| 1 |
1181 |
sfurman |
/* Target dependent code for the Motorola 68000 series.
|
| 2 |
|
|
Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GDB.
|
| 6 |
|
|
|
| 7 |
|
|
This program is free software; you can redistribute it and/or modify
|
| 8 |
|
|
it under the terms of the GNU General Public License as published by
|
| 9 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
| 10 |
|
|
(at your option) any later version.
|
| 11 |
|
|
|
| 12 |
|
|
This program is distributed in the hope that it will be useful,
|
| 13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 15 |
|
|
GNU General Public License for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with this program; if not, write to the Free Software
|
| 19 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
| 20 |
|
|
Boston, MA 02111-1307, USA. */
|
| 21 |
|
|
|
| 22 |
|
|
#include "defs.h"
|
| 23 |
|
|
#include "frame.h"
|
| 24 |
|
|
#include "symtab.h"
|
| 25 |
|
|
#include "gdbcore.h"
|
| 26 |
|
|
#include "value.h"
|
| 27 |
|
|
#include "gdb_string.h"
|
| 28 |
|
|
#include "inferior.h"
|
| 29 |
|
|
#include "regcache.h"
|
| 30 |
|
|
#include "arch-utils.h"
|
| 31 |
|
|
|
| 32 |
|
|
|
| 33 |
|
|
#define P_LINKL_FP 0x480e
|
| 34 |
|
|
#define P_LINKW_FP 0x4e56
|
| 35 |
|
|
#define P_PEA_FP 0x4856
|
| 36 |
|
|
#define P_MOVL_SP_FP 0x2c4f
|
| 37 |
|
|
#define P_MOVL 0x207c
|
| 38 |
|
|
#define P_JSR 0x4eb9
|
| 39 |
|
|
#define P_BSR 0x61ff
|
| 40 |
|
|
#define P_LEAL 0x43fb
|
| 41 |
|
|
#define P_MOVML 0x48ef
|
| 42 |
|
|
#define P_FMOVM 0xf237
|
| 43 |
|
|
#define P_TRAP 0x4e40
|
| 44 |
|
|
|
| 45 |
|
|
|
| 46 |
|
|
/* Register numbers of various important registers.
|
| 47 |
|
|
Note that some of these values are "real" register numbers,
|
| 48 |
|
|
and correspond to the general registers of the machine,
|
| 49 |
|
|
and some are "phony" register numbers which are too large
|
| 50 |
|
|
to be actual register numbers as far as the user is concerned
|
| 51 |
|
|
but do serve to get the desired values when passed to read_register. */
|
| 52 |
|
|
|
| 53 |
|
|
/* Note: Since they are used in files other than this (monitor files),
|
| 54 |
|
|
D0_REGNUM and A0_REGNUM are currently defined in tm-m68k.h. */
|
| 55 |
|
|
|
| 56 |
|
|
enum
|
| 57 |
|
|
{
|
| 58 |
|
|
E_A1_REGNUM = 9,
|
| 59 |
|
|
E_FP_REGNUM = 14, /* Contains address of executing stack frame */
|
| 60 |
|
|
E_SP_REGNUM = 15, /* Contains address of top of stack */
|
| 61 |
|
|
E_PS_REGNUM = 16, /* Contains processor status */
|
| 62 |
|
|
E_PC_REGNUM = 17, /* Contains program counter */
|
| 63 |
|
|
E_FP0_REGNUM = 18, /* Floating point register 0 */
|
| 64 |
|
|
E_FPC_REGNUM = 26, /* 68881 control register */
|
| 65 |
|
|
E_FPS_REGNUM = 27, /* 68881 status register */
|
| 66 |
|
|
E_FPI_REGNUM = 28
|
| 67 |
|
|
};
|
| 68 |
|
|
|
| 69 |
|
|
#define REGISTER_BYTES_FP (16*4 + 8 + 8*12 + 3*4)
|
| 70 |
|
|
#define REGISTER_BYTES_NOFP (16*4 + 8)
|
| 71 |
|
|
|
| 72 |
|
|
#define NUM_FREGS (NUM_REGS-24)
|
| 73 |
|
|
|
| 74 |
|
|
/* Offset from SP to first arg on stack at first instruction of a function */
|
| 75 |
|
|
|
| 76 |
|
|
#define SP_ARG0 (1 * 4)
|
| 77 |
|
|
|
| 78 |
|
|
/* This was determined by experimentation on hp300 BSD 4.3. Perhaps
|
| 79 |
|
|
it corresponds to some offset in /usr/include/sys/user.h or
|
| 80 |
|
|
something like that. Using some system include file would
|
| 81 |
|
|
have the advantage of probably being more robust in the face
|
| 82 |
|
|
of OS upgrades, but the disadvantage of being wrong for
|
| 83 |
|
|
cross-debugging. */
|
| 84 |
|
|
|
| 85 |
|
|
#define SIG_PC_FP_OFFSET 530
|
| 86 |
|
|
|
| 87 |
|
|
#define TARGET_M68K
|
| 88 |
|
|
|
| 89 |
|
|
|
| 90 |
|
|
#if !defined (BPT_VECTOR)
|
| 91 |
|
|
#define BPT_VECTOR 0xf
|
| 92 |
|
|
#endif
|
| 93 |
|
|
|
| 94 |
|
|
#if !defined (REMOTE_BPT_VECTOR)
|
| 95 |
|
|
#define REMOTE_BPT_VECTOR 1
|
| 96 |
|
|
#endif
|
| 97 |
|
|
|
| 98 |
|
|
|
| 99 |
|
|
void m68k_frame_init_saved_regs (struct frame_info *frame_info);
|
| 100 |
|
|
|
| 101 |
|
|
|
| 102 |
|
|
/* gdbarch_breakpoint_from_pc is set to m68k_local_breakpoint_from_pc
|
| 103 |
|
|
so m68k_remote_breakpoint_from_pc is currently not used. */
|
| 104 |
|
|
|
| 105 |
|
|
const static unsigned char *
|
| 106 |
|
|
m68k_remote_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
| 107 |
|
|
{
|
| 108 |
|
|
static unsigned char break_insn[] = {0x4e, (0x40 | REMOTE_BPT_VECTOR)};
|
| 109 |
|
|
*lenptr = sizeof (break_insn);
|
| 110 |
|
|
return break_insn;
|
| 111 |
|
|
}
|
| 112 |
|
|
|
| 113 |
|
|
const static unsigned char *
|
| 114 |
|
|
m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
| 115 |
|
|
{
|
| 116 |
|
|
static unsigned char break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
|
| 117 |
|
|
*lenptr = sizeof (break_insn);
|
| 118 |
|
|
return break_insn;
|
| 119 |
|
|
}
|
| 120 |
|
|
|
| 121 |
|
|
|
| 122 |
|
|
static int
|
| 123 |
|
|
m68k_register_bytes_ok (long numbytes)
|
| 124 |
|
|
{
|
| 125 |
|
|
return ((numbytes == REGISTER_BYTES_FP)
|
| 126 |
|
|
|| (numbytes == REGISTER_BYTES_NOFP));
|
| 127 |
|
|
}
|
| 128 |
|
|
|
| 129 |
|
|
/* Number of bytes of storage in the actual machine representation
|
| 130 |
|
|
for register regnum. On the 68000, all regs are 4 bytes
|
| 131 |
|
|
except the floating point regs which are 12 bytes. */
|
| 132 |
|
|
/* Note that the unsigned cast here forces the result of the
|
| 133 |
|
|
subtraction to very high positive values if regnum < FP0_REGNUM */
|
| 134 |
|
|
|
| 135 |
|
|
static int
|
| 136 |
|
|
m68k_register_raw_size (int regnum)
|
| 137 |
|
|
{
|
| 138 |
|
|
return (((unsigned) (regnum) - FP0_REGNUM) < 8 ? 12 : 4);
|
| 139 |
|
|
}
|
| 140 |
|
|
|
| 141 |
|
|
/* Number of bytes of storage in the program's representation
|
| 142 |
|
|
for register regnum. On the 68000, all regs are 4 bytes
|
| 143 |
|
|
except the floating point regs which are 12-byte long doubles. */
|
| 144 |
|
|
|
| 145 |
|
|
static int
|
| 146 |
|
|
m68k_register_virtual_size (int regnum)
|
| 147 |
|
|
{
|
| 148 |
|
|
return (((unsigned) (regnum) - FP0_REGNUM) < 8 ? 12 : 4);
|
| 149 |
|
|
}
|
| 150 |
|
|
|
| 151 |
|
|
/* Return the GDB type object for the "standard" data type of data
|
| 152 |
|
|
in register N. This should be int for D0-D7, long double for FP0-FP7,
|
| 153 |
|
|
and void pointer for all others (A0-A7, PC, SR, FPCONTROL etc).
