OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [gdb/] [m32r-tdep.c] - Blame information for rev 1773

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
2
   Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
 
4
   This file is part of GDB.
5
 
6
   This program is free software; you can redistribute it and/or modify
7
   it under the terms of the GNU General Public License as published by
8
   the Free Software Foundation; either version 2 of the License, or
9
   (at your option) any later version.
10
 
11
   This program is distributed in the hope that it will be useful,
12
   but WITHOUT ANY WARRANTY; without even the implied warranty of
13
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
   GNU General Public License for more details.
15
 
16
   You should have received a copy of the GNU General Public License
17
   along with this program; if not, write to the Free Software
18
   Foundation, Inc., 59 Temple Place - Suite 330,
19
   Boston, MA 02111-1307, USA.  */
20
 
21
#include "defs.h"
22
#include "frame.h"
23
#include "inferior.h"
24
#include "target.h"
25
#include "value.h"
26
#include "bfd.h"
27
#include "gdb_string.h"
28
#include "gdbcore.h"
29
#include "symfile.h"
30
#include "regcache.h"
31
 
32
/* Function: m32r_use_struct_convention
33
   Return nonzero if call_function should allocate stack space for a
34
   struct return? */
35
int
36
m32r_use_struct_convention (int gcc_p, struct type *type)
37
{
38
  return (TYPE_LENGTH (type) > 8);
39
}
40
 
41
/* Function: frame_find_saved_regs
42
   Return the frame_saved_regs structure for the frame.
43
   Doesn't really work for dummy frames, but it does pass back
44
   an empty frame_saved_regs, so I guess that's better than total failure */
45
 
46
void
47
m32r_frame_find_saved_regs (struct frame_info *fi,
48
                            struct frame_saved_regs *regaddr)
49
{
50
  memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
51
}
52
 
53
/* Turn this on if you want to see just how much instruction decoding
54
   if being done, its quite a lot
55
 */
56
#if 0
57
static void
58
dump_insn (char *commnt, CORE_ADDR pc, int insn)
59
{
60
  printf_filtered ("  %s %08x %08x ",
61
                   commnt, (unsigned int) pc, (unsigned int) insn);
62
  TARGET_PRINT_INSN (pc, &tm_print_insn_info);
63
  printf_filtered ("\n");
64
}
65
#define insn_debug(args) { printf_filtered args; }
66
#else
67
#define dump_insn(a,b,c) {}
68
#define insn_debug(args) {}
69
#endif
70
 
71
#define DEFAULT_SEARCH_LIMIT 44
72
 
73
/* Function: scan_prologue
74
   This function decodes the target function prologue to determine
75
   1) the size of the stack frame, and 2) which registers are saved on it.
76
   It saves the offsets of saved regs in the frame_saved_regs argument,
77
   and returns the frame size.  */
78
 
79
/*
80
   The sequence it currently generates is:
81
 
82
   if (varargs function) { ddi sp,#n }
83
   push registers
84
   if (additional stack <= 256) {       addi sp,#-stack }
85
   else if (additional stack < 65k) { add3 sp,sp,#-stack
86
 
87
   } else if (additional stack) {
88
   seth sp,#(stack & 0xffff0000)
89
   or3 sp,sp,#(stack & 0x0000ffff)
90
   sub sp,r4
91
   }
92
   if (frame pointer) {
93
   mv sp,fp
94
   }
95
 
96
   These instructions are scheduled like everything else, so you should stop at
97
   the first branch instruction.
98
 
99
 */
100
 
101
/* This is required by skip prologue and by m32r_init_extra_frame_info.
102
   The results of decoding a prologue should be cached because this
103
   thrashing is getting nuts.
104
   I am thinking of making a container class with two indexes, name and
105
   address. It may be better to extend the symbol table.
106
 */
107
 
108
static void
109
decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr,        /* var parameter */
110
                 unsigned long *framelength, struct frame_info *fi,
111
                 struct frame_saved_regs *fsr)
112
{
113
  unsigned long framesize;
114
  int insn;
115
  int op1;
116
  int maybe_one_more = 0;
117
  CORE_ADDR after_prologue = 0;
118
  CORE_ADDR after_stack_adjust = 0;
119
  CORE_ADDR current_pc;
120
 
