OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [gdb/] [hppah-nat.c] - Blame information for rev 1774

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* Native support code for HPUX PA-RISC.
2
   Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3
   1998, 1999, 2000, 2001
4
   Free Software Foundation, Inc.
5
 
6
   Contributed by the Center for Software Science at the
7
   University of Utah (pa-gdb-bugs@cs.utah.edu).
8
 
9
   This file is part of GDB.
10
 
11
   This program is free software; you can redistribute it and/or modify
12
   it under the terms of the GNU General Public License as published by
13
   the Free Software Foundation; either version 2 of the License, or
14
   (at your option) any later version.
15
 
16
   This program is distributed in the hope that it will be useful,
17
   but WITHOUT ANY WARRANTY; without even the implied warranty of
18
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19
   GNU General Public License for more details.
20
 
21
   You should have received a copy of the GNU General Public License
22
   along with this program; if not, write to the Free Software
23
   Foundation, Inc., 59 Temple Place - Suite 330,
24
   Boston, MA 02111-1307, USA.  */
25
 
26
 
27
#include "defs.h"
28
#include "inferior.h"
29
#include "target.h"
30
#include <sys/ptrace.h>
31
#include "gdbcore.h"
32
#include "gdb_wait.h"
33
#include "regcache.h"
34
#include <signal.h>
35
 
36
extern CORE_ADDR text_end;
37
 
38
static void fetch_register (int);
39
 
40
void
41
fetch_inferior_registers (int regno)
42
{
43
  if (regno == -1)
44
    for (regno = 0; regno < NUM_REGS; regno++)
45
      fetch_register (regno);
46
  else
47
    fetch_register (regno);
48
}
49
 
50
/* Our own version of the offsetof macro, since we can't assume ANSI C.  */
51
#define HPPAH_OFFSETOF(type, member) ((int) (&((type *) 0)->member))
52
 
53
/* Store our register values back into the inferior.
54
   If REGNO is -1, do this for all registers.
55
   Otherwise, REGNO specifies which register (so we can save time).  */
56
 
57
void
58
store_inferior_registers (int regno)
59
{
60
  register unsigned int regaddr;
61
  char buf[80];
62
  register int i;
63
  unsigned int offset = U_REGS_OFFSET;
64
  int scratch;
65
 
66
  if (regno >= 0)
67
    {
68
      unsigned int addr, len, offset;
69
 
70
      if (CANNOT_STORE_REGISTER (regno))
71
        return;
72
 
73
      offset = 0;
74
      len = REGISTER_RAW_SIZE (regno);
75
 
76
      /* Requests for register zero actually want the save_state's
77
         ss_flags member.  As RM says: "Oh, what a hack!"  */
78
      if (regno == 0)
79
        {
80
          save_state_t ss;
81
          addr = HPPAH_OFFSETOF (save_state_t, ss_flags);
82
          len = sizeof (ss.ss_flags);
83
 
84
          /* Note that ss_flags is always an int, no matter what
85
             REGISTER_RAW_SIZE(0) says.  Assuming all HP-UX PA machines
86
             are big-endian, put it at the least significant end of the
87
             value, and zap the rest of the buffer.  */
88
          offset = REGISTER_RAW_SIZE (0) - len;
89
        }
90
 
91
      /* Floating-point registers come from the ss_fpblock area.  */
92
      else if (regno >= FP0_REGNUM)
93
        addr = (HPPAH_OFFSETOF (save_state_t, ss_fpblock)
94
                + (REGISTER_BYTE (regno) - REGISTER_BYTE (FP0_REGNUM)));
95
 
96
      /* Wide registers come from the ss_wide area.
97
         I think it's more PC to test (ss_flags & SS_WIDEREGS) to select
98
         between ss_wide and ss_narrow than to use the raw register size.
99
         But checking ss_flags would require an extra ptrace call for
100
         every register reference.  Bleah.  */
101
      else if (len == 8)
102
        addr = (HPPAH_OFFSETOF (save_state_t, ss_wide)
103
                + REGISTER_BYTE (regno));
104
 
105
      /* Narrow registers come from the ss_narrow area.  Note that
106
         ss_narrow starts with gr1, not gr0.  */
107
      else if (len == 4)
108
        addr = (HPPAH_OFFSETOF (save_state_t, ss_narrow)
109
                + (REGISTER_BYTE (regno) - REGISTER_BYTE (1)));
110
      else
111
        internal_error (__FILE__, __LINE__,
112
                        "hppah-nat.c (write_register): unexpected register size");
113
 
114
#ifdef GDB_TARGET_IS_HPPA_20W
115
      /* Unbelieveable.  The PC head and tail must be written in 64bit hunks
116
         or we will get an error.  Worse yet, the oddball ptrace/ttrace
117
         layering will not allow us to perform a 64bit register store.
118
 
119
         What a crock.  */
120
      if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM && len == 8)
121
        {
122
          CORE_ADDR temp;
123
 
124
          temp = *(CORE_ADDR *)&registers[REGISTER_BYTE (regno)];
125
 
126
          /* Set the priv level (stored in the low two bits of the PC.  */
127
          temp |= 0x3;
128
 
129
          ttrace_write_reg_64 (PIDGET (inferior_ptid), (CORE_ADDR)addr,
130
                               (CORE_ADDR)&temp);
131
 