|
| 154 |
|
|
Note, for registers which contain addresses return pointer to void,
|
| 155 |
|
|
not pointer to char, because we don't want to attempt to print
|
| 156 |
|
|
the string after printing the address. */
|
| 157 |
|
|
|
| 158 |
|
|
static struct type *
|
| 159 |
|
|
m68k_register_virtual_type (int regnum)
|
| 160 |
|
|
{
|
| 161 |
|
|
if ((unsigned) regnum >= E_FPC_REGNUM)
|
| 162 |
|
|
return lookup_pointer_type (builtin_type_void);
|
| 163 |
|
|
else if ((unsigned) regnum >= FP0_REGNUM)
|
| 164 |
|
|
return builtin_type_long_double;
|
| 165 |
|
|
else if ((unsigned) regnum >= A0_REGNUM)
|
| 166 |
|
|
return lookup_pointer_type (builtin_type_void);
|
| 167 |
|
|
else
|
| 168 |
|
|
return builtin_type_int;
|
| 169 |
|
|
}
|
| 170 |
|
|
|
| 171 |
|
|
/* Function: m68k_register_name
|
| 172 |
|
|
Returns the name of the standard m68k register regnum. */
|
| 173 |
|
|
|
| 174 |
|
|
static const char *
|
| 175 |
|
|
m68k_register_name (int regnum)
|
| 176 |
|
|
{
|
| 177 |
|
|
static char *register_names[] = {
|
| 178 |
|
|
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
|
| 179 |
|
|
"a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
|
| 180 |
|
|
"ps", "pc",
|
| 181 |
|
|
"fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
|
| 182 |
|
|
"fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags"
|
| 183 |
|
|
};
|
| 184 |
|
|
|
| 185 |
|
|
if (regnum < 0 ||
|
| 186 |
|
|
regnum >= sizeof (register_names) / sizeof (register_names[0]))
|
| 187 |
|
|
internal_error (__FILE__, __LINE__,
|
| 188 |
|
|
"m68k_register_name: illegal register number %d", regnum);
|
| 189 |
|
|
else
|
| 190 |
|
|
return register_names[regnum];
|
| 191 |
|
|
}
|
| 192 |
|
|
|
| 193 |
|
|
/* Stack must be kept short aligned when doing function calls. */
|
| 194 |
|
|
|
| 195 |
|
|
static CORE_ADDR
|
| 196 |
|
|
m68k_stack_align (CORE_ADDR addr)
|
| 197 |
|
|
{
|
| 198 |
|
|
return ((addr + 1) & ~1);
|
| 199 |
|
|
}
|
| 200 |
|
|
|
| 201 |
|
|
/* Index within `registers' of the first byte of the space for
|
| 202 |
|
|
register regnum. */
|
| 203 |
|
|
|
| 204 |
|
|
static int
|
| 205 |
|
|
m68k_register_byte (int regnum)
|
| 206 |
|
|
{
|
| 207 |
|
|
if (regnum >= E_FPC_REGNUM)
|
| 208 |
|
|
return (((regnum - E_FPC_REGNUM) * 4) + 168);
|
| 209 |
|
|
else if (regnum >= FP0_REGNUM)
|
| 210 |
|
|
return (((regnum - FP0_REGNUM) * 12) + 72);
|
| 211 |
|
|
else
|
| 212 |
|
|
return (regnum * 4);
|
| 213 |
|
|
}
|
| 214 |
|
|
|
| 215 |
|
|
/* Store the address of the place in which to copy the structure the
|
| 216 |
|
|
subroutine will return. This is called from call_function. */
|
| 217 |
|
|
|
| 218 |
|
|
static void
|
| 219 |
|
|
m68k_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
| 220 |
|
|
{
|
| 221 |
|
|
write_register (E_A1_REGNUM, addr);
|
| 222 |
|
|
}
|
| 223 |
|
|
|
| 224 |
|
|
/* Extract from an array regbuf containing the (raw) register state
|
| 225 |
|
|
a function return value of type type, and copy that, in virtual format,
|
| 226 |
|
|
into valbuf. This is assuming that floating point values are returned
|
| 227 |
|
|
as doubles in d0/d1. */
|
| 228 |
|
|
|
| 229 |
|
|
static void
|
| 230 |
|
|
m68k_deprecated_extract_return_value (struct type *type, char *regbuf,
|
| 231 |
|
|
char *valbuf)
|
| 232 |
|
|
{
|
| 233 |
|
|
int offset = 0;
|
| 234 |
|
|
int typeLength = TYPE_LENGTH (type);
|
| 235 |
|
|
|
| 236 |
|
|
if (typeLength < 4)
|
| 237 |
|
|
offset = 4 - typeLength;
|
| 238 |
|
|
|
| 239 |
|
|
memcpy (valbuf, regbuf + offset, typeLength);
|
| 240 |
|
|
}
|
| 241 |
|
|
|
| 242 |
|
|
static CORE_ADDR
|
| 243 |
|
|
m68k_deprecated_extract_struct_value_address (char *regbuf)
|
| 244 |
|
|
{
|
| 245 |
|
|
return (*(CORE_ADDR *) (regbuf));
|
| 246 |
|
|
}
|
| 247 |
|
|
|
| 248 |
|
|
/* Write into appropriate registers a function return value
|
| 249 |
|
|
of type TYPE, given in virtual format. Assumes floats are passed
|
| 250 |
|
|
in d0/d1. */
|
| 251 |
|
|
|
| 252 |
|
|
static void
|
| 253 |
|
|
m68k_store_return_value (struct type *type, char *valbuf)
|
| 254 |
|
|
{
|
| 255 |
|
|
write_register_bytes (0, valbuf, TYPE_LENGTH (type));
|
| 256 |
|
|
}
|
| 257 |
|
|
|
| 258 |
|
|
/* Describe the pointer in each stack frame to the previous stack frame
|
| 259 |
|
|
(its caller). */
|
| 260 |
|
|
|
| 261 |
|
|
/* FRAME_CHAIN takes a frame's nominal address and produces the frame's
|
| 262 |
|
|
chain-pointer.
