/get functions and define the corresponding
1303
     macro in gdbarch.h.
1304
 
1305
     gdbarch_alloc(): If zero/NULL is not a suitable default,
1306
     initialize the new field.
1307
 
1308
     verify_gdbarch(): Confirm that the target updated the field
1309
     correctly.
1310
 
1311
     gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1312
     field is dumped out
1313
 
1314
     \`\`startup_gdbarch()'': Append an initial value to the static
1315
     variable (base values on the host's c-type system).
1316
 
1317
     get_gdbarch(): Implement the set/get functions (probably using
1318
     the macro's as shortcuts).
1319
 
1320
     */
1321
 
1322
EOF
1323
function_list | while do_read
1324
do
1325
    if class_is_variable_p
1326
    then
1327
        printf "  ${returntype} ${function};\n"
1328
    elif class_is_function_p
1329
    then
1330
        printf "  gdbarch_${function}_ftype *${function}${attrib};\n"
1331
    fi
1332
done
1333
printf "};\n"
1334
 
1335
# A pre-initialized vector
1336
printf "\n"
1337
printf "\n"
1338
cat <<EOF
1339
/* The default architecture uses host values (for want of a better
1340
   choice). */
1341
EOF
1342
printf "\n"
1343
printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1344
printf "\n"
1345
printf "struct gdbarch startup_gdbarch =\n"
1346
printf "{\n"
1347
printf "  1, /* Always initialized.  */\n"
1348
printf "  /* basic architecture information */\n"
1349
function_list | while do_read
1350
do
1351
    if class_is_info_p
1352
    then
1353
        printf "  ${staticdefault},\n"
1354
    fi
1355
done
1356
cat <<EOF
1357
  /* target specific vector and its dump routine */
1358
  NULL, NULL,
1359
  /*per-architecture data-pointers and swap regions */
1360
  0, NULL, NULL,
1361
  /* Multi-arch values */
1362
EOF
1363
function_list | while do_read
1364
do
1365
    if class_is_function_p || class_is_variable_p
1366
    then
1367
        printf "  ${staticdefault},\n"
1368
    fi
1369
done
1370
cat <<EOF
1371
  /* startup_gdbarch() */
1372
};
1373
 
1374
struct gdbarch *current_gdbarch = &startup_gdbarch;
1375
 
1376
/* Do any initialization needed for a non-multiarch configuration
1377
   after the _initialize_MODULE functions have been run.  */
1378
void
1379
initialize_non_multiarch (void)
1380
{
1381
  alloc_gdbarch_data (&startup_gdbarch);
1382
  /* Ensure that all swap areas are zeroed so that they again think
1383
     they are starting from scratch.  */
1384
  clear_gdbarch_swap (&startup_gdbarch);
1385
  init_gdbarch_swap (&startup_gdbarch);
1386
}
1387
EOF
1388
 
1389
# Create a new gdbarch struct
1390
printf "\n"
1391
printf "\n"
1392
cat <<EOF
1393
/* Create a new \`\`struct gdbarch'' based on information provided by
1394
   \`\`struct gdbarch_info''. */
1395
EOF
1396
printf "\n"
1397
cat <<EOF
1398
struct gdbarch *
1399
gdbarch_alloc (const struct gdbarch_info *info,
1400
               struct gdbarch_tdep *tdep)
1401
{
1402
  /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1403
     so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1404
     the current local architecture and not the previous global
1405
     architecture.  This ensures that the new architectures initial
1406
     values are not influenced by the previous architecture.  Once
1407
     everything is parameterised with gdbarch, this will go away.  */
1408
  struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1409
  memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1410
 
1411
  alloc_gdbarch_data (current_gdbarch);
1412
 
1413
  current_gdbarch->tdep = tdep;
1414
EOF
1415
printf "\n"
1416
function_list | while do_read
1417
do
1418
    if class_is_info_p
1419
    then
1420
        printf "  current_gdbarch->${function} = info->${function};\n"
1421
    fi
1422
done
1423
printf "\n"
1424
printf "  /* Force the explicit initialization of these. */\n"
1425
function_list | while do_read
1426
do
1427
    if class_is_function_p || class_is_variable_p
1428
    then
1429
        if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1430
        then
1431
          printf "  current_gdbarch->${function} = ${predefault};\n"
1432
        fi
1433
    fi
1434
done
1435
cat <<EOF
1436
  /* gdbarch_alloc() */
1437
 
1438
  return current_gdbarch;
1439
}
1440
EOF
1441
 
1442
# Free a gdbarch struct.
1443
printf "\n"
1444
printf "\n"
1445
cat <<EOF
1446
/* Free a gdbarch struct.  This should never happen in normal
1447
   operation --- once you've created a gdbarch, you keep it around.
1448
   However, if an architecture's init function encounters an error
1449
   building the structure, it may need to clean up a partially
1450
   constructed gdbarch.  */
1451
 
