OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [gdb/] [rs6000-tdep.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* Target-dependent code for GDB, the GNU debugger.
2
   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3
   1998, 1999, 2000, 2001, 2002
4
   Free Software Foundation, Inc.
5
 
6
   This file is part of GDB.
7
 
8
   This program is free software; you can redistribute it and/or modify
9
   it under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 2 of the License, or
11
   (at your option) any later version.
12
 
13
   This program is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with this program; if not, write to the Free Software
20
   Foundation, Inc., 59 Temple Place - Suite 330,
21
   Boston, MA 02111-1307, USA.  */
22
 
23
#include "defs.h"
24
#include "frame.h"
25
#include "inferior.h"
26
#include "symtab.h"
27
#include "target.h"
28
#include "gdbcore.h"
29
#include "gdbcmd.h"
30
#include "symfile.h"
31
#include "objfiles.h"
32
#include "arch-utils.h"
33
#include "regcache.h"
34
#include "doublest.h"
35
#include "value.h"
36
#include "parser-defs.h"
37
 
38
#include "libbfd.h"             /* for bfd_default_set_arch_mach */
39
#include "coff/internal.h"      /* for libcoff.h */
40
#include "libcoff.h"            /* for xcoff_data */
41
#include "coff/xcoff.h"
42
#include "libxcoff.h"
43
 
44
#include "elf-bfd.h"
45
 
46
#include "solib-svr4.h"
47
#include "ppc-tdep.h"
48
 
49
/* If the kernel has to deliver a signal, it pushes a sigcontext
50
   structure on the stack and then calls the signal handler, passing
51
   the address of the sigcontext in an argument register. Usually
52
   the signal handler doesn't save this register, so we have to
53
   access the sigcontext structure via an offset from the signal handler
54
   frame.
55
   The following constants were determined by experimentation on AIX 3.2.  */
56
#define SIG_FRAME_PC_OFFSET 96
57
#define SIG_FRAME_LR_OFFSET 108
58
#define SIG_FRAME_FP_OFFSET 284
59
 
60
/* To be used by skip_prologue. */
61
 
62
struct rs6000_framedata
63
  {
64
    int offset;                 /* total size of frame --- the distance
65
                                   by which we decrement sp to allocate
66
                                   the frame */
67
    int saved_gpr;              /* smallest # of saved gpr */
68
    int saved_fpr;              /* smallest # of saved fpr */
69
    int saved_vr;               /* smallest # of saved vr */
70
    int saved_ev;               /* smallest # of saved ev */
71
    int alloca_reg;             /* alloca register number (frame ptr) */
72
    char frameless;             /* true if frameless functions. */
73
    char nosavedpc;             /* true if pc not saved. */
74
    int gpr_offset;             /* offset of saved gprs from prev sp */
75
    int fpr_offset;             /* offset of saved fprs from prev sp */
76
    int vr_offset;              /* offset of saved vrs from prev sp */
77
    int ev_offset;              /* offset of saved evs from prev sp */
78
    int lr_offset;              /* offset of saved lr */
79
    int cr_offset;              /* offset of saved cr */
80
    int vrsave_offset;          /* offset of saved vrsave register */
81
  };
82
 
83
/* Description of a single register. */
84
 
85
struct reg
86
  {
87
    char *name;                 /* name of register */
88
    unsigned char sz32;         /* size on 32-bit arch, 0 if nonextant */
89
    unsigned char sz64;         /* size on 64-bit arch, 0 if nonextant */
90
    unsigned char fpr;          /* whether register is floating-point */
91
    unsigned char pseudo;       /* whether register is pseudo */
92
  };
93
 
94
/* Breakpoint shadows for the single step instructions will be kept here. */
95
 
96
static struct sstep_breaks
97
  {
98
    /* Address, or 0 if this is not in use.  */
99
    CORE_ADDR address;
100
    /* Shadow contents.  */
101
    char data[4];
102
  }
103
stepBreaks[2];
104
 
105
/* Hook for determining the TOC address when calling functions in the
106
   inferior under AIX. The initialization code in rs6000-nat.c sets
107
   this hook to point to find_toc_address.  */
108
 
109
CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
110
 
111
/* Hook to set the current architecture when starting a child process.
112
   rs6000-nat.c sets this. */
113
 
114
void (*rs6000_set_host_arch_hook) (int) = NULL;
115
 
116
/* Static function prototypes */
117
 
118
static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
119
                              CORE_ADDR safety);
120
static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
121
                                struct rs6000_framedata *);
122
static void frame_get_saved_regs (struct frame_info * fi,
123
                                  struct rs6000_framedata * fdatap);
124
static CORE_ADDR frame_initial_stack_address (struct frame_info *);
125
 
126
/* Is REGNO an AltiVec register?  Return 1 if so, 0 otherwise.  */
127
int
128
altivec_register_p (int regno)
129
{
130
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131
  if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132
    return 0;
133
  else
134
    return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135
}
136
 
137
/* Read a LEN-byte address from debugged memory address MEMADDR. */
138
 
139
static CORE_ADDR
140
read_memory_addr (CORE_ADDR memaddr, int len)
141
{
142
  return read_memory_unsigned_integer (memaddr, len);
143
}
144
 
145
static CORE_ADDR
146
rs6000_skip_prologue (CORE_ADDR pc)
147
{
148
  struct rs6000_framedata frame;
149
  pc = skip_prologue (pc, 0, &frame);
150
  return pc;
151
}
152
 
153
 
154
/* Fill in fi->saved_regs */
155
 
156
struct frame_extra_info
157
{
158
  /* Functions calling alloca() change the value of the stack
159
     pointer. We need to use initial stack pointer (which is saved in
160
     r31 by gcc) in such cases. If a compiler emits traceback table,
161
     then we should use the alloca register specified in traceback
162
     table. FIXME. */
163
  CORE_ADDR initial_sp;         /* initial stack pointer. */
164
};
165
 
166
void
167
rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
168
{
169
  fi->extra_info = (struct frame_extra_info *)
170
    frame_obstack_alloc (sizeof (struct frame_extra_info));
171
  fi->extra_info->initial_sp = 0;
172
  if (fi->next != (CORE_ADDR) 0
173
      && fi->pc < TEXT_SEGMENT_BASE)
174
    /* We're in get_prev_frame */
175
    /* and this is a special signal frame.  */
176
    /* (fi->pc will be some low address in the kernel, */
177
    /*  to which the signal handler returns).  */
178
    fi->signal_handler_caller = 1;
179
}
180
 
181
/* Put here the code to store, into a struct frame_saved_regs,
182
   the addresses of the saved registers of frame described by FRAME_INFO.
183
   This includes special registers such as pc and fp saved in special
184
   ways in the stack frame.  sp is even more special:
185
   the address we return for it IS the sp for the next frame.  */
186
 
187
/* In this implementation for RS/6000, we do *not* save sp. I am
188
   not sure if it will be needed. The following function takes care of gpr's
189
   and fpr's only. */
190
 
191
void
192
rs6000_frame_init_saved_regs (struct frame_info *fi)
193
{
194
  frame_get_saved_regs (fi, NULL);
195
}
196
 
197
static CORE_ADDR
198
rs6000_frame_args_address (struct frame_info *fi)
199
{
200
  if (fi->extra_info->initial_sp != 0)
201
    return fi->extra_info->initial_sp;
202
  else
203
    return frame_initial_stack_address (fi);
204
}
205
 
206
/* Immediately after a function call, return the saved pc.
207
   Can't go through the frames for this because on some machines
208
   the new frame is not set up until the new function executes
209
   some instructions.  */
210
 
211
static CORE_ADDR
212
rs6000_saved_pc_after_call (struct frame_info *fi)
213
{
214
  return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
215
}
216
 
217
/* Calculate the destination of a branch/jump.  Return -1 if not a branch.  */
218
 
219
static CORE_ADDR
220
branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
221
{
222
  CORE_ADDR dest;
223
  int immediate;
224
  int absolute;
225
  int ext_op;
226
 
227
  absolute = (int) ((instr >> 1) & 1);
228
 
229
  switch (opcode)
230
    {
231
    case 18:
232
      immediate = ((instr & ~3) << 6) >> 6;     /* br unconditional */
233
      if (absolute)
234
        dest = immediate;
235
      else
236
        dest = pc + immediate;
237
      break;
238
 
239
    case 16:
240
      immediate = ((instr & ~3) << 16) >> 16;   /* br conditional */
241
      if (absolute)
242
        dest = immediate;
243
      else
244
        dest = pc + immediate;
245
      break;
246
 
247
    case 19:
248
      ext_op = (instr >> 1) & 0x3ff;
249
 
250
      if (ext_op == 16)         /* br conditional register */
251
        {
252
          dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
253
 
254
          /* If we are about to return from a signal handler, dest is
255
             something like 0x3c90.  The current frame is a signal handler
256
             caller frame, upon completion of the sigreturn system call
257
             execution will return to the saved PC in the frame.  */
258
          if (dest < TEXT_SEGMENT_BASE)
259
            {
260
              struct frame_info *fi;
261
 
262
              fi = get_current_frame ();
263
              if (fi != NULL)
264
                dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
265
                                         gdbarch_tdep (current_gdbarch)->wordsize);
266
            }
267
        }
268
 
269
      else if (ext_op == 528)   /* br cond to count reg */
270
        {
271
          dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
272
 
273
          /* If we are about to execute a system call, dest is something
274
             like 0x22fc or 0x3b00.  Upon completion the system call
275
             will return to the address in the link register.  */
276
          if (dest < TEXT_SEGMENT_BASE)
277
            dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
278
        }
279
      else
280
        return -1;
281
      break;
282
 
283
    default:
284
      return -1;
285
    }
286
  return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
287
}
288
 
289
 
290
/* Sequence of bytes for breakpoint instruction.  */
291
 
292
#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
293
#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
294
 
295
const static unsigned char *
296
rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
297
{
298
  static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
299
  static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
300
  *bp_size = 4;
301
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
302
    return big_breakpoint;
303
  else
304
    return little_breakpoint;
305
}
306
 
307
 
308
/* AIX does not support PT_STEP. Simulate it. */
309
 
310
void
311
rs6000_software_single_step (enum target_signal signal,
312
                             int insert_breakpoints_p)
313
{
314
  CORE_ADDR dummy;
315
  int breakp_sz;
316
  const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
317
  int ii, insn;
318
  CORE_ADDR loc;
319
  CORE_ADDR breaks[2];
320
  int opcode;
321
 
322
  if (insert_breakpoints_p)
323
    {
324
 
325
      loc = read_pc ();
326
 
327
      insn = read_memory_integer (loc, 4);
328
 
329
      breaks[0] = loc + breakp_sz;
330
      opcode = insn >> 26;
331
      breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
332
 
333
      /* Don't put two breakpoints on the same address. */
334
      if (breaks[1] == breaks[0])
335
        breaks[1] = -1;
336
 
337
      stepBreaks[1].address = 0;
338
 
339
      for (ii = 0; ii < 2; ++ii)
340
        {
341
 
342
          /* ignore invalid breakpoint. */
343
          if (breaks[ii] == -1)
344
            continue;
345
          target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
346
          stepBreaks[ii].address = breaks[ii];
347
        }
348
 
349
    }
350
  else
351
    {
352
 
353
      /* remove step breakpoints. */
354
      for (ii = 0; ii < 2; ++ii)
355
        if (stepBreaks[ii].address != 0)
356
          target_remove_breakpoint (stepBreaks[ii].address,
357
                                    stepBreaks[ii].data);
358
    }
359
  errno = 0;                     /* FIXME, don't ignore errors! */
360
  /* What errors?  {read,write}_memory call error().  */
361
}
362
 
363
 
364
/* return pc value after skipping a function prologue and also return
365
   information about a function frame.
366
 