|
| 263 |
|
|
In the case of the 68000, the frame's nominal address
|
| 264 |
|
|
is the address of a 4-byte word containing the calling frame's address. */
|
| 265 |
|
|
|
| 266 |
|
|
/* If we are chaining from sigtramp, then manufacture a sigtramp frame
|
| 267 |
|
|
(which isn't really on the stack. I'm not sure this is right for anything
|
| 268 |
|
|
but BSD4.3 on an hp300. */
|
| 269 |
|
|
|
| 270 |
|
|
static CORE_ADDR
|
| 271 |
|
|
m68k_frame_chain (struct frame_info *thisframe)
|
| 272 |
|
|
{
|
| 273 |
|
|
if (thisframe->signal_handler_caller)
|
| 274 |
|
|
return thisframe->frame;
|
| 275 |
|
|
else if (!inside_entry_file ((thisframe)->pc))
|
| 276 |
|
|
return read_memory_integer ((thisframe)->frame, 4);
|
| 277 |
|
|
else
|
| 278 |
|
|
return 0;
|
| 279 |
|
|
}
|
| 280 |
|
|
|
| 281 |
|
|
/* A function that tells us whether the function invocation represented
|
| 282 |
|
|
by fi does not have a frame on the stack associated with it. If it
|
| 283 |
|
|
does not, FRAMELESS is set to 1, else 0. */
|
| 284 |
|
|
|
| 285 |
|
|
static int
|
| 286 |
|
|
m68k_frameless_function_invocation (struct frame_info *fi)
|
| 287 |
|
|
{
|
| 288 |
|
|
if (fi->signal_handler_caller)
|
| 289 |
|
|
return 0;
|
| 290 |
|
|
else
|
| 291 |
|
|
return frameless_look_for_prologue (fi);
|
| 292 |
|
|
}
|
| 293 |
|
|
|
| 294 |
|
|
static CORE_ADDR
|
| 295 |
|
|
m68k_frame_saved_pc (struct frame_info *frame)
|
| 296 |
|
|
{
|
| 297 |
|
|
if (frame->signal_handler_caller)
|
| 298 |
|
|
{
|
| 299 |
|
|
if (frame->next)
|
| 300 |
|
|
return read_memory_integer (frame->next->frame + SIG_PC_FP_OFFSET, 4);
|
| 301 |
|
|
else
|
| 302 |
|
|
return read_memory_integer (read_register (SP_REGNUM)
|
| 303 |
|
|
+ SIG_PC_FP_OFFSET - 8, 4);
|
| 304 |
|
|
}
|
| 305 |
|
|
else
|
| 306 |
|
|
return read_memory_integer (frame->frame + 4, 4);
|
| 307 |
|
|
}
|
| 308 |
|
|
|
| 309 |
|
|
|
| 310 |
|
|
/* The only reason this is here is the tm-altos.h reference below. It
|
| 311 |
|
|
was moved back here from tm-m68k.h. FIXME? */
|
| 312 |
|
|
|
| 313 |
|
|
extern CORE_ADDR
|
| 314 |
|
|
altos_skip_prologue (CORE_ADDR pc)
|
| 315 |
|
|
{
|
| 316 |
|
|
register int op = read_memory_integer (pc, 2);
|
| 317 |
|
|
if (op == P_LINKW_FP)
|
| 318 |
|
|
pc += 4; /* Skip link #word */
|
| 319 |
|
|
else if (op == P_LINKL_FP)
|
| 320 |
|
|
pc += 6; /* Skip link #long */
|
| 321 |
|
|
/* Not sure why branches are here. */
|
| 322 |
|
|
/* From tm-altos.h */
|
| 323 |
|
|
else if (op == 0060000)
|
| 324 |
|
|
pc += 4; /* Skip bra #word */
|
| 325 |
|
|
else if (op == 00600377)
|
| 326 |
|
|
pc += 6; /* skip bra #long */
|
| 327 |
|
|
else if ((op & 0177400) == 0060000)
|
| 328 |
|
|
pc += 2; /* skip bra #char */
|
| 329 |
|
|
return pc;
|
| 330 |
|
|
}
|
| 331 |
|
|
|
| 332 |
|
|
int
|
| 333 |
|
|
delta68_in_sigtramp (CORE_ADDR pc, char *name)
|
| 334 |
|
|
{
|
| 335 |
|
|
if (name != NULL)
|
| 336 |
|
|
return strcmp (name, "_sigcode") == 0;
|
| 337 |
|
|
else
|
| 338 |
|
|
return 0;
|
| 339 |
|
|
}
|
| 340 |
|
|
|
| 341 |
|
|
CORE_ADDR
|
| 342 |
|
|
delta68_frame_args_address (struct frame_info *frame_info)
|
| 343 |
|
|
{
|
| 344 |
|
|
/* we assume here that the only frameless functions are the system calls
|
| 345 |
|
|
or other functions who do not put anything on the stack. */
|
| 346 |
|
|
if (frame_info->signal_handler_caller)
|
| 347 |
|
|
return frame_info->frame + 12;
|
| 348 |
|
|
else if (frameless_look_for_prologue (frame_info))
|
| 349 |
|
|
{
|
| 350 |
|
|
/* Check for an interrupted system call */
|
| 351 |
|
|
if (frame_info->next && frame_info->next->signal_handler_caller)
|
| 352 |
|
|
return frame_info->next->frame + 16;
|
| 353 |
|
|
else
|
| 354 |
|
|
return frame_info->frame + 4;
|
| 355 |
|
|
}
|
| 356 |
|
|
else
|
| 357 |
|
|
return frame_info->frame;
|
| 358 |
|
|
}
|
| 359 |
|
|
|
| 360 |
|
|
CORE_ADDR
|
| 361 |
|
|
delta68_frame_saved_pc (struct frame_info *frame_info)
|
| 362 |
|
|
{
|
| 363 |
|
|
return read_memory_integer (delta68_frame_args_address (frame_info) + 4, 4);
|
| 364 |
|
|
}
|
| 365 |
|
|
|
| 366 |
|
|
/* Return number of args passed to a frame.
|
| 367 |
|
|
Can return -1, meaning no way to tell. */
|
| 368 |
|
|
|
| 369 |
|
|
int
|
| 370 |
|
|
isi_frame_num_args (struct frame_info *fi)
|
| 371 |
|
|
{
|
| 372 |
|
|
int val;
|
| 373 |
|
|
CORE_ADDR pc = FRAME_SAVED_PC (fi);
|
| 374 |
|
|
int insn = 0177777 & read_memory_integer (pc, 2);
|
| 375 |
|
|
val = 0;
|
| 376 |
|
|
if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */
|
| 377 |
|
|
val = read_memory_integer (pc + 2, 2);
|
| 378 |
|
|
else if ((insn & 0170777) == 0050217 /* addql #N, sp */
|
| 379 |
|
|
|| (insn & 0170777) == 0050117) /* addqw */
|
| 380 |
|
|
{
|
| 381 |
|
|
val = (insn >> 9) & 7;
|
| 382 |
|
|
if (val == 0)
|
| 383 |
|
|
val = 8;
|
| 384 |
|
|
}
|
| 385 |
|
|
else if (insn == 0157774) /* addal #WW, sp */
|
| 386 |
|
|
val = read_memory_integer (pc + 2, 4);
|
| 387 |
|
|
val >>= 2;
|
| 388 |
|
|
return val;
|
| 389 |
|
|
}
|
| 390 |
|
|
|
| 391 |
|
|
int
|
| 392 |
|
|
delta68_frame_num_args (struct frame_info *fi)
|
| 393 |
|
|
{
|
| 394 |
|
|
int val;
|
| 395 |
|
|
CORE_ADDR pc = FRAME_SAVED_PC (fi);
|
| 396 |
|
|
int insn = 0177777 & read_memory_integer (pc, 2);
|
| 397 |
|
|
val = 0;
|
| 398 |
|
|
if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */
|
| 399 |
|
|
val = read_memory_integer (pc + 2, 2);
|
| 400 |
|
|
else if ((insn & 0170777) == 0050217 /* addql #N, sp */
|
| 401 |
|
|
|| (insn & 0170777) == 0050117) /* addqw */
|
| 402 |
|
|
{
|
| 403 |
|
|
val = (insn >> 9) & 7;
|
| 404 |
|
|
if (val == 0)
|
| 405 |
|
|
val = 8;
|
| 406 |
|
|
}
|
| 407 |
|
|
else if (insn == 0157774) /* addal #WW, sp */
|
| 408 |
|
|
val = read_memory_integer (pc + 2, 4);
|
| 409 |
|
|
val >>= 2;
|
| 410 |
|
|
return val;
|
| 411 |
|
|
}
|
| 412 |
|
|
|
| 413 |
|
|
int
|
| 414 |
|
|
news_frame_num_args (struct frame_info *fi)
|
| 415 |
|
|
{
|
| 416 |
|
|
int val;
|
| 417 |
|
|
CORE_ADDR pc = FRAME_SAVED_PC (fi);
|
| 418 |
|
|
int insn = 0177777 & read_memory_integer (pc, 2);
|
| 419 |
|
|
val = 0;
|
| 420 |
|
|
if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */
|
| 421 |
|
|
val = read_memory_integer (pc + 2, 2);
|
| 422 |
|
|
else if ((insn & 0170777) == 0050217 /* addql #N, sp */
|
| 423 |
|
|
|| (insn & 0170777) == 0050117) /* addqw */
|
| 424 |
|
|
{
|
| 425 |
|
|
val = (insn >> 9) & 7;
|
| 426 |
|
|
if (val == 0)
|
| 427 |
|
|
val = 8;
|
| 428 |
|
|
}
|
| 429 |
|
|
else if (insn == 0157774) /* addal #WW, sp */
|
| 430 |
|
|
val = read_memory_integer (pc + 2, 4);
|
| 431 |
|
|
val >>= 2;
|
| 432 |
|
|
return val;
|
| 433 |
|
|
}
|
| 434 |
|
|
|
| 435 |
|
|
/* Insert the specified number of args and function address
|
| 436 |
|
|
into a call sequence of the above form stored at DUMMYNAME.