1452
void
1453
gdbarch_free (struct gdbarch *arch)
1454
{
1455
  gdb_assert (arch != NULL);
1456
  free_gdbarch_data (arch);
1457
  xfree (arch);
1458
}
1459
EOF
1460
 
1461
# verify a new architecture
1462
printf "\n"
1463
printf "\n"
1464
printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1465
printf "\n"
1466
cat <<EOF
1467
static void
1468
verify_gdbarch (struct gdbarch *gdbarch)
1469
{
1470
  struct ui_file *log;
1471
  struct cleanup *cleanups;
1472
  long dummy;
1473
  char *buf;
1474
  /* Only perform sanity checks on a multi-arch target. */
1475
  if (!GDB_MULTI_ARCH)
1476
    return;
1477
  log = mem_fileopen ();
1478
  cleanups = make_cleanup_ui_file_delete (log);
1479
  /* fundamental */
1480
  if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1481
    fprintf_unfiltered (log, "\n\tbyte-order");
1482
  if (gdbarch->bfd_arch_info == NULL)
1483
    fprintf_unfiltered (log, "\n\tbfd_arch_info");
1484
  /* Check those that need to be defined for the given multi-arch level. */
1485
EOF
1486
function_list | while do_read
1487
do
1488
    if class_is_function_p || class_is_variable_p
1489
    then
1490
        if [ "x${invalid_p}" = "x0" ]
1491
        then
1492
            printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
1493
        elif class_is_predicate_p
1494
        then
1495
            printf "  /* Skip verify of ${function}, has predicate */\n"
1496
        # FIXME: See do_read for potential simplification
1497
        elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1498
        then
1499
            printf "  if (${invalid_p})\n"
1500
            printf "    gdbarch->${function} = ${postdefault};\n"
1501
        elif [ -n "${predefault}" -a -n "${postdefault}" ]
1502
        then
1503
            printf "  if (gdbarch->${function} == ${predefault})\n"
1504
            printf "    gdbarch->${function} = ${postdefault};\n"
1505
        elif [ -n "${postdefault}" ]
1506
        then
1507
            printf "  if (gdbarch->${function} == 0)\n"
1508
            printf "    gdbarch->${function} = ${postdefault};\n"
1509
        elif [ -n "${invalid_p}" ]
1510
        then
1511
            printf "  if ((GDB_MULTI_ARCH ${gt_level})\n"
1512
            printf "      && (${invalid_p}))\n"
1513
            printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1514
        elif [ -n "${predefault}" ]
1515
        then
1516
            printf "  if ((GDB_MULTI_ARCH ${gt_level})\n"
1517
            printf "      && (gdbarch->${function} == ${predefault}))\n"
1518
            printf "    fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1519
        fi
1520
    fi
1521
done
1522
cat <<EOF
1523
  buf = ui_file_xstrdup (log, &dummy);
1524
  make_cleanup (xfree, buf);
1525
  if (strlen (buf) > 0)
1526
    internal_error (__FILE__, __LINE__,
1527
                    "verify_gdbarch: the following are invalid ...%s",
1528
                    buf);
1529
  do_cleanups (cleanups);
1530
}
1531
EOF
1532
 
1533
# dump the structure
1534
printf "\n"
1535
printf "\n"
1536
cat <<EOF
1537
/* Print out the details of the current architecture. */
1538
 
1539
/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1540
   just happens to match the global variable \`\`current_gdbarch''.  That
1541
   way macros refering to that variable get the local and not the global
1542
   version - ulgh.  Once everything is parameterised with gdbarch, this
1543
   will go away. */
1544
 