121
 
122
  framesize = 0;
123
  after_prologue = 0;
124
  insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc));
125
 
126
  for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
127
    {
128
 
129
      insn = read_memory_unsigned_integer (current_pc, 2);
130
      dump_insn ("insn-1", current_pc, insn);   /* MTZ */
131
 
132
      /* If this is a 32 bit instruction, we dont want to examine its
133
         immediate data as though it were an instruction */
134
      if (current_pc & 0x02)
135
        {                       /* Clear the parallel execution bit from 16 bit instruction */
136
          if (maybe_one_more)
137
            {                   /* The last instruction was a branch, usually terminates
138
                                   the series, but if this is a parallel instruction,
139
                                   it may be a stack framing instruction */
140
              if (!(insn & 0x8000))
141
                {
142
                  insn_debug (("Really done"));
143
                  break;        /* nope, we are really done */
144
                }
145
            }
146
          insn &= 0x7fff;       /* decode this instruction further */
147
        }
148
      else
149
        {
150
          if (maybe_one_more)
151
            break;              /* This isnt the one more */
152
          if (insn & 0x8000)
153
            {
154
              insn_debug (("32 bit insn\n"));
155
              if (current_pc == scan_limit)
156
                scan_limit += 2;        /* extend the search */
157
              current_pc += 2;  /* skip the immediate data */
158
              if (insn == 0x8faf)       /* add3 sp, sp, xxxx */
159
                /* add 16 bit sign-extended offset */
160
                {
161
                  insn_debug (("stack increment\n"));
162
                  framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
163
                }
164
              else
165
                {
166
                  if (((insn >> 8) == 0xe4) &&  /* ld24 r4, xxxxxx; sub sp, r4 */
167
                  read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
168
                    {           /* subtract 24 bit sign-extended negative-offset */
169
                      dump_insn ("insn-2", current_pc + 2, insn);
170
                      insn = read_memory_unsigned_integer (current_pc - 2, 4);
171
                      dump_insn ("insn-3(l4)", current_pc - 2, insn);
172
                      if (insn & 0x00800000)    /* sign extend */
173
                        insn |= 0xff000000;     /* negative */
174
                      else
175
                        insn &= 0x00ffffff;     /* positive */
176
                      framesize += insn;
177
                    }
178
                }
179
              after_prologue = current_pc;
180
              continue;
181
            }
182
        }
183
      op1 = insn & 0xf000;      /* isolate just the first nibble */
184
 
185
      if ((insn & 0xf0ff) == 0x207f)
186
        {                       /* st reg, @-sp */
187
          int regno;
188
          insn_debug (("push\n"));
189
#if 0                           /* No, PUSH FP is not an indication that we will use a frame pointer. */
190
          if (((insn & 0xffff) == 0x2d7f) && fi)
191
            fi->using_frame_pointer = 1;
192
#endif
193
          framesize += 4;
194
#if 0
195
/* Why should we increase the scan limit, just because we did a push?
196
   And if there is a reason, surely we would only want to do it if we
197
   had already reached the scan limit... */
198
          if (current_pc == scan_limit)
199
            scan_limit += 2;
200
#endif
201
          regno = ((insn >> 8) & 0xf);
202
          if (fsr)              /* save_regs offset */
203
            fsr->regs[regno] = framesize;
204
          after_prologue = 0;
205
          continue;
206
        }
207
      if ((insn >> 8) == 0x4f)  /* addi sp, xx */
208
        /* add 8 bit sign-extended offset */
209
        {
210
          int stack_adjust = (char) (insn & 0xff);
211
 
212
          /* there are probably two of these stack adjustments:
213
             1) A negative one in the prologue, and
214
             2) A positive one in the epilogue.
215
             We are only interested in the first one.  */
216
 