132
          /* If we fail to write the PC, give a true error instead of
133
             just a warning.  */
134
          if (errno != 0)
135
            {
136
              char *err = safe_strerror (errno);
137
              char *msg = alloca (strlen (err) + 128);
138
              sprintf (msg, "writing `%s' register: %s",
139
                        REGISTER_NAME (regno), err);
140
              perror_with_name (msg);
141
            }
142
          return;
143
        }
144
 
145
      /* Another crock.  HPUX complains if you write a nonzero value to
146
         the high part of IPSW.  What will it take for HP to catch a
147
         clue about building sensible interfaces?  */
148
     if (regno == IPSW_REGNUM && len == 8)
149
        *(int *)&registers[REGISTER_BYTE (regno)] = 0;
150
#endif
151
 
152
      for (i = 0; i < len; i += sizeof (int))
153
        {
154
          errno = 0;
155
          call_ptrace (PT_WUREGS, PIDGET (inferior_ptid),
156
                       (PTRACE_ARG3_TYPE) addr + i,
157
                       *(int *) &registers[REGISTER_BYTE (regno) + i]);
158
          if (errno != 0)
159
            {
160
              /* Warning, not error, in case we are attached; sometimes
161
                 the kernel doesn't let us at the registers. */
162
              char *err = safe_strerror (errno);
163
              char *msg = alloca (strlen (err) + 128);
164
              sprintf (msg, "writing `%s' register: %s",
165
                        REGISTER_NAME (regno), err);
166
              /* If we fail to write the PC, give a true error instead of
167
                 just a warning.  */
168
              if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
169
                perror_with_name (msg);
170
              else
171
                warning (msg);
172
              return;
173
            }
174
        }
175
    }
176
  else
177
    for (regno = 0; regno < NUM_REGS; regno++)
178
      store_inferior_registers (regno);
179
}
180
 
181
 
182
/* Fetch a register's value from the process's U area.  */
183
static void
184
fetch_register (int regno)
185
{
186
  char buf[MAX_REGISTER_RAW_SIZE];
187
  unsigned int addr, len, offset;
188
  int i;
189
 
190
  offset = 0;
191
  len = REGISTER_RAW_SIZE (regno);
192
 
193
  /* Requests for register zero actually want the save_state's
194
     ss_flags member.  As RM says: "Oh, what a hack!"  */
195
  if (regno == 0)
196
    {
197
      save_state_t ss;
198
      addr = HPPAH_OFFSETOF (save_state_t, ss_flags);
199
      len = sizeof (ss.ss_flags);
200
 
201
      /* Note that ss_flags is always an int, no matter what
202
         REGISTER_RAW_SIZE(0) says.  Assuming all HP-UX PA machines
203
         are big-endian, put it at the least significant end of the
204
         value, and zap the rest of the buffer.  */
205
      offset = REGISTER_RAW_SIZE (0) - len;
206
      memset (buf, 0, sizeof (buf));
207
    }
208
 
209
  /* Floating-point registers come from the ss_fpblock area.  */
210
  else if (regno >= FP0_REGNUM)
211
    addr = (HPPAH_OFFSETOF (save_state_t, ss_fpblock)
212
            + (REGISTER_BYTE (regno) - REGISTER_BYTE (FP0_REGNUM)));
213
 
214
  /* Wide registers come from the ss_wide area.
215
     I think it's more PC to test (ss_flags & SS_WIDEREGS) to select
216
     between ss_wide and ss_narrow than to use the raw register size.
217
     But checking ss_flags would require an extra ptrace call for
218
     every register reference.  Bleah.  */
219
  else if (len == 8)
220
    addr = (HPPAH_OFFSETOF (save_state_t, ss_wide)
221
            + REGISTER_BYTE (regno));
222
 
223
  /* Narrow registers come from the ss_narrow area.  Note that
224
     ss_narrow starts with gr1, not gr0.  */
225
  else if (len == 4)
226
    addr = (HPPAH_OFFSETOF (save_state_t, ss_narrow)
227
            + (REGISTER_BYTE (regno) - REGISTER_BYTE (1)));
228
 
229
  else
230
    internal_error (__FILE__, __LINE__,
231
                    "hppa-nat.c (fetch_register): unexpected register size");
232
 
233
  for (i = 0; i < len; i += sizeof (int))
234
    {
235
      errno = 0;
236
      /* Copy an int from the U area to buf.  Fill the least
237
         significant end if len != raw_size.  */
238
      * (int *) &buf[offset + i] =
239
          call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
240
                       (PTRACE_ARG3_TYPE) addr + i, 0);
241
      if (errno != 0)
242
        {
243
          /* Warning, not error, in case we are attached; sometimes
244
             the kernel doesn't let us at the registers. */
245
          char *err = safe_strerror (errno);
246
          char *msg = alloca (strlen (err) + 128);
247
          sprintf (msg, "reading `%s' register: %s",
248
                   REGISTER_NAME (regno), err);
249
          warning (msg);
250
          return;
251
        }
252
    }
253
 
254
  /* If we're reading an address from the instruction address queue,
255
     mask out the bottom two bits --- they contain the privilege
256
     level.  */
257
  if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
258
    buf[len - 1] &= ~0x3;
259
 