|
| 437 |
|
|
We use the BFD routines to store a big-endian value of known size. */
|
| 438 |
|
|
|
| 439 |
|
|
void
|
| 440 |
|
|
m68k_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
|
| 441 |
|
|
struct value **args, struct type *type, int gcc_p)
|
| 442 |
|
|
{
|
| 443 |
|
|
bfd_putb32 (fun, (unsigned char *) dummy + CALL_DUMMY_START_OFFSET + 2);
|
| 444 |
|
|
bfd_putb32 (nargs * 4,
|
| 445 |
|
|
(unsigned char *) dummy + CALL_DUMMY_START_OFFSET + 8);
|
| 446 |
|
|
}
|
| 447 |
|
|
|
| 448 |
|
|
|
| 449 |
|
|
/* Push an empty stack frame, to record the current PC, etc. */
|
| 450 |
|
|
|
| 451 |
|
|
void
|
| 452 |
|
|
m68k_push_dummy_frame (void)
|
| 453 |
|
|
{
|
| 454 |
|
|
register CORE_ADDR sp = read_register (SP_REGNUM);
|
| 455 |
|
|
register int regnum;
|
| 456 |
|
|
char raw_buffer[12];
|
| 457 |
|
|
|
| 458 |
|
|
sp = push_word (sp, read_register (PC_REGNUM));
|
| 459 |
|
|
sp = push_word (sp, read_register (FP_REGNUM));
|
| 460 |
|
|
write_register (FP_REGNUM, sp);
|
| 461 |
|
|
|
| 462 |
|
|
/* Always save the floating-point registers, whether they exist on
|
| 463 |
|
|
this target or not. */
|
| 464 |
|
|
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--)
|
| 465 |
|
|
{
|
| 466 |
|
|
read_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12);
|
| 467 |
|
|
sp = push_bytes (sp, raw_buffer, 12);
|
| 468 |
|
|
}
|
| 469 |
|
|
|
| 470 |
|
|
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--)
|
| 471 |
|
|
{
|
| 472 |
|
|
sp = push_word (sp, read_register (regnum));
|
| 473 |
|
|
}
|
| 474 |
|
|
sp = push_word (sp, read_register (PS_REGNUM));
|
| 475 |
|
|
write_register (SP_REGNUM, sp);
|
| 476 |
|
|
}
|
| 477 |
|
|
|
| 478 |
|
|
/* Discard from the stack the innermost frame,
|
| 479 |
|
|
restoring all saved registers. */
|
| 480 |
|
|
|
| 481 |
|
|
void
|
| 482 |
|
|
m68k_pop_frame (void)
|
| 483 |
|
|
{
|
| 484 |
|
|
register struct frame_info *frame = get_current_frame ();
|
| 485 |
|
|
register CORE_ADDR fp;
|
| 486 |
|
|
register int regnum;
|
| 487 |
|
|
char raw_buffer[12];
|
| 488 |
|
|
|
| 489 |
|
|
fp = FRAME_FP (frame);
|
| 490 |
|
|
m68k_frame_init_saved_regs (frame);
|
| 491 |
|
|
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--)
|
| 492 |
|
|
{
|
| 493 |
|
|
if (frame->saved_regs[regnum])
|
| 494 |
|
|
{
|
| 495 |
|
|
read_memory (frame->saved_regs[regnum], raw_buffer, 12);
|
| 496 |
|
|
write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12);
|
| 497 |
|
|
}
|
| 498 |
|
|
}
|
| 499 |
|
|
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--)
|
| 500 |
|
|
{
|
| 501 |
|
|
if (frame->saved_regs[regnum])
|
| 502 |
|
|
{
|
| 503 |
|
|
write_register (regnum,
|
| 504 |
|
|
read_memory_integer (frame->saved_regs[regnum], 4));
|
| 505 |
|
|
}
|
| 506 |
|
|
}
|
| 507 |
|
|
if (frame->saved_regs[PS_REGNUM])
|
| 508 |
|
|
{
|
| 509 |
|
|
write_register (PS_REGNUM,
|
| 510 |
|
|
read_memory_integer (frame->saved_regs[PS_REGNUM], 4));
|
| 511 |
|
|
}
|
| 512 |
|
|
write_register (FP_REGNUM, read_memory_integer (fp, 4));
|
| 513 |
|
|
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
|
| 514 |
|
|
write_register (SP_REGNUM, fp + 8);
|
| 515 |
|
|
flush_cached_frames ();
|
| 516 |
|
|
}
|
| 517 |
|
|
|
| 518 |
|
|
|
| 519 |
|
|
/* Given an ip value corresponding to the start of a function,
|
| 520 |
|
|
return the ip of the first instruction after the function
|
| 521 |
|
|
prologue. This is the generic m68k support. Machines which
|
| 522 |
|
|
require something different can override the SKIP_PROLOGUE
|
| 523 |
|
|
macro to point elsewhere.
|
| 524 |
|
|
|
| 525 |
|
|
Some instructions which typically may appear in a function
|
| 526 |
|
|
prologue include:
|
| 527 |
|
|
|
| 528 |
|
|
A link instruction, word form:
|
| 529 |
|
|
|
| 530 |
|
|
link.w %a6,&0 4e56 XXXX
|
| 531 |
|
|
|
| 532 |
|
|
A link instruction, long form:
|
| 533 |
|
|
|
| 534 |
|
|
link.l %fp,&F%1 480e XXXX XXXX
|
| 535 |
|
|
|
| 536 |
|
|
A movm instruction to preserve integer regs:
|
| 537 |
|
|
|
| 538 |
|
|
movm.l &M%1,(4,%sp) 48ef XXXX XXXX
|
| 539 |
|
|
|
| 540 |
|
|
A fmovm instruction to preserve float regs:
|
| 541 |
|
|
|
| 542 |
|
|
fmovm &FPM%1,(FPO%1,%sp) f237 XXXX XXXX XXXX XXXX
|
| 543 |
|
|
|
| 544 |
|
|
Some profiling setup code (FIXME, not recognized yet):
|
| 545 |
|
|
|
| 546 |
|
|
lea.l (.L3,%pc),%a1 43fb XXXX XXXX XXXX
|
| 547 |
|
|
bsr _mcount 61ff XXXX XXXX
|
| 548 |
|
|
|
| 549 |
|
|
*/
|
| 550 |
|
|
|
| 551 |
|
|
CORE_ADDR
|
| 552 |
|
|
m68k_skip_prologue (CORE_ADDR ip)
|
| 553 |
|
|
{
|
| 554 |
|
|
register CORE_ADDR limit;
|
| 555 |
|
|
struct symtab_and_line sal;
|
| 556 |
|
|
register int op;
|
| 557 |
|
|
|
| 558 |
|
|
/* Find out if there is a known limit for the extent of the prologue.