217
          if (stack_adjust < 0)
218
            {
219
              framesize -= stack_adjust;
220
              after_prologue = 0;
221
              /* A frameless function may have no "mv fp, sp".
222
                 In that case, this is the end of the prologue.  */
223
              after_stack_adjust = current_pc + 2;
224
            }
225
          continue;
226
        }
227
      if (insn == 0x1d8f)
228
        {                       /* mv fp, sp */
229
          if (fi)
230
            fi->using_frame_pointer = 1;        /* fp is now valid */
231
          insn_debug (("done fp found\n"));
232
          after_prologue = current_pc + 2;
233
          break;                /* end of stack adjustments */
234
        }
235
      if (insn == 0x7000)       /* Nop looks like a branch, continue explicitly */
236
        {
237
          insn_debug (("nop\n"));
238
          after_prologue = current_pc + 2;
239
          continue;             /* nop occurs between pushes */
240
        }
241
      /* End of prolog if any of these are branch instructions */
242
      if ((op1 == 0x7000)
243
          || (op1 == 0xb000)
244
          || (op1 == 0xf000))
245
        {
246
          after_prologue = current_pc;
247
          insn_debug (("Done: branch\n"));
248
          maybe_one_more = 1;
249
          continue;
250
        }
251
      /* Some of the branch instructions are mixed with other types */
252
      if (op1 == 0x1000)
253
        {
254
          int subop = insn & 0x0ff0;
255
          if ((subop == 0x0ec0) || (subop == 0x0fc0))
256
            {
257
              insn_debug (("done: jmp\n"));
258
              after_prologue = current_pc;
259
              maybe_one_more = 1;
260
              continue;         /* jmp , jl */
261
            }
262
        }
263
    }
264
 
265
  if (current_pc >= scan_limit)
266
    {
267
      if (pl_endptr)
268
        {
269
#if 1
270
          if (after_stack_adjust != 0)
271
            /* We did not find a "mv fp,sp", but we DID find
272
               a stack_adjust.  Is it safe to use that as the
273
               end of the prologue?  I just don't know. */
274
            {
275
              *pl_endptr = after_stack_adjust;
276
              if (framelength)
277
                *framelength = framesize;
278
            }
279
          else
280
#endif
281
            /* We reached the end of the loop without finding the end
282
               of the prologue.  No way to win -- we should report failure.
283
               The way we do that is to return the original start_pc.
284
               GDB will set a breakpoint at the start of the function (etc.) */
285
            *pl_endptr = start_pc;
286
        }
287
      return;
288
    }
289
  if (after_prologue == 0)
290
    after_prologue = current_pc;
291
 
292
  insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue));
293
  if (framelength)
294
    *framelength = framesize;
295
  if (pl_endptr)
296
    *pl_endptr = after_prologue;
297
}                               /*  decode_prologue */
298
 
299
/* Function: skip_prologue
300
   Find end of function prologue */
301
 
302
CORE_ADDR
303
m32r_skip_prologue (CORE_ADDR pc)
304
{
305
  CORE_ADDR func_addr, func_end;
306
  struct symtab_and_line sal;
307
 
308
  /* See what the symbol table says */
309
 
310
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
311
    {
312
      sal = find_pc_line (func_addr, 0);
313
 
314
      if (sal.line != 0 && sal.end <= func_end)
315
        {
316
 
317
          insn_debug (("BP after prologue %08x\n", sal.end));
318
          func_end = sal.end;
319
        }
320
      else
321
        /* Either there's no line info, or the line after the prologue is after
322
           the end of the function.  In this case, there probably isn't a
323
           prologue.  */
324
        {
325
          insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
326
                       sal.line, sal.end, func_end));
327
          func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
328
        }
329
    }
330
  else
331
    func_end = pc + DEFAULT_SEARCH_LIMIT;
332
  decode_prologue (pc, func_end, &sal.end, 0, 0, 0);
333
  return sal.end;
334
}
335
 
336
static unsigned long
337
m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr)
338
{
339
  struct symtab_and_line sal;
340
  CORE_ADDR prologue_start, prologue_end, current_pc;
341
  unsigned long framesize = 0;
342
 
343
  /* this code essentially duplicates skip_prologue,
344
     but we need the start address below.  */
345
 
346
  if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
347
    {
348
      sal = find_pc_line (prologue_start, 0);
349
 