260
  supply_register (regno, buf);
261
}
262
 
263
 
264
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
265
   to debugger memory starting at MYADDR.   Copy to inferior if
266
   WRITE is nonzero.
267
 
268
   Returns the length copied, which is either the LEN argument or zero.
269
   This xfer function does not do partial moves, since child_ops
270
   doesn't allow memory operations to cross below us in the target stack
271
   anyway.  TARGET is ignored.  */
272
 
273
int
274
child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
275
                   struct mem_attrib *mem,
276
                   struct target_ops *target)
277
{
278
  register int i;
279
  /* Round starting address down to longword boundary.  */
280
  register CORE_ADDR addr = memaddr & - (CORE_ADDR)(sizeof (int));
281
  /* Round ending address up; get number of longwords that makes.  */
282
  register int count
283
  = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
284
 
285
  /* Allocate buffer of that many longwords.
286
     Note -- do not use alloca to allocate this buffer since there is no
287
     guarantee of when the buffer will actually be deallocated.
288
 
289
     This routine can be called over and over with the same call chain;
290
     this (in effect) would pile up all those alloca requests until a call
291
     to alloca was made from a point higher than this routine in the
292
     call chain.  */
293
  register int *buffer = (int *) xmalloc (count * sizeof (int));
294
 
295
  if (write)
296
    {
297
      /* Fill start and end extra bytes of buffer with existing memory data.  */
298
      if (addr != memaddr || len < (int) sizeof (int))
299
        {
300
          /* Need part of initial word -- fetch it.  */
301
          buffer[0] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
302
                                   PIDGET (inferior_ptid),
303
                                   (PTRACE_ARG3_TYPE) addr, 0);
304
        }
305
 
306
      if (count > 1)            /* FIXME, avoid if even boundary */
307
        {
308
          buffer[count - 1]
309
            = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
310
                           PIDGET (inferior_ptid),
311
                           (PTRACE_ARG3_TYPE) (addr
312
                                               + (count - 1) * sizeof (int)),
313
                           0);
314
        }
315
 
316
      /* Copy data to be written over corresponding part of buffer */
317
      memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
318
 
319
      /* Write the entire buffer.  */
320
      for (i = 0; i < count; i++, addr += sizeof (int))
321
        {
322
          int pt_status;
323
          int pt_request;
324
          /* The HP-UX kernel crashes if you use PT_WDUSER to write into the
325
             text segment.  FIXME -- does it work to write into the data
326
             segment using WIUSER, or do these idiots really expect us to
327
             figure out which segment the address is in, so we can use a
328
             separate system call for it??!  */
329
          errno = 0;
330
          pt_request = (addr < text_end) ? PT_WIUSER : PT_WDUSER;
331
          pt_status = call_ptrace (pt_request,
332
                                   PIDGET (inferior_ptid),
333
                                   (PTRACE_ARG3_TYPE) addr,
334
                                   buffer[i]);
335
 
336
          /* Did we fail?  Might we've guessed wrong about which
337
             segment this address resides in?  Try the other request,
338
             and see if that works...  */
339
          if ((pt_status == -1) && errno)
340
            {
341
              errno = 0;
342
              pt_request = (pt_request == PT_WIUSER) ? PT_WDUSER : PT_WIUSER;
343
              pt_status = call_ptrace (pt_request,
344
                                       PIDGET (inferior_ptid),
345
                                       (PTRACE_ARG3_TYPE) addr,
346
                                       buffer[i]);
347
 
348
              /* No, we still fail.  Okay, time to punt. */
349
              if ((pt_status == -1) && errno)
350
                {
351
                  xfree (buffer);
352
                  return 0;
353
                }
354
            }
355
        }
356
    }
357
  else
358
    {
359
      /* Read all the longwords */
360
      for (i = 0; i < count; i++, addr += sizeof (int))
361
        {
362
          errno = 0;
363
          buffer[i] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER,
364
                                   PIDGET (inferior_ptid),
365
                                   (PTRACE_ARG3_TYPE) addr, 0);
366
          if (errno)
367
            {
368
              xfree (buffer);
369
              return 0;
370
            }
371
          QUIT;
372
        }
373
 
374
      /* Copy appropriate bytes out of the buffer.  */
375
      memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
376
    }
377
  xfree (buffer);
378
  return len;
379
}
380
 
381
 
382
void
383
child_post_follow_inferior_by_clone (void)
384
{
385
  int status;
386
 
387
  /* This function is used when following both the parent and child
388
     of a fork.  In this case, the debugger clones itself.  The original
389
     debugger follows the parent, the clone follows the child.  The
390
     original detaches from the child, delivering a SIGSTOP to it to
391
     keep it from running away until the clone can attach itself.
392
 
393
     At this point, the clone has attached to the child.  Because of
394
     the SIGSTOP, we must now deliver a SIGCONT to the child, or it
395
     won't behave properly. */
396
  status = kill (PIDGET (inferior_ptid), SIGCONT);
397
}
398
 
399
 
400
void
401
child_post_follow_vfork (int parent_pid, int followed_parent, int child_pid,
402
                         int followed_child)
403
{
404
  /* Are we a debugger that followed the parent of a vfork?  If so,
405
     then recall that the child's vfork event was delivered to us
406
     first.  And, that the parent was suspended by the OS until the
407
     child's exec or exit events were received.
408
 
