OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [gdb/] [gdbserver/] [low-nbsd.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* Low level interface to ptrace, for the remote server for GDB.
2
   Copyright 1986, 1987, 1993, 2000, 2001, 2002 Free Software Foundation, Inc.
3
 
4
This file is part of GDB.
5
 
6
This program is free software; you can redistribute it and/or modify
7
it under the terms of the GNU General Public License as published by
8
the Free Software Foundation; either version 2 of the License, or
9
(at your option) any later version.
10
 
11
This program is distributed in the hope that it will be useful,
12
but WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
GNU General Public License for more details.
15
 
16
You should have received a copy of the GNU General Public License
17
along with this program; if not, write to the Free Software
18
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
19
 
20
#include "server.h"
21
#include <sys/types.h>
22
#include <sys/wait.h>
23
#include "frame.h"
24
#include "inferior.h"
25
 
26
#include <stdio.h>
27
#include <errno.h>
28
 
29
/***************Begin MY defs*********************/
30
static char my_registers[REGISTER_BYTES];
31
char *registers = my_registers;
32
/***************End MY defs*********************/
33
 
34
#include <sys/ptrace.h>
35
#include <machine/reg.h>
36
 
37
#define RF(dst, src) \
38
        memcpy(&registers[REGISTER_BYTE(dst)], &src, sizeof(src))
39
 
40
#define RS(src, dst) \
41
        memcpy(&dst, &registers[REGISTER_BYTE(src)], sizeof(dst))
42
 
43
#ifdef __i386__
44
struct env387
45
  {
46
    unsigned short control;
47
    unsigned short r0;
48
    unsigned short status;
49
    unsigned short r1;
50
    unsigned short tag;
51
    unsigned short r2;
52
    unsigned long eip;
53
    unsigned short code_seg;
54
    unsigned short opcode;
55
    unsigned long operand;
56
    unsigned short operand_seg;
57
    unsigned short r3;
58
    unsigned char regs[8][10];
59
  };
60
 
61
/* i386_register_raw_size[i] is the number of bytes of storage in the
62
   actual machine representation for register i.  */
63
int i386_register_raw_size[MAX_NUM_REGS] = {
64
   4,  4,  4,  4,
65
   4,  4,  4,  4,
66
   4,  4,  4,  4,
67
   4,  4,  4,  4,
68
  10, 10, 10, 10,
69
  10, 10, 10, 10,
70
   4,  4,  4,  4,
71
   4,  4,  4,  4,
72
  16, 16, 16, 16,
73
  16, 16, 16, 16,
74
  4
75
};
76
 
77
int i386_register_byte[MAX_NUM_REGS];
78
 
79
static void
80
initialize_arch (void)
81
{
82
  /* Initialize the table saying where each register starts in the
83
     register file.  */
84
  {
85
    int i, offset;
86
 
87
    offset = 0;
88
    for (i = 0; i < MAX_NUM_REGS; i++)
89
      {
90
        i386_register_byte[i] = offset;
91
        offset += i386_register_raw_size[i];
92
      }
93
  }
94
}
95
#endif  /* !__i386__ */
96
 
97
#ifdef __m68k__
98
static void
99
initialize_arch (void)
100
{
101
}
102
#endif  /* !__m68k__ */
103
 
104
#ifdef __ns32k__
105
static void
106
initialize_arch (void)
107
{
108
}
109
#endif  /* !__ns32k__ */
110
 
111
#ifdef __powerpc__
112
#include "ppc-tdep.h"
113
 
114
static void
115
initialize_arch (void)
116
{
117
}
118
#endif  /* !__powerpc__ */
119
 
120
 
121
/* Start an inferior process and returns its pid.
122
   ALLARGS is a vector of program-name and args. */
123
 
124
int
125
create_inferior (char *program, char **allargs)
126
{
127
  int pid;
128
 