350
      if (sal.line == 0) /* no line info, use current PC */
351
        if (prologue_start == entry_point_address ())
352
          return 0;
353
    }
354
  else
355
    {
356
      prologue_start = fi->pc;
357
      prologue_end = prologue_start + 48;       /* We're in the boondocks:
358
                                                   allow for 16 pushes, an add,
359
                                                   and "mv fp,sp" */
360
    }
361
#if 0
362
  prologue_end = min (prologue_end, fi->pc);
363
#endif
364
  insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
365
               fi->pc, prologue_start, prologue_end));
366
  prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT);
367
  decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize,
368
                   fi, fsr);
369
  return framesize;
370
}
371
 
372
/* Function: init_extra_frame_info
373
   This function actually figures out the frame address for a given pc and
374
   sp.  This is tricky on the m32r because we sometimes don't use an explicit
375
   frame pointer, and the previous stack pointer isn't necessarily recorded
376
   on the stack.  The only reliable way to get this info is to
377
   examine the prologue.  */
378
 
379
void
380
m32r_init_extra_frame_info (struct frame_info *fi)
381
{
382
  int reg;
383
 
384
  if (fi->next)
385
    fi->pc = FRAME_SAVED_PC (fi->next);
386
 
387
  memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
388
 
389
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
390
    {
391
      /* We need to setup fi->frame here because run_stack_dummy gets it wrong
392
         by assuming it's always FP.  */
393
      fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
394
      fi->framesize = 0;
395
      return;
396
    }
397
  else
398
    {
399
      fi->using_frame_pointer = 0;
400
      fi->framesize = m32r_scan_prologue (fi, &fi->fsr);
401
 
402
      if (!fi->next)
403
        if (fi->using_frame_pointer)
404
          {
405
            fi->frame = read_register (FP_REGNUM);
406
          }
407
        else
408
          fi->frame = read_register (SP_REGNUM);
409
      else
410
        /* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer)
411
        /* we have an FP */
412
        if (fi->next->fsr.regs[FP_REGNUM] != 0)          /* caller saved our FP */
413
          fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
414
      for (reg = 0; reg < NUM_REGS; reg++)
415
        if (fi->fsr.regs[reg] != 0)
416
          fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
417
    }
418
}
419
 
420
/* Function: m32r_virtual_frame_pointer
421
   Return the register that the function uses for a frame pointer,
422
   plus any necessary offset to be applied to the register before
423
   any frame pointer offsets.  */
424
 
425
void
426
m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
427
{
428
  struct frame_info fi;
429
 
430
  /* Set up a dummy frame_info. */
431
  fi.next = NULL;
432
  fi.prev = NULL;
433
  fi.frame = 0;
434
  fi.pc = pc;
435
 
436
  /* Analyze the prolog and fill in the extra info.  */
437
  m32r_init_extra_frame_info (&fi);
438
 
439
 
440
  /* Results will tell us which type of frame it uses.  */
441
  if (fi.using_frame_pointer)
442
    {
443
      *reg = FP_REGNUM;
444
      *offset = 0;
445
    }
446
  else
447
    {
448
      *reg = SP_REGNUM;
449
      *offset = 0;
450
    }
451
}
452
 
453
/* Function: find_callers_reg
454
   Find REGNUM on the stack.  Otherwise, it's in an active register.  One thing
455
   we might want to do here is to check REGNUM against the clobber mask, and
456
   somehow flag it as invalid if it isn't saved on the stack somewhere.  This
457
   would provide a graceful failure mode when trying to get the value of
458
   caller-saves registers for an inner frame.  */
459
 
460
CORE_ADDR
461
m32r_find_callers_reg (struct frame_info *fi, int regnum)
462
{
463
  for (; fi; fi = fi->next)
464
    if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
465
      return generic_read_register_dummy (fi->pc, fi->frame, regnum);
466
    else if (fi->fsr.regs[regnum] != 0)
467
      return read_memory_integer (fi->fsr.regs[regnum],
468
                                  REGISTER_RAW_SIZE (regnum));
469
  return read_register (regnum);
470
}
471
 
472
/* Function: frame_chain
473
   Given a GDB frame, determine the address of the calling function's frame.
474
   This will be used to create a new GDB frame struct, and then
475
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
476
   For m32r, we save the frame size when we initialize the frame_info.  */
477
 