409
     Upon receiving that child vfork, then, we were forced to remove
410
     all breakpoints in the child and continue it so that it could
411
     reach the exec or exit point.
412
 
413
     But also recall that the parent and child of a vfork share the
414
     same address space.  Thus, removing bp's in the child also
415
     removed them from the parent.
416
 
417
     Now that the child has safely exec'd or exited, we must restore
418
     the parent's breakpoints before we continue it.  Else, we may
419
     cause it run past expected stopping points. */
420
  if (followed_parent)
421
    {
422
      reattach_breakpoints (parent_pid);
423
    }
424
 
425
  /* Are we a debugger that followed the child of a vfork?  If so,
426
     then recall that we don't actually acquire control of the child
427
     until after it has exec'd or exited.  */
428
  if (followed_child)
429
    {
430
      /* If the child has exited, then there's nothing for us to do.
431
         In the case of an exec event, we'll let that be handled by
432
         the normal mechanism that notices and handles exec events, in
433
         resume(). */
434
    }
435
}
436
 
437
/* Format a process id, given PID.  Be sure to terminate
438
   this with a null--it's going to be printed via a "%s".  */
439
char *
440
child_pid_to_str (ptid_t ptid)
441
{
442
  /* Static because address returned */
443
  static char buf[30];
444
  pid_t pid = PIDGET (ptid);
445
 
446
  /* Extra NUL for paranoia's sake */
447
  sprintf (buf, "process %d%c", pid, '\0');
448
 
449
  return buf;
450
}
451
 
452
/* Format a thread id, given TID.  Be sure to terminate
453
   this with a null--it's going to be printed via a "%s".
454
 
455
   Note: This is a core-gdb tid, not the actual system tid.
456
   See infttrace.c for details.  */
457
char *
458
hppa_tid_to_str (ptid_t ptid)
459
{
460
  /* Static because address returned */
461
  static char buf[30];
462
  /* This seems strange, but when I did the ptid conversion, it looked
463
     as though a pid was always being passed.  - Kevin Buettner  */
464
  pid_t tid = PIDGET (ptid);
465
 
466
  /* Extra NULLs for paranoia's sake */
467
  sprintf (buf, "system thread %d%c", tid, '\0');
468
 
469
  return buf;
470
}
471
 
472
#if !defined (GDB_NATIVE_HPUX_11)
473
 
474
/* The following code is a substitute for the infttrace.c versions used
475
   with ttrace() in HPUX 11.  */
476
 
477
/* This value is an arbitrary integer. */
478
#define PT_VERSION 123456
479
 
480
/* This semaphore is used to coordinate the child and parent processes
481
   after a fork(), and before an exec() by the child.  See
482
   parent_attach_all for details.  */
483
 
484
typedef struct
485
{
486
  int parent_channel[2];        /* Parent "talks" to [1], child "listens" to [0] */
487
  int child_channel[2];         /* Child "talks" to [1], parent "listens" to [0] */
488
}
489
startup_semaphore_t;
490
 
491
#define SEM_TALK (1)
492
#define SEM_LISTEN (0)
493
 
494
static startup_semaphore_t startup_semaphore;
495
 
496
extern int parent_attach_all (int, PTRACE_ARG3_TYPE, int);
497
 
498
#ifdef PT_SETTRC
499
/* This function causes the caller's process to be traced by its
500
   parent.  This is intended to be called after GDB forks itself,
501
   and before the child execs the target.
502
 
503
   Note that HP-UX ptrace is rather funky in how this is done.
504
   If the parent wants to get the initial exec event of a child,
505
   it must set the ptrace event mask of the child to include execs.
506
   (The child cannot do this itself.)  This must be done after the
507
   child is forked, but before it execs.
508
 
509
   To coordinate the parent and child, we implement a semaphore using
510
   pipes.  After SETTRC'ing itself, the child tells the parent that
511
   it is now traceable by the parent, and waits for the parent's
512
   acknowledgement.  The parent can then set the child's event mask,
513
   and notify the child that it can now exec.
514
 
515
   (The acknowledgement by parent happens as a result of a call to
516
   child_acknowledge_created_inferior.)  */
517
 
518
int
519
parent_attach_all (int pid, PTRACE_ARG3_TYPE addr, int data)
520
{
521
  int pt_status = 0;
522
 
523
  /* We need a memory home for a constant.  */
524
  int tc_magic_child = PT_VERSION;
525
  int tc_magic_parent = 0;
526
 
527
  /* The remainder of this function is only useful for HPUX 10.0 and
528
     later, as it depends upon the ability to request notification
529
     of specific kinds of events by the kernel.  */
530
#if defined(PT_SET_EVENT_MASK)
531
 
532
  /* Notify the parent that we're potentially ready to exec(). */
533
  write (startup_semaphore.child_channel[SEM_TALK],
534
         &tc_magic_child,
535
         sizeof (tc_magic_child));
536
 
537
  /* Wait for acknowledgement from the parent. */
538
  read (startup_semaphore.parent_channel[SEM_LISTEN],
539
        &tc_magic_parent,
540
        sizeof (tc_magic_parent));
541
  if (tc_magic_child != tc_magic_parent)
542
    warning ("mismatched semaphore magic");
543
 