1545
void
1546
gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1547
{
1548
  fprintf_unfiltered (file,
1549
                      "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1550
                      GDB_MULTI_ARCH);
1551
EOF
1552
function_list | sort -t: -k 3 | while do_read
1553
do
1554
    # multiarch functions don't have macros.
1555
    if class_is_multiarch_p
1556
    then
1557
        printf "  if (GDB_MULTI_ARCH)\n"
1558
        printf "    fprintf_unfiltered (file,\n"
1559
        printf "                        \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1560
        printf "                        (long) current_gdbarch->${function});\n"
1561
        continue
1562
    fi
1563
    # Print the macro definition.
1564
    printf "#ifdef ${macro}\n"
1565
    if [ "x${returntype}" = "xvoid" ]
1566
    then
1567
        printf "#if GDB_MULTI_ARCH\n"
1568
        printf "  /* Macro might contain \`[{}]' when not multi-arch */\n"
1569
    fi
1570
    if class_is_function_p
1571
    then
1572
        printf "  fprintf_unfiltered (file,\n"
1573
        printf "                      \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1574
        printf "                      \"${macro}(${actual})\",\n"
1575
        printf "                      XSTRING (${macro} (${actual})));\n"
1576
    else
1577
        printf "  fprintf_unfiltered (file,\n"
1578
        printf "                      \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1579
        printf "                      XSTRING (${macro}));\n"
1580
    fi
1581
    # Print the architecture vector value
1582
    if [ "x${returntype}" = "xvoid" ]
1583
    then
1584
        printf "#endif\n"
1585
    fi
1586
    if [ "x${print_p}" = "x()" ]
1587
    then
1588
        printf "  gdbarch_dump_${function} (current_gdbarch);\n"
1589
    elif [ "x${print_p}" = "x0" ]
1590
    then
1591
        printf "  /* skip print of ${macro}, print_p == 0. */\n"
1592
    elif [ -n "${print_p}" ]
1593
    then
1594
        printf "  if (${print_p})\n"
1595
        printf "    fprintf_unfiltered (file,\n"
1596
        printf "                        \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1597
        printf "                        ${print});\n"
1598
    elif class_is_function_p
1599
    then
1600
        printf "  if (GDB_MULTI_ARCH)\n"
1601
        printf "    fprintf_unfiltered (file,\n"
1602
        printf "                        \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1603
        printf "                        (long) current_gdbarch->${function}\n"
1604
        printf "                        /*${macro} ()*/);\n"
1605
    else
1606
        printf "  fprintf_unfiltered (file,\n"
1607
        printf "                      \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1608
        printf "                      ${print});\n"
1609
    fi
1610
    printf "#endif\n"
1611
done
1612
cat <<EOF
1613
  if (current_gdbarch->dump_tdep != NULL)
1614
    current_gdbarch->dump_tdep (current_gdbarch, file);
1615
}
1616
EOF
1617
 
1618
 
1619
# GET/SET
1620
printf "\n"
1621
cat <<EOF
1622
struct gdbarch_tdep *
1623
gdbarch_tdep (struct gdbarch *gdbarch)
1624
{
1625
  if (gdbarch_debug >= 2)
1626
    fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1627
  return gdbarch->tdep;
1628
}
1629
EOF
1630
printf "\n"
1631
function_list | while do_read
1632
do
1633
    if class_is_predicate_p
1634
    then
1635
        printf "\n"
1636
        printf "int\n"
1637
        printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1638
        printf "{\n"
1639
        printf "  gdb_assert (gdbarch != NULL);\n"
1640
        if [ -n "${valid_p}" ]
1641
        then
1642
            printf "  return ${valid_p};\n"
1643
        else
1644
            printf "#error \"gdbarch_${function}_p: not defined\"\n"
1645
        fi
1646
        printf "}\n"
1647
    fi
1648
    if class_is_function_p
1649
    then
1650
        printf "\n"
1651
        printf "${returntype}\n"
1652
        if [ "x${formal}" = "xvoid" ]
1653
        then
1654
          printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1655
        else
1656
          printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1657
        fi
1658
        printf "{\n"
1659
        printf "  gdb_assert (gdbarch != NULL);\n"
1660
        printf "  if (gdbarch->${function} == 0)\n"
1661
        printf "    internal_error (__FILE__, __LINE__,\n"
1662
        printf "                    \"gdbarch: gdbarch_${function} invalid\");\n"
1663
        printf "  if (gdbarch_debug >= 2)\n"
1664
        printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1665
        if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1666
        then
1667
            if class_is_multiarch_p
1668
            then
1669
                params="gdbarch"
1670
            else
1671
                params=""
1672
            fi
1673
        else
1674
            if class_is_multiarch_p
1675
            then
1676
                params="gdbarch, ${actual}"
1677
            else
1678
                params="${actual}"
1679
            fi
1680
        fi
1681
        if [ "x${returntype}" = "xvoid" ]
1682
        then
1683
          printf "  gdbarch->${function} (${params});\n"
1684
        else
1685
          printf "  return gdbarch->${function} (${params});\n"
1686
        fi
1687
        printf "}\n"
1688
        printf "\n"
1689
        printf "void\n"
1690
        printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1691
        printf "            `echo ${function} | sed -e 's/./ /g'`  gdbarch_${function}_ftype ${function})\n"
1692
        printf "{\n"
1693
        printf "  gdbarch->${function} = ${function};\n"
1694
        printf "}\n"
1695
    elif class_is_variable_p
1696
    then
1697
        printf "\n"
1698
        printf "${returntype}\n"
1699
        printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1700
        printf "{\n"
1701
        printf "  gdb_assert (gdbarch != NULL);\n"
1702
        if [ "x${invalid_p}" = "x0" ]
1703
        then
1704
            printf "  /* Skip verify of ${function}, invalid_p == 0 */\n"
1705
        elif [ -n "${invalid_p}" ]
1706
        then
1707
          printf "  if (${invalid_p})\n"
1708
          printf "    internal_error (__FILE__, __LINE__,\n"
1709
          printf "                    \"gdbarch: gdbarch_${function} invalid\");\n"
1710
        elif [ -n "${predefault}" ]
1711
        then
1712
          printf "  if (gdbarch->${function} == ${predefault})\n"
1713
          printf "    internal_error (__FILE__, __LINE__,\n"
1714
          printf "                    \"gdbarch: gdbarch_${function} invalid\");\n"
1715
        fi
1716
        printf "  if (gdbarch_debug >= 2)\n"
1717
        printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1718
        printf "  return gdbarch->${function};\n"
1719
        printf "}\n"
1720
        printf "\n"
1721
        printf "void\n"
1722
        printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1723
        printf "            `echo ${function} | sed -e 's/./ /g'`  ${returntype} ${function})\n"
1724
        printf "{\n"
1725
        printf "  gdbarch->${function} = ${function};\n"
1726
        printf "}\n"
1727
    elif class_is_info_p
1728
    then
1729
        printf "\n"
1730
        printf "${returntype}\n"
1731
        printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1732
        printf "{\n"
1733
        printf "  gdb_assert (gdbarch != NULL);\n"
1734
        printf "  if (gdbarch_debug >= 2)\n"
1735
        printf "    fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1736
        printf "  return gdbarch->${function};\n"
1737
        printf "}\n"
1738
    fi
1739
done
1740
 