478
CORE_ADDR
479
m32r_frame_chain (struct frame_info *fi)
480
{
481
  CORE_ADDR fn_start, callers_pc, fp;
482
 
483
  /* is this a dummy frame? */
484
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
485
    return fi->frame;           /* dummy frame same as caller's frame */
486
 
487
  /* is caller-of-this a dummy frame? */
488
  callers_pc = FRAME_SAVED_PC (fi);     /* find out who called us: */
489
  fp = m32r_find_callers_reg (fi, FP_REGNUM);
490
  if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
491
    return fp;                  /* dummy frame's frame may bear no relation to ours */
492
 
493
  if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
494
    if (fn_start == entry_point_address ())
495
      return 0;                  /* in _start fn, don't chain further */
496
  if (fi->framesize == 0)
497
    {
498
      printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
499
                       paddr (fi->frame),
500
                       paddr (fi->pc));
501
      return 0;
502
    }
503
  insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize));
504
  return fi->frame + fi->framesize;
505
}
506
 
507
/* Function: push_return_address (pc)
508
   Set up the return address for the inferior function call.
509
   Necessary for targets that don't actually execute a JSR/BSR instruction
510
   (ie. when using an empty CALL_DUMMY) */
511
 
512
CORE_ADDR
513
m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
514
{
515
  write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
516
  return sp;
517
}
518
 
519
 
520
/* Function: pop_frame
521
   Discard from the stack the innermost frame,
522
   restoring all saved registers.  */
523
 
524
struct frame_info *
525
m32r_pop_frame (struct frame_info *frame)
526
{
527
  int regnum;
528
 
529
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
530
    generic_pop_dummy_frame ();
531
  else
532
    {
533
      for (regnum = 0; regnum < NUM_REGS; regnum++)
534
        if (frame->fsr.regs[regnum] != 0)
535
          write_register (regnum,
536
                          read_memory_integer (frame->fsr.regs[regnum], 4));
537
 
538
      write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
539
      write_register (SP_REGNUM, read_register (FP_REGNUM));
540
      if (read_register (PSW_REGNUM) & 0x80)
541
        write_register (SPU_REGNUM, read_register (SP_REGNUM));
542
      else
543
        write_register (SPI_REGNUM, read_register (SP_REGNUM));
544
    }
545
  flush_cached_frames ();
546
  return NULL;
547
}
548
 
549
/* Function: frame_saved_pc
550
   Find the caller of this frame.  We do this by seeing if RP_REGNUM is saved
551
   in the stack anywhere, otherwise we get it from the registers. */
552
 
553
CORE_ADDR
554
m32r_frame_saved_pc (struct frame_info *fi)
555
{
556
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
557
    return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
558
  else
559
    return m32r_find_callers_reg (fi, RP_REGNUM);
560
}
561
 
562
/* Function: push_arguments
563
   Setup the function arguments for calling a function in the inferior.
564
 
565
   On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
566
   which are dedicated for passing function arguments.  Up to the first
567
   four arguments (depending on size) may go into these registers.
568
   The rest go on the stack.
569
 
570
   Arguments that are smaller than 4 bytes will still take up a whole
571
   register or a whole 32-bit word on the stack, and will be
572
   right-justified in the register or the stack word.  This includes
573
   chars, shorts, and small aggregate types.
574
 
575
   Arguments of 8 bytes size are split between two registers, if
576
   available.  If only one register is available, the argument will
577
   be split between the register and the stack.  Otherwise it is
578
   passed entirely on the stack.  Aggregate types with sizes between
579
   4 and 8 bytes are passed entirely on the stack, and are left-justified
580
   within the double-word (as opposed to aggregates smaller than 4 bytes
581
   which are right-justified).
582
 
583
   Aggregates of greater than 8 bytes are first copied onto the stack,
584
   and then a pointer to the copy is passed in the place of the normal
585
   argument (either in a register if available, or on the stack).
586
 
