| 1 |
1181 |
sfurman |
/* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
|
| 2 |
|
|
Copyright 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
|
| 3 |
|
|
|
| 4 |
|
|
This file is part of GDB.
|
| 5 |
|
|
|
| 6 |
|
|
This program is free software; you can redistribute it and/or modify
|
| 7 |
|
|
it under the terms of the GNU General Public License as published by
|
| 8 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
| 9 |
|
|
(at your option) any later version.
|
| 10 |
|
|
|
| 11 |
|
|
This program is distributed in the hope that it will be useful,
|
| 12 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 14 |
|
|
GNU General Public License for more details.
|
| 15 |
|
|
|
| 16 |
|
|
You should have received a copy of the GNU General Public License
|
| 17 |
|
|
along with this program; if not, write to the Free Software
|
| 18 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
| 19 |
|
|
Boston, MA 02111-1307, USA. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "defs.h"
|
| 22 |
|
|
#include "frame.h"
|
| 23 |
|
|
#include "inferior.h"
|
| 24 |
|
|
#include "target.h"
|
| 25 |
|
|
#include "value.h"
|
| 26 |
|
|
#include "bfd.h"
|
| 27 |
|
|
#include "gdb_string.h"
|
| 28 |
|
|
#include "gdbcore.h"
|
| 29 |
|
|
#include "symfile.h"
|
| 30 |
|
|
#include "regcache.h"
|
| 31 |
|
|
|
| 32 |
|
|
/* Function: m32r_use_struct_convention
|
| 33 |
|
|
Return nonzero if call_function should allocate stack space for a
|
| 34 |
|
|
struct return? */
|
| 35 |
|
|
int
|
| 36 |
|
|
m32r_use_struct_convention (int gcc_p, struct type *type)
|
| 37 |
|
|
{
|
| 38 |
|
|
return (TYPE_LENGTH (type) > 8);
|
| 39 |
|
|
}
|
| 40 |
|
|
|
| 41 |
|
|
/* Function: frame_find_saved_regs
|
| 42 |
|
|
Return the frame_saved_regs structure for the frame.
|
| 43 |
|
|
Doesn't really work for dummy frames, but it does pass back
|
| 44 |
|
|
an empty frame_saved_regs, so I guess that's better than total failure */
|
| 45 |
|
|
|
| 46 |
|
|
void
|
| 47 |
|
|
m32r_frame_find_saved_regs (struct frame_info *fi,
|
| 48 |
|
|
struct frame_saved_regs *regaddr)
|
| 49 |
|
|
{
|
| 50 |
|
|
memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
|
| 51 |
|
|
}
|
| 52 |
|
|
|
| 53 |
|
|
/* Turn this on if you want to see just how much instruction decoding
|
| 54 |
|
|
if being done, its quite a lot
|
| 55 |
|
|
*/
|
| 56 |
|
|
#if 0
|
| 57 |
|
|
static void
|
| 58 |
|
|
dump_insn (char *commnt, CORE_ADDR pc, int insn)
|
| 59 |
|
|
{
|
| 60 |
|
|
printf_filtered (" %s %08x %08x ",
|
| 61 |
|
|
commnt, (unsigned int) pc, (unsigned int) insn);
|
| 62 |
|
|
TARGET_PRINT_INSN (pc, &tm_print_insn_info);
|
| 63 |
|
|
printf_filtered ("\n");
|
| 64 |
|
|
}
|
| 65 |
|
|
#define insn_debug(args) { printf_filtered args; }
|
| 66 |
|
|
#else
|
| 67 |
|
|
#define dump_insn(a,b,c) {}
|
| 68 |
|
|
#define insn_debug(args) {}
|
| 69 |
|
|
#endif
|
| 70 |
|
|
|
| 71 |
|
|
#define DEFAULT_SEARCH_LIMIT 44
|
| 72 |
|
|
|
| 73 |
|
|
/* Function: scan_prologue
|
| 74 |
|
|
This function decodes the target function prologue to determine
|
| 75 |
|
|
1) the size of the stack frame, and 2) which registers are saved on it.
|
| 76 |
|
|
It saves the offsets of saved regs in the frame_saved_regs argument,
|
| 77 |
|
|
and returns the frame size. */
|
| 78 |
|
|
|
| 79 |
|
|
/*
|
| 80 |
|
|
The sequence it currently generates is:
|
| 81 |
|
|
|
| 82 |
|
|
if (varargs function) { ddi sp,#n }
|
| 83 |
|
|
push registers
|
| 84 |
|
|
if (additional stack <= 256) { addi sp,#-stack }
|
| 85 |
|
|
else if (additional stack < 65k) { add3 sp,sp,#-stack
|
| 86 |
|
|
|
| 87 |
|
|
} else if (additional stack) {
|
| 88 |
|
|
seth sp,#(stack & 0xffff0000)
|
| 89 |
|
|
or3 sp,sp,#(stack & 0x0000ffff)
|
| 90 |
|
|
sub sp,r4
|
| 91 |
|
|
}
|
| 92 |
|
|
if (frame pointer) {
|
| 93 |
|
|
mv sp,fp
|
| 94 |
|
|
}
|
| 95 |
|
|
|
| 96 |
|
|
These instructions are scheduled like everything else, so you should stop at
|
| 97 |
|
|
the first branch instruction.