367
   in struct rs6000_framedata fdata:
368
   - frameless is TRUE, if function does not have a frame.
369
   - nosavedpc is TRUE, if function does not save %pc value in its frame.
370
   - offset is the initial size of this stack frame --- the amount by
371
   which we decrement the sp to allocate the frame.
372
   - saved_gpr is the number of the first saved gpr.
373
   - saved_fpr is the number of the first saved fpr.
374
   - saved_vr is the number of the first saved vr.
375
   - saved_ev is the number of the first saved ev.
376
   - alloca_reg is the number of the register used for alloca() handling.
377
   Otherwise -1.
378
   - gpr_offset is the offset of the first saved gpr from the previous frame.
379
   - fpr_offset is the offset of the first saved fpr from the previous frame.
380
   - vr_offset is the offset of the first saved vr from the previous frame.
381
   - ev_offset is the offset of the first saved ev from the previous frame.
382
   - lr_offset is the offset of the saved lr
383
   - cr_offset is the offset of the saved cr
384
   - vrsave_offset is the offset of the saved vrsave register
385
 */
386
 
387
#define SIGNED_SHORT(x)                                                 \
388
  ((sizeof (short) == 2)                                                \
389
   ? ((int)(short)(x))                                                  \
390
   : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
391
 
392
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
393
 
394
/* Limit the number of skipped non-prologue instructions, as the examining
395
   of the prologue is expensive.  */
396
static int max_skip_non_prologue_insns = 10;
397
 
398
/* Given PC representing the starting address of a function, and
399
   LIM_PC which is the (sloppy) limit to which to scan when looking
400
   for a prologue, attempt to further refine this limit by using
401
   the line data in the symbol table.  If successful, a better guess
402
   on where the prologue ends is returned, otherwise the previous
403
   value of lim_pc is returned.  */
404
static CORE_ADDR
405
refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
406
{
407
  struct symtab_and_line prologue_sal;
408
 
409
  prologue_sal = find_pc_line (pc, 0);
410
  if (prologue_sal.line != 0)
411
    {
412
      int i;
413
      CORE_ADDR addr = prologue_sal.end;
414
 
415
      /* Handle the case in which compiler's optimizer/scheduler
416
         has moved instructions into the prologue.  We scan ahead
417
         in the function looking for address ranges whose corresponding
418
         line number is less than or equal to the first one that we
419
         found for the function.  (It can be less than when the
420
         scheduler puts a body instruction before the first prologue
421
         instruction.)  */
422
      for (i = 2 * max_skip_non_prologue_insns;
423
           i > 0 && (lim_pc == 0 || addr < lim_pc);
424
           i--)
425
        {
426
          struct symtab_and_line sal;
427
 
428
          sal = find_pc_line (addr, 0);
429
          if (sal.line == 0)
430
            break;
431
          if (sal.line <= prologue_sal.line
432
              && sal.symtab == prologue_sal.symtab)
433
            {
434
              prologue_sal = sal;
435
            }
436
          addr = sal.end;
437
        }
438
 
439
      if (lim_pc == 0 || prologue_sal.end < lim_pc)
440
        lim_pc = prologue_sal.end;
441
    }
442
  return lim_pc;
443
}
444
 
445
 
446
static CORE_ADDR
447
skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
448
{
449
  CORE_ADDR orig_pc = pc;
450
  CORE_ADDR last_prologue_pc = pc;
451
  CORE_ADDR li_found_pc = 0;
452
  char buf[4];
453
  unsigned long op;
454
  long offset = 0;
455
  long vr_saved_offset = 0;
456
  int lr_reg = -1;
457
  int cr_reg = -1;
458
  int vr_reg = -1;
459
  int ev_reg = -1;
460
  long ev_offset = 0;
461
  int vrsave_reg = -1;
462
  int reg;
463
  int framep = 0;
464
  int minimal_toc_loaded = 0;
465
  int prev_insn_was_prologue_insn = 1;
466
  int num_skip_non_prologue_insns = 0;
467
  const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
468
 
469
  /* Attempt to find the end of the prologue when no limit is specified.
470
     Note that refine_prologue_limit() has been written so that it may
471
     be used to "refine" the limits of non-zero PC values too, but this
472
     is only safe if we 1) trust the line information provided by the
473
     compiler and 2) iterate enough to actually find the end of the
474
     prologue.
475
 
476
     It may become a good idea at some point (for both performance and
477
     accuracy) to unconditionally call refine_prologue_limit().  But,
478
     until we can make a clear determination that this is beneficial,
479
     we'll play it safe and only use it to obtain a limit when none
480
     has been specified.  */
481
  if (lim_pc == 0)
482
    lim_pc = refine_prologue_limit (pc, lim_pc);
483
 
484
  memset (fdata, 0, sizeof (struct rs6000_framedata));
485
  fdata->saved_gpr = -1;
486
  fdata->saved_fpr = -1;
487
  fdata->saved_vr = -1;
488
  fdata->saved_ev = -1;
489
  fdata->alloca_reg = -1;
490
  fdata->frameless = 1;
491
  fdata->nosavedpc = 1;
492
 
493
  for (;; pc += 4)
494
    {
495
      /* Sometimes it isn't clear if an instruction is a prologue
496
         instruction or not.  When we encounter one of these ambiguous
497
         cases, we'll set prev_insn_was_prologue_insn to 0 (false).
498
         Otherwise, we'll assume that it really is a prologue instruction. */
499
      if (prev_insn_was_prologue_insn)
500
        last_prologue_pc = pc;
501
 
502
      /* Stop scanning if we've hit the limit.  */
503
      if (lim_pc != 0 && pc >= lim_pc)
504
        break;
505
 
506
      prev_insn_was_prologue_insn = 1;
507
 
508
      /* Fetch the instruction and convert it to an integer.  */
509
      if (target_read_memory (pc, buf, 4))
510
        break;
511
      op = extract_signed_integer (buf, 4);
512
 
513
      if ((op & 0xfc1fffff) == 0x7c0802a6)
514
        {                       /* mflr Rx */
515
          lr_reg = (op & 0x03e00000) | 0x90010000;
516
          continue;
517
 
518
        }
519
      else if ((op & 0xfc1fffff) == 0x7c000026)
520
        {                       /* mfcr Rx */
521
          cr_reg = (op & 0x03e00000) | 0x90010000;
522
          continue;
523
 
524
        }
525
      else if ((op & 0xfc1f0000) == 0xd8010000)
526
        {                       /* stfd Rx,NUM(r1) */
527
          reg = GET_SRC_REG (op);
528
          if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
529
            {
530
              fdata->saved_fpr = reg;
531
              fdata->fpr_offset = SIGNED_SHORT (op) + offset;
532
            }
533
          continue;
534
 
535
        }
536
      else if (((op & 0xfc1f0000) == 0xbc010000) ||     /* stm Rx, NUM(r1) */
537
               (((op & 0xfc1f0000) == 0x90010000 ||     /* st rx,NUM(r1) */
538
                 (op & 0xfc1f0003) == 0xf8010000) &&    /* std rx,NUM(r1) */
539
                (op & 0x03e00000) >= 0x01a00000))       /* rx >= r13 */
540
        {
541
 
542
          reg = GET_SRC_REG (op);
543
          if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
544
            {
545
              fdata->saved_gpr = reg;
546
              if ((op & 0xfc1f0003) == 0xf8010000)
547
                op = (op >> 1) << 1;
548
              fdata->gpr_offset = SIGNED_SHORT (op) + offset;
549
            }
550
          continue;
551
 
552
        }
553
      else if ((op & 0xffff0000) == 0x60000000)
554
        {
555
          /* nop */
556
          /* Allow nops in the prologue, but do not consider them to
557
             be part of the prologue unless followed by other prologue
558
             instructions. */
559
          prev_insn_was_prologue_insn = 0;
560
          continue;
561
 
562
        }
563
      else if ((op & 0xffff0000) == 0x3c000000)
564
        {                       /* addis 0,0,NUM, used
565
                                   for >= 32k frames */
566
          fdata->offset = (op & 0x0000ffff) << 16;
567
          fdata->frameless = 0;
568
          continue;
569
 
570
        }
571
      else if ((op & 0xffff0000) == 0x60000000)
572
        {                       /* ori 0,0,NUM, 2nd ha
573
                                   lf of >= 32k frames */
574
          fdata->offset |= (op & 0x0000ffff);
575
          fdata->frameless = 0;
576
          continue;
577
 
578
        }
579
      else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
580
        {                       /* st Rx,NUM(r1)
581
                                   where Rx == lr */
582
          fdata->lr_offset = SIGNED_SHORT (op) + offset;
583
          fdata->nosavedpc = 0;
584
          lr_reg = 0;
585
          continue;
586
 
587
        }
588
      else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
589
        {                       /* st Rx,NUM(r1)
590
                                   where Rx == cr */
591
          fdata->cr_offset = SIGNED_SHORT (op) + offset;
592
          cr_reg = 0;
593
          continue;
594
 
595
        }
596
      else if (op == 0x48000005)
597
        {                       /* bl .+4 used in
598
                                   -mrelocatable */
599
          continue;
600
 
601
        }
602
      else if (op == 0x48000004)
603
        {                       /* b .+4 (xlc) */
604
          break;
605
 
606
        }
607
      else if ((op & 0xffff0000) == 0x3fc00000 ||  /* addis 30,0,foo@ha, used
608
                                                      in V.4 -mminimal-toc */
609
               (op & 0xffff0000) == 0x3bde0000)
610
        {                       /* addi 30,30,foo@l */
611
          continue;
612
 
613
        }
614
      else if ((op & 0xfc000001) == 0x48000001)
615
        {                       /* bl foo,
616
                                   to save fprs??? */
617
 
618
          fdata->frameless = 0;
619
          /* Don't skip over the subroutine call if it is not within
620
             the first three instructions of the prologue.  */
621
          if ((pc - orig_pc) > 8)
622
            break;
623
 
624
          op = read_memory_integer (pc + 4, 4);
625
 
626
          /* At this point, make sure this is not a trampoline
627
             function (a function that simply calls another functions,
628
             and nothing else).  If the next is not a nop, this branch
629
             was part of the function prologue. */
630
 
631
          if (op == 0x4def7b82 || op == 0)       /* crorc 15, 15, 15 */
632
            break;              /* don't skip over
633
                                   this branch */
634
          continue;
635
 
636
          /* update stack pointer */
637
        }
638
      else if ((op & 0xffff0000) == 0x94210000 ||       /* stu r1,NUM(r1) */
639
               (op & 0xffff0003) == 0xf8210001)         /* stdu r1,NUM(r1) */
640
        {
641
          fdata->frameless = 0;
642
          if ((op & 0xffff0003) == 0xf8210001)
643
            op = (op >> 1) << 1;
644
          fdata->offset = SIGNED_SHORT (op);
645
          offset = fdata->offset;
646
          continue;
647
 
648
        }
649
      else if (op == 0x7c21016e)
650
        {                       /* stwux 1,1,0 */
651
          fdata->frameless = 0;
652
          offset = fdata->offset;
653
          continue;
654
 
655
          /* Load up minimal toc pointer */
656
        }
657
      else if ((op >> 22) == 0x20f
658
               && !minimal_toc_loaded)
659
        {                       /* l r31,... or l r30,... */
660
          minimal_toc_loaded = 1;
661
          continue;
662
 
663
          /* move parameters from argument registers to local variable
664
             registers */
665
        }
666
      else if ((op & 0xfc0007fe) == 0x7c000378 &&       /* mr(.)  Rx,Ry */
667
               (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
668
               (((op >> 21) & 31) <= 10) &&
669
               ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
670
        {
671
          continue;
672
 
673
          /* store parameters in stack */
674
        }
675
      else if ((op & 0xfc1f0003) == 0xf8010000 ||       /* std rx,NUM(r1) */
676
               (op & 0xfc1f0000) == 0xd8010000 ||       /* stfd Rx,NUM(r1) */
677
               (op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
678
        {
679
          continue;
680
 