587
   Functions that must return an aggregate type can return it in the
588
   normal return value registers (R0 and R1) if its size is 8 bytes or
589
   less.  For larger return values, the caller must allocate space for
590
   the callee to copy the return value to.  A pointer to this space is
591
   passed as an implicit first argument, always in R0. */
592
 
593
CORE_ADDR
594
m32r_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
595
                     unsigned char struct_return, CORE_ADDR struct_addr)
596
{
597
  int stack_offset, stack_alloc;
598
  int argreg;
599
  int argnum;
600
  struct type *type;
601
  CORE_ADDR regval;
602
  char *val;
603
  char valbuf[4];
604
  int len;
605
  int odd_sized_struct;
606
 
607
  /* first force sp to a 4-byte alignment */
608
  sp = sp & ~3;
609
 
610
  argreg = ARG0_REGNUM;
611
  /* The "struct return pointer" pseudo-argument goes in R0 */
612
  if (struct_return)
613
    write_register (argreg++, struct_addr);
614
 
615
  /* Now make sure there's space on the stack */
616
  for (argnum = 0, stack_alloc = 0;
617
       argnum < nargs; argnum++)
618
    stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
619
  sp -= stack_alloc;            /* make room on stack for args */
620
 
621
 
622
  /* Now load as many as possible of the first arguments into
623
     registers, and push the rest onto the stack.  There are 16 bytes
624
     in four registers available.  Loop thru args from first to last.  */
625
 
626
  argreg = ARG0_REGNUM;
627
  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
628
    {
629
      type = VALUE_TYPE (args[argnum]);
630
      len = TYPE_LENGTH (type);
631
      memset (valbuf, 0, sizeof (valbuf));
632
      if (len < 4)
633
        {                       /* value gets right-justified in the register or stack word */
634
          memcpy (valbuf + (4 - len),
635
                  (char *) VALUE_CONTENTS (args[argnum]), len);
636
          val = valbuf;
637
        }
638
      else
639
        val = (char *) VALUE_CONTENTS (args[argnum]);
640
 
641
      if (len > 4 && (len & 3) != 0)
642
        odd_sized_struct = 1;   /* such structs go entirely on stack */
643
      else
644
        odd_sized_struct = 0;
645
      while (len > 0)
646
        {
647
          if (argreg > ARGLAST_REGNUM || odd_sized_struct)
648
            {                   /* must go on the stack */
649
              write_memory (sp + stack_offset, val, 4);
650
              stack_offset += 4;
651
            }
652
          /* NOTE WELL!!!!!  This is not an "else if" clause!!!
653
             That's because some *&^%$ things get passed on the stack
654
             AND in the registers!   */
655
          if (argreg <= ARGLAST_REGNUM)
656
            {                   /* there's room in a register */
657
              regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
658
              write_register (argreg++, regval);
659
            }
660
          /* Store the value 4 bytes at a time.  This means that things
661
             larger than 4 bytes may go partly in registers and partly
662
             on the stack.  */
663
          len -= REGISTER_RAW_SIZE (argreg);
664
          val += REGISTER_RAW_SIZE (argreg);
665
        }
666
    }
667
  return sp;
668
}
669
 
670
/* Function: fix_call_dummy
671
   If there is real CALL_DUMMY code (eg. on the stack), this function
672
   has the responsability to insert the address of the actual code that
673
   is the target of the target function call.  */
674
 
675
void
676
m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
677
                     struct value **args, struct type *type, int gcc_p)
678
{
679
  /* ld24 r8, <(imm24) fun> */
680
  *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
681
}
682
 
683
 
684
/* Function: m32r_write_sp
685
   Because SP is really a read-only register that mirrors either SPU or SPI,
686
   we must actually write one of those two as well, depending on PSW. */
687
 
688
void
689
m32r_write_sp (CORE_ADDR val)
690
{
691
  unsigned long psw = read_register (PSW_REGNUM);
692
 
693
  if (psw & 0x80)               /* stack mode: user or interrupt */
694
    write_register (SPU_REGNUM, val);
695
  else
696
    write_register (SPI_REGNUM, val);
697
  write_register (SP_REGNUM, val);
698
}
699
 
700
void
701
_initialize_m32r_tdep (void)
702
{
703
  tm_print_insn = print_insn_m32r;
704
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.