1741
# All the trailing guff
1742
cat <<EOF
1743
 
1744
 
1745
/* Keep a registry of per-architecture data-pointers required by GDB
1746
   modules. */
1747
 
1748
struct gdbarch_data
1749
{
1750
  unsigned index;
1751
  int init_p;
1752
  gdbarch_data_init_ftype *init;
1753
  gdbarch_data_free_ftype *free;
1754
};
1755
 
1756
struct gdbarch_data_registration
1757
{
1758
  struct gdbarch_data *data;
1759
  struct gdbarch_data_registration *next;
1760
};
1761
 
1762
struct gdbarch_data_registry
1763
{
1764
  unsigned nr;
1765
  struct gdbarch_data_registration *registrations;
1766
};
1767
 
1768
struct gdbarch_data_registry gdbarch_data_registry =
1769
{
1770
  0, NULL,
1771
};
1772
 
1773
struct gdbarch_data *
1774
register_gdbarch_data (gdbarch_data_init_ftype *init,
1775
                       gdbarch_data_free_ftype *free)
1776
{
1777
  struct gdbarch_data_registration **curr;
1778
  /* Append the new registraration.  */
1779
  for (curr = &gdbarch_data_registry.registrations;
1780
       (*curr) != NULL;
1781
       curr = &(*curr)->next);
1782
  (*curr) = XMALLOC (struct gdbarch_data_registration);
1783
  (*curr)->next = NULL;
1784
  (*curr)->data = XMALLOC (struct gdbarch_data);
1785
  (*curr)->data->index = gdbarch_data_registry.nr++;
1786
  (*curr)->data->init = init;
1787
  (*curr)->data->init_p = 1;
1788
  (*curr)->data->free = free;
1789
  return (*curr)->data;
1790
}
1791
 
1792
 
1793
/* Create/delete the gdbarch data vector. */
1794
 
1795
static void
1796
alloc_gdbarch_data (struct gdbarch *gdbarch)
1797
{
1798
  gdb_assert (gdbarch->data == NULL);
1799
  gdbarch->nr_data = gdbarch_data_registry.nr;
1800
  gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1801
}
1802
 
1803
static void
1804
free_gdbarch_data (struct gdbarch *gdbarch)
1805
{
1806
  struct gdbarch_data_registration *rego;
1807
  gdb_assert (gdbarch->data != NULL);
1808
  for (rego = gdbarch_data_registry.registrations;
1809
       rego != NULL;
1810
       rego = rego->next)
1811
    {
1812
      struct gdbarch_data *data = rego->data;
1813
      gdb_assert (data->index < gdbarch->nr_data);
1814
      if (data->free != NULL && gdbarch->data[data->index] != NULL)
1815
        {
1816
          data->free (gdbarch, gdbarch->data[data->index]);
1817
          gdbarch->data[data->index] = NULL;
1818
        }
1819
    }
1820
  xfree (gdbarch->data);
1821
  gdbarch->data = NULL;
1822
}
1823
 
1824
 
1825
/* Initialize the current value of the specified per-architecture
1826
   data-pointer. */
1827
 