129
  pid = fork ();
130
  if (pid < 0)
131
    perror_with_name ("fork");
132
 
133
  if (pid == 0)
134
    {
135
      ptrace (PT_TRACE_ME, 0, 0, 0);
136
 
137
      execv (program, allargs);
138
 
139
      fprintf (stderr, "Cannot exec %s: %s.\n", program,
140
               errno < sys_nerr ? sys_errlist[errno] : "unknown error");
141
      fflush (stderr);
142
      _exit (0177);
143
    }
144
 
145
  return pid;
146
}
147
 
148
/* Attaching is not supported.  */
149
int
150
myattach (int pid)
151
{
152
  return -1;
153
}
154
 
155
/* Kill the inferior process.  Make us have no inferior.  */
156
 
157
void
158
kill_inferior (void)
159
{
160
  if (inferior_pid == 0)
161
    return;
162
  ptrace (PT_KILL, inferior_pid, 0, 0);
163
  wait (0);
164
  /*************inferior_died ();****VK**************/
165
}
166
 
167
/* Return nonzero if the given thread is still alive.  */
168
int
169
mythread_alive (int pid)
170
{
171
  return 1;
172
}
173
 
174
/* Wait for process, returns status */
175
 
176
unsigned char
177
mywait (char *status)
178
{
179
  int pid;
180
  int w;
181
 
182
  enable_async_io ();
183
  pid = waitpid (inferior_pid, &w, 0);
184
  disable_async_io ();
185
  if (pid != inferior_pid)
186
    perror_with_name ("wait");
187
 
188
  if (WIFEXITED (w))
189
    {
190
      fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
191
      *status = 'W';
192
      return ((unsigned char) WEXITSTATUS (w));
193
    }
194
  else if (!WIFSTOPPED (w))
195
    {
196
      fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
197
      *status = 'X';
198
      return ((unsigned char) WTERMSIG (w));
199
    }
200
 
201
  fetch_inferior_registers (0);
202
 
203
  *status = 'T';
204
  return ((unsigned char) WSTOPSIG (w));
205
}
206
 
207
/* Resume execution of the inferior process.
208
   If STEP is nonzero, single-step it.
209
   If SIGNAL is nonzero, give it that signal.  */
210
 
211
void
212
myresume (int step, int signal)
213
{
214
  errno = 0;
215
  ptrace (step ? PT_STEP : PT_CONTINUE, inferior_pid,
216
          (PTRACE_ARG3_TYPE) 1, signal);
217
  if (errno)
218
    perror_with_name ("ptrace");
219
}
220
 
221
 
222
#ifdef __i386__
223
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
224
   them all.  We actually fetch more than requested, when convenient,
225
   marking them as valid so we won't fetch them again.  */
226
 
227
void
228
fetch_inferior_registers (int ignored)
229
{
230
  struct reg inferior_registers;
231
  struct env387 inferior_fp_registers;
232
 
233
  ptrace (PT_GETREGS, inferior_pid,
234
          (PTRACE_ARG3_TYPE) &inferior_registers, 0);
235
  ptrace (PT_GETFPREGS, inferior_pid,
236
          (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
237
 
238
  RF ( 0, inferior_registers.r_eax);
239
  RF ( 1, inferior_registers.r_ecx);
240
  RF ( 2, inferior_registers.r_edx);
241
  RF ( 3, inferior_registers.r_ebx);
242
  RF ( 4, inferior_registers.r_esp);
243
  RF ( 5, inferior_registers.r_ebp);
244
  RF ( 6, inferior_registers.r_esi);
245
  RF ( 7, inferior_registers.r_edi);
246
  RF ( 8, inferior_registers.r_eip);
247
  RF ( 9, inferior_registers.r_eflags);
248
  RF (10, inferior_registers.r_cs);
249
  RF (11, inferior_registers.r_ss);
250
  RF (12, inferior_registers.r_ds);
251
  RF (13, inferior_registers.r_es);
252
  RF (14, inferior_registers.r_fs);
253
  RF (15, inferior_registers.r_gs);
254
 