681
          /* store parameters in stack via frame pointer */
682
        }
683
      else if (framep &&
684
               ((op & 0xfc1f0000) == 0x901f0000 ||      /* st rx,NUM(r1) */
685
                (op & 0xfc1f0000) == 0xd81f0000 ||      /* stfd Rx,NUM(r1) */
686
                (op & 0xfc1f0000) == 0xfc1f0000))
687
        {                       /* frsp, fp?,NUM(r1) */
688
          continue;
689
 
690
          /* Set up frame pointer */
691
        }
692
      else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
693
               || op == 0x7c3f0b78)
694
        {                       /* mr r31, r1 */
695
          fdata->frameless = 0;
696
          framep = 1;
697
          fdata->alloca_reg = 31;
698
          continue;
699
 
700
          /* Another way to set up the frame pointer.  */
701
        }
702
      else if ((op & 0xfc1fffff) == 0x38010000)
703
        {                       /* addi rX, r1, 0x0 */
704
          fdata->frameless = 0;
705
          framep = 1;
706
          fdata->alloca_reg = (op & ~0x38010000) >> 21;
707
          continue;
708
        }
709
      /* AltiVec related instructions.  */
710
      /* Store the vrsave register (spr 256) in another register for
711
         later manipulation, or load a register into the vrsave
712
         register.  2 instructions are used: mfvrsave and
713
         mtvrsave.  They are shorthand notation for mfspr Rn, SPR256
714
         and mtspr SPR256, Rn.  */
715
      /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
716
         mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110  */
717
      else if ((op & 0xfc1fffff) == 0x7c0042a6)    /* mfvrsave Rn */
718
        {
719
          vrsave_reg = GET_SRC_REG (op);
720
          continue;
721
        }
722
      else if ((op & 0xfc1fffff) == 0x7c0043a6)     /* mtvrsave Rn */
723
        {
724
          continue;
725
        }
726
      /* Store the register where vrsave was saved to onto the stack:
727
         rS is the register where vrsave was stored in a previous
728
         instruction.  */
729
      /* 100100 sssss 00001 dddddddd dddddddd */
730
      else if ((op & 0xfc1f0000) == 0x90010000)     /* stw rS, d(r1) */
731
        {
732
          if (vrsave_reg == GET_SRC_REG (op))
733
            {
734
              fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
735
              vrsave_reg = -1;
736
            }
737
          continue;
738
        }
739
      /* Compute the new value of vrsave, by modifying the register
740
         where vrsave was saved to.  */
741
      else if (((op & 0xfc000000) == 0x64000000)    /* oris Ra, Rs, UIMM */
742
               || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
743
        {
744
          continue;
745
        }
746
      /* li r0, SIMM (short for addi r0, 0, SIMM).  This is the first
747
         in a pair of insns to save the vector registers on the
748
         stack.  */
749
      /* 001110 00000 00000 iiii iiii iiii iiii  */
750
      /* 001110 01110 00000 iiii iiii iiii iiii  */
751
      else if ((op & 0xffff0000) == 0x38000000         /* li r0, SIMM */
752
               || (op & 0xffff0000) == 0x39c00000)     /* li r14, SIMM */
753
        {
754
          li_found_pc = pc;
755
          vr_saved_offset = SIGNED_SHORT (op);
756
        }
757
      /* Store vector register S at (r31+r0) aligned to 16 bytes.  */
758
      /* 011111 sssss 11111 00000 00111001110 */
759
      else if ((op & 0xfc1fffff) == 0x7c1f01ce)   /* stvx Vs, R31, R0 */
760
        {
761
          if (pc == (li_found_pc + 4))
762
            {
763
              vr_reg = GET_SRC_REG (op);
764
              /* If this is the first vector reg to be saved, or if
765
                 it has a lower number than others previously seen,
766
                 reupdate the frame info.  */
767
              if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
768
                {
769
                  fdata->saved_vr = vr_reg;
770
                  fdata->vr_offset = vr_saved_offset + offset;
771
                }
772
              vr_saved_offset = -1;
773
              vr_reg = -1;
774
              li_found_pc = 0;
775
            }
776
        }
777
      /* End AltiVec related instructions.  */
778
 
779
      /* Start BookE related instructions.  */
780
      /* Store gen register S at (r31+uimm).
781
         Any register less than r13 is volatile, so we don't care.  */
782
      /* 000100 sssss 11111 iiiii 01100100001 */
783
      else if (arch_info->mach == bfd_mach_ppc_e500
784
               && (op & 0xfc1f07ff) == 0x101f0321)    /* evstdd Rs,uimm(R31) */
785
        {
786
          if ((op & 0x03e00000) >= 0x01a00000)  /* Rs >= r13 */
787
            {
788
              unsigned int imm;
789
              ev_reg = GET_SRC_REG (op);
790
              imm = (op >> 11) & 0x1f;
791
              ev_offset = imm * 8;
792
              /* If this is the first vector reg to be saved, or if
793
                 it has a lower number than others previously seen,
794
                 reupdate the frame info.  */
795
              if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
796
                {
797
                  fdata->saved_ev = ev_reg;
798
                  fdata->ev_offset = ev_offset + offset;
799
                }
800
            }
801
          continue;
802
        }
803
      /* Store gen register rS at (r1+rB).  */
804
      /* 000100 sssss 00001 bbbbb 01100100000 */
805
      else if (arch_info->mach == bfd_mach_ppc_e500
806
               && (op & 0xffe007ff) == 0x13e00320)     /* evstddx RS,R1,Rb */
807
        {
808
          if (pc == (li_found_pc + 4))
809
            {
810
              ev_reg = GET_SRC_REG (op);
811
              /* If this is the first vector reg to be saved, or if
812
                 it has a lower number than others previously seen,
813
                 reupdate the frame info.  */
814
              /* We know the contents of rB from the previous instruction.  */
815
              if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
816
                {
817
                  fdata->saved_ev = ev_reg;
818
                  fdata->ev_offset = vr_saved_offset + offset;
819
                }
820
              vr_saved_offset = -1;
821
              ev_reg = -1;
822
              li_found_pc = 0;
823
            }
824
          continue;
825
        }
826
      /* Store gen register r31 at (rA+uimm).  */
827
      /* 000100 11111 aaaaa iiiii 01100100001 */
828
      else if (arch_info->mach == bfd_mach_ppc_e500
829
               && (op & 0xffe007ff) == 0x13e00321)   /* evstdd R31,Ra,UIMM */
830
        {
831
          /* Wwe know that the source register is 31 already, but
832
             it can't hurt to compute it.  */
833
          ev_reg = GET_SRC_REG (op);
834
          ev_offset = ((op >> 11) & 0x1f) * 8;
835
          /* If this is the first vector reg to be saved, or if
836
             it has a lower number than others previously seen,
837
             reupdate the frame info.  */
838
          if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
839
            {
840
              fdata->saved_ev = ev_reg;
841
              fdata->ev_offset = ev_offset + offset;
842
            }
843
 
844
          continue;
845
        }
846
      /* Store gen register S at (r31+r0).
847
         Store param on stack when offset from SP bigger than 4 bytes.  */
848
      /* 000100 sssss 11111 00000 01100100000 */
849
      else if (arch_info->mach == bfd_mach_ppc_e500
850
               && (op & 0xfc1fffff) == 0x101f0320)     /* evstddx Rs,R31,R0 */
851
        {
852
          if (pc == (li_found_pc + 4))
853
            {
854
              if ((op & 0x03e00000) >= 0x01a00000)
855
                {
856
                  ev_reg = GET_SRC_REG (op);
857
                  /* If this is the first vector reg to be saved, or if
858
                     it has a lower number than others previously seen,
859
                     reupdate the frame info.  */
860
                  /* We know the contents of r0 from the previous
861
                     instruction.  */
862
                  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
863
                    {
864
                      fdata->saved_ev = ev_reg;
865
                      fdata->ev_offset = vr_saved_offset + offset;
866
                    }
867
                  ev_reg = -1;
868
                }
869
              vr_saved_offset = -1;
870
              li_found_pc = 0;
871
              continue;
872
            }
873
        }
874
      /* End BookE related instructions.  */
875
 
876
      else
877
        {
878
          /* Not a recognized prologue instruction.
879
             Handle optimizer code motions into the prologue by continuing
880
             the search if we have no valid frame yet or if the return
881
             address is not yet saved in the frame.  */
882
          if (fdata->frameless == 0
883
              && (lr_reg == -1 || fdata->nosavedpc == 0))
884
            break;
885
 
886
          if (op == 0x4e800020          /* blr */
887
              || op == 0x4e800420)      /* bctr */
888
            /* Do not scan past epilogue in frameless functions or
889
               trampolines.  */
890
            break;
891
          if ((op & 0xf4000000) == 0x40000000) /* bxx */
892
            /* Never skip branches.  */
893
            break;
894
 
895
          if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
896
            /* Do not scan too many insns, scanning insns is expensive with
897
               remote targets.  */
898
            break;
899
 
900
          /* Continue scanning.  */
901
          prev_insn_was_prologue_insn = 0;
902
          continue;
903
        }
904
    }
905
 
906
#if 0
907
/* I have problems with skipping over __main() that I need to address
908
 * sometime. Previously, I used to use misc_function_vector which
909
 * didn't work as well as I wanted to be.  -MGO */
910
 
911
  /* If the first thing after skipping a prolog is a branch to a function,
912
     this might be a call to an initializer in main(), introduced by gcc2.
913
     We'd like to skip over it as well.  Fortunately, xlc does some extra
914
     work before calling a function right after a prologue, thus we can
915
     single out such gcc2 behaviour.  */
916
 
917
 
918
  if ((op & 0xfc000001) == 0x48000001)
919
    {                           /* bl foo, an initializer function? */
920
      op = read_memory_integer (pc + 4, 4);
921
 
922
      if (op == 0x4def7b82)
923
        {                       /* cror 0xf, 0xf, 0xf (nop) */
924
 
925
          /* Check and see if we are in main.  If so, skip over this
926
             initializer function as well.  */
927
 
928
          tmp = find_pc_misc_function (pc);
929
          if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
930
            return pc + 8;
931
        }
932
    }
933
#endif /* 0 */
934
 
935
  fdata->offset = -fdata->offset;
936
  return last_prologue_pc;
937
}
938
 
939
 
940
/*************************************************************************
941
  Support for creating pushing a dummy frame into the stack, and popping
942
  frames, etc.
943
*************************************************************************/
944
 
945
 
946
/* Pop the innermost frame, go back to the caller.  */
947
 
948
static void
949
rs6000_pop_frame (void)
950
{
951
  CORE_ADDR pc, lr, sp, prev_sp, addr;  /* %pc, %lr, %sp */
952
  struct rs6000_framedata fdata;
953
  struct frame_info *frame = get_current_frame ();
954
  int ii, wordsize;
955
 
956
  pc = read_pc ();
957
  sp = FRAME_FP (frame);
958
 
959
  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
960
    {
961
      generic_pop_dummy_frame ();
962
      flush_cached_frames ();
963
      return;
964
    }
965
 
966
  /* Make sure that all registers are valid.  */
967
  read_register_bytes (0, NULL, REGISTER_BYTES);
968
 
969
  /* Figure out previous %pc value.  If the function is frameless, it is
970
     still in the link register, otherwise walk the frames and retrieve the
971
     saved %pc value in the previous frame.  */
972
 
973
  addr = get_pc_function_start (frame->pc);
974
  (void) skip_prologue (addr, frame->pc, &fdata);
975
 
976
  wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
977
  if (fdata.frameless)
978
    prev_sp = sp;
979
  else
980
    prev_sp = read_memory_addr (sp, wordsize);
981
  if (fdata.lr_offset == 0)
982
     lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
983
  else
984
    lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
985
 