|
| 559 |
|
|
If so, ensure we don't go past it. If not, assume "infinity". */
|
| 560 |
|
|
|
| 561 |
|
|
sal = find_pc_line (ip, 0);
|
| 562 |
|
|
limit = (sal.end) ? sal.end : (CORE_ADDR) ~0;
|
| 563 |
|
|
|
| 564 |
|
|
while (ip < limit)
|
| 565 |
|
|
{
|
| 566 |
|
|
op = read_memory_integer (ip, 2);
|
| 567 |
|
|
op &= 0xFFFF;
|
| 568 |
|
|
|
| 569 |
|
|
if (op == P_LINKW_FP)
|
| 570 |
|
|
ip += 4; /* Skip link.w */
|
| 571 |
|
|
else if (op == P_PEA_FP)
|
| 572 |
|
|
ip += 2; /* Skip pea %fp */
|
| 573 |
|
|
else if (op == P_MOVL_SP_FP)
|
| 574 |
|
|
ip += 2; /* Skip move.l %sp, %fp */
|
| 575 |
|
|
else if (op == P_LINKL_FP)
|
| 576 |
|
|
ip += 6; /* Skip link.l */
|
| 577 |
|
|
else if (op == P_MOVML)
|
| 578 |
|
|
ip += 6; /* Skip movm.l */
|
| 579 |
|
|
else if (op == P_FMOVM)
|
| 580 |
|
|
ip += 10; /* Skip fmovm */
|
| 581 |
|
|
else
|
| 582 |
|
|
break; /* Found unknown code, bail out. */
|
| 583 |
|
|
}
|
| 584 |
|
|
return (ip);
|
| 585 |
|
|
}
|
| 586 |
|
|
|
| 587 |
|
|
/* Store the addresses of the saved registers of the frame described by
|
| 588 |
|
|
FRAME_INFO in its saved_regs field.
|
| 589 |
|
|
This includes special registers such as pc and fp saved in special
|
| 590 |
|
|
ways in the stack frame. sp is even more special:
|
| 591 |
|
|
the address we return for it IS the sp for the next frame. */
|
| 592 |
|
|
|
| 593 |
|
|
void
|
| 594 |
|
|
m68k_frame_init_saved_regs (struct frame_info *frame_info)
|
| 595 |
|
|
{
|
| 596 |
|
|
register int regnum;
|
| 597 |
|
|
register int regmask;
|
| 598 |
|
|
register CORE_ADDR next_addr;
|
| 599 |
|
|
register CORE_ADDR pc;
|
| 600 |
|
|
|
| 601 |
|
|
/* First possible address for a pc in a call dummy for this frame. */
|
| 602 |
|
|
CORE_ADDR possible_call_dummy_start =
|
| 603 |
|
|
(frame_info)->frame - 28 - FP_REGNUM * 4 - 4 - 8 * 12;
|
| 604 |
|
|
|
| 605 |
|
|
int nextinsn;
|
| 606 |
|
|
|
| 607 |
|
|
if (frame_info->saved_regs)
|
| 608 |
|
|
return;
|
| 609 |
|
|
|
| 610 |
|
|
frame_saved_regs_zalloc (frame_info);
|
| 611 |
|
|
|
| 612 |
|
|
memset (frame_info->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
|
| 613 |
|
|
|
| 614 |
|
|
if ((frame_info)->pc >= possible_call_dummy_start
|
| 615 |
|
|
&& (frame_info)->pc <= (frame_info)->frame)
|
| 616 |
|
|
{
|
| 617 |
|
|
|
| 618 |
|
|
/* It is a call dummy. We could just stop now, since we know
|
| 619 |
|
|
what the call dummy saves and where. But this code proceeds
|
| 620 |
|
|
to parse the "prologue" which is part of the call dummy.
|
| 621 |
|
|
This is needlessly complex and confusing. FIXME. */
|
| 622 |
|
|
|
| 623 |
|
|
next_addr = (frame_info)->frame;
|
| 624 |
|
|
pc = possible_call_dummy_start;
|
| 625 |
|
|
}
|
| 626 |
|
|
else
|
| 627 |
|
|
{
|
| 628 |
|
|
pc = get_pc_function_start ((frame_info)->pc);
|
| 629 |
|
|
|
| 630 |
|
|
nextinsn = read_memory_integer (pc, 2);
|
| 631 |
|
|
if (P_PEA_FP == nextinsn
|
| 632 |
|
|
&& P_MOVL_SP_FP == read_memory_integer (pc + 2, 2))
|
| 633 |
|
|
{
|
| 634 |
|
|
/* pea %fp
|
| 635 |
|
|
move.l %sp, %fp */
|
| 636 |
|
|
next_addr = frame_info->frame;
|
| 637 |
|
|
pc += 4;
|
| 638 |
|
|
}
|
| 639 |
|
|
else if (P_LINKL_FP == nextinsn)
|
| 640 |
|
|
/* link.l %fp */
|
| 641 |
|
|
/* Find the address above the saved
|
| 642 |
|
|
regs using the amount of storage from the link instruction. */
|
| 643 |
|
|
{
|
| 644 |
|
|
next_addr = (frame_info)->frame + read_memory_integer (pc + 2, 4);
|
| 645 |
|
|
pc += 6;
|
| 646 |
|
|
}
|
| 647 |
|
|
else if (P_LINKW_FP == nextinsn)
|
| 648 |
|
|
/* link.w %fp */
|
| 649 |
|
|
/* Find the address above the saved
|
| 650 |
|
|
regs using the amount of storage from the link instruction. */
|
| 651 |
|
|
{
|
| 652 |
|
|
next_addr = (frame_info)->frame + read_memory_integer (pc + 2, 2);
|
| 653 |
|
|
pc += 4;
|
| 654 |
|
|
}
|
| 655 |
|
|
else
|
| 656 |
|
|
goto lose;
|
| 657 |
|
|
|
| 658 |
|
|
/* If have an addal #-n, sp next, adjust next_addr. */
|
| 659 |
|
|
if ((0177777 & read_memory_integer (pc, 2)) == 0157774)
|
| 660 |
|
|
next_addr += read_memory_integer (pc += 2, 4), pc += 4;
|
| 661 |
|
|
}
|
| 662 |
|
|
|
| 663 |
|
|
for (;;)
|
| 664 |
|
|
{
|
| 665 |
|
|
nextinsn = 0xffff & read_memory_integer (pc, 2);
|
| 666 |
|
|
regmask = read_memory_integer (pc + 2, 2);
|
| 667 |
|
|
/* fmovemx to -(sp) */
|
| 668 |
|
|
if (0xf227 == nextinsn && (regmask & 0xff00) == 0xe000)
|
| 669 |
|
|
{
|
| 670 |
|
|
/* Regmask's low bit is for register fp7, the first pushed */
|
| 671 |
|
|
for (regnum = FP0_REGNUM + 8; --regnum >= FP0_REGNUM; regmask >>= 1)
|
| 672 |
|
|
if (regmask & 1)
|
| 673 |
|
|
frame_info->saved_regs[regnum] = (next_addr -= 12);
|
| 674 |
|
|
pc += 4;
|
| 675 |
|
|
}
|
| 676 |
|
|
/* fmovemx to (fp + displacement) */
|
| 677 |
|
|
else if (0171056 == nextinsn && (regmask & 0xff00) == 0xf000)
|
| 678 |
|
|
{
|
| 679 |
|
|