255
  RF (FP0_REGNUM,     inferior_fp_registers.regs[0]);
256
  RF (FP0_REGNUM + 1, inferior_fp_registers.regs[1]);
257
  RF (FP0_REGNUM + 2, inferior_fp_registers.regs[2]);
258
  RF (FP0_REGNUM + 3, inferior_fp_registers.regs[3]);
259
  RF (FP0_REGNUM + 4, inferior_fp_registers.regs[4]);
260
  RF (FP0_REGNUM + 5, inferior_fp_registers.regs[5]);
261
  RF (FP0_REGNUM + 6, inferior_fp_registers.regs[6]);
262
  RF (FP0_REGNUM + 7, inferior_fp_registers.regs[7]);
263
 
264
  RF (FCTRL_REGNUM,   inferior_fp_registers.control);
265
  RF (FSTAT_REGNUM,   inferior_fp_registers.status);
266
  RF (FTAG_REGNUM,    inferior_fp_registers.tag);
267
  RF (FCS_REGNUM,     inferior_fp_registers.code_seg);
268
  RF (FCOFF_REGNUM,   inferior_fp_registers.eip);
269
  RF (FDS_REGNUM,     inferior_fp_registers.operand_seg);
270
  RF (FDOFF_REGNUM,   inferior_fp_registers.operand);
271
  RF (FOP_REGNUM,     inferior_fp_registers.opcode);
272
}
273
 
274
/* Store our register values back into the inferior.
275
   If REGNO is -1, do this for all registers.
276
   Otherwise, REGNO specifies which register (so we can save time).  */
277
 
278
void
279
store_inferior_registers (int ignored)
280
{
281
  struct reg inferior_registers;
282
  struct env387 inferior_fp_registers;
283
 
284
  RS ( 0, inferior_registers.r_eax);
285
  RS ( 1, inferior_registers.r_ecx);
286
  RS ( 2, inferior_registers.r_edx);
287
  RS ( 3, inferior_registers.r_ebx);
288
  RS ( 4, inferior_registers.r_esp);
289
  RS ( 5, inferior_registers.r_ebp);
290
  RS ( 6, inferior_registers.r_esi);
291
  RS ( 7, inferior_registers.r_edi);
292
  RS ( 8, inferior_registers.r_eip);
293
  RS ( 9, inferior_registers.r_eflags);
294
  RS (10, inferior_registers.r_cs);
295
  RS (11, inferior_registers.r_ss);
296
  RS (12, inferior_registers.r_ds);
297
  RS (13, inferior_registers.r_es);
298
  RS (14, inferior_registers.r_fs);
299
  RS (15, inferior_registers.r_gs);
300
 
301
  RS (FP0_REGNUM,     inferior_fp_registers.regs[0]);
302
  RS (FP0_REGNUM + 1, inferior_fp_registers.regs[1]);
303
  RS (FP0_REGNUM + 2, inferior_fp_registers.regs[2]);
304
  RS (FP0_REGNUM + 3, inferior_fp_registers.regs[3]);
305
  RS (FP0_REGNUM + 4, inferior_fp_registers.regs[4]);
306
  RS (FP0_REGNUM + 5, inferior_fp_registers.regs[5]);
307
  RS (FP0_REGNUM + 6, inferior_fp_registers.regs[6]);
308
  RS (FP0_REGNUM + 7, inferior_fp_registers.regs[7]);
309
 
310
  RS (FCTRL_REGNUM,   inferior_fp_registers.control);
311
  RS (FSTAT_REGNUM,   inferior_fp_registers.status);
312
  RS (FTAG_REGNUM,    inferior_fp_registers.tag);
313
  RS (FCS_REGNUM,     inferior_fp_registers.code_seg);
314
  RS (FCOFF_REGNUM,   inferior_fp_registers.eip);
315
  RS (FDS_REGNUM,     inferior_fp_registers.operand_seg);
316
  RS (FDOFF_REGNUM,   inferior_fp_registers.operand);
317
  RS (FOP_REGNUM,     inferior_fp_registers.opcode);
318
 