986
  /* reset %pc value. */
987
  write_register (PC_REGNUM, lr);
988
 
989
  /* reset register values if any was saved earlier.  */
990
 
991
  if (fdata.saved_gpr != -1)
992
    {
993
      addr = prev_sp + fdata.gpr_offset;
994
      for (ii = fdata.saved_gpr; ii <= 31; ++ii)
995
        {
996
          read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
997
          addr += wordsize;
998
        }
999
    }
1000
 
1001
  if (fdata.saved_fpr != -1)
1002
    {
1003
      addr = prev_sp + fdata.fpr_offset;
1004
      for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1005
        {
1006
          read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1007
          addr += 8;
1008
        }
1009
    }
1010
 
1011
  write_register (SP_REGNUM, prev_sp);
1012
  target_store_registers (-1);
1013
  flush_cached_frames ();
1014
}
1015
 
1016
/* Fixup the call sequence of a dummy function, with the real function
1017
   address.  Its arguments will be passed by gdb.  */
1018
 
1019
static void
1020
rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
1021
                       int nargs, struct value **args, struct type *type,
1022
                       int gcc_p)
1023
{
1024
  int ii;
1025
  CORE_ADDR target_addr;
1026
 
1027
  if (rs6000_find_toc_address_hook != NULL)
1028
    {
1029
      CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
1030
      write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1031
                      tocvalue);
1032
    }
1033
}
1034
 
1035
/* Pass the arguments in either registers, or in the stack. In RS/6000,
1036
   the first eight words of the argument list (that might be less than
1037
   eight parameters if some parameters occupy more than one word) are
1038
   passed in r3..r10 registers.  float and double parameters are
1039
   passed in fpr's, in addition to that.  Rest of the parameters if any
1040
   are passed in user stack.  There might be cases in which half of the
1041
   parameter is copied into registers, the other half is pushed into
1042
   stack.
1043
 
1044
   Stack must be aligned on 64-bit boundaries when synthesizing
1045
   function calls.
1046
 
1047
   If the function is returning a structure, then the return address is passed
1048
   in r3, then the first 7 words of the parameters can be passed in registers,
1049
   starting from r4.  */
1050
 
1051
static CORE_ADDR
1052
rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1053
                       int struct_return, CORE_ADDR struct_addr)
1054
{
1055
  int ii;
1056
  int len = 0;
1057
  int argno;                    /* current argument number */
1058
  int argbytes;                 /* current argument byte */
1059
  char tmp_buffer[50];
1060
  int f_argno = 0;               /* current floating point argno */
1061
  int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1062
 
1063
  struct value *arg = 0;
1064
  struct type *type;
1065
 
1066
  CORE_ADDR saved_sp;
1067
 
1068
  /* The first eight words of ther arguments are passed in registers.
1069
     Copy them appropriately.
1070
 
1071
     If the function is returning a `struct', then the first word (which
1072
     will be passed in r3) is used for struct return address.  In that
1073
     case we should advance one word and start from r4 register to copy
1074
     parameters.  */
1075
 
1076
  ii = struct_return ? 1 : 0;
1077
 
1078
/*
1079
   effectively indirect call... gcc does...
1080
 
1081
   return_val example( float, int);
1082
 
1083
   eabi:
1084
   float in fp0, int in r3
1085
   offset of stack on overflow 8/16
1086
   for varargs, must go by type.
1087
   power open:
1088
   float in r3&r4, int in r5
1089
   offset of stack on overflow different
1090
   both:
1091
   return in r3 or f0.  If no float, must study how gcc emulates floats;
1092
   pay attention to arg promotion.
1093
   User may have to cast\args to handle promotion correctly
1094
   since gdb won't know if prototype supplied or not.
1095
 */
1096
 
1097
  for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1098
    {
1099
      int reg_size = REGISTER_RAW_SIZE (ii + 3);
1100
 
1101
      arg = args[argno];
1102
      type = check_typedef (VALUE_TYPE (arg));
1103
      len = TYPE_LENGTH (type);
1104
 
1105
      if (TYPE_CODE (type) == TYPE_CODE_FLT)
1106
        {
1107
 
1108
          /* Floating point arguments are passed in fpr's, as well as gpr's.
1109
             There are 13 fpr's reserved for passing parameters. At this point
1110
             there is no way we would run out of them.  */
1111
 
1112
          if (len > 8)
1113
            printf_unfiltered (
1114
                                "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1115
 
1116
          memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1117
                  VALUE_CONTENTS (arg),
1118
                  len);
1119
          ++f_argno;
1120
        }
1121
 
1122
      if (len > reg_size)
1123
        {
1124
 
1125
          /* Argument takes more than one register.  */
1126
          while (argbytes < len)
1127
            {
1128
              memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1129
              memcpy (&registers[REGISTER_BYTE (ii + 3)],
1130
                      ((char *) VALUE_CONTENTS (arg)) + argbytes,
1131
                      (len - argbytes) > reg_size
1132
                        ? reg_size : len - argbytes);
1133
              ++ii, argbytes += reg_size;
1134
 
1135
              if (ii >= 8)
1136
                goto ran_out_of_registers_for_arguments;
1137
            }
1138
          argbytes = 0;
1139
          --ii;
1140
        }
1141
      else
1142
        {
1143
          /* Argument can fit in one register.  No problem.  */
1144
          int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1145
          memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1146
          memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1147
                  VALUE_CONTENTS (arg), len);
1148
        }
1149
      ++argno;
1150
    }
1151
 
1152
ran_out_of_registers_for_arguments:
1153
 
1154
  saved_sp = read_sp ();
1155
 
1156
  /* Location for 8 parameters are always reserved.  */
1157
  sp -= wordsize * 8;
1158
 
1159
  /* Another six words for back chain, TOC register, link register, etc.  */
1160
  sp -= wordsize * 6;
1161
 
1162
  /* Stack pointer must be quadword aligned.  */
1163
  sp &= -16;
1164
 
1165
  /* If there are more arguments, allocate space for them in
1166
     the stack, then push them starting from the ninth one.  */
1167
 
1168
  if ((argno < nargs) || argbytes)
1169
    {
1170
      int space = 0, jj;
1171
 
1172
      if (argbytes)
1173
        {
1174
          space += ((len - argbytes + 3) & -4);
1175
          jj = argno + 1;
1176
        }
1177
      else
1178
        jj = argno;
1179
 
1180
      for (; jj < nargs; ++jj)
1181
        {
1182
          struct value *val = args[jj];
1183
          space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1184
        }
1185
 
1186
      /* Add location required for the rest of the parameters.  */
1187
      space = (space + 15) & -16;
1188
      sp -= space;
1189
 
1190
      /* This is another instance we need to be concerned about
1191
         securing our stack space. If we write anything underneath %sp
1192
         (r1), we might conflict with the kernel who thinks he is free
1193
         to use this area. So, update %sp first before doing anything
1194
         else.  */
1195
 
1196
      write_register (SP_REGNUM, sp);
1197
 
1198
      /* If the last argument copied into the registers didn't fit there
1199
         completely, push the rest of it into stack.  */
1200
 
1201
      if (argbytes)
1202
        {
1203
          write_memory (sp + 24 + (ii * 4),
1204
                        ((char *) VALUE_CONTENTS (arg)) + argbytes,
1205
                        len - argbytes);
1206
          ++argno;
1207
          ii += ((len - argbytes + 3) & -4) / 4;
1208
        }
1209
 
1210
      /* Push the rest of the arguments into stack.  */
1211
      for (; argno < nargs; ++argno)
1212
        {
1213
 
1214
          arg = args[argno];
1215
          type = check_typedef (VALUE_TYPE (arg));
1216
          len = TYPE_LENGTH (type);
1217
 
1218
 
1219
          /* Float types should be passed in fpr's, as well as in the
1220
             stack.  */
1221
          if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1222
            {
1223
 
1224
              if (len > 8)
1225
                printf_unfiltered (
1226
                                    "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1227
 
1228
              memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1229
                      VALUE_CONTENTS (arg),
1230
                      len);
1231
              ++f_argno;
1232
            }
1233
 
1234
          write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1235
          ii += ((len + 3) & -4) / 4;
1236
        }
1237
    }
1238
  else
1239
    /* Secure stack areas first, before doing anything else.  */
1240
    write_register (SP_REGNUM, sp);
1241
 
1242
  /* set back chain properly */
1243
  store_address (tmp_buffer, 4, saved_sp);
1244
  write_memory (sp, tmp_buffer, 4);
1245
 
1246
  target_store_registers (-1);
1247
  return sp;
1248
}
1249
 
1250
/* Function: ppc_push_return_address (pc, sp)
1251
   Set up the return address for the inferior function call.  */
1252
 
1253
static CORE_ADDR
1254
ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1255
{
1256
  write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1257
                  CALL_DUMMY_ADDRESS ());
1258
  return sp;
1259
}
1260
 
1261
/* Extract a function return value of type TYPE from raw register array
1262
   REGBUF, and copy that return value into VALBUF in virtual format.  */
1263
static void
1264
e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1265
{
1266
  int offset = 0;
1267
  int vallen = TYPE_LENGTH (valtype);
1268
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1269
 
1270
  if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1271
      && vallen == 8
1272
      && TYPE_VECTOR (valtype))
1273
    {
1274
      regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1275
    }
1276
  else
1277
    {
1278
      /* Return value is copied starting from r3.  Note that r3 for us
1279
         is a pseudo register.  */
1280
      int offset = 0;
1281
      int return_regnum = tdep->ppc_gp0_regnum + 3;
1282
      int reg_size = REGISTER_RAW_SIZE (return_regnum);
1283
      int reg_part_size;
1284
      char *val_buffer;
1285
      int copied = 0;
1286
      int i = 0;
1287
 
1288
      /* Compute where we will start storing the value from.  */
1289
      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1290
        {
1291
          if (vallen <= reg_size)
1292
            offset = reg_size - vallen;
1293
          else
1294
            offset = reg_size + (reg_size - vallen);
1295
        }
1296
 
1297
      /* How big does the local buffer need to be?  */
1298
      if (vallen <= reg_size)
1299
        val_buffer = alloca (reg_size);
1300
      else
1301
        val_buffer = alloca (vallen);
1302
 
1303
      /* Read all we need into our private buffer.  We copy it in
1304
         chunks that are as long as one register, never shorter, even
1305
         if the value is smaller than the register.  */
1306
      while (copied < vallen)
1307
        {
1308
          reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1309
          /* It is a pseudo/cooked register.  */
1310
          regcache_cooked_read (regbuf, return_regnum + i,
1311
                                val_buffer + copied);
1312
          copied += reg_part_size;
1313
          i++;
1314
        }
1315
      /* Put the stuff in the return buffer.  */
1316
      memcpy (valbuf, val_buffer + offset, vallen);
1317
    }
1318
}
1319
 
1320
static void
1321
rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1322
{
1323
  int offset = 0;
1324
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1325
 
1326
  if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1327
    {
1328
 
1329
      double dd;
1330
      float ff;
1331
      /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1332
         We need to truncate the return value into float size (4 byte) if
1333
         necessary.  */
1334
 
1335
      if (TYPE_LENGTH (valtype) > 4)    /* this is a double */
1336
        memcpy (valbuf,
1337
                &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1338
                TYPE_LENGTH (valtype));
1339
      else
1340
        {                       /* float */
1341
          memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1342
          ff = (float) dd;
1343
          memcpy (valbuf, &ff, sizeof (float));
1344
        }
1345
    }
1346
  else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1347
           && TYPE_LENGTH (valtype) == 16
1348
           && TYPE_VECTOR (valtype))
1349
    {
1350
      memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1351
              TYPE_LENGTH (valtype));
1352
    }
1353
  else
1354
    {
1355
      /* return value is copied starting from r3. */
1356
      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1357
          && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1358
        offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1359
 