|
| 98 |
|
|
|
| 99 |
|
|
*/
|
| 100 |
|
|
|
| 101 |
|
|
/* This is required by skip prologue and by m32r_init_extra_frame_info.
|
| 102 |
|
|
The results of decoding a prologue should be cached because this
|
| 103 |
|
|
thrashing is getting nuts.
|
| 104 |
|
|
I am thinking of making a container class with two indexes, name and
|
| 105 |
|
|
address. It may be better to extend the symbol table.
|
| 106 |
|
|
*/
|
| 107 |
|
|
|
| 108 |
|
|
static void
|
| 109 |
|
|
decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr, /* var parameter */
|
| 110 |
|
|
unsigned long *framelength, struct frame_info *fi,
|
| 111 |
|
|
struct frame_saved_regs *fsr)
|
| 112 |
|
|
{
|
| 113 |
|
|
unsigned long framesize;
|
| 114 |
|
|
int insn;
|
| 115 |
|
|
int op1;
|
| 116 |
|
|
int maybe_one_more = 0;
|
| 117 |
|
|
CORE_ADDR after_prologue = 0;
|
| 118 |
|
|
CORE_ADDR after_stack_adjust = 0;
|
| 119 |
|
|
CORE_ADDR current_pc;
|
| 120 |
|
|
|
| 121 |
|
|
|
| 122 |
|
|
framesize = 0;
|
| 123 |
|
|
after_prologue = 0;
|
| 124 |
|
|
insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc));
|
| 125 |
|
|
|
| 126 |
|
|
for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
|
| 127 |
|
|
{
|
| 128 |
|
|
|
| 129 |
|
|
insn = read_memory_unsigned_integer (current_pc, 2);
|
| 130 |
|
|
dump_insn ("insn-1", current_pc, insn); /* MTZ */
|
| 131 |
|
|
|
| 132 |
|
|
/* If this is a 32 bit instruction, we dont want to examine its
|
| 133 |
|
|
immediate data as though it were an instruction */
|
| 134 |
|
|
if (current_pc & 0x02)
|
| 135 |
|
|
{ /* Clear the parallel execution bit from 16 bit instruction */
|
| 136 |
|
|
if (maybe_one_more)
|
| 137 |
|
|
{ /* The last instruction was a branch, usually terminates
|
| 138 |
|
|
the series, but if this is a parallel instruction,
|
| 139 |
|
|
it may be a stack framing instruction */
|
| 140 |
|
|
if (!(insn & 0x8000))
|
| 141 |
|
|
{
|
| 142 |
|
|
insn_debug (("Really done"));
|
| 143 |
|
|
break; /* nope, we are really done */
|
| 144 |
|
|
}
|
| 145 |
|
|
}
|
| 146 |
|
|
insn &= 0x7fff; /* decode this instruction further */
|
| 147 |
|
|
}
|
| 148 |
|
|
else
|
| 149 |
|
|
{
|
| 150 |
|
|
if (maybe_one_more)
|
| 151 |
|
|
break; /* This isnt the one more */
|
| 152 |
|
|
if (insn & 0x8000)
|
| 153 |
|
|
{
|
| 154 |
|
|
insn_debug (("32 bit insn\n"));
|
| 155 |
|
|
if (current_pc == scan_limit)
|
| 156 |
|
|
scan_limit += 2; /* extend the search */
|
| 157 |
|
|
current_pc += 2; /* skip the immediate data */
|
| 158 |
|
|
if (insn == 0x8faf) /* add3 sp, sp, xxxx */
|
| 159 |
|
|
/* add 16 bit sign-extended offset */
|
| 160 |
|
|
{
|
| 161 |
|
|
insn_debug (("stack increment\n"));
|
| 162 |
|
|
framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
|
| 163 |
|
|
}
|
| 164 |
|
|
else
|
| 165 |
|
|
{
|
| 166 |
|
|
if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
|
| 167 |
|
|
read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
|
| 168 |
|
|
{ /* subtract 24 bit sign-extended negative-offset */
|
| 169 |
|
|
dump_insn ("insn-2", current_pc + 2, insn);
|
| 170 |
|
|
insn = read_memory_unsigned_integer (current_pc - 2, 4);
|
| 171 |
|
|
dump_insn ("insn-3(l4)", current_pc - 2, insn);
|
| 172 |
|
|
if (insn & 0x00800000) /* sign extend */
|
| 173 |
|
|
insn |= 0xff000000; /* negative */
|
| 174 |
|
|
else
|
| 175 |
|
|
insn &= 0x00ffffff; /* positive */
|
| 176 |
|
|
framesize += insn;
|
| 177 |
|
|
}
|
| 178 |
|
|
}
|
| 179 |
|
|
after_prologue = current_pc;
|
| 180 |
|
|
continue;
|
| 181 |
|
|
}
|
| 182 |
|
|
}
|
| 183 |
|
|
op1 = insn & 0xf000; /* isolate just the first nibble */
|
| 184 |
|
|
|
| 185 |
|
|
if ((insn & 0xf0ff) == 0x207f)
|
| 186 |
|
|
{ /* st reg, @-sp */
|
| 187 |
|
|
int regno;
|
| 188 |
|
|
insn_debug (("push\n"));
|
| 189 |
|
|
#if 0 /* No, PUSH FP is not an indication that we will use a frame pointer. */
|
| 190 |
|
|
if (((insn & 0xffff) == 0x2d7f) && fi)
|
| 191 |
|
|
fi->using_frame_pointer = 1;
|
| 192 |
|
|
#endif
|
| 193 |
|
|
framesize += 4;
|
| 194 |
|
|
#if 0
|
| 195 |
|
|
/* Why should we increase the scan limit, just because we did a push?