319
  ptrace (PT_SETREGS, inferior_pid,
320
          (PTRACE_ARG3_TYPE) &inferior_registers, 0);
321
  ptrace (PT_SETFPREGS, inferior_pid,
322
          (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
323
}
324
#endif  /* !__i386__ */
325
 
326
#ifdef __m68k__
327
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
328
   them all.  We actually fetch more than requested, when convenient,
329
   marking them as valid so we won't fetch them again.  */
330
 
331
void
332
fetch_inferior_registers (int regno)
333
{
334
  struct reg inferior_registers;
335
  struct fpreg inferior_fp_registers;
336
 
337
  ptrace (PT_GETREGS, inferior_pid,
338
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
339
  memcpy (&registers[REGISTER_BYTE (0)], &inferior_registers,
340
          sizeof (inferior_registers));
341
 
342
  ptrace (PT_GETFPREGS, inferior_pid,
343
          (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
344
  memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
345
          sizeof (inferior_fp_registers));
346
}
347
 
348
/* Store our register values back into the inferior.
349
   If REGNO is -1, do this for all registers.
350
   Otherwise, REGNO specifies which register (so we can save time).  */
351
 
352
void
353
store_inferior_registers (int regno)
354
{
355
  struct reg inferior_registers;
356
  struct fpreg inferior_fp_registers;
357
 
358
  memcpy (&inferior_registers, &registers[REGISTER_BYTE (0)],
359
          sizeof (inferior_registers));
360
  ptrace (PT_SETREGS, inferior_pid,
361
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
362
 
363
  memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
364
          sizeof (inferior_fp_registers));
365
  ptrace (PT_SETFPREGS, inferior_pid,
366
          (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
367
}
368
#endif  /* !__m68k__ */
369
 
370
 
371
#ifdef __ns32k__
372
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
373
   them all.  We actually fetch more than requested, when convenient,
374
   marking them as valid so we won't fetch them again.  */
375
 
376
void
377
fetch_inferior_registers (int regno)
378
{
379
  struct reg inferior_registers;
380
  struct fpreg inferior_fpregisters;
381
 
382
  ptrace (PT_GETREGS, inferior_pid,
383
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
384
  ptrace (PT_GETFPREGS, inferior_pid,
385
          (PTRACE_ARG3_TYPE) & inferior_fpregisters, 0);
386
 
387
  RF (R0_REGNUM + 0, inferior_registers.r_r0);
388
  RF (R0_REGNUM + 1, inferior_registers.r_r1);
389
  RF (R0_REGNUM + 2, inferior_registers.r_r2);
390
  RF (R0_REGNUM + 3, inferior_registers.r_r3);
391
  RF (R0_REGNUM + 4, inferior_registers.r_r4);
392
  RF (R0_REGNUM + 5, inferior_registers.r_r5);
393
  RF (R0_REGNUM + 6, inferior_registers.r_r6);
394
  RF (R0_REGNUM + 7, inferior_registers.r_r7);
395
 
396
  RF (SP_REGNUM, inferior_registers.r_sp);
397
  RF (FP_REGNUM, inferior_registers.r_fp);
398
  RF (PC_REGNUM, inferior_registers.r_pc);
399
  RF (PS_REGNUM, inferior_registers.r_psr);
400
 
401
  RF (FPS_REGNUM, inferior_fpregisters.r_fsr);
402
  RF (FP0_REGNUM + 0, inferior_fpregisters.r_freg[0]);
403
  RF (FP0_REGNUM + 2, inferior_fpregisters.r_freg[2]);
404
  RF (FP0_REGNUM + 4, inferior_fpregisters.r_freg[4]);
405
  RF (FP0_REGNUM + 6, inferior_fpregisters.r_freg[6]);
406
  RF (LP0_REGNUM + 1, inferior_fpregisters.r_freg[1]);
407
  RF (LP0_REGNUM + 3, inferior_fpregisters.r_freg[3]);
408
  RF (LP0_REGNUM + 5, inferior_fpregisters.r_freg[5]);
409
  RF (LP0_REGNUM + 7, inferior_fpregisters.r_freg[7]);
410
}
411
 