register CORE_ADDR addr;
|
| 680 |
|
|
|
| 681 |
|
|
addr = (frame_info)->frame + read_memory_integer (pc + 4, 2);
|
| 682 |
|
|
/* Regmask's low bit is for register fp7, the first pushed */
|
| 683 |
|
|
for (regnum = FP0_REGNUM + 8; --regnum >= FP0_REGNUM; regmask >>= 1)
|
| 684 |
|
|
if (regmask & 1)
|
| 685 |
|
|
{
|
| 686 |
|
|
frame_info->saved_regs[regnum] = addr;
|
| 687 |
|
|
addr += 12;
|
| 688 |
|
|
}
|
| 689 |
|
|
pc += 6;
|
| 690 |
|
|
}
|
| 691 |
|
|
/* moveml to (sp) */
|
| 692 |
|
|
else if (0044327 == nextinsn)
|
| 693 |
|
|
{
|
| 694 |
|
|
/* Regmask's low bit is for register 0, the first written */
|
| 695 |
|
|
for (regnum = 0; regnum < 16; regnum++, regmask >>= 1)
|
| 696 |
|
|
if (regmask & 1)
|
| 697 |
|
|
{
|
| 698 |
|
|
frame_info->saved_regs[regnum] = next_addr;
|
| 699 |
|
|
next_addr += 4;
|
| 700 |
|
|
}
|
| 701 |
|
|
pc += 4;
|
| 702 |
|
|
}
|
| 703 |
|
|
/* moveml to (fp + displacement) */
|
| 704 |
|
|
else if (0044356 == nextinsn)
|
| 705 |
|
|
{
|
| 706 |
|
|
register CORE_ADDR addr;
|
| 707 |
|
|
|
| 708 |
|
|
addr = (frame_info)->frame + read_memory_integer (pc + 4, 2);
|
| 709 |
|
|
/* Regmask's low bit is for register 0, the first written */
|
| 710 |
|
|
for (regnum = 0; regnum < 16; regnum++, regmask >>= 1)
|
| 711 |
|
|
if (regmask & 1)
|
| 712 |
|
|
{
|
| 713 |
|
|
frame_info->saved_regs[regnum] = addr;
|
| 714 |
|
|
addr += 4;
|
| 715 |
|
|
}
|
| 716 |
|
|
pc += 6;
|
| 717 |
|
|
}
|
| 718 |
|
|
/* moveml to -(sp) */
|
| 719 |
|
|
else if (0044347 == nextinsn)
|
| 720 |
|
|
{
|
| 721 |
|
|
/* Regmask's low bit is for register 15, the first pushed */
|
| 722 |
|
|
for (regnum = 16; --regnum >= 0; regmask >>= 1)
|
| 723 |
|
|
if (regmask & 1)
|
| 724 |
|
|
frame_info->saved_regs[regnum] = (next_addr -= 4);
|
| 725 |
|
|
pc += 4;
|
| 726 |
|
|
}
|
| 727 |
|
|
/* movl r,-(sp) */
|
| 728 |
|
|
else if (0x2f00 == (0xfff0 & nextinsn))
|
| 729 |
|
|
{
|
| 730 |
|
|
regnum = 0xf & nextinsn;
|
| 731 |
|
|
frame_info->saved_regs[regnum] = (next_addr -= 4);
|
| 732 |
|
|
pc += 2;
|
| 733 |
|
|
}
|
| 734 |
|
|
/* fmovemx to index of sp */
|
| 735 |
|
|
else if (0xf236 == nextinsn && (regmask & 0xff00) == 0xf000)
|
| 736 |
|
|
{
|
| 737 |
|
|
/* Regmask's low bit is for register fp0, the first written */
|
| 738 |
|
|
for (regnum = FP0_REGNUM + 8; --regnum >= FP0_REGNUM; regmask >>= 1)
|
| 739 |
|
|
if (regmask & 1)
|
| 740 |
|
|
{
|
| 741 |
|
|
frame_info->saved_regs[regnum] = next_addr;
|
| 742 |
|
|
next_addr += 12;
|
| 743 |
|
|
}
|
| 744 |
|
|
pc += 10;
|
| 745 |
|
|
}
|
| 746 |
|
|
/* clrw -(sp); movw ccr,-(sp) */
|
| 747 |
|
|
else if (0x4267 == nextinsn && 0x42e7 == regmask)
|
| 748 |
|
|
{
|
| 749 |
|
|
frame_info->saved_regs[PS_REGNUM] = (next_addr -= 4);
|
| 750 |
|
|
pc += 4;
|
| 751 |
|
|
}
|
| 752 |
|
|
else
|
| 753 |
|
|
break;
|
| 754 |
|
|
}
|
| 755 |
|
|
lose:;
|
| 756 |
|
|
frame_info->saved_regs[SP_REGNUM] = (frame_info)->frame + 8;
|
| 757 |
|
|
frame_info->saved_regs[FP_REGNUM] = (frame_info)->frame;
|
| 758 |
|
|
frame_info->saved_regs[PC_REGNUM] = (frame_info)->frame + 4;
|
| 759 |
|
|
#ifdef SIG_SP_FP_OFFSET
|
| 760 |
|
|
/* Adjust saved SP_REGNUM for fake _sigtramp frames. */
|
| 761 |
|
|
if (frame_info->signal_handler_caller && frame_info->next)
|
| 762 |
|
|
frame_info->saved_regs[SP_REGNUM] =
|
| 763 |
|
|
frame_info->next->frame + SIG_SP_FP_OFFSET;
|
| 764 |
|
|
#endif
|
| 765 |
|
|
}
|
| 766 |
|
|
|
| 767 |
|
|
|
| 768 |
|
|
#ifdef USE_PROC_FS /* Target dependent support for /proc */
|
| 769 |
|
|
|
| 770 |
|
|
#include <sys/procfs.h>
|
| 771 |
|
|
|
| 772 |
|
|
/* Prototypes for supply_gregset etc. */
|
| 773 |
|
|
#include "gregset.h"
|
| 774 |
|
|
|
| 775 |
|
|
/* The /proc interface divides the target machine's register set up into
|
| 776 |
|
|
two different sets, the general register set (gregset) and the floating
|
| 777 |
|
|
point register set (fpregset). For each set, there is an ioctl to get
|
| 778 |
|
|
the current register set and another ioctl to set the current values.
|
| 779 |
|
|
|
| 780 |
|
|
The actual structure passed through the ioctl interface is, of course,
|
| 781 |
|
|
naturally machine dependent, and is different for each set of registers.
|
| 782 |
|
|
For the m68k for example, the general register set is typically defined
|
| 783 |
|
|
by:
|
| 784 |
|
|
|
| 785 |
|
|
typedef int gregset_t[18];
|
| 786 |
|
|
|
| 787 |
|
|
#define R_D0 0
|
| 788 |
|
|
...
|
| 789 |
|
|
#define R_PS 17
|
| 790 |
|
|
|
| 791 |
|
|
and the floating point set by:
|
| 792 |
|
|
|
| 793 |
|
|
typedef struct fpregset {
|
| 794 |
|
|
int f_pcr;
|
| 795 |
|
|
int f_psr;
|
| 796 |
|
|
int f_fpiaddr;
|
| 797 |
|
|
int f_fpregs[8][3]; (8 regs, 96 bits each)
|
| 798 |
|
|
} fpregset_t;
|
| 799 |
|
|
|
| 800 |
|
|
These routines provide the packing and unpacking of gregset_t and
|
| 801 |
|
|
fpregset_t formatted data.