|
| 196 |
|
|
And if there is a reason, surely we would only want to do it if we
|
| 197 |
|
|
had already reached the scan limit... */
|
| 198 |
|
|
if (current_pc == scan_limit)
|
| 199 |
|
|
scan_limit += 2;
|
| 200 |
|
|
#endif
|
| 201 |
|
|
regno = ((insn >> 8) & 0xf);
|
| 202 |
|
|
if (fsr) /* save_regs offset */
|
| 203 |
|
|
fsr->regs[regno] = framesize;
|
| 204 |
|
|
after_prologue = 0;
|
| 205 |
|
|
continue;
|
| 206 |
|
|
}
|
| 207 |
|
|
if ((insn >> 8) == 0x4f) /* addi sp, xx */
|
| 208 |
|
|
/* add 8 bit sign-extended offset */
|
| 209 |
|
|
{
|
| 210 |
|
|
int stack_adjust = (char) (insn & 0xff);
|
| 211 |
|
|
|
| 212 |
|
|
/* there are probably two of these stack adjustments:
|
| 213 |
|
|
1) A negative one in the prologue, and
|
| 214 |
|
|
2) A positive one in the epilogue.
|
| 215 |
|
|
We are only interested in the first one. */
|
| 216 |
|
|
|
| 217 |
|
|
if (stack_adjust < 0)
|
| 218 |
|
|
{
|
| 219 |
|
|
framesize -= stack_adjust;
|
| 220 |
|
|
after_prologue = 0;
|
| 221 |
|
|
/* A frameless function may have no "mv fp, sp".
|
| 222 |
|
|
In that case, this is the end of the prologue. */
|
| 223 |
|
|
after_stack_adjust = current_pc + 2;
|
| 224 |
|
|
}
|
| 225 |
|
|
continue;
|
| 226 |
|
|
}
|
| 227 |
|
|
if (insn == 0x1d8f)
|
| 228 |
|
|
{ /* mv fp, sp */
|
| 229 |
|
|
if (fi)
|
| 230 |
|
|
fi->using_frame_pointer = 1; /* fp is now valid */
|
| 231 |
|
|
insn_debug (("done fp found\n"));
|
| 232 |
|
|
after_prologue = current_pc + 2;
|
| 233 |
|
|
break; /* end of stack adjustments */
|
| 234 |
|
|
}
|
| 235 |
|
|
if (insn == 0x7000) /* Nop looks like a branch, continue explicitly */
|
| 236 |
|
|
{
|
| 237 |
|
|
insn_debug (("nop\n"));
|
| 238 |
|
|
after_prologue = current_pc + 2;
|
| 239 |
|
|
continue; /* nop occurs between pushes */
|
| 240 |
|
|
}
|
| 241 |
|
|
/* End of prolog if any of these are branch instructions */
|
| 242 |
|
|
if ((op1 == 0x7000)
|
| 243 |
|
|
|| (op1 == 0xb000)
|
| 244 |
|
|
|| (op1 == 0xf000))
|
| 245 |
|
|
{
|
| 246 |
|
|
after_prologue = current_pc;
|
| 247 |
|
|
insn_debug (("Done: branch\n"));
|
| 248 |
|
|
maybe_one_more = 1;
|
| 249 |
|
|
continue;
|
| 250 |
|
|
}
|
| 251 |
|
|
/* Some of the branch instructions are mixed with other types */
|
| 252 |
|
|
if (op1 == 0x1000)
|
| 253 |
|
|
{
|
| 254 |
|
|
int subop = insn & 0x0ff0;
|
| 255 |
|
|
if ((subop == 0x0ec0) || (subop == 0x0fc0))
|
| 256 |
|
|
{
|
| 257 |
|
|
insn_debug (("done: jmp\n"));
|
| 258 |
|
|
after_prologue = current_pc;
|
| 259 |
|
|
maybe_one_more = 1;
|
| 260 |
|
|
continue; /* jmp , jl */
|
| 261 |
|
|
}
|
| 262 |
|
|
}
|
| 263 |
|
|
}
|
| 264 |
|
|
|
| 265 |
|
|
if (current_pc >= scan_limit)
|
| 266 |
|
|
{
|
| 267 |
|
|
if (pl_endptr)
|
| 268 |
|
|
{
|
| 269 |
|
|
#if 1
|
| 270 |
|
|
if (after_stack_adjust != 0)
|
| 271 |
|
|
/* We did not find a "mv fp,sp", but we DID find
|
| 272 |
|
|
a stack_adjust. Is it safe to use that as the
|
| 273 |
|
|
end of the prologue? I just don't know. */
|
| 274 |
|
|
{
|
| 275 |
|
|
*pl_endptr = after_stack_adjust;
|
| 276 |
|
|
if (framelength)
|
| 277 |
|
|
*framelength = framesize;
|
| 278 |
|
|
}
|
| 279 |
|
|
else
|
| 280 |
|
|
#endif
|
| 281 |
|
|
/* We reached the end of the loop without finding the end
|
| 282 |
|
|
of the prologue. No way to win -- we should report failure.