544
  /* Discard our copy of the semaphore. */
545
  (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
546
  (void) close (startup_semaphore.parent_channel[SEM_TALK]);
547
  (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
548
  (void) close (startup_semaphore.child_channel[SEM_TALK]);
549
#endif
550
 
551
  return 0;
552
}
553
#endif
554
 
555
int
556
hppa_require_attach (int pid)
557
{
558
  int pt_status;
559
  CORE_ADDR pc;
560
  CORE_ADDR pc_addr;
561
  unsigned int regs_offset;
562
 
563
  /* Are we already attached?  There appears to be no explicit way to
564
     answer this via ptrace, so we try something which should be
565
     innocuous if we are attached.  If that fails, then we assume
566
     we're not attached, and so attempt to make it so. */
567
 
568
  errno = 0;
569
  regs_offset = U_REGS_OFFSET;
570
  pc_addr = register_addr (PC_REGNUM, regs_offset);
571
  pc = call_ptrace (PT_READ_U, pid, (PTRACE_ARG3_TYPE) pc_addr, 0);
572
 
573
  if (errno)
574
    {
575
      errno = 0;
576
      pt_status = call_ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
577
 
578
      if (errno)
579
        return -1;
580
 
581
      /* Now we really are attached. */
582
      errno = 0;
583
    }
584
  attach_flag = 1;
585
  return pid;
586
}
587
 
588
int
589
hppa_require_detach (int pid, int signal)
590
{
591
  errno = 0;
592
  call_ptrace (PT_DETACH, pid, (PTRACE_ARG3_TYPE) 1, signal);
593
  errno = 0;                     /* Ignore any errors. */
594
  return pid;
595
}
596
 
597
/* Since ptrace doesn't support memory page-protection events, which
598
   are used to implement "hardware" watchpoints on HP-UX, these are
599
   dummy versions, which perform no useful work.  */
600
 
601
void
602
hppa_enable_page_protection_events (int pid)
603
{
604
}
605
 
606
void
607
hppa_disable_page_protection_events (int pid)
608
{
609
}
610
 
611
int
612
hppa_insert_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len, int type)
613
{
614
  error ("Hardware watchpoints not implemented on this platform.");
615
}
616
 
617
int
618
hppa_remove_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len,
619
                           enum bptype type)
620
{
621
  error ("Hardware watchpoints not implemented on this platform.");
622
}
623
 
624
int
625
hppa_can_use_hw_watchpoint (enum bptype type, int cnt, enum bptype ot)
626
{
627
  return 0;
628
}
629
 
630
int
631
hppa_range_profitable_for_hw_watchpoint (int pid, CORE_ADDR start, LONGEST len)
632
{
633
  error ("Hardware watchpoints not implemented on this platform.");
634
}
635
 
636
char *
637
hppa_pid_or_tid_to_str (ptid_t id)
638
{
639
  /* In the ptrace world, there are only processes. */
640
  return child_pid_to_str (id);
641
}
642
 
643
/* This function has no meaning in a non-threaded world.  Thus, we
644
   return 0 (FALSE).  See the use of "hppa_prepare_to_proceed" in
645
   hppa-tdep.c. */
646
 
647
pid_t
648
hppa_switched_threads (pid_t pid)
649
{
650
  return (pid_t) 0;
651
}
652
 
653
void
654
hppa_ensure_vforking_parent_remains_stopped (int pid)
655
{
656
  /* This assumes that the vforked parent is presently stopped, and
657
     that the vforked child has just delivered its first exec event.
658
     Calling kill() this way will cause the SIGTRAP to be delivered as
659
     soon as the parent is resumed, which happens as soon as the
660
     vforked child is resumed.  See wait_for_inferior for the use of
661
     this function.  */
662
  kill (pid, SIGTRAP);
663
}
664
 
665
int
666
hppa_resume_execd_vforking_child_to_get_parent_vfork (void)
667
{
668
  return 1;                     /* Yes, the child must be resumed. */
669
}
670
 
671
void
672
require_notification_of_events (int pid)
673
{
674
#if defined(PT_SET_EVENT_MASK)
675
  int pt_status;
676
  ptrace_event_t ptrace_events;
677
  int nsigs;
678
  int signum;
679
 
680
  /* Instruct the kernel as to the set of events we wish to be
681
     informed of.  (This support does not exist before HPUX 10.0.
682
     We'll assume if PT_SET_EVENT_MASK has not been defined by
683
     <sys/ptrace.h>, then we're being built on pre-10.0.)  */
684
  memset (&ptrace_events, 0, sizeof (ptrace_events));
685
 
686
  /* Note: By default, all signals are visible to us.  If we wish
687
     the kernel to keep certain signals hidden from us, we do it
688
     by calling sigdelset (ptrace_events.pe_signals, signal) for
689
     each such signal here, before doing PT_SET_EVENT_MASK.  */
690
  /* RM: The above comment is no longer true. We start with ignoring
691
     all signals, and then add the ones we are interested in. We could
692
     do it the other way: start by looking at all signals and then
693
     deleting the ones that we aren't interested in, except that
694
     multiple gdb signals may be mapped to the same host signal
695
     (eg. TARGET_SIGNAL_IO and TARGET_SIGNAL_POLL both get mapped to
696
     signal 22 on HPUX 10.20) We want to be notified if we are
697
     interested in either signal.  */
698
  sigfillset (&ptrace_events.pe_signals);
699
 