1828
void
1829
set_gdbarch_data (struct gdbarch *gdbarch,
1830
                  struct gdbarch_data *data,
1831
                  void *pointer)
1832
{
1833
  gdb_assert (data->index < gdbarch->nr_data);
1834
  if (gdbarch->data[data->index] != NULL)
1835
    {
1836
      gdb_assert (data->free != NULL);
1837
      data->free (gdbarch, gdbarch->data[data->index]);
1838
    }
1839
  gdbarch->data[data->index] = pointer;
1840
}
1841
 
1842
/* Return the current value of the specified per-architecture
1843
   data-pointer. */
1844
 
1845
void *
1846
gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1847
{
1848
  gdb_assert (data->index < gdbarch->nr_data);
1849
  /* The data-pointer isn't initialized, call init() to get a value but
1850
     only if the architecture initializaiton has completed.  Otherwise
1851
     punt - hope that the caller knows what they are doing.  */
1852
  if (gdbarch->data[data->index] == NULL
1853
      && gdbarch->initialized_p)
1854
    {
1855
      /* Be careful to detect an initialization cycle.  */
1856
      gdb_assert (data->init_p);
1857
      data->init_p = 0;
1858
      gdb_assert (data->init != NULL);
1859
      gdbarch->data[data->index] = data->init (gdbarch);
1860
      data->init_p = 1;
1861
      gdb_assert (gdbarch->data[data->index] != NULL);
1862
    }
1863
  return gdbarch->data[data->index];
1864
}
1865
 
1866
 
1867
 
1868
/* Keep a registry of swapped data required by GDB modules. */
1869
 
1870
struct gdbarch_swap
1871
{
1872
  void *swap;
1873
  struct gdbarch_swap_registration *source;
1874
  struct gdbarch_swap *next;
1875
};
1876
 
1877
struct gdbarch_swap_registration
1878
{
1879
  void *data;
1880
  unsigned long sizeof_data;
1881
  gdbarch_swap_ftype *init;
1882
  struct gdbarch_swap_registration *next;
1883
};
1884
 
1885
struct gdbarch_swap_registry
1886
{
1887
  int nr;
1888
  struct gdbarch_swap_registration *registrations;
1889
};
1890
 
1891
struct gdbarch_swap_registry gdbarch_swap_registry =
1892
{
1893
  0, NULL,
1894
};
1895
 
1896
void
1897
register_gdbarch_swap (void *data,
1898
                       unsigned long sizeof_data,
1899
                       gdbarch_swap_ftype *init)
1900
{
1901
  struct gdbarch_swap_registration **rego;
1902
  for (rego = &gdbarch_swap_registry.registrations;
1903
       (*rego) != NULL;
1904
       rego = &(*rego)->next);
1905
  (*rego) = XMALLOC (struct gdbarch_swap_registration);
1906
  (*rego)->next = NULL;
1907
  (*rego)->init = init;
1908
  (*rego)->data = data;
1909
  (*rego)->sizeof_data = sizeof_data;
1910
}
1911
 
1912
static void
1913
clear_gdbarch_swap (struct gdbarch *gdbarch)
1914
{
1915
  struct gdbarch_swap *curr;
1916
  for (curr = gdbarch->swap;
1917
       curr != NULL;
1918
       curr = curr->next)
1919
    {
1920
      memset (curr->source->data, 0, curr->source->sizeof_data);
1921
    }
1922
}
1923
 
1924
static void
1925
init_gdbarch_swap (struct gdbarch *gdbarch)
1926
{
1927
  struct gdbarch_swap_registration *rego;
1928
  struct gdbarch_swap **curr = &gdbarch->swap;
1929
  for (rego = gdbarch_swap_registry.registrations;
1930
       rego != NULL;
1931
       rego = rego->next)
1932
    {
1933
      if (rego->data != NULL)
1934
        {
1935
          (*curr) = XMALLOC (struct gdbarch_swap);
1936
          (*curr)->source = rego;
1937
          (*curr)->swap = xmalloc (rego->sizeof_data);
1938
          (*curr)->next = NULL;
1939
          curr = &(*curr)->next;
1940
        }
1941
      if (rego->init != NULL)
1942
        rego->init ();
1943
    }
1944
}
1945
 
1946
static void
1947
swapout_gdbarch_swap (struct gdbarch *gdbarch)
1948
{
1949
  struct gdbarch_swap *curr;
1950
  for (curr = gdbarch->swap;
1951
       curr != NULL;
1952
       curr = curr->next)
1953
    memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1954
}
1955
 
1956
static void
1957
swapin_gdbarch_swap (struct gdbarch *gdbarch)
1958
{
1959
  struct gdbarch_swap *curr;
1960
  for (curr = gdbarch->swap;
1961
       curr != NULL;
1962
       curr = curr->next)
1963
    memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1964
}
1965
 