1360
      memcpy (valbuf,
1361
              regbuf + REGISTER_BYTE (3) + offset,
1362
              TYPE_LENGTH (valtype));
1363
    }
1364
}
1365
 
1366
/* Keep structure return address in this variable.
1367
   FIXME:  This is a horrid kludge which should not be allowed to continue
1368
   living.  This only allows a single nested call to a structure-returning
1369
   function.  Come on, guys!  -- gnu@cygnus.com, Aug 92  */
1370
 
1371
static CORE_ADDR rs6000_struct_return_address;
1372
 
1373
/* Return whether handle_inferior_event() should proceed through code
1374
   starting at PC in function NAME when stepping.
1375
 
1376
   The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1377
   handle memory references that are too distant to fit in instructions
1378
   generated by the compiler.  For example, if 'foo' in the following
1379
   instruction:
1380
 
1381
     lwz r9,foo(r2)
1382
 
1383
   is greater than 32767, the linker might replace the lwz with a branch to
1384
   somewhere in @FIX1 that does the load in 2 instructions and then branches
1385
   back to where execution should continue.
1386
 
1387
   GDB should silently step over @FIX code, just like AIX dbx does.
1388
   Unfortunately, the linker uses the "b" instruction for the branches,
1389
   meaning that the link register doesn't get set.  Therefore, GDB's usual
1390
   step_over_function() mechanism won't work.
1391
 
1392
   Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1393
   in handle_inferior_event() to skip past @FIX code.  */
1394
 
1395
int
1396
rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1397
{
1398
  return name && !strncmp (name, "@FIX", 4);
1399
}
1400
 
1401
/* Skip code that the user doesn't want to see when stepping:
1402
 
1403
   1. Indirect function calls use a piece of trampoline code to do context
1404
   switching, i.e. to set the new TOC table.  Skip such code if we are on
1405
   its first instruction (as when we have single-stepped to here).
1406
 
1407
   2. Skip shared library trampoline code (which is different from
1408
   indirect function call trampolines).
1409
 
1410
   3. Skip bigtoc fixup code.
1411
 
1412
   Result is desired PC to step until, or NULL if we are not in
1413
   code that should be skipped.  */
1414
 
1415
CORE_ADDR
1416
rs6000_skip_trampoline_code (CORE_ADDR pc)
1417
{
1418
  register unsigned int ii, op;
1419
  int rel;
1420
  CORE_ADDR solib_target_pc;
1421
  struct minimal_symbol *msymbol;
1422
 
1423
  static unsigned trampoline_code[] =
1424
  {
1425
    0x800b0000,                 /*     l   r0,0x0(r11)  */
1426
    0x90410014,                 /*    st   r2,0x14(r1)  */
1427
    0x7c0903a6,                 /* mtctr   r0           */
1428
    0x804b0004,                 /*     l   r2,0x4(r11)  */
1429
    0x816b0008,                 /*     l  r11,0x8(r11)  */
1430
    0x4e800420,                 /*  bctr                */
1431
    0x4e800020,                 /*    br                */
1432
 
1433
  };
1434
 
1435
  /* Check for bigtoc fixup code.  */
1436
  msymbol = lookup_minimal_symbol_by_pc (pc);
1437
  if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1438
    {
1439
      /* Double-check that the third instruction from PC is relative "b".  */
1440
      op = read_memory_integer (pc + 8, 4);
1441
      if ((op & 0xfc000003) == 0x48000000)
1442
        {
1443
          /* Extract bits 6-29 as a signed 24-bit relative word address and
1444
             add it to the containing PC.  */
1445
          rel = ((int)(op << 6) >> 6);
1446
          return pc + 8 + rel;
1447
        }
1448
    }
1449
 
1450
  /* If pc is in a shared library trampoline, return its target.  */
1451
  solib_target_pc = find_solib_trampoline_target (pc);
1452
  if (solib_target_pc)
1453
    return solib_target_pc;
1454
 
1455
  for (ii = 0; trampoline_code[ii]; ++ii)
1456
    {
1457
      op = read_memory_integer (pc + (ii * 4), 4);
1458
      if (op != trampoline_code[ii])
1459
        return 0;
1460
    }
1461
  ii = read_register (11);      /* r11 holds destination addr   */
1462
  pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1463
  return pc;
1464
}
1465
 
1466
/* Determines whether the function FI has a frame on the stack or not.  */
1467
 
1468
int
1469
rs6000_frameless_function_invocation (struct frame_info *fi)
1470
{
1471
  CORE_ADDR func_start;
1472
  struct rs6000_framedata fdata;
1473
 
1474
  /* Don't even think about framelessness except on the innermost frame
1475
     or if the function was interrupted by a signal.  */
1476
  if (fi->next != NULL && !fi->next->signal_handler_caller)
1477
    return 0;
1478
 
1479
  func_start = get_pc_function_start (fi->pc);
1480
 
1481
  /* If we failed to find the start of the function, it is a mistake
1482
     to inspect the instructions.  */
1483
 
1484
  if (!func_start)
1485
    {
1486
      /* A frame with a zero PC is usually created by dereferencing a NULL
1487
         function pointer, normally causing an immediate core dump of the
1488
         inferior.  Mark function as frameless, as the inferior has no chance
1489
         of setting up a stack frame.  */
1490
      if (fi->pc == 0)
1491
        return 1;
1492
      else
1493
        return 0;
1494
    }
1495
 
1496
  (void) skip_prologue (func_start, fi->pc, &fdata);
1497
  return fdata.frameless;
1498
}
1499
 
1500
/* Return the PC saved in a frame.  */
1501
 
1502
CORE_ADDR
1503
rs6000_frame_saved_pc (struct frame_info *fi)
1504
{
1505
  CORE_ADDR func_start;
1506
  struct rs6000_framedata fdata;
1507
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1508
  int wordsize = tdep->wordsize;
1509
 
1510
  if (fi->signal_handler_caller)
1511
    return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1512
 
1513
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1514
    return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1515
 
1516
  func_start = get_pc_function_start (fi->pc);
1517
 
1518
  /* If we failed to find the start of the function, it is a mistake
1519
     to inspect the instructions.  */
1520
  if (!func_start)
1521
    return 0;
1522
 
1523
  (void) skip_prologue (func_start, fi->pc, &fdata);
1524
 
1525
  if (fdata.lr_offset == 0 && fi->next != NULL)
1526
    {
1527
      if (fi->next->signal_handler_caller)
1528
        return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1529
                                 wordsize);
1530
      else
1531
        return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
1532
                                 wordsize);
1533
    }
1534
 
1535
  if (fdata.lr_offset == 0)
1536
    return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1537
 
1538
  return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1539
}
1540
 
1541
/* If saved registers of frame FI are not known yet, read and cache them.
1542
   &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1543
   in which case the framedata are read.  */
1544
 
1545
static void
1546
frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1547
{
1548
  CORE_ADDR frame_addr;
1549
  struct rs6000_framedata work_fdata;
1550
  struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1551
  int wordsize = tdep->wordsize;
1552
 
1553
  if (fi->saved_regs)
1554
    return;
1555
 
1556
  if (fdatap == NULL)
1557
    {
1558
      fdatap = &work_fdata;
1559
      (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1560
    }
1561
 
1562
  frame_saved_regs_zalloc (fi);
1563
 
1564
  /* If there were any saved registers, figure out parent's stack
1565
     pointer.  */
1566
  /* The following is true only if the frame doesn't have a call to
1567
     alloca(), FIXME.  */
1568
 
1569
  if (fdatap->saved_fpr == 0
1570
      && fdatap->saved_gpr == 0
1571
      && fdatap->saved_vr == 0
1572
      && fdatap->saved_ev == 0
1573
      && fdatap->lr_offset == 0
1574
      && fdatap->cr_offset == 0
1575
      && fdatap->vr_offset == 0
1576
      && fdatap->ev_offset == 0)
1577
    frame_addr = 0;
1578
  else
1579
    /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1580
       address of the current frame.  Things might be easier if the
1581
       ->frame pointed to the outer-most address of the frame.  In the
1582
       mean time, the address of the prev frame is used as the base
1583
       address of this frame.  */
1584
    frame_addr = FRAME_CHAIN (fi);
1585
 
1586
  /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1587
     All fpr's from saved_fpr to fp31 are saved.  */
1588
 
1589
  if (fdatap->saved_fpr >= 0)
1590
    {
1591
      int i;
1592
      CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1593
      for (i = fdatap->saved_fpr; i < 32; i++)
1594
        {
1595
          fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1596
          fpr_addr += 8;
1597
        }
1598
    }
1599
 
1600
  /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1601
     All gpr's from saved_gpr to gpr31 are saved.  */
1602
 
1603
  if (fdatap->saved_gpr >= 0)
1604
    {
1605
      int i;
1606
      CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1607
      for (i = fdatap->saved_gpr; i < 32; i++)
1608
        {
1609
          fi->saved_regs[i] = gpr_addr;
1610
          gpr_addr += wordsize;
1611
        }
1612
    }
1613
 
1614
  /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1615
     All vr's from saved_vr to vr31 are saved.  */
1616
  if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1617
    {
1618
      if (fdatap->saved_vr >= 0)
1619
        {
1620
          int i;
1621
          CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1622
          for (i = fdatap->saved_vr; i < 32; i++)
1623
            {
1624
              fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1625
              vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1626
            }
1627
        }
1628
    }
1629
 
1630
  /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1631
        All vr's from saved_ev to ev31 are saved. ????? */
1632
  if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1633
    {
1634
      if (fdatap->saved_ev >= 0)
1635
        {
1636
          int i;
1637
          CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1638
          for (i = fdatap->saved_ev; i < 32; i++)
1639
            {
1640
              fi->saved_regs[tdep->ppc_ev0_regnum + i] = ev_addr;
1641
              fi->saved_regs[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1642
              ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1643
            }
1644
        }
1645
    }
1646
 
1647
  /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1648
     the CR.  */
1649
  if (fdatap->cr_offset != 0)
1650
    fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1651
 
1652
  /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1653
     the LR.  */
1654
  if (fdatap->lr_offset != 0)
1655
    fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1656
 
1657
  /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1658
     the VRSAVE.  */
1659
  if (fdatap->vrsave_offset != 0)
1660
    fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1661
}
1662
 
1663
/* Return the address of a frame. This is the inital %sp value when the frame
1664
   was first allocated.  For functions calling alloca(), it might be saved in
1665
   an alloca register.  */
1666
 
1667
static CORE_ADDR
1668
frame_initial_stack_address (struct frame_info *fi)
1669
{
1670
  CORE_ADDR tmpaddr;
1671
  struct rs6000_framedata fdata;
1672
  struct frame_info *callee_fi;
1673
 
1674
  /* If the initial stack pointer (frame address) of this frame is known,
1675
     just return it.  */
1676
 
1677
  if (fi->extra_info->initial_sp)
1678
    return fi->extra_info->initial_sp;
1679
 
1680
  /* Find out if this function is using an alloca register.  */
1681
 
1682
  (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1683
 
1684
  /* If saved registers of this frame are not known yet, read and
1685
     cache them.  */
1686
 
1687
  if (!fi->saved_regs)
1688
    frame_get_saved_regs (fi, &fdata);
1689
 
1690
  /* If no alloca register used, then fi->frame is the value of the %sp for
1691
     this frame, and it is good enough.  */
1692
 
1693
  if (fdata.alloca_reg < 0)
1694
    {
1695
      fi->extra_info->initial_sp = fi->frame;
1696
      return fi->extra_info->initial_sp;
1697
    }
1698
 