700
  /* RM: Let's not bother with signals we don't care about */
701
  nsigs = (int) TARGET_SIGNAL_LAST;
702
  for (signum = nsigs; signum > 0; signum--)
703
    {
704
      if ((signal_stop_state (signum)) ||
705
          (signal_print_state (signum)) ||
706
          (!signal_pass_state (signum)))
707
        {
708
          if (target_signal_to_host_p (signum))
709
            sigdelset (&ptrace_events.pe_signals,
710
                       target_signal_to_host (signum));
711
        }
712
    }
713
 
714
  ptrace_events.pe_set_event = 0;
715
 
716
  ptrace_events.pe_set_event |= PTRACE_SIGNAL;
717
  ptrace_events.pe_set_event |= PTRACE_EXEC;
718
  ptrace_events.pe_set_event |= PTRACE_FORK;
719
  ptrace_events.pe_set_event |= PTRACE_VFORK;
720
  /* ??rehrauer: Add this one when we're prepared to catch it...
721
     ptrace_events.pe_set_event |= PTRACE_EXIT;
722
   */
723
 
724
  errno = 0;
725
  pt_status = call_ptrace (PT_SET_EVENT_MASK,
726
                           pid,
727
                           (PTRACE_ARG3_TYPE) & ptrace_events,
728
                           sizeof (ptrace_events));
729
  if (errno)
730
    perror_with_name ("ptrace");
731
  if (pt_status < 0)
732
    return;
733
#endif
734
}
735
 
736
void
737
require_notification_of_exec_events (int pid)
738
{
739
#if defined(PT_SET_EVENT_MASK)
740
  int pt_status;
741
  ptrace_event_t ptrace_events;
742
 
743
  /* Instruct the kernel as to the set of events we wish to be
744
     informed of.  (This support does not exist before HPUX 10.0.
745
     We'll assume if PT_SET_EVENT_MASK has not been defined by
746
     <sys/ptrace.h>, then we're being built on pre-10.0.)  */
747
  memset (&ptrace_events, 0, sizeof (ptrace_events));
748
 
749
  /* Note: By default, all signals are visible to us.  If we wish
750
     the kernel to keep certain signals hidden from us, we do it
751
     by calling sigdelset (ptrace_events.pe_signals, signal) for
752
     each such signal here, before doing PT_SET_EVENT_MASK.  */
753
  sigemptyset (&ptrace_events.pe_signals);
754
 
755
  ptrace_events.pe_set_event = 0;
756
 
757
  ptrace_events.pe_set_event |= PTRACE_EXEC;
758
  /* ??rehrauer: Add this one when we're prepared to catch it...
759
     ptrace_events.pe_set_event |= PTRACE_EXIT;
760
   */
761
 
762
  errno = 0;
763
  pt_status = call_ptrace (PT_SET_EVENT_MASK,
764
                           pid,
765
                           (PTRACE_ARG3_TYPE) & ptrace_events,
766
                           sizeof (ptrace_events));
767
  if (errno)
768
    perror_with_name ("ptrace");
769
  if (pt_status < 0)
770
    return;
771
#endif
772
}
773
 
774
/* This function is called by the parent process, with pid being the
775
   ID of the child process, after the debugger has forked.  */
776
 
777
void
778
child_acknowledge_created_inferior (int pid)
779
{
780
  /* We need a memory home for a constant.  */
781
  int tc_magic_parent = PT_VERSION;
782
  int tc_magic_child = 0;
783
 
784
  /* The remainder of this function is only useful for HPUX 10.0 and
785
     later, as it depends upon the ability to request notification
786
     of specific kinds of events by the kernel.  */
787
#if defined(PT_SET_EVENT_MASK)
788
  /* Wait for the child to tell us that it has forked. */
789
  read (startup_semaphore.child_channel[SEM_LISTEN],
790
        &tc_magic_child,
791
        sizeof (tc_magic_child));
792
 
793
  /* Notify the child that it can exec.
794
 
795
     In the infttrace.c variant of this function, we set the child's
796
     event mask after the fork but before the exec.  In the ptrace
797
     world, it seems we can't set the event mask until after the exec.  */
798
  write (startup_semaphore.parent_channel[SEM_TALK],
799
         &tc_magic_parent,
800
         sizeof (tc_magic_parent));
801
 
802
  /* We'd better pause a bit before trying to set the event mask,
803
     though, to ensure that the exec has happened.  We don't want to
804
     wait() on the child, because that'll screw up the upper layers
805
     of gdb's execution control that expect to see the exec event.
806
 
807
     After an exec, the child is no longer executing gdb code.  Hence,
808
     we can't have yet another synchronization via the pipes.  We'll
809
     just sleep for a second, and hope that's enough delay...  */
810
  sleep (1);
811
 
812
  /* Instruct the kernel as to the set of events we wish to be
813
     informed of.  */
814
  require_notification_of_exec_events (pid);
815
 
816
  /* Discard our copy of the semaphore. */
817
  (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
818
  (void) close (startup_semaphore.parent_channel[SEM_TALK]);
819
  (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
820
  (void) close (startup_semaphore.child_channel[SEM_TALK]);
821
#endif
822
}
823
 
824
void
825
child_post_startup_inferior (ptid_t ptid)
826
{
827
  require_notification_of_events (PIDGET (ptid));
828
}
829
 