1966
 
1967
/* Keep a registry of the architectures known by GDB. */
1968
 
1969
struct gdbarch_registration
1970
{
1971
  enum bfd_architecture bfd_architecture;
1972
  gdbarch_init_ftype *init;
1973
  gdbarch_dump_tdep_ftype *dump_tdep;
1974
  struct gdbarch_list *arches;
1975
  struct gdbarch_registration *next;
1976
};
1977
 
1978
static struct gdbarch_registration *gdbarch_registry = NULL;
1979
 
1980
static void
1981
append_name (const char ***buf, int *nr, const char *name)
1982
{
1983
  *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1984
  (*buf)[*nr] = name;
1985
  *nr += 1;
1986
}
1987
 
1988
const char **
1989
gdbarch_printable_names (void)
1990
{
1991
  if (GDB_MULTI_ARCH)
1992
    {
1993
      /* Accumulate a list of names based on the registed list of
1994
         architectures. */
1995
      enum bfd_architecture a;
1996
      int nr_arches = 0;
1997
      const char **arches = NULL;
1998
      struct gdbarch_registration *rego;
1999
      for (rego = gdbarch_registry;
2000
           rego != NULL;
2001
           rego = rego->next)
2002
        {
2003
          const struct bfd_arch_info *ap;
2004
          ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2005
          if (ap == NULL)
2006
            internal_error (__FILE__, __LINE__,
2007
                            "gdbarch_architecture_names: multi-arch unknown");
2008
          do
2009
            {
2010
              append_name (&arches, &nr_arches, ap->printable_name);
2011
              ap = ap->next;
2012
            }
2013
          while (ap != NULL);
2014
        }
2015
      append_name (&arches, &nr_arches, NULL);
2016
      return arches;
2017
    }
2018
  else
2019
    /* Just return all the architectures that BFD knows.  Assume that
2020
       the legacy architecture framework supports them. */
2021
    return bfd_arch_list ();
2022
}
2023
 
2024
 
2025
void
2026
gdbarch_register (enum bfd_architecture bfd_architecture,
2027
                  gdbarch_init_ftype *init,
2028
                  gdbarch_dump_tdep_ftype *dump_tdep)
2029
{
2030
  struct gdbarch_registration **curr;
2031
  const struct bfd_arch_info *bfd_arch_info;
2032
  /* Check that BFD recognizes this architecture */
2033
  bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2034
  if (bfd_arch_info == NULL)
2035
    {
2036
      internal_error (__FILE__, __LINE__,
2037
                      "gdbarch: Attempt to register unknown architecture (%d)",
2038
                      bfd_architecture);
2039
    }
2040
  /* Check that we haven't seen this architecture before */
2041
  for (curr = &gdbarch_registry;
2042
       (*curr) != NULL;
2043
       curr = &(*curr)->next)
2044
    {
2045
      if (bfd_architecture == (*curr)->bfd_architecture)
2046
        internal_error (__FILE__, __LINE__,
2047
                        "gdbarch: Duplicate registraration of architecture (%s)",
2048
                        bfd_arch_info->printable_name);
2049
    }
2050
  /* log it */
2051
  if (gdbarch_debug)
2052
    fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2053
                        bfd_arch_info->printable_name,
2054
                        (long) init);
2055
  /* Append it */
2056
  (*curr) = XMALLOC (struct gdbarch_registration);
2057
  (*curr)->bfd_architecture = bfd_architecture;
2058
  (*curr)->init = init;
2059
  (*curr)->dump_tdep = dump_tdep;
2060
  (*curr)->arches = NULL;
2061
  (*curr)->next = NULL;
2062
  /* When non- multi-arch, install whatever target dump routine we've
2063
     been provided - hopefully that routine has been written correctly
2064
     and works regardless of multi-arch. */
2065
  if (!GDB_MULTI_ARCH && dump_tdep != NULL
2066
      && startup_gdbarch.dump_tdep == NULL)
2067
    startup_gdbarch.dump_tdep = dump_tdep;
2068
}
2069
 
2070
void
2071
register_gdbarch_init (enum bfd_architecture bfd_architecture,
2072
                       gdbarch_init_ftype *init)
2073
{
2074
  gdbarch_register (bfd_architecture, init, NULL);
2075
}
2076
 
2077
 
2078
/* Look for an architecture using gdbarch_info.  Base search on only
2079
   BFD_ARCH_INFO and BYTE_ORDER. */
2080
 
2081
struct gdbarch_list *
2082
gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2083
                             const struct gdbarch_info *info)
2084
{
2085
  for (; arches != NULL; arches = arches->next)
2086
    {
2087
      if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2088
        continue;
2089
      if (info->byte_order != arches->gdbarch->byte_order)
2090
        continue;
2091
      return arches;
2092
    }
2093
  return NULL;
2094
}
2095
 