1699
  /* There is an alloca register, use its value, in the current frame,
1700
     as the initial stack pointer.  */
1701
  {
1702
    char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1703
    if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1704
      {
1705
        fi->extra_info->initial_sp
1706
          = extract_unsigned_integer (tmpbuf,
1707
                                      REGISTER_RAW_SIZE (fdata.alloca_reg));
1708
      }
1709
    else
1710
      /* NOTE: cagney/2002-04-17: At present the only time
1711
         frame_register_read will fail is when the register isn't
1712
         available.  If that does happen, use the frame.  */
1713
      fi->extra_info->initial_sp = fi->frame;
1714
  }
1715
  return fi->extra_info->initial_sp;
1716
}
1717
 
1718
/* Describe the pointer in each stack frame to the previous stack frame
1719
   (its caller).  */
1720
 
1721
/* FRAME_CHAIN takes a frame's nominal address
1722
   and produces the frame's chain-pointer.  */
1723
 
1724
/* In the case of the RS/6000, the frame's nominal address
1725
   is the address of a 4-byte word containing the calling frame's address.  */
1726
 
1727
CORE_ADDR
1728
rs6000_frame_chain (struct frame_info *thisframe)
1729
{
1730
  CORE_ADDR fp, fpp, lr;
1731
  int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1732
 
1733
  if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1734
    return thisframe->frame;    /* dummy frame same as caller's frame */
1735
 
1736
  if (inside_entry_file (thisframe->pc) ||
1737
      thisframe->pc == entry_point_address ())
1738
    return 0;
1739
 
1740
  if (thisframe->signal_handler_caller)
1741
    fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1742
                              wordsize);
1743
  else if (thisframe->next != NULL
1744
           && thisframe->next->signal_handler_caller
1745
           && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1746
    /* A frameless function interrupted by a signal did not change the
1747
       frame pointer.  */
1748
    fp = FRAME_FP (thisframe);
1749
  else
1750
    fp = read_memory_addr ((thisframe)->frame, wordsize);
1751
 
1752
  lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1753
  if (lr == entry_point_address ())
1754
    if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1755
      if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1756
        return fpp;
1757
 
1758
  return fp;
1759
}
1760
 
1761
/* Return the size of register REG when words are WORDSIZE bytes long.  If REG
1762
   isn't available with that word size, return 0.  */
1763
 
1764
static int
1765
regsize (const struct reg *reg, int wordsize)
1766
{
1767
  return wordsize == 8 ? reg->sz64 : reg->sz32;
1768
}
1769
 
1770
/* Return the name of register number N, or null if no such register exists
1771
   in the current architecture.  */
1772
 
1773
static const char *
1774
rs6000_register_name (int n)
1775
{
1776
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1777
  const struct reg *reg = tdep->regs + n;
1778
 
1779
  if (!regsize (reg, tdep->wordsize))
1780
    return NULL;
1781
  return reg->name;
1782
}
1783
 
1784
/* Index within `registers' of the first byte of the space for
1785
   register N.  */
1786
 
1787
static int
1788
rs6000_register_byte (int n)
1789
{
1790
  return gdbarch_tdep (current_gdbarch)->regoff[n];
1791
}
1792
 
1793
/* Return the number of bytes of storage in the actual machine representation
1794
   for register N if that register is available, else return 0.  */
1795
 
1796
static int
1797
rs6000_register_raw_size (int n)
1798
{
1799
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1800
  const struct reg *reg = tdep->regs + n;
1801
  return regsize (reg, tdep->wordsize);
1802
}
1803
 
1804
/* Return the GDB type object for the "standard" data type
1805
   of data in register N.  */
1806
 
1807
static struct type *
1808
rs6000_register_virtual_type (int n)
1809
{
1810
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1811
  const struct reg *reg = tdep->regs + n;
1812
 
1813
  if (reg->fpr)
1814
    return builtin_type_double;
1815
  else
1816
    {
1817
      int size = regsize (reg, tdep->wordsize);
1818
      switch (size)
1819
        {
1820
        case 8:
1821
          if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1822
            return builtin_type_vec64;
1823
          else
1824
            return builtin_type_int64;
1825
          break;
1826
        case 16:
1827
          return builtin_type_vec128;
1828
          break;
1829
        default:
1830
          return builtin_type_int32;
1831
          break;
1832
        }
1833
    }
1834
}
1835
 
1836
/* For the PowerPC, it appears that the debug info marks float parameters as
1837
   floats regardless of whether the function is prototyped, but the actual
1838
   values are always passed in as doubles.  Tell gdb to always assume that
1839
   floats are passed as doubles and then converted in the callee.  */
1840
 
1841
static int
1842
rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1843
{
1844
  return 1;
1845
}
1846
 
1847
/* Return whether register N requires conversion when moving from raw format
1848
   to virtual format.
1849
 
1850
   The register format for RS/6000 floating point registers is always
1851
   double, we need a conversion if the memory format is float.  */
1852
 
1853
static int
1854
rs6000_register_convertible (int n)
1855
{
1856
  const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1857
  return reg->fpr;
1858
}
1859
 
1860
/* Convert data from raw format for register N in buffer FROM
1861
   to virtual format with type TYPE in buffer TO.  */
1862
 
1863
static void
1864
rs6000_register_convert_to_virtual (int n, struct type *type,
1865
                                    char *from, char *to)
1866
{
1867
  if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1868
    {
1869
      double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1870
      store_floating (to, TYPE_LENGTH (type), val);
1871
    }
1872
  else
1873
    memcpy (to, from, REGISTER_RAW_SIZE (n));
1874
}
1875
 
1876
/* Convert data from virtual format with type TYPE in buffer FROM
1877
   to raw format for register N in buffer TO.  */
1878
 
1879
static void
1880
rs6000_register_convert_to_raw (struct type *type, int n,
1881
                                char *from, char *to)
1882
{
1883
  if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1884
    {
1885
      double val = extract_floating (from, TYPE_LENGTH (type));
1886
      store_floating (to, REGISTER_RAW_SIZE (n), val);
1887
    }
1888
  else
1889
    memcpy (to, from, REGISTER_RAW_SIZE (n));
1890
}
1891
 
1892
static void
1893
e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1894
                           int reg_nr, void *buffer)
1895
{
1896
  int base_regnum;
1897
  int offset = 0;
1898
  char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1899
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1900
 
1901
  if (reg_nr >= tdep->ppc_gp0_regnum
1902
      && reg_nr <= tdep->ppc_gplast_regnum)
1903
    {
1904
      base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1905
 
1906
      /* Build the value in the provided buffer.  */
1907
      /* Read the raw register of which this one is the lower portion.  */
1908
      regcache_raw_read (regcache, base_regnum, temp_buffer);
1909
      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1910
        offset = 4;
1911
      memcpy ((char *) buffer, temp_buffer + offset, 4);
1912
    }
1913
}
1914
 
1915
static void
1916
e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1917
                            int reg_nr, const void *buffer)
1918
{
1919
  int base_regnum;
1920
  int offset = 0;
1921
  char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1922
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1923
 
1924
  if (reg_nr >= tdep->ppc_gp0_regnum
1925
      && reg_nr <= tdep->ppc_gplast_regnum)
1926
    {
1927
      base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1928
      /* reg_nr is 32 bit here, and base_regnum is 64 bits.  */
1929
      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1930
        offset = 4;
1931
 
1932
      /* Let's read the value of the base register into a temporary
1933
         buffer, so that overwriting the last four bytes with the new
1934
         value of the pseudo will leave the upper 4 bytes unchanged.  */
1935
      regcache_raw_read (regcache, base_regnum, temp_buffer);
1936
 
1937
      /* Write as an 8 byte quantity.  */
1938
      memcpy (temp_buffer + offset, (char *) buffer, 4);
1939
      regcache_raw_write (regcache, base_regnum, temp_buffer);
1940
    }
1941
}
1942
 
1943
/* Convert a dwarf2 register number to a gdb REGNUM.  */
1944
static int
1945
e500_dwarf2_reg_to_regnum (int num)
1946
{
1947
  int regnum;
1948
  if (0 <= num && num <= 31)
1949
    return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1950
  else
1951
    return num;
1952
}
1953
 
1954
/* Convert a dbx stab register number (from `r' declaration) to a gdb
1955
   REGNUM.  */
1956
static int
1957
rs6000_stab_reg_to_regnum (int num)
1958
{
1959
  int regnum;
1960
  switch (num)
1961
    {
1962
    case 64:
1963
      regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1964
      break;
1965
    case 65:
1966
      regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1967
      break;
1968
    case 66:
1969
      regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1970
      break;
1971
    case 76:
1972
      regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1973
      break;
1974
    default:
1975
      regnum = num;
1976
      break;
1977
    }
1978
  return regnum;
1979
}
1980
 
1981
/* Store the address of the place in which to copy the structure the
1982
   subroutine will return.  This is called from call_function.
1983
 
1984
   In RS/6000, struct return addresses are passed as an extra parameter in r3.
1985
   In function return, callee is not responsible of returning this address
1986
   back.  Since gdb needs to find it, we will store in a designated variable
1987
   `rs6000_struct_return_address'.  */
1988
 
1989
static void
1990
rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1991
{
1992
  write_register (3, addr);
1993
  rs6000_struct_return_address = addr;
1994
}
1995
 
1996
/* Write into appropriate registers a function return value
1997
   of type TYPE, given in virtual format.  */
1998
static void
1999
e500_store_return_value (struct type *type, char *valbuf)
2000
{
2001
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2002
 
2003
  /* Everything is returned in GPR3 and up.  */
2004
  int copied = 0;
2005
  int i = 0;
2006
  int len = TYPE_LENGTH (type);
2007
  while (copied < len)
2008
    {
2009
      int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2010
      int reg_size = REGISTER_RAW_SIZE (regnum);
2011
      char *reg_val_buf = alloca (reg_size);
2012
 
2013
      memcpy (reg_val_buf, valbuf + copied, reg_size);
2014
      copied += reg_size;
2015
      write_register_gen (regnum, reg_val_buf);
2016
      i++;
2017
    }
2018
}
2019
 
2020
static void
2021
rs6000_store_return_value (struct type *type, char *valbuf)
2022
{
2023
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2024
 
2025
  if (TYPE_CODE (type) == TYPE_CODE_FLT)
2026
 
2027
    /* Floating point values are returned starting from FPR1 and up.
2028
       Say a double_double_double type could be returned in
2029
       FPR1/FPR2/FPR3 triple.  */
2030
 
2031
    write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2032
                          TYPE_LENGTH (type));
2033
  else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2034
    {
2035
      if (TYPE_LENGTH (type) == 16
2036
          && TYPE_VECTOR (type))
2037
        write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2038
                              valbuf, TYPE_LENGTH (type));
2039
    }
2040
  else
2041
    /* Everything else is returned in GPR3 and up.  */
2042
    write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2043
                          valbuf, TYPE_LENGTH (type));
2044
}
2045
 
2046
/* Extract from an array REGBUF containing the (raw) register state
2047
   the address in which a function should return its structure value,
2048
   as a CORE_ADDR (or an expression that can be used as one).  */
2049
 
2050
static CORE_ADDR
2051
rs6000_extract_struct_value_address (char *regbuf)
2052
{
2053
  return rs6000_struct_return_address;
2054
}
2055
 
2056
/* Return whether PC is in a dummy function call.
2057
 
2058
   FIXME: This just checks for the end of the stack, which is broken
2059
   for things like stepping through gcc nested function stubs.  */
2060
 
2061
static int
2062
rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2063
{
2064
  return sp < pc && pc < fp;
2065
}
2066
 
2067
/* Hook called when a new child process is started.  */
2068
 
2069
void
2070
rs6000_create_inferior (int pid)
2071
{
2072
  if (rs6000_set_host_arch_hook)
2073
    rs6000_set_host_arch_hook (pid);
2074
}
2075
 