412
/* Store our register values back into the inferior.
413
   If REGNO is -1, do this for all registers.
414
   Otherwise, REGNO specifies which register (so we can save time).  */
415
 
416
void
417
store_inferior_registers (int regno)
418
{
419
  struct reg inferior_registers;
420
  struct fpreg inferior_fpregisters;
421
 
422
  RS (R0_REGNUM + 0, inferior_registers.r_r0);
423
  RS (R0_REGNUM + 1, inferior_registers.r_r1);
424
  RS (R0_REGNUM + 2, inferior_registers.r_r2);
425
  RS (R0_REGNUM + 3, inferior_registers.r_r3);
426
  RS (R0_REGNUM + 4, inferior_registers.r_r4);
427
  RS (R0_REGNUM + 5, inferior_registers.r_r5);
428
  RS (R0_REGNUM + 6, inferior_registers.r_r6);
429
  RS (R0_REGNUM + 7, inferior_registers.r_r7);
430
 
431
  RS (SP_REGNUM, inferior_registers.r_sp);
432
  RS (FP_REGNUM, inferior_registers.r_fp);
433
  RS (PC_REGNUM, inferior_registers.r_pc);
434
  RS (PS_REGNUM, inferior_registers.r_psr);
435
 
436
  RS (FPS_REGNUM, inferior_fpregisters.r_fsr);
437
  RS (FP0_REGNUM + 0, inferior_fpregisters.r_freg[0]);
438
  RS (FP0_REGNUM + 2, inferior_fpregisters.r_freg[2]);
439
  RS (FP0_REGNUM + 4, inferior_fpregisters.r_freg[4]);
440
  RS (FP0_REGNUM + 6, inferior_fpregisters.r_freg[6]);
441
  RS (LP0_REGNUM + 1, inferior_fpregisters.r_freg[1]);
442
  RS (LP0_REGNUM + 3, inferior_fpregisters.r_freg[3]);
443
  RS (LP0_REGNUM + 5, inferior_fpregisters.r_freg[5]);
444
  RS (LP0_REGNUM + 7, inferior_fpregisters.r_freg[7]);
445
 
446
  ptrace (PT_SETREGS, inferior_pid,
447
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
448
  ptrace (PT_SETFPREGS, inferior_pid,
449
          (PTRACE_ARG3_TYPE) & inferior_fpregisters, 0);
450
 
451
}
452
#endif  /* !__ns32k__ */
453
 
454
#ifdef __powerpc__
455
/* Fetch one or more registers from the inferior.  REGNO == -1 to get
456
   them all.  We actually fetch more than requested, when convenient,
457
   marking them as valid so we won't fetch them again.  */
458
 
459
void
460
fetch_inferior_registers (int regno)
461
{
462
  struct reg inferior_registers;
463
#ifdef PT_GETFPREGS
464
  struct fpreg inferior_fp_registers;
465
#endif
466
  int i;
467
 
468
  ptrace (PT_GETREGS, inferior_pid,
469
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
470
  for (i = 0; i < 32; i++)
471
    RF (i, inferior_registers.fixreg[i]);
472
  RF (PPC_LR_REGNUM, inferior_registers.lr);
473
  RF (PPC_CR_REGNUM, inferior_registers.cr);
474
  RF (PPC_XER_REGNUM, inferior_registers.xer);
475
  RF (PPC_CTR_REGNUM, inferior_registers.ctr);
476
  RF (PC_REGNUM, inferior_registers.pc);
477
 
478
#ifdef PT_GETFPREGS
479
  ptrace (PT_GETFPREGS, inferior_pid,
480
          (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
481
  for (i = 0; i < 32; i++)
482
    RF (FP0_REGNUM + i, inferior_fp_registers.r_regs[i]);
483
#endif
484
}
485
 