2096
 
2097
/* Update the current architecture. Return ZERO if the update request
2098
   failed. */
2099
 
2100
int
2101
gdbarch_update_p (struct gdbarch_info info)
2102
{
2103
  struct gdbarch *new_gdbarch;
2104
  struct gdbarch *old_gdbarch;
2105
  struct gdbarch_registration *rego;
2106
 
2107
  /* Fill in missing parts of the INFO struct using a number of
2108
     sources: \`\`set ...''; INFOabfd supplied; existing target.  */
2109
 
2110
  /* \`\`(gdb) set architecture ...'' */
2111
  if (info.bfd_arch_info == NULL
2112
      && !TARGET_ARCHITECTURE_AUTO)
2113
    info.bfd_arch_info = TARGET_ARCHITECTURE;
2114
  if (info.bfd_arch_info == NULL
2115
      && info.abfd != NULL
2116
      && bfd_get_arch (info.abfd) != bfd_arch_unknown
2117
      && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2118
    info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2119
  if (info.bfd_arch_info == NULL)
2120
    info.bfd_arch_info = TARGET_ARCHITECTURE;
2121
 
2122
  /* \`\`(gdb) set byte-order ...'' */
2123
  if (info.byte_order == BFD_ENDIAN_UNKNOWN
2124
      && !TARGET_BYTE_ORDER_AUTO)
2125
    info.byte_order = TARGET_BYTE_ORDER;
2126
  /* From the INFO struct. */
2127
  if (info.byte_order == BFD_ENDIAN_UNKNOWN
2128
      && info.abfd != NULL)
2129
    info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2130
                       : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2131
                       : BFD_ENDIAN_UNKNOWN);
2132
  /* From the current target. */
2133
  if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2134
    info.byte_order = TARGET_BYTE_ORDER;
2135
 
2136
  /* Must have found some sort of architecture. */
2137
  gdb_assert (info.bfd_arch_info != NULL);
2138
 
2139
  if (gdbarch_debug)
2140
    {
2141
      fprintf_unfiltered (gdb_stdlog,
2142
                          "gdbarch_update: info.bfd_arch_info %s\n",
2143
                          (info.bfd_arch_info != NULL
2144
                           ? info.bfd_arch_info->printable_name
2145
                           : "(null)"));
2146
      fprintf_unfiltered (gdb_stdlog,
2147
                          "gdbarch_update: info.byte_order %d (%s)\n",
2148
                          info.byte_order,
2149
                          (info.byte_order == BFD_ENDIAN_BIG ? "big"
2150
                           : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2151
                           : "default"));
2152
      fprintf_unfiltered (gdb_stdlog,
2153
                          "gdbarch_update: info.abfd 0x%lx\n",
2154
                          (long) info.abfd);
2155
      fprintf_unfiltered (gdb_stdlog,
2156
                          "gdbarch_update: info.tdep_info 0x%lx\n",
2157
                          (long) info.tdep_info);
2158
    }
2159
 
2160
  /* Find the target that knows about this architecture. */
2161
  for (rego = gdbarch_registry;
2162
       rego != NULL;
2163
       rego = rego->next)
2164
    if (rego->bfd_architecture == info.bfd_arch_info->arch)
2165
      break;
2166
  if (rego == NULL)
2167
    {
2168
      if (gdbarch_debug)
2169
        fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2170
      return 0;
2171
    }
2172
 
2173
  /* Swap the data belonging to the old target out setting the
2174
     installed data to zero.  This stops the ->init() function trying
2175
     to refer to the previous architecture's global data structures.  */
2176
  swapout_gdbarch_swap (current_gdbarch);
2177
  clear_gdbarch_swap (current_gdbarch);
2178
 
2179
  /* Save the previously selected architecture, setting the global to
2180
     NULL.  This stops ->init() trying to use the previous
2181
     architecture's configuration.  The previous architecture may not
2182
     even be of the same architecture family.  The most recent
2183
     architecture of the same family is found at the head of the
2184
     rego->arches list.  */
2185
  old_gdbarch = current_gdbarch;
2186
  current_gdbarch = NULL;
2187
 
2188
  /* Ask the target for a replacement architecture. */
2189
  new_gdbarch = rego->init (info, rego->arches);
2190
 
2191
  /* Did the target like it?  No. Reject the change and revert to the
2192
     old architecture.  */
2193
  if (new_gdbarch == NULL)
2194
    {
2195
      if (gdbarch_debug)
2196
        fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2197
      swapin_gdbarch_swap (old_gdbarch);
2198
      current_gdbarch = old_gdbarch;
2199
      return 0;
2200
    }
2201
 