|
| 283 |
|
|
The way we do that is to return the original start_pc.
|
| 284 |
|
|
GDB will set a breakpoint at the start of the function (etc.) */
|
| 285 |
|
|
*pl_endptr = start_pc;
|
| 286 |
|
|
}
|
| 287 |
|
|
return;
|
| 288 |
|
|
}
|
| 289 |
|
|
if (after_prologue == 0)
|
| 290 |
|
|
after_prologue = current_pc;
|
| 291 |
|
|
|
| 292 |
|
|
insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue));
|
| 293 |
|
|
if (framelength)
|
| 294 |
|
|
*framelength = framesize;
|
| 295 |
|
|
if (pl_endptr)
|
| 296 |
|
|
*pl_endptr = after_prologue;
|
| 297 |
|
|
} /* decode_prologue */
|
| 298 |
|
|
|
| 299 |
|
|
/* Function: skip_prologue
|
| 300 |
|
|
Find end of function prologue */
|
| 301 |
|
|
|
| 302 |
|
|
CORE_ADDR
|
| 303 |
|
|
m32r_skip_prologue (CORE_ADDR pc)
|
| 304 |
|
|
{
|
| 305 |
|
|
CORE_ADDR func_addr, func_end;
|
| 306 |
|
|
struct symtab_and_line sal;
|
| 307 |
|
|
|
| 308 |
|
|
/* See what the symbol table says */
|
| 309 |
|
|
|
| 310 |
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
| 311 |
|
|
{
|
| 312 |
|
|
sal = find_pc_line (func_addr, 0);
|
| 313 |
|
|
|
| 314 |
|
|
if (sal.line != 0 && sal.end <= func_end)
|
| 315 |
|
|
{
|
| 316 |
|
|
|
| 317 |
|
|
insn_debug (("BP after prologue %08x\n", sal.end));
|
| 318 |
|
|
func_end = sal.end;
|
| 319 |
|
|
}
|
| 320 |
|
|
else
|
| 321 |
|
|
/* Either there's no line info, or the line after the prologue is after
|
| 322 |
|
|
the end of the function. In this case, there probably isn't a
|
| 323 |
|
|
prologue. */
|
| 324 |
|
|
{
|
| 325 |
|
|
insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
|
| 326 |
|
|
sal.line, sal.end, func_end));
|
| 327 |
|
|
func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
|
| 328 |
|
|
}
|
| 329 |
|
|
}
|
| 330 |
|
|
else
|
| 331 |
|
|
func_end = pc + DEFAULT_SEARCH_LIMIT;
|
| 332 |
|
|
decode_prologue (pc, func_end, &sal.end, 0, 0, 0);
|
| 333 |
|
|
return sal.end;
|
| 334 |
|
|
}
|
| 335 |
|
|
|
| 336 |
|
|
static unsigned long
|
| 337 |
|
|
m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr)
|
| 338 |
|
|
{
|
| 339 |
|
|
struct symtab_and_line sal;
|
| 340 |
|
|
CORE_ADDR prologue_start, prologue_end, current_pc;
|
| 341 |
|
|
unsigned long framesize = 0;
|
| 342 |
|
|
|
| 343 |
|
|
/* this code essentially duplicates skip_prologue,
|
| 344 |
|
|
but we need the start address below. */
|
| 345 |
|
|
|
| 346 |
|
|
if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
|
| 347 |
|
|
{
|
| 348 |
|
|
sal = find_pc_line (prologue_start, 0);
|
| 349 |
|
|
|
| 350 |
|
|
if (sal.line == 0) /* no line info, use current PC */
|
| 351 |
|
|
if (prologue_start == entry_point_address ())
|
| 352 |
|
|
return 0;
|
| 353 |
|
|
}
|
| 354 |
|
|
else
|
| 355 |
|
|
{
|
| 356 |
|
|
prologue_start = fi->pc;
|
| 357 |
|
|
prologue_end = prologue_start + 48; /* We're in the boondocks:
|
| 358 |
|
|
allow for 16 pushes, an add,
|
| 359 |
|
|
and "mv fp,sp" */
|
| 360 |
|
|
}
|
| 361 |
|
|
#if 0
|
| 362 |
|
|
prologue_end = min (prologue_end, fi->pc);
|
| 363 |
|
|
#endif
|
| 364 |
|
|
insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
|
| 365 |
|
|
fi->pc, prologue_start, prologue_end));
|
| 366 |
|
|
prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT);
|
| 367 |
|
|
decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize,
|
| 368 |
|
|
fi, fsr);
|
| 369 |
|
|
return framesize;
|
| 370 |
|
|
}
|
| 371 |
|
|
|
| 372 |
|
|
/* Function: init_extra_frame_info
|
| 373 |
|
|
This function actually figures out the frame address for a given pc and
|
| 374 |
|
|
sp. This is tricky on the m32r because we sometimes don't use an explicit
|
| 375 |
|
|
frame pointer, and the previous stack pointer isn't necessarily recorded
|
| 376 |
|
|
on the stack. The only reliable way to get this info is to
|
| 377 |
|
|
examine the prologue. */
|
| 378 |
|
|
|
| 379 |
|
|
void
|
| 380 |
|
|
m32r_init_extra_frame_info (struct frame_info *fi)
|
| 381 |
|
|
{
|
| 382 |
|
|
int reg;
|
| 383 |
|
|
|
| 384 |
|
|
if (fi->next)
|
| 385 |
|
|
fi->pc = FRAME_SAVED_PC (fi->next);
|
| 386 |
|
|
|
| 387 |
|
|
memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
|
| 388 |
|
|
|
| 389 |
|
|
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
| 390 |
|
|
{
|
| 391 |
|
|
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
|
| 392 |
|
|
by assuming it's always FP. */
|
| 393 |
|
|
fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
|
| 394 |
|
|
fi->framesize = 0;
|
| 395 |
|
|
return;
|
| 396 |
|
|
}
|
| 397 |
|
|
else
|
| 398 |
|
|
{
|
| 399 |
|
|
fi->using_frame_pointer = 0;
|
| 400 |
|
|
fi->framesize = m32r_scan_prologue (fi, &fi->fsr);
|
| 401 |
|
|
|
| 402 |
|
|
if (!fi->next)
|
| 403 |
|
|
if (fi->using_frame_pointer)
|
| 404 |
|
|
{
|
| 405 |
|
|
fi->frame = read_register (FP_REGNUM);
|
| 406 |
|
|
}
|
| 407 |
|
|
else
|
| 408 |
|
|
fi->frame = read_register (SP_REGNUM);
|
| 409 |
|
|
else
|
| 410 |
|
|
/* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer)
|
| 411 |
|
|
/* we have an FP */
|
| 412 |
|
|
if (fi->next->fsr.regs[FP_REGNUM] != 0) /* caller saved our FP */
|
| 413 |
|
|
fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
|
| 414 |
|
|
for (reg = 0; reg < NUM_REGS; reg++)
|
| 415 |
|
|
if (fi->fsr.regs[reg] != 0)
|
| 416 |
|
|
fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
|
| 417 |
|
|
}
|
| 418 |
|
|
}
|
| 419 |
|
|
|
| 420 |
|
|
/* Function: m32r_virtual_frame_pointer
|
| 421 |
|
|
Return the register that the function uses for a frame pointer,
|
| 422 |
|
|
plus any necessary offset to be applied to the register before
|
| 423 |
|
|
any frame pointer offsets. */
|
| 424 |
|
|
|
| 425 |
|
|
void
|
| 426 |
|
|
m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
|
| 427 |
|
|
{
|
| 428 |
|
|
struct frame_info fi;
|
| 429 |
|
|
|
| 430 |
|
|
/* Set up a dummy frame_info. */
|
| 431 |
|
|
fi.next = NULL;
|
| 432 |
|
|
fi.prev = NULL;
|
| 433 |
|
|
fi.frame = 0;
|
| 434 |
|
|
fi.pc = pc;
|
| 435 |
|
|
|
| 436 |
|
|
/* Analyze the prolog and fill in the extra info. */
|
| 437 |
|
|
m32r_init_extra_frame_info (&fi);
|
| 438 |
|
|
|
| 439 |
|
|
|
| 440 |
|
|
/* Results will tell us which type of frame it uses. */