830
void
831
child_post_attach (int pid)
832
{
833
  require_notification_of_events (pid);
834
}
835
 
836
int
837
child_insert_fork_catchpoint (int pid)
838
{
839
  /* This request is only available on HPUX 10.0 and later.  */
840
#if !defined(PT_SET_EVENT_MASK)
841
  error ("Unable to catch forks prior to HPUX 10.0");
842
#else
843
  /* Enable reporting of fork events from the kernel. */
844
  /* ??rehrauer: For the moment, we're always enabling these events,
845
     and just ignoring them if there's no catchpoint to catch them.  */
846
  return 0;
847
#endif
848
}
849
 
850
int
851
child_remove_fork_catchpoint (int pid)
852
{
853
  /* This request is only available on HPUX 10.0 and later.  */
854
#if !defined(PT_SET_EVENT_MASK)
855
  error ("Unable to catch forks prior to HPUX 10.0");
856
#else
857
  /* Disable reporting of fork events from the kernel. */
858
  /* ??rehrauer: For the moment, we're always enabling these events,
859
     and just ignoring them if there's no catchpoint to catch them.  */
860
  return 0;
861
#endif
862
}
863
 
864
int
865
child_insert_vfork_catchpoint (int pid)
866
{
867
  /* This request is only available on HPUX 10.0 and later.  */
868
#if !defined(PT_SET_EVENT_MASK)
869
  error ("Unable to catch vforks prior to HPUX 10.0");
870
#else
871
  /* Enable reporting of vfork events from the kernel. */
872
  /* ??rehrauer: For the moment, we're always enabling these events,
873
     and just ignoring them if there's no catchpoint to catch them.  */
874
  return 0;
875
#endif
876
}
877
 
878
int
879
child_remove_vfork_catchpoint (int pid)
880
{
881
  /* This request is only available on HPUX 10.0 and later.  */
882
#if !defined(PT_SET_EVENT_MASK)
883
  error ("Unable to catch vforks prior to HPUX 10.0");
884
#else
885
  /* Disable reporting of vfork events from the kernel. */
886
  /* ??rehrauer: For the moment, we're always enabling these events,
887
     and just ignoring them if there's no catchpoint to catch them.  */
888
  return 0;
889
#endif
890
}
891
 
892
int
893
child_has_forked (int pid, int *childpid)
894
{
895
  /* This request is only available on HPUX 10.0 and later.  */
896
#if !defined(PT_GET_PROCESS_STATE)
897
  *childpid = 0;
898
  return 0;
899
#else
900
  int pt_status;
901
  ptrace_state_t ptrace_state;
902
 
903
  errno = 0;
904
  pt_status = call_ptrace (PT_GET_PROCESS_STATE,
905
                           pid,
906
                           (PTRACE_ARG3_TYPE) & ptrace_state,
907
                           sizeof (ptrace_state));
908
  if (errno)
909
    perror_with_name ("ptrace");
910
  if (pt_status < 0)
911
    return 0;
912
 
913
  if (ptrace_state.pe_report_event & PTRACE_FORK)
914
    {
915
      *childpid = ptrace_state.pe_other_pid;
916
      return 1;
917
    }
918
 
919
  return 0;
920
#endif
921
}
922
 
923
int
924
child_has_vforked (int pid, int *childpid)
925
{
926
  /* This request is only available on HPUX 10.0 and later.  */
927
#if !defined(PT_GET_PROCESS_STATE)
928
  *childpid = 0;
929
  return 0;
930
 
931
#else
932
  int pt_status;
933
  ptrace_state_t ptrace_state;
934
 
935
  errno = 0;
936
  pt_status = call_ptrace (PT_GET_PROCESS_STATE,
937
                           pid,
938
                           (PTRACE_ARG3_TYPE) & ptrace_state,
939
                           sizeof (ptrace_state));
940
  if (errno)
941
    perror_with_name ("ptrace");
942
  if (pt_status < 0)
943
    return 0;
944
 
945
  if (ptrace_state.pe_report_event & PTRACE_VFORK)
946
    {
947
      *childpid = ptrace_state.pe_other_pid;
948
      return 1;
949
    }
950
 
951
  return 0;
952
#endif
953
}
954
 
955
int
956
child_can_follow_vfork_prior_to_exec (void)
957
{
958
  /* ptrace doesn't allow this. */
959
  return 0;
960
}
961
 
962
int
963
child_insert_exec_catchpoint (int pid)
964
{
965
  /* This request is only available on HPUX 10.0 and later.   */
966
#if !defined(PT_SET_EVENT_MASK)
967
  error ("Unable to catch execs prior to HPUX 10.0");
968
 
969
#else
970
  /* Enable reporting of exec events from the kernel.  */
971
  /* ??rehrauer: For the moment, we're always enabling these events,
972
     and just ignoring them if there's no catchpoint to catch them.  */
973
  return 0;
974
#endif
975
}
976
 
977
int
978
child_remove_exec_catchpoint (int pid)
979
{
980
  /* This request is only available on HPUX 10.0 and later.  */
981
#if !defined(PT_SET_EVENT_MASK)
982
  error ("Unable to catch execs prior to HPUX 10.0");
983
 