2202
  /* Did the architecture change?  No.  Oops, put the old architecture
2203
     back.  */
2204
  if (old_gdbarch == new_gdbarch)
2205
    {
2206
      if (gdbarch_debug)
2207
        fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2208
                            (long) new_gdbarch,
2209
                            new_gdbarch->bfd_arch_info->printable_name);
2210
      swapin_gdbarch_swap (old_gdbarch);
2211
      current_gdbarch = old_gdbarch;
2212
      return 1;
2213
    }
2214
 
2215
  /* Is this a pre-existing architecture?  Yes. Move it to the front
2216
     of the list of architectures (keeping the list sorted Most
2217
     Recently Used) and then copy it in.  */
2218
  {
2219
    struct gdbarch_list **list;
2220
    for (list = &rego->arches;
2221
         (*list) != NULL;
2222
         list = &(*list)->next)
2223
      {
2224
        if ((*list)->gdbarch == new_gdbarch)
2225
          {
2226
            struct gdbarch_list *this;
2227
            if (gdbarch_debug)
2228
              fprintf_unfiltered (gdb_stdlog,
2229
                                  "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2230
                                  (long) new_gdbarch,
2231
                                  new_gdbarch->bfd_arch_info->printable_name);
2232
            /* Unlink this.  */
2233
            this = (*list);
2234
            (*list) = this->next;
2235
            /* Insert in the front.  */
2236
            this->next = rego->arches;
2237
            rego->arches = this;
2238
            /* Copy the new architecture in.  */
2239
            current_gdbarch = new_gdbarch;
2240
            swapin_gdbarch_swap (new_gdbarch);
2241
            architecture_changed_event ();
2242
            return 1;
2243
          }
2244
      }
2245
  }
2246
 
2247
  /* Prepend this new architecture to the architecture list (keep the
2248
     list sorted Most Recently Used).  */
2249
  {
2250
    struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2251
    this->next = rego->arches;
2252
    this->gdbarch = new_gdbarch;
2253
    rego->arches = this;
2254
  }
2255
 
2256
  /* Switch to this new architecture marking it initialized.  */
2257
  current_gdbarch = new_gdbarch;
2258
  current_gdbarch->initialized_p = 1;
2259
  if (gdbarch_debug)
2260
    {
2261
      fprintf_unfiltered (gdb_stdlog,
2262
                          "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2263
                          (long) new_gdbarch,
2264
                          new_gdbarch->bfd_arch_info->printable_name);
2265
    }
2266
 
2267
  /* Check that the newly installed architecture is valid.  Plug in
2268
     any post init values.  */
2269
  new_gdbarch->dump_tdep = rego->dump_tdep;
2270
  verify_gdbarch (new_gdbarch);
2271
 
2272
  /* Initialize the per-architecture memory (swap) areas.
2273
     CURRENT_GDBARCH must be update before these modules are
2274
     called. */
2275
  init_gdbarch_swap (new_gdbarch);
2276
 
2277
  /* Initialize the per-architecture data.  CURRENT_GDBARCH
2278
     must be updated before these modules are called. */
2279
  architecture_changed_event ();
2280
 
2281
  if (gdbarch_debug)
2282
    gdbarch_dump (current_gdbarch, gdb_stdlog);
2283
 
2284
  return 1;
2285
}
2286
 
2287
 
2288
/* Disassembler */
2289
 
2290
/* Pointer to the target-dependent disassembly function.  */
2291
int (*tm_print_insn) (bfd_vma, disassemble_info *);
2292
disassemble_info tm_print_insn_info;
2293
 
2294
 
2295
extern void _initialize_gdbarch (void);
2296
 
2297
void
2298
_initialize_gdbarch (void)
2299
{
2300
  struct cmd_list_element *c;
2301
 
2302
  INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2303
  tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2304
  tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2305
  tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2306
  tm_print_insn_info.print_address_func = dis_asm_print_address;
2307
 
2308
  add_show_from_set (add_set_cmd ("arch",
2309
                                  class_maintenance,
2310
                                  var_zinteger,
2311
                                  (char *)&gdbarch_debug,
2312
                                  "Set architecture debugging.\\n\\
2313
When non-zero, architecture debugging is enabled.", &setdebuglist),
2314
                     &showdebuglist);
2315
  c = add_set_cmd ("archdebug",
2316
                   class_maintenance,
2317
                   var_zinteger,
2318
                   (char *)&gdbarch_debug,
2319
                   "Set architecture debugging.\\n\\
2320
When non-zero, architecture debugging is enabled.", &setlist);
2321
 
2322
  deprecate_cmd (c, "set debug arch");
2323
  deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2324
}
2325
EOF
2326
 
2327
# close things off
2328
exec 1>&2
2329
#../move-if-change new-gdbarch.c gdbarch.c
2330
compare_new gdbarch.c

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.