|
| 441 |
|
|
if (fi.using_frame_pointer)
|
| 442 |
|
|
{
|
| 443 |
|
|
*reg = FP_REGNUM;
|
| 444 |
|
|
*offset = 0;
|
| 445 |
|
|
}
|
| 446 |
|
|
else
|
| 447 |
|
|
{
|
| 448 |
|
|
*reg = SP_REGNUM;
|
| 449 |
|
|
*offset = 0;
|
| 450 |
|
|
}
|
| 451 |
|
|
}
|
| 452 |
|
|
|
| 453 |
|
|
/* Function: find_callers_reg
|
| 454 |
|
|
Find REGNUM on the stack. Otherwise, it's in an active register. One thing
|
| 455 |
|
|
we might want to do here is to check REGNUM against the clobber mask, and
|
| 456 |
|
|
somehow flag it as invalid if it isn't saved on the stack somewhere. This
|
| 457 |
|
|
would provide a graceful failure mode when trying to get the value of
|
| 458 |
|
|
caller-saves registers for an inner frame. */
|
| 459 |
|
|
|
| 460 |
|
|
CORE_ADDR
|
| 461 |
|
|
m32r_find_callers_reg (struct frame_info *fi, int regnum)
|
| 462 |
|
|
{
|
| 463 |
|
|
for (; fi; fi = fi->next)
|
| 464 |
|
|
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
| 465 |
|
|
return generic_read_register_dummy (fi->pc, fi->frame, regnum);
|
| 466 |
|
|
else if (fi->fsr.regs[regnum] != 0)
|
| 467 |
|
|
return read_memory_integer (fi->fsr.regs[regnum],
|
| 468 |
|
|
REGISTER_RAW_SIZE (regnum));
|
| 469 |
|
|
return read_register (regnum);
|
| 470 |
|
|
}
|
| 471 |
|
|
|
| 472 |
|
|
/* Function: frame_chain
|
| 473 |
|
|
Given a GDB frame, determine the address of the calling function's frame.
|
| 474 |
|
|
This will be used to create a new GDB frame struct, and then
|
| 475 |
|
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
| 476 |
|
|
For m32r, we save the frame size when we initialize the frame_info. */
|
| 477 |
|
|
|
| 478 |
|
|
CORE_ADDR
|
| 479 |
|
|
m32r_frame_chain (struct frame_info *fi)
|
| 480 |
|
|
{
|
| 481 |
|
|
CORE_ADDR fn_start, callers_pc, fp;
|
| 482 |
|
|
|
| 483 |
|
|
/* is this a dummy frame? */
|
| 484 |
|
|
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
| 485 |
|
|
return fi->frame; /* dummy frame same as caller's frame */
|
| 486 |
|
|
|
| 487 |
|
|
/* is caller-of-this a dummy frame? */
|
| 488 |
|
|
callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
|
| 489 |
|
|
fp = m32r_find_callers_reg (fi, FP_REGNUM);
|
| 490 |
|
|
if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
|
| 491 |
|
|
return fp; /* dummy frame's frame may bear no relation to ours */
|
| 492 |
|
|
|
| 493 |
|
|
if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
|
| 494 |
|
|
if (fn_start == entry_point_address ())
|
| 495 |
|
|
return 0; /* in _start fn, don't chain further */
|
| 496 |
|
|
if (fi->framesize == 0)
|
| 497 |
|
|
{
|
| 498 |
|
|
printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
|
| 499 |
|
|
paddr (fi->frame),
|
| 500 |
|
|
paddr (fi->pc));
|
| 501 |
|
|
return 0;
|
| 502 |
|
|
}
|
| 503 |
|
|
insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize));
|
| 504 |
|
|
return fi->frame + fi->framesize;
|
| 505 |
|
|
}
|
| 506 |
|
|
|
| 507 |
|
|
/* Function: push_return_address (pc)
|
| 508 |
|
|
Set up the return address for the inferior function call.