486
/* Store our register values back into the inferior.
487
   If REGNO is -1, do this for all registers.
488
   Otherwise, REGNO specifies which register (so we can save time).  */
489
 
490
void
491
store_inferior_registers (int regno)
492
{
493
  struct reg inferior_registers;
494
#ifdef PT_SETFPREGS
495
  struct fpreg inferior_fp_registers;
496
#endif
497
  int i;
498
 
499
  for (i = 0; i < 32; i++)
500
    RS (i, inferior_registers.fixreg[i]);
501
  RS (PPC_LR_REGNUM, inferior_registers.lr);
502
  RS (PPC_CR_REGNUM, inferior_registers.cr);
503
  RS (PPC_XER_REGNUM, inferior_registers.xer);
504
  RS (PPC_CTR_REGNUM, inferior_registers.ctr);
505
  RS (PC_REGNUM, inferior_registers.pc);
506
  ptrace (PT_SETREGS, inferior_pid,
507
          (PTRACE_ARG3_TYPE) & inferior_registers, 0);
508
 
509
#ifdef PT_SETFPREGS
510
  for (i = 0; i < 32; i++)
511
    RS (FP0_REGNUM + i, inferior_fp_registers.r_regs[i]);
512
  ptrace (PT_SETFPREGS, inferior_pid,
513
          (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
514
#endif
515
}
516
#endif  /* !__powerpc__ */
517
 
518
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
519
   in the NEW_SUN_PTRACE case.
520
   It ought to be straightforward.  But it appears that writing did
521
   not write the data that I specified.  I cannot understand where
522
   it got the data that it actually did write.  */
523
 
524
/* Copy LEN bytes from inferior's memory starting at MEMADDR
525
   to debugger memory starting at MYADDR.  */
526
 
527
void
528
read_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
529
{
530
  register int i;
531
  /* Round starting address down to longword boundary.  */
532
  register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (int);
533
  /* Round ending address up; get number of longwords that makes.  */
534
  register int count
535
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
536
  /* Allocate buffer of that many longwords.  */
537
  register int *buffer = (int *) alloca (count * sizeof (int));
538
 
539
  /* Read all the longwords */
540
  for (i = 0; i < count; i++, addr += sizeof (int))
541
    {
542
      buffer[i] = ptrace (PT_READ_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
543
    }
544
 
545
  /* Copy appropriate bytes out of the buffer.  */
546
  memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
547
}
548
 
549
/* Copy LEN bytes of data from debugger memory at MYADDR
550
   to inferior's memory at MEMADDR.
551
   On failure (cannot write the inferior)
552
   returns the value of errno.  */
553
 
554
int
555
write_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
556
{
557
  register int i;
558
  /* Round starting address down to longword boundary.  */
559
  register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (int);
560
  /* Round ending address up; get number of longwords that makes.  */
561
  register int count
562
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
563
  /* Allocate buffer of that many longwords.  */
564
  register int *buffer = (int *) alloca (count * sizeof (int));
565
  extern int errno;
566
 
567
  /* Fill start and end extra bytes of buffer with existing memory data.  */
568
 
569
  buffer[0] = ptrace (PT_READ_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
570
 
571
  if (count > 1)
572
    {
573
      buffer[count - 1]
574
        = ptrace (PT_READ_D, inferior_pid,
575
                  (PTRACE_ARG3_TYPE) addr + (count - 1) * sizeof (int), 0);
576
    }
577
 
578
  /* Copy data to be written over corresponding part of buffer */
579
 
580
  memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
581
 
582
  /* Write the entire buffer.  */
583
 
584
  for (i = 0; i < count; i++, addr += sizeof (int))
585
    {
586
      errno = 0;
587
      ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
588
      if (errno)
589
        return errno;
590
    }
591
 
592
  return 0;
593
}
594
 
595
void
596
initialize_low (void)
597
{
598
  initialize_arch ();
599
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.