2076
/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2077
 
2078
   Usually a function pointer's representation is simply the address
2079
   of the function. On the RS/6000 however, a function pointer is
2080
   represented by a pointer to a TOC entry. This TOC entry contains
2081
   three words, the first word is the address of the function, the
2082
   second word is the TOC pointer (r2), and the third word is the
2083
   static chain value.  Throughout GDB it is currently assumed that a
2084
   function pointer contains the address of the function, which is not
2085
   easy to fix.  In addition, the conversion of a function address to
2086
   a function pointer would require allocation of a TOC entry in the
2087
   inferior's memory space, with all its drawbacks.  To be able to
2088
   call C++ virtual methods in the inferior (which are called via
2089
   function pointers), find_function_addr uses this function to get the
2090
   function address from a function pointer.  */
2091
 
2092
/* Return real function address if ADDR (a function pointer) is in the data
2093
   space and is therefore a special function pointer.  */
2094
 
2095
CORE_ADDR
2096
rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2097
{
2098
  struct obj_section *s;
2099
 
2100
  s = find_pc_section (addr);
2101
  if (s && s->the_bfd_section->flags & SEC_CODE)
2102
    return addr;
2103
 
2104
  /* ADDR is in the data space, so it's a special function pointer. */
2105
  return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2106
}
2107
 
2108
 
2109
/* Handling the various POWER/PowerPC variants.  */
2110
 
2111
 
2112
/* The arrays here called registers_MUMBLE hold information about available
2113
   registers.
2114
 
2115
   For each family of PPC variants, I've tried to isolate out the
2116
   common registers and put them up front, so that as long as you get
2117
   the general family right, GDB will correctly identify the registers
2118
   common to that family.  The common register sets are:
2119
 
2120
   For the 60x family: hid0 hid1 iabr dabr pir
2121
 
2122
   For the 505 and 860 family: eie eid nri
2123
 
2124
   For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2125
   tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2126
   pbu1 pbl2 pbu2
2127
 
2128
   Most of these register groups aren't anything formal.  I arrived at
2129
   them by looking at the registers that occurred in more than one
2130
   processor.
2131
 
2132
   Note: kevinb/2002-04-30: Support for the fpscr register was added
2133
   during April, 2002.  Slot 70 is being used for PowerPC and slot 71
2134
   for Power.  For PowerPC, slot 70 was unused and was already in the
2135
   PPC_UISA_SPRS which is ideally where fpscr should go.  For Power,
2136
   slot 70 was being used for "mq", so the next available slot (71)
2137
   was chosen.  It would have been nice to be able to make the
2138
   register numbers the same across processor cores, but this wasn't
2139
   possible without either 1) renumbering some registers for some
2140
   processors or 2) assigning fpscr to a really high slot that's
2141
   larger than any current register number.  Doing (1) is bad because
2142
   existing stubs would break.  Doing (2) is undesirable because it
2143
   would introduce a really large gap between fpscr and the rest of
2144
   the registers for most processors.  */
2145
 
2146
/* Convenience macros for populating register arrays.  */
2147
 
2148
/* Within another macro, convert S to a string.  */
2149
 
2150
#define STR(s)  #s
2151
 
2152
/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2153
   and 64 bits on 64-bit systems.  */
2154
#define R(name)         { STR(name), 4, 8, 0, 0 }
2155
 
2156
/* Return a struct reg defining register NAME that's 32 bits on all
2157
   systems.  */
2158
#define R4(name)        { STR(name), 4, 4, 0, 0 }
2159
 
2160
/* Return a struct reg defining register NAME that's 64 bits on all
2161
   systems.  */
2162
#define R8(name)        { STR(name), 8, 8, 0, 0 }
2163
 
2164
/* Return a struct reg defining register NAME that's 128 bits on all
2165
   systems.  */
2166
#define R16(name)       { STR(name), 16, 16, 0, 0 }
2167
 
2168
/* Return a struct reg defining floating-point register NAME.  */
2169
#define F(name)         { STR(name), 8, 8, 1, 0 }
2170
 
2171
/* Return a struct reg defining a pseudo register NAME.  */
2172
#define P(name)         { STR(name), 4, 8, 0, 1}
2173
 
2174
/* Return a struct reg defining register NAME that's 32 bits on 32-bit
2175
   systems and that doesn't exist on 64-bit systems.  */
2176
#define R32(name)       { STR(name), 4, 0, 0, 0 }
2177
 
2178
/* Return a struct reg defining register NAME that's 64 bits on 64-bit
2179
   systems and that doesn't exist on 32-bit systems.  */
2180
#define R64(name)       { STR(name), 0, 8, 0, 0 }
2181
 
2182
/* Return a struct reg placeholder for a register that doesn't exist.  */
2183
#define R0              { 0, 0, 0, 0, 0 }
2184
 
2185
/* UISA registers common across all architectures, including POWER.  */
2186
 
2187
#define COMMON_UISA_REGS \
2188
  /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
2189
  /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2190
  /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2191
  /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2192
  /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7),  \
2193
  /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2194
  /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2195
  /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2196
  /* 64 */ R(pc), R(ps)
2197
 
2198
#define COMMON_UISA_NOFP_REGS \
2199
  /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
2200
  /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2201
  /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2202
  /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2203
  /* 32 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
2204
  /* 40 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
2205
  /* 48 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
2206
  /* 56 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
2207
  /* 64 */ R(pc), R(ps)
2208
 
2209
/* UISA-level SPRs for PowerPC.  */
2210
#define PPC_UISA_SPRS \
2211
  /* 66 */ R4(cr),  R(lr), R(ctr), R4(xer), R4(fpscr)
2212
 
2213
/* UISA-level SPRs for PowerPC without floating point support.  */
2214
#define PPC_UISA_NOFP_SPRS \
2215
  /* 66 */ R4(cr),  R(lr), R(ctr), R4(xer), R0
2216
 
2217
/* Segment registers, for PowerPC.  */
2218
#define PPC_SEGMENT_REGS \
2219
  /* 71 */ R32(sr0),  R32(sr1),  R32(sr2),  R32(sr3),  \
2220
  /* 75 */ R32(sr4),  R32(sr5),  R32(sr6),  R32(sr7),  \
2221
  /* 79 */ R32(sr8),  R32(sr9),  R32(sr10), R32(sr11), \
2222
  /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2223
 
2224
/* OEA SPRs for PowerPC.  */
2225
#define PPC_OEA_SPRS \
2226
  /*  87 */ R4(pvr), \
2227
  /*  88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2228
  /*  92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2229
  /*  96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2230
  /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2231
  /* 104 */ R(sdr1),   R64(asr),  R(dar),    R4(dsisr), \
2232
  /* 108 */ R(sprg0),  R(sprg1),  R(sprg2),  R(sprg3),  \
2233
  /* 112 */ R(srr0),   R(srr1),   R(tbl),    R(tbu),    \
2234
  /* 116 */ R4(dec),   R(dabr),   R4(ear)
2235
 
2236
/* AltiVec registers.  */
2237
#define PPC_ALTIVEC_REGS \
2238
  /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7),  \
2239
  /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2240
  /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2241
  /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2242
  /*151*/R4(vscr), R4(vrsave)
2243
 
2244
/* Vectors of hi-lo general purpose registers.  */
2245
#define PPC_EV_REGS \
2246
  /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7),  \
2247
  /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2248
  /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2249
  /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2250
 
2251
/* Lower half of the EV registers.  */
2252
#define PPC_GPRS_PSEUDO_REGS \
2253
  /*  0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7),  \
2254
  /*  8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2255
  /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2256
  /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \
2257
 
2258
/* IBM POWER (pre-PowerPC) architecture, user-level view.  We only cover
2259
   user-level SPR's.  */
2260
static const struct reg registers_power[] =
2261
{
2262
  COMMON_UISA_REGS,
2263
  /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2264
  /* 71 */ R4(fpscr)
2265
};
2266
 
2267
/* PowerPC UISA - a PPC processor as viewed by user-level code.  A UISA-only
2268
   view of the PowerPC.  */
2269
static const struct reg registers_powerpc[] =
2270
{
2271
  COMMON_UISA_REGS,
2272
  PPC_UISA_SPRS,
2273
  PPC_ALTIVEC_REGS
2274
};
2275
 
2276
/* PowerPC UISA - a PPC processor as viewed by user-level
2277
   code, but without floating point registers.  */
2278
static const struct reg registers_powerpc_nofp[] =
2279
{
2280
  COMMON_UISA_NOFP_REGS,
2281
  PPC_UISA_SPRS
2282
};
2283
 
2284
/* IBM PowerPC 403.  */
2285
static const struct reg registers_403[] =
2286
{
2287
  COMMON_UISA_REGS,
2288
  PPC_UISA_SPRS,
2289
  PPC_SEGMENT_REGS,
2290
  PPC_OEA_SPRS,
2291
  /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
2292
  /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
2293
  /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
2294
  /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
2295
  /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
2296
  /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2)
2297
};
2298
 
2299
/* IBM PowerPC 403GC.  */
2300
static const struct reg registers_403GC[] =
2301
{
2302
  COMMON_UISA_REGS,
2303
  PPC_UISA_SPRS,
2304
  PPC_SEGMENT_REGS,
2305
  PPC_OEA_SPRS,
2306
  /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
2307
  /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
2308
  /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
2309
  /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
2310
  /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
2311
  /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2),
2312
  /* 143 */ R(zpr),    R(pid),  R(sgr),  R(dcwr),
2313
  /* 147 */ R(tbhu),   R(tblu)
2314
};
2315
 
2316
/* Motorola PowerPC 505.  */
2317
static const struct reg registers_505[] =
2318
{
2319
  COMMON_UISA_REGS,
2320
  PPC_UISA_SPRS,
2321
  PPC_SEGMENT_REGS,
2322
  PPC_OEA_SPRS,
2323
  /* 119 */ R(eie), R(eid), R(nri)
2324
};
2325
 
2326
/* Motorola PowerPC 860 or 850.  */
2327
static const struct reg registers_860[] =
2328
{
2329
  COMMON_UISA_REGS,
2330
  PPC_UISA_SPRS,
2331
  PPC_SEGMENT_REGS,
2332
  PPC_OEA_SPRS,
2333
  /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2334
  /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2335
  /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2336
  /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2337
  /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2338
  /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2339
  /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2340
  /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2341
  /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2342
  /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2343
  /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2344
  /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2345
};
2346
 
2347
/* Motorola PowerPC 601.  Note that the 601 has different register numbers
2348
   for reading and writing RTCU and RTCL.  However, how one reads and writes a
2349
   register is the stub's problem.  */
2350
static const struct reg registers_601[] =
2351
{
2352
  COMMON_UISA_REGS,
2353
  PPC_UISA_SPRS,
2354
  PPC_SEGMENT_REGS,
2355
  PPC_OEA_SPRS,
2356
  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2357
  /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2358
};
2359
 
2360
/* Motorola PowerPC 602.  */
2361
static const struct reg registers_602[] =
2362
{
2363
  COMMON_UISA_REGS,
2364
  PPC_UISA_SPRS,
2365
  PPC_SEGMENT_REGS,
2366
  PPC_OEA_SPRS,
2367
  /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2368
  /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2369
  /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2370
};
2371
 
2372
/* Motorola/IBM PowerPC 603 or 603e.  */
2373
static const struct reg registers_603[] =
2374
{
2375
  COMMON_UISA_REGS,
2376
  PPC_UISA_SPRS,
2377
  PPC_SEGMENT_REGS,
2378
  PPC_OEA_SPRS,
2379
  /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2380
  /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2381
  /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2382
};
2383
 
2384
/* Motorola PowerPC 604 or 604e.  */
2385
static const struct reg registers_604[] =
2386
{
2387
  COMMON_UISA_REGS,
2388
  PPC_UISA_SPRS,
2389
  PPC_SEGMENT_REGS,
2390
  PPC_OEA_SPRS,
2391
  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2392
  /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2393
  /* 127 */ R(sia), R(sda)
2394
};
2395
 