|
| 509 |
|
|
Necessary for targets that don't actually execute a JSR/BSR instruction
|
| 510 |
|
|
(ie. when using an empty CALL_DUMMY) */
|
| 511 |
|
|
|
| 512 |
|
|
CORE_ADDR
|
| 513 |
|
|
m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
| 514 |
|
|
{
|
| 515 |
|
|
write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
|
| 516 |
|
|
return sp;
|
| 517 |
|
|
}
|
| 518 |
|
|
|
| 519 |
|
|
|
| 520 |
|
|
/* Function: pop_frame
|
| 521 |
|
|
Discard from the stack the innermost frame,
|
| 522 |
|
|
restoring all saved registers. */
|
| 523 |
|
|
|
| 524 |
|
|
struct frame_info *
|
| 525 |
|
|
m32r_pop_frame (struct frame_info *frame)
|
| 526 |
|
|
{
|
| 527 |
|
|
int regnum;
|
| 528 |
|
|
|
| 529 |
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
| 530 |
|
|
generic_pop_dummy_frame ();
|
| 531 |
|
|
else
|
| 532 |
|
|
{
|
| 533 |
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
| 534 |
|
|
if (frame->fsr.regs[regnum] != 0)
|
| 535 |
|
|
write_register (regnum,
|
| 536 |
|
|
read_memory_integer (frame->fsr.regs[regnum], 4));
|
| 537 |
|
|
|
| 538 |
|
|
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
|
| 539 |
|
|
write_register (SP_REGNUM, read_register (FP_REGNUM));
|
| 540 |
|
|
if (read_register (PSW_REGNUM) & 0x80)
|
| 541 |
|
|
write_register (SPU_REGNUM, read_register (SP_REGNUM));
|
| 542 |
|
|
else
|
| 543 |
|
|
write_register (SPI_REGNUM, read_register (SP_REGNUM));
|
| 544 |
|
|
}
|
| 545 |
|
|
flush_cached_frames ();
|
| 546 |
|
|
return NULL;
|
| 547 |
|
|
}
|
| 548 |
|
|
|
| 549 |
|
|
/* Function: frame_saved_pc
|
| 550 |
|
|
Find the caller of this frame. We do this by seeing if RP_REGNUM is saved
|
| 551 |
|
|
in the stack anywhere, otherwise we get it from the registers. */
|
| 552 |
|
|
|
| 553 |
|
|
CORE_ADDR
|
| 554 |
|
|
m32r_frame_saved_pc (struct frame_info *fi)
|
| 555 |
|
|
{
|
| 556 |
|
|
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
| 557 |
|
|
return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
|
| 558 |
|
|
else
|
| 559 |
|
|
return m32r_find_callers_reg (fi, RP_REGNUM);
|
| 560 |
|
|
}
|
| 561 |
|
|
|
| 562 |
|
|
/* Function: push_arguments
|
| 563 |
|
|
Setup the function arguments for calling a function in the inferior.
|
| 564 |
|
|
|
| 565 |
|
|
On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
|
| 566 |
|
|
which are dedicated for passing function arguments. Up to the first
|
| 567 |
|
|
four arguments (depending on size) may go into these registers.
|
| 568 |
|
|
The rest go on the stack.
|
| 569 |
|
|
|
| 570 |
|
|
Arguments that are smaller than 4 bytes will still take up a whole
|
| 571 |
|
|
register or a whole 32-bit word on the stack, and will be
|
| 572 |
|
|
right-justified in the register or the stack word. This includes
|
| 573 |
|
|
chars, shorts, and small aggregate types.
|
| 574 |
|
|
|
| 575 |
|
|
Arguments of 8 bytes size are split between two registers, if
|
| 576 |
|
|
available. If only one register is available, the argument will
|
| 577 |
|
|
be split between the register and the stack. Otherwise it is
|
| 578 |
|
|
passed entirely on the stack. Aggregate types with sizes between
|
| 579 |
|
|
4 and 8 bytes are passed entirely on the stack, and are left-justified
|
| 580 |
|
|
within the double-word (as opposed to aggregates smaller than 4 bytes
|
| 581 |
|
|
which are right-justified).
|
| 582 |
|
|
|
| 583 |
|
|
Aggregates of greater than 8 bytes are first copied onto the stack,
|
| 584 |
|
|
and then a pointer to the copy is passed in the place of the normal
|
| 585 |
|
|
argument (either in a register if available, or on the stack).
|
| 586 |
|
|
|
| 587 |
|
|
Functions that must return an aggregate type can return it in the
|
| 588 |
|
|
normal return value registers (R0 and R1) if its size is 8 bytes or
|
| 589 |
|
|
less. For larger return values, the caller must allocate space for
|
| 590 |
|
|
the callee to copy the return value to. A pointer to this space is
|
| 591 |
|
|
passed as an implicit first argument, always in R0. */
|
| 592 |
|
|
|
| 593 |
|
|
CORE_ADDR
|
| 594 |
|
|
m32r_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
| 595 |
|
|
unsigned char struct_return, CORE_ADDR struct_addr)
|
| 596 |
|
|
{
|
| 597 |
|
|
int stack_offset, stack_alloc;
|
| 598 |
|
|
int argreg;
|
| 599 |