984
#else
985
  /* Disable reporting of exec events from the kernel. */
986
  /* ??rehrauer: For the moment, we're always enabling these events,
987
     and just ignoring them if there's no catchpoint to catch them.  */
988
  return 0;
989
#endif
990
}
991
 
992
int
993
child_has_execd (int pid, char **execd_pathname)
994
{
995
  /* This request is only available on HPUX 10.0 and later.  */
996
#if !defined(PT_GET_PROCESS_STATE)
997
  *execd_pathname = NULL;
998
  return 0;
999
 
1000
#else
1001
  int pt_status;
1002
  ptrace_state_t ptrace_state;
1003
 
1004
  errno = 0;
1005
  pt_status = call_ptrace (PT_GET_PROCESS_STATE,
1006
                           pid,
1007
                           (PTRACE_ARG3_TYPE) & ptrace_state,
1008
                           sizeof (ptrace_state));
1009
  if (errno)
1010
    perror_with_name ("ptrace");
1011
  if (pt_status < 0)
1012
    return 0;
1013
 
1014
  if (ptrace_state.pe_report_event & PTRACE_EXEC)
1015
    {
1016
      char *exec_file = target_pid_to_exec_file (pid);
1017
      *execd_pathname = savestring (exec_file, strlen (exec_file));
1018
      return 1;
1019
    }
1020
 
1021
  return 0;
1022
#endif
1023
}
1024
 
1025
int
1026
child_reported_exec_events_per_exec_call (void)
1027
{
1028
  return 2;                     /* ptrace reports the event twice per call. */
1029
}
1030
 
1031
int
1032
child_has_syscall_event (int pid, enum target_waitkind *kind, int *syscall_id)
1033
{
1034
  /* This request is only available on HPUX 10.30 and later, via
1035
     the ttrace interface.  */
1036
 
1037
  *kind = TARGET_WAITKIND_SPURIOUS;
1038
  *syscall_id = -1;
1039
  return 0;
1040
}
1041
 
1042
char *
1043
child_pid_to_exec_file (int pid)
1044
{
1045
  static char exec_file_buffer[1024];
1046
  int pt_status;
1047
  CORE_ADDR top_of_stack;
1048
  char four_chars[4];
1049
  int name_index;
1050
  int i;
1051
  ptid_t saved_inferior_ptid;
1052
  boolean done;
1053
 
1054
#ifdef PT_GET_PROCESS_PATHNAME
1055
  /* As of 10.x HP-UX, there's an explicit request to get the pathname. */
1056
  pt_status = call_ptrace (PT_GET_PROCESS_PATHNAME,
1057
                           pid,
1058
                           (PTRACE_ARG3_TYPE) exec_file_buffer,
1059
                           sizeof (exec_file_buffer) - 1);
1060
  if (pt_status == 0)
1061
    return exec_file_buffer;
1062
#endif
1063
 
1064
  /* It appears that this request is broken prior to 10.30.
1065
     If it fails, try a really, truly amazingly gross hack
1066
     that DDE uses, of pawing through the process' data
1067
     segment to find the pathname.  */
1068
 
1069
  top_of_stack = 0x7b03a000;
1070
  name_index = 0;
1071
  done = 0;
1072
 
1073
  /* On the chance that pid != inferior_ptid, set inferior_ptid
1074
     to pid, so that (grrrr!) implicit uses of inferior_ptid get
1075
     the right id.  */
1076
 
1077
  saved_inferior_ptid = inferior_ptid;
1078
  inferior_ptid = pid_to_ptid (pid);
1079
 
1080
  /* Try to grab a null-terminated string. */
1081
  while (!done)
1082
    {
1083
      if (target_read_memory (top_of_stack, four_chars, 4) != 0)
1084
        {
1085
          inferior_ptid = saved_inferior_ptid;
1086
          return NULL;
1087
        }
1088
      for (i = 0; i < 4; i++)
1089
        {
1090
          exec_file_buffer[name_index++] = four_chars[i];
1091
          done = (four_chars[i] == '\0');
1092
          if (done)
1093
            break;
1094
        }
1095
      top_of_stack += 4;
1096
    }
1097
 
1098
  if (exec_file_buffer[0] == '\0')
1099
    {
1100
      inferior_ptid = saved_inferior_ptid;
1101
      return NULL;
1102
    }
1103
 
1104
  inferior_ptid = saved_inferior_ptid;
1105
  return exec_file_buffer;
1106
}
1107
 
1108
void
1109
pre_fork_inferior (void)
1110
{
1111
  int status;
1112
 
1113
  status = pipe (startup_semaphore.parent_channel);
1114
  if (status < 0)
1115
    {
1116
      warning ("error getting parent pipe for startup semaphore");
1117
      return;
1118
    }
1119
 
1120
  status = pipe (startup_semaphore.child_channel);
1121
  if (status < 0)
1122
    {
1123
      warning ("error getting child pipe for startup semaphore");
1124
      return;
1125
    }
1126
}
1127
 
1128
 
1129
/* Check to see if the given thread is alive.
1130
 
1131
   This is a no-op, as ptrace doesn't support threads, so we just
1132
   return "TRUE".  */
1133
 
1134
int
1135
child_thread_alive (ptid_t ptid)
1136
{
1137
  return 1;
1138
}
1139
 
1140
#endif /* ! GDB_NATIVE_HPUX_11 */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.