|
| 802 |
|
|
|
| 803 |
|
|
*/
|
| 804 |
|
|
|
| 805 |
|
|
/* Atari SVR4 has R_SR but not R_PS */
|
| 806 |
|
|
|
| 807 |
|
|
#if !defined (R_PS) && defined (R_SR)
|
| 808 |
|
|
#define R_PS R_SR
|
| 809 |
|
|
#endif
|
| 810 |
|
|
|
| 811 |
|
|
/* Given a pointer to a general register set in /proc format (gregset_t *),
|
| 812 |
|
|
unpack the register contents and supply them as gdb's idea of the current
|
| 813 |
|
|
register values. */
|
| 814 |
|
|
|
| 815 |
|
|
void
|
| 816 |
|
|
supply_gregset (gregset_t *gregsetp)
|
| 817 |
|
|
{
|
| 818 |
|
|
register int regi;
|
| 819 |
|
|
register greg_t *regp = (greg_t *) gregsetp;
|
| 820 |
|
|
|
| 821 |
|
|
for (regi = 0; regi < R_PC; regi++)
|
| 822 |
|
|
{
|
| 823 |
|
|
supply_register (regi, (char *) (regp + regi));
|
| 824 |
|
|
}
|
| 825 |
|
|
supply_register (PS_REGNUM, (char *) (regp + R_PS));
|
| 826 |
|
|
supply_register (PC_REGNUM, (char *) (regp + R_PC));
|
| 827 |
|
|
}
|
| 828 |
|
|
|
| 829 |
|
|
void
|
| 830 |
|
|
fill_gregset (gregset_t *gregsetp, int regno)
|
| 831 |
|
|
{
|
| 832 |
|
|
register int regi;
|
| 833 |
|
|
register greg_t *regp = (greg_t *) gregsetp;
|
| 834 |
|
|
|
| 835 |
|
|
for (regi = 0; regi < R_PC; regi++)
|
| 836 |
|
|
{
|
| 837 |
|
|
if ((regno == -1) || (regno == regi))
|
| 838 |
|
|
{
|
| 839 |
|
|
*(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)];
|
| 840 |
|
|
}
|
| 841 |
|
|
}
|
| 842 |
|
|
if ((regno == -1) || (regno == PS_REGNUM))
|
| 843 |
|
|
{
|
| 844 |
|
|
*(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
|
| 845 |
|
|
}
|
| 846 |
|
|
if ((regno == -1) || (regno == PC_REGNUM))
|
| 847 |
|
|
{
|
| 848 |
|
|
*(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
|
| 849 |
|
|
}
|
| 850 |
|
|
}
|
| 851 |
|
|
|
| 852 |
|
|
#if defined (FP0_REGNUM)
|
| 853 |
|
|
|
| 854 |
|
|
/* Given a pointer to a floating point register set in /proc format
|
| 855 |
|
|
(fpregset_t *), unpack the register contents and supply them as gdb's
|
| 856 |
|
|
idea of the current floating point register values. */
|
| 857 |
|
|
|
| 858 |
|
|
void
|
| 859 |
|
|
supply_fpregset (fpregset_t *fpregsetp)
|
| 860 |
|
|
{
|
| 861 |
|
|
register int regi;
|
| 862 |
|
|
char *from;
|
| 863 |
|
|
|
| 864 |
|
|
for (regi = FP0_REGNUM; regi < E_FPC_REGNUM; regi++)
|
| 865 |
|
|
{
|
| 866 |
|
|
from = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
|
| 867 |
|
|
supply_register (regi, from);
|
| 868 |
|
|
}
|
| 869 |
|
|
supply_register (E_FPC_REGNUM, (char *) &(fpregsetp->f_pcr));
|
| 870 |
|
|
supply_register (E_FPS_REGNUM, (char *) &(fpregsetp->f_psr));
|
| 871 |
|
|
supply_register (E_FPI_REGNUM, (char *) &(fpregsetp->f_fpiaddr));
|
| 872 |
|
|
}
|
| 873 |
|
|
|
| 874 |
|
|
/* Given a pointer to a floating point register set in /proc format
|
| 875 |
|
|
(fpregset_t *), update the register specified by REGNO from gdb's idea
|
| 876 |
|
|
of the current floating point register set. If REGNO is -1, update
|
| 877 |
|
|
them all. */
|
| 878 |
|
|
|
| 879 |
|
|
void
|
| 880 |
|
|
fill_fpregset (fpregset_t *fpregsetp, int regno)
|
| 881 |
|
|
{
|
| 882 |
|
|
int regi;
|
| 883 |
|
|
char *to;
|
| 884 |
|
|
char *from;
|
| 885 |
|
|
|
| 886 |
|
|
for (regi = FP0_REGNUM; regi < E_FPC_REGNUM; regi++)
|
| 887 |
|
|
{
|
| 888 |
|
|
if ((regno == -1) || (regno == regi))
|
| 889 |
|
|
{
|
| 890 |
|
|
from = (char *) ®isters[REGISTER_BYTE (regi)];
|
| 891 |
|
|
to = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
|
| 892 |
|
|
memcpy (to, from, REGISTER_RAW_SIZE (regi));
|
| 893 |
|
|
}
|
| 894 |
|
|
}
|
| 895 |
|
|
if ((regno == -1) || (regno == E_FPC_REGNUM))
|
| 896 |
|
|
{
|
| 897 |
|
|
fpregsetp->f_pcr = *(int *) ®isters[REGISTER_BYTE (E_FPC_REGNUM)];
|
| 898 |
|
|
}
|
| 899 |
|
|
if ((regno == -1) || (regno == E_FPS_REGNUM))
|
| 900 |
|
|
{
|
| 901 |
|
|
fpregsetp->f_psr = *(int *) ®isters[REGISTER_BYTE (E_FPS_REGNUM)];
|
| 902 |
|
|
}
|
| 903 |
|
|
if ((regno == -1) || (regno == E_FPI_REGNUM))
|
| 904 |
|
|
{
|
| 905 |
|
|
fpregsetp->f_fpiaddr = *(int *) ®isters[REGISTER_BYTE (E_FPI_REGNUM)];
|
| 906 |
|
|
}
|
| 907 |
|
|
}
|
| 908 |
|
|
|
| 909 |
|
|
#endif /* defined (FP0_REGNUM) */
|
| 910 |
|
|
|
| 911 |
|
|
#endif /* USE_PROC_FS */
|
| 912 |
|
|
|
| 913 |
|
|
/* Figure out where the longjmp will land. Slurp the args out of the stack.
|
| 914 |
|
|
We expect the first arg to be a pointer to the jmp_buf structure from which
|
| 915 |
|
|
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
|
| 916 |
|
|
This routine returns true on success. */
|
| 917 |
|
|
|
| 918 |
|
|
/* NOTE: cagney/2000-11-08: For this function to be fully multi-arched
|
| 919 |
|
|
the macro's JB_PC and JB_ELEMENT_SIZE would need to be moved into
|
| 920 |
|
|
the ``struct gdbarch_tdep'' object and then set on a target ISA/ABI
|
| 921 |
|
|
dependant basis. */
|
| 922 |
|
|
|
| 923 |
|
|
int
|
| 924 |
|
|
m68k_get_longjmp_target (CORE_ADDR *pc)
|
| 925 |
|
|
{
|
| 926 |
|
|
#if defined (JB_PC) && defined (JB_ELEMENT_SIZE)
|
| 927 |
|
|
char *buf;
|
| 928 |
|
|
CORE_ADDR sp, jb_addr;
|
| 929 |
|
|
|
| 930 |
|
|
buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
| 931 |
|
|
sp = read_register (SP_REGNUM);
|
| 932 |
|
|
|
| 933 |
|
|
if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
|
| 934 |
|
|
buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
| 935 |
|
|
return 0;
|
| 936 |
|
|
|
| 937 |
|
|
jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
| 938 |
|
|
|
| 939 |
|
|
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
|
| 940 |
|
|
TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
| 941 |
|
|
return 0;
|
| 942 |
|
|
|
| 943 |
|
|
*pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
| 944 |
|
|
|
| 945 |
|
|
return 1;
|
| 946 |
|
|
#else
|
| 947 |
|
|
internal_error (__FILE__, __LINE__,
|
| 948 |
|
|
"m68k_get_longjmp_target: not implemented");
|
| 949 |
|
|
return 0;
|
| 950 |
|
|
#endif
|
| 951 |
|
|
}
|
| 952 |
|
|
|
| 953 |
|
|
/* Immediately after a function call, return the saved pc before the frame
|
| 954 |
|
|
is setup. For sun3's, we check for the common case of being inside of a
|
| 955 |
|
|
system call, and if so, we know that Sun pushes the call # on the stack
|
| 956 |
|
|
prior to doing the trap. */
|
| 957 |
|
|
|
| 958 |
|
|
CORE_ADDR
|
| 959 |
|
|
m68k_saved_pc_after_call (struct frame_info *frame)
|
| 960 |
|
|
{
|
| 961 |
|
|
#ifdef SYSCALL_TRAP
|
| 962 |
|
|
int op;
|
| 963 |
|
|
|
| 964 |
|
|
op = read_memory_integer (frame->pc - SYSCALL_TRAP_OFFSET, 2);
|
| 965 |
|
|
|
| 966 |
|
|
if (op == SYSCALL_TRAP)
|
| 967 |
|
|
return read_memory_integer (read_register (SP_REGNUM) + 4, 4);
|
| 968 |
|
|
else
|
| 969 |
|
|
#endif /* SYSCALL_TRAP */
|
| 970 |
|
|
return read_memory_integer (read_register (SP_REGNUM), 4);
|
| 971 |
|
|
}
|
| 972 |
|
|
|
| 973 |
|
|
/* Function: m68k_gdbarch_init
|
| 974 |
|
|
Initializer function for the m68k gdbarch vector.