2396
/* Motorola/IBM PowerPC 750 or 740.  */
2397
static const struct reg registers_750[] =
2398
{
2399
  COMMON_UISA_REGS,
2400
  PPC_UISA_SPRS,
2401
  PPC_SEGMENT_REGS,
2402
  PPC_OEA_SPRS,
2403
  /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2404
  /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2405
  /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2406
  /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2407
  /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2408
  /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2409
};
2410
 
2411
 
2412
/* Motorola PowerPC 7400.  */
2413
static const struct reg registers_7400[] =
2414
{
2415
  /* gpr0-gpr31, fpr0-fpr31 */
2416
  COMMON_UISA_REGS,
2417
  /* ctr, xre, lr, cr */
2418
  PPC_UISA_SPRS,
2419
  /* sr0-sr15 */
2420
  PPC_SEGMENT_REGS,
2421
  PPC_OEA_SPRS,
2422
  /* vr0-vr31, vrsave, vscr */
2423
  PPC_ALTIVEC_REGS
2424
  /* FIXME? Add more registers? */
2425
};
2426
 
2427
/* Motorola e500.  */
2428
static const struct reg registers_e500[] =
2429
{
2430
  R(pc), R(ps),
2431
  /* cr, lr, ctr, xer, "" */
2432
  PPC_UISA_NOFP_SPRS,
2433
  /* 7...38 */
2434
  PPC_EV_REGS,
2435
  /* 39...70 */
2436
  PPC_GPRS_PSEUDO_REGS
2437
};
2438
 
2439
/* Information about a particular processor variant.  */
2440
 
2441
struct variant
2442
  {
2443
    /* Name of this variant.  */
2444
    char *name;
2445
 
2446
    /* English description of the variant.  */
2447
    char *description;
2448
 
2449
    /* bfd_arch_info.arch corresponding to variant.  */
2450
    enum bfd_architecture arch;
2451
 
2452
    /* bfd_arch_info.mach corresponding to variant.  */
2453
    unsigned long mach;
2454
 
2455
    /* Number of real registers.  */
2456
    int nregs;
2457
 
2458
    /* Number of pseudo registers.  */
2459
    int npregs;
2460
 
2461
    /* Number of total registers (the sum of nregs and npregs).  */
2462
    int num_tot_regs;
2463
 
2464
    /* Table of register names; registers[R] is the name of the register
2465
       number R.  */
2466
    const struct reg *regs;
2467
  };
2468
 
2469
#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2470
 
2471
static int
2472
num_registers (const struct reg *reg_list, int num_tot_regs)
2473
{
2474
  int i;
2475
  int nregs = 0;
2476
 
2477
  for (i = 0; i < num_tot_regs; i++)
2478
    if (!reg_list[i].pseudo)
2479
      nregs++;
2480
 
2481
  return nregs;
2482
}
2483
 
2484
static int
2485
num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2486
{
2487
  int i;
2488
  int npregs = 0;
2489
 
2490
  for (i = 0; i < num_tot_regs; i++)
2491
    if (reg_list[i].pseudo)
2492
      npregs ++;
2493
 
2494
  return npregs;
2495
}
2496
 
2497
/* Information in this table comes from the following web sites:
2498
   IBM:       http://www.chips.ibm.com:80/products/embedded/
2499
   Motorola:  http://www.mot.com/SPS/PowerPC/
2500
 
2501
   I'm sure I've got some of the variant descriptions not quite right.
2502
   Please report any inaccuracies you find to GDB's maintainer.
2503
 
2504
   If you add entries to this table, please be sure to allow the new
2505
   value as an argument to the --with-cpu flag, in configure.in.  */
2506
 
2507
static struct variant variants[] =
2508
{
2509
 
2510
  {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2511
   bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2512
   registers_powerpc},
2513
  {"power", "POWER user-level", bfd_arch_rs6000,
2514
   bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2515
   registers_power},
2516
  {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2517
   bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2518
   registers_403},
2519
  {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2520
   bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2521
   registers_601},
2522
  {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2523
   bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2524
   registers_602},
2525
  {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2526
   bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2527
   registers_603},
2528
  {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2529
   604, -1, -1, tot_num_registers (registers_604),
2530
   registers_604},
2531
  {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2532
   bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2533
   registers_403GC},
2534
  {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2535
   bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2536
   registers_505},
2537
  {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2538
   bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2539
   registers_860},
2540
  {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2541
   bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2542
   registers_750},
2543
  {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2544
   bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2545
   registers_7400},
2546
  {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2547
   bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2548
   registers_e500},
2549
 
2550
  /* 64-bit */
2551
  {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2552
   bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2553
   registers_powerpc},
2554
  {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2555
   bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2556
   registers_powerpc},
2557
  {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2558
   bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2559
   registers_powerpc},
2560
  {"a35", "PowerPC A35", bfd_arch_powerpc,
2561
   bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2562
   registers_powerpc},
2563
  {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2564
   bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2565
   registers_powerpc},
2566
  {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2567
   bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2568
   registers_powerpc},
2569
 
2570
  /* FIXME: I haven't checked the register sets of the following.  */
2571
  {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2572
   bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2573
   registers_power},
2574
  {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2575
   bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2576
   registers_power},
2577
  {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2578
   bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2579
   registers_power},
2580
 
2581
  {0, 0, 0, 0, 0, 0, 0, 0}
2582
};
2583
 
2584
/* Initialize the number of registers and pseudo registers in each variant.  */
2585
 
2586
static void
2587
init_variants (void)
2588
{
2589
  struct variant *v;
2590
 
2591
  for (v = variants; v->name; v++)
2592
    {
2593
      if (v->nregs == -1)
2594
        v->nregs = num_registers (v->regs, v->num_tot_regs);
2595
      if (v->npregs == -1)
2596
        v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2597
    }
2598
}
2599
 
2600
/* Return the variant corresponding to architecture ARCH and machine number
2601
   MACH.  If no such variant exists, return null.  */
2602
 
2603
static const struct variant *
2604
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2605
{
2606
  const struct variant *v;
2607
 
2608
  for (v = variants; v->name; v++)
2609
    if (arch == v->arch && mach == v->mach)
2610
      return v;
2611
 
2612
  return NULL;
2613
}
2614
 
2615
static int
2616
gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2617
{
2618
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2619
    return print_insn_big_powerpc (memaddr, info);
2620
  else
2621
    return print_insn_little_powerpc (memaddr, info);
2622
}
2623
 
2624
/* Initialize the current architecture based on INFO.  If possible, re-use an
2625
   architecture from ARCHES, which is a list of architectures already created
2626
   during this debugging session.
2627
 
2628
   Called e.g. at program startup, when reading a core file, and when reading
2629
   a binary file.  */
2630
 
2631
static struct gdbarch *
2632
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2633
{
2634
  struct gdbarch *gdbarch;
2635
  struct gdbarch_tdep *tdep;
2636
  int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2637
  struct reg *regs;
2638
  const struct variant *v;
2639
  enum bfd_architecture arch;
2640
  unsigned long mach;
2641
  bfd abfd;
2642
  int sysv_abi;
2643
  enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2644
  asection *sect;
2645
 
2646
  from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2647
    bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2648
 
2649
  from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2650
    bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2651
 
2652
  sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2653
 
2654
  if (info.abfd)
2655
    osabi = gdbarch_lookup_osabi (info.abfd);
2656
 
2657
  /* Check word size.  If INFO is from a binary file, infer it from
2658
     that, else choose a likely default.  */
2659
  if (from_xcoff_exec)
2660
    {
2661
      if (bfd_xcoff_is_xcoff64 (info.abfd))
2662
        wordsize = 8;
2663
      else
2664
        wordsize = 4;
2665
    }
2666
  else if (from_elf_exec)
2667
    {
2668
      if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2669
        wordsize = 8;
2670
      else
2671
        wordsize = 4;
2672
    }
2673
  else
2674
    {
2675
      if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2676
        wordsize = info.bfd_arch_info->bits_per_word /
2677
          info.bfd_arch_info->bits_per_byte;
2678
      else
2679
        wordsize = 4;
2680
    }
2681
 
2682
  /* Find a candidate among extant architectures.  */
2683
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
2684
       arches != NULL;
2685
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
2686
    {
2687
      /* Word size in the various PowerPC bfd_arch_info structs isn't
2688
         meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
2689
         separate word size check.  */
2690
      tdep = gdbarch_tdep (arches->gdbarch);
2691
      if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2692
        return arches->gdbarch;
2693
    }
2694
 
2695
  /* None found, create a new architecture from INFO, whose bfd_arch_info
2696
     validity depends on the source:
2697
       - executable             useless
2698
       - rs6000_host_arch()     good
2699
       - core file              good
2700
       - "set arch"             trust blindly
2701
       - GDB startup            useless but harmless */
2702
 
2703
  if (!from_xcoff_exec)
2704
    {
2705
      arch = info.bfd_arch_info->arch;
2706
      mach = info.bfd_arch_info->mach;
2707
    }
2708
  else
2709
    {
2710
      arch = bfd_arch_powerpc;
2711
      mach = 0;
2712
      bfd_default_set_arch_mach (&abfd, arch, mach);
2713
      info.bfd_arch_info = bfd_get_arch_info (&abfd);
2714
    }
2715
  tdep = xmalloc (sizeof (struct gdbarch_tdep));
2716
  tdep->wordsize = wordsize;
2717
  tdep->osabi = osabi;
2718
 
2719
  /* For e500 executables, the apuinfo section is of help here.  Such
2720
     section contains the identifier and revision number of each
2721
     Application-specific Processing Unit that is present on the
2722
     chip.  The content of the section is determined by the assembler
2723
     which looks at each instruction and determines which unit (and
2724
     which version of it) can execute it. In our case we just look for
2725
     the existance of the section.  */
2726
 
2727
  if (info.abfd)
2728
    {
2729
      sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2730
      if (sect)
2731
        {
2732
          arch = info.bfd_arch_info->arch;
2733
          mach = bfd_mach_ppc_e500;
2734
          bfd_default_set_arch_mach (&abfd, arch, mach);
2735
          info.bfd_arch_info = bfd_get_arch_info (&abfd);
2736
        }
2737
    }
2738
 
2739
  gdbarch = gdbarch_alloc (&info, tdep);
2740
  power = arch == bfd_arch_rs6000;
2741
 
2742
  /* Initialize the number of real and pseudo registers in each variant.  */
2743
  init_variants ();
2744
 
2745
  /* Choose variant.  */
2746
  v = find_variant_by_arch (arch, mach);
2747
  if (!v)
2748
    return NULL;
2749
 
2750
  tdep->regs = v->regs;
2751
 
2752
  tdep->ppc_gp0_regnum = 0;
2753
  tdep->ppc_gplast_regnum = 31;
2754
  tdep->ppc_toc_regnum = 2;
2755
  tdep->ppc_ps_regnum = 65;
2756
  tdep->ppc_cr_regnum = 66;
2757
  tdep->ppc_lr_regnum = 67;
2758
  tdep->ppc_ctr_regnum = 68;
2759
  tdep->ppc_xer_regnum = 69;
2760
  if (v->mach == bfd_mach_ppc_601)
2761
    tdep->ppc_mq_regnum = 124;
2762
  else if (power)
2763
    tdep->ppc_mq_regnum = 70;
2764
  else
2765
    tdep->ppc_mq_regnum = -1;
2766
  tdep->ppc_fpscr_regnum = power ? 71 : 70;
2767
 
2768
  set_gdbarch_pc_regnum (gdbarch, 64);
2769
  set_gdbarch_sp_regnum (gdbarch, 1);
2770
  set_gdbarch_fp_regnum (gdbarch, 1);
2771
  set_gdbarch_deprecated_extract_return_value (gdbarch,
2