|
|
int argnum;
|
| 600 |
|
|
struct type *type;
|
| 601 |
|
|
CORE_ADDR regval;
|
| 602 |
|
|
char *val;
|
| 603 |
|
|
char valbuf[4];
|
| 604 |
|
|
int len;
|
| 605 |
|
|
int odd_sized_struct;
|
| 606 |
|
|
|
| 607 |
|
|
/* first force sp to a 4-byte alignment */
|
| 608 |
|
|
sp = sp & ~3;
|
| 609 |
|
|
|
| 610 |
|
|
argreg = ARG0_REGNUM;
|
| 611 |
|
|
/* The "struct return pointer" pseudo-argument goes in R0 */
|
| 612 |
|
|
if (struct_return)
|
| 613 |
|
|
write_register (argreg++, struct_addr);
|
| 614 |
|
|
|
| 615 |
|
|
/* Now make sure there's space on the stack */
|
| 616 |
|
|
for (argnum = 0, stack_alloc = 0;
|
| 617 |
|
|
argnum < nargs; argnum++)
|
| 618 |
|
|
stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
|
| 619 |
|
|
sp -= stack_alloc; /* make room on stack for args */
|
| 620 |
|
|
|
| 621 |
|
|
|
| 622 |
|
|
/* Now load as many as possible of the first arguments into
|
| 623 |
|
|
registers, and push the rest onto the stack. There are 16 bytes
|
| 624 |
|
|
in four registers available. Loop thru args from first to last. */
|
| 625 |
|
|
|
| 626 |
|
|
argreg = ARG0_REGNUM;
|
| 627 |
|
|
for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
|
| 628 |
|
|
{
|
| 629 |
|
|
type = VALUE_TYPE (args[argnum]);
|
| 630 |
|
|
len = TYPE_LENGTH (type);
|
| 631 |
|
|
memset (valbuf, 0, sizeof (valbuf));
|
| 632 |
|
|
if (len < 4)
|
| 633 |
|
|
{ /* value gets right-justified in the register or stack word */
|
| 634 |
|
|
memcpy (valbuf + (4 - len),
|
| 635 |
|
|
(char *) VALUE_CONTENTS (args[argnum]), len);
|
| 636 |
|
|
val = valbuf;
|
| 637 |
|
|
}
|
| 638 |
|
|
else
|
| 639 |
|
|
val = (char *) VALUE_CONTENTS (args[argnum]);
|
| 640 |
|
|
|
| 641 |
|
|
if (len > 4 && (len & 3) != 0)
|
| 642 |
|
|
odd_sized_struct = 1; /* such structs go entirely on stack */
|
| 643 |
|
|
else
|
| 644 |
|
|
odd_sized_struct = 0;
|
| 645 |
|
|
while (len > 0)
|
| 646 |
|
|
{
|
| 647 |
|
|
if (argreg > ARGLAST_REGNUM || odd_sized_struct)
|
| 648 |
|
|
{ /* must go on the stack */
|
| 649 |
|
|
write_memory (sp + stack_offset, val, 4);
|
| 650 |
|
|
stack_offset += 4;
|
| 651 |
|
|
}
|
| 652 |
|
|
/* NOTE WELL!!!!! This is not an "else if" clause!!!
|
| 653 |
|
|
That's because some *&^%$ things get passed on the stack
|
| 654 |
|
|
AND in the registers! */
|
| 655 |
|
|
if (argreg <= ARGLAST_REGNUM)
|
| 656 |
|
|
{ /* there's room in a register */
|
| 657 |
|
|
regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
|
| 658 |
|
|
write_register (argreg++, regval);
|
| 659 |
|
|
}
|
| 660 |
|
|
/* Store the value 4 bytes at a time. This means that things
|
| 661 |
|
|
larger than 4 bytes may go partly in registers and partly
|
| 662 |
|
|
on the stack. */
|
| 663 |
|
|
len -= REGISTER_RAW_SIZE (argreg);
|
| 664 |
|
|
val += REGISTER_RAW_SIZE (argreg);
|
| 665 |
|
|
}
|
| 666 |
|
|
}
|
| 667 |
|
|
return sp;
|
| 668 |
|
|
}
|
| 669 |
|
|
|
| 670 |
|
|
/* Function: fix_call_dummy
|
| 671 |
|
|
If there is real CALL_DUMMY code (eg. on the stack), this function
|
| 672 |
|
|
has the responsability to insert the address of the actual code that
|
| 673 |
|
|
is the target of the target function call. */
|
| 674 |
|
|
|
| 675 |
|
|
void
|
| 676 |
|
|
m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
|
| 677 |
|
|
struct value **args, struct type *type, int gcc_p)
|
| 678 |
|
|
{
|
| 679 |
|
|
/* ld24 r8, <(imm24) fun> */
|
| 680 |
|
|
*(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
|
| 681 |
|
|
}
|
| 682 |
|
|
|
| 683 |
|
|
|
| 684 |
|
|
/* Function: m32r_write_sp
|
| 685 |
|
|
Because SP is really a read-only register that mirrors either SPU or SPI,
|
| 686 |
|
|
we must actually write one of those two as well, depending on PSW. */
|
| 687 |
|
|
|
| 688 |
|
|
void
|
| 689 |
|
|
m32r_write_sp (CORE_ADDR val)
|
| 690 |
|
|
{
|
| 691 |
|
|
unsigned long psw = read_register (PSW_REGNUM);
|
| 692 |
|
|
|
| 693 |
|
|
if (psw & 0x80) /* stack mode: user or interrupt */
|
| 694 |
|
|
write_register (SPU_REGNUM, val);
|
| 695 |
|
|
else
|
| 696 |
|
|
write_register (SPI_REGNUM, val);
|
| 697 |
|
|
write_register (SP_REGNUM, val);
|
| 698 |
|
|
}
|
| 699 |
|
|
|
| 700 |
|
|
void
|
| 701 |
|
|
_initialize_m32r_tdep (void)
|
| 702 |
|
|
{
|
| 703 |
|
|
tm_print_insn = print_insn_m32r;
|
| 704 |
|
|
}
|