|
| 975 |
|
|
Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
|
| 976 |
|
|
|
| 977 |
|
|
static struct gdbarch *
|
| 978 |
|
|
m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
| 979 |
|
|
{
|
| 980 |
|
|
static LONGEST call_dummy_words[7] = { 0xf227e0ff, 0x48e7fffc, 0x426742e7,
|
| 981 |
|
|
0x4eb93232, 0x3232dffc, 0x69696969,
|
| 982 |
|
|
(0x4e404e71 | (BPT_VECTOR << 16))
|
| 983 |
|
|
};
|
| 984 |
|
|
struct gdbarch_tdep *tdep = NULL;
|
| 985 |
|
|
struct gdbarch *gdbarch;
|
| 986 |
|
|
|
| 987 |
|
|
/* find a candidate among the list of pre-declared architectures. */
|
| 988 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
| 989 |
|
|
if (arches != NULL)
|
| 990 |
|
|
return (arches->gdbarch);
|
| 991 |
|
|
|
| 992 |
|
|
#if 0
|
| 993 |
|
|
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
|
| 994 |
|
|
#endif
|
| 995 |
|
|
|
| 996 |
|
|
gdbarch = gdbarch_alloc (&info, 0);
|
| 997 |
|
|
|
| 998 |
|
|
set_gdbarch_long_double_format (gdbarch, &floatformat_m68881_ext);
|
| 999 |
|
|
set_gdbarch_long_double_bit (gdbarch, 96);
|
| 1000 |
|
|
|
| 1001 |
|
|
set_gdbarch_function_start_offset (gdbarch, 0);
|
| 1002 |
|
|
|
| 1003 |
|
|
set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
|
| 1004 |
|
|
set_gdbarch_saved_pc_after_call (gdbarch, m68k_saved_pc_after_call);
|
| 1005 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
|
| 1006 |
|
|
|
| 1007 |
|
|
/* Stack grows down. */
|
| 1008 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
| 1009 |
|
|
set_gdbarch_stack_align (gdbarch, m68k_stack_align);
|
| 1010 |
|
|
|
| 1011 |
|
|
|
| 1012 |
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
| 1013 |
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 2);
|
| 1014 |
|
|
|
| 1015 |
|
|
set_gdbarch_store_struct_return (gdbarch, m68k_store_struct_return);
|
| 1016 |
|
|
set_gdbarch_deprecated_extract_return_value (gdbarch,
|
| 1017 |
|
|
m68k_deprecated_extract_return_value);
|
| 1018 |
|
|
set_gdbarch_deprecated_store_return_value (gdbarch, m68k_store_return_value);
|
| 1019 |
|
|
|
| 1020 |
|
|
set_gdbarch_frame_chain (gdbarch, m68k_frame_chain);
|
| 1021 |
|
|
set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
|
| 1022 |
|
|
set_gdbarch_frame_saved_pc (gdbarch, m68k_frame_saved_pc);
|
| 1023 |
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, m68k_frame_init_saved_regs);
|
| 1024 |
|
|
set_gdbarch_frameless_function_invocation (gdbarch,
|
| 1025 |
|
|
m68k_frameless_function_invocation);
|
| 1026 |
|
|
/* OK to default this value to 'unknown'. */
|
| 1027 |
|
|
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
| 1028 |
|
|
set_gdbarch_frame_args_skip (gdbarch, 8);
|
| 1029 |
|
|
set_gdbarch_frame_args_address (gdbarch, default_frame_address);
|
| 1030 |
|
|
set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
|
| 1031 |
|
|
|
| 1032 |
|
|
set_gdbarch_register_raw_size (gdbarch, m68k_register_raw_size);
|
| 1033 |
|
|
set_gdbarch_register_virtual_size (gdbarch, m68k_register_virtual_size);
|
| 1034 |
|
|
set_gdbarch_max_register_raw_size (gdbarch, 12);
|
| 1035 |
|
|
set_gdbarch_max_register_virtual_size (gdbarch, 12);
|
| 1036 |
|
|
set_gdbarch_register_virtual_type (gdbarch, m68k_register_virtual_type);
|
| 1037 |
|
|
set_gdbarch_register_name (gdbarch, m68k_register_name);
|
| 1038 |
|
|
set_gdbarch_register_size (gdbarch, 4);
|
| 1039 |
|
|
set_gdbarch_register_byte (gdbarch, m68k_register_byte);
|
| 1040 |
|
|
set_gdbarch_num_regs (gdbarch, 29);
|
| 1041 |
|
|
set_gdbarch_register_bytes_ok (gdbarch, m68k_register_bytes_ok);
|
| 1042 |
|
|
set_gdbarch_register_bytes (gdbarch, (16 * 4 + 8 + 8 * 12 + 3 * 4));
|
| 1043 |
|
|
set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
|
| 1044 |
|
|
set_gdbarch_fp_regnum (gdbarch, E_FP_REGNUM);
|
| 1045 |
|
|
set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
|
| 1046 |
|
|
set_gdbarch_ps_regnum (gdbarch, E_PS_REGNUM);
|
| 1047 |
|
|
set_gdbarch_fp0_regnum (gdbarch, E_FP0_REGNUM);
|
| 1048 |
|
|
|
| 1049 |
|
|
set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
|
| 1050 |
|
|
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
|
| 1051 |
|
|
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
|
| 1052 |
|
|
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 24);
|
| 1053 |
|
|
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
|
| 1054 |
|
|
set_gdbarch_call_dummy_p (gdbarch, 1);
|
| 1055 |
|
|
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
| 1056 |
|
|
set_gdbarch_call_dummy_length (gdbarch, 28);
|
| 1057 |
|
|
set_gdbarch_call_dummy_start_offset (gdbarch, 12);
|
| 1058 |
|
|
|
| 1059 |
|
|
set_gdbarch_call_dummy_words (gdbarch, call_dummy_words);
|
| 1060 |
|
|
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_words));
|
| 1061 |
|
|
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
| 1062 |
|
|
set_gdbarch_fix_call_dummy (gdbarch, m68k_fix_call_dummy);
|
| 1063 |
|
|
set_gdbarch_push_dummy_frame (gdbarch, m68k_push_dummy_frame);
|
| 1064 |
|
|
set_gdbarch_pop_frame (gdbarch, m68k_pop_frame);
|
| 1065 |
|
|
|
| 1066 |
|
|
return gdbarch;
|
| 1067 |
|
|
}
|
| 1068 |
|
|
|
| 1069 |
|
|
|
| 1070 |
|
|
static void
|
| 1071 |
|
|
m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
|
| 1072 |
|
|
{
|
| 1073 |
|
|
|
| 1074 |
|
|
}
|
| 1075 |
|
|
|
| 1076 |
|
|
void
|
| 1077 |
|
|
_initialize_m68k_tdep (void)
|
| 1078 |
|
|
{
|
| 1079 |
|
|
gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
|
| 1080 |
|
|
tm_print_insn = print_insn_m68k;
|
| 1081 |
|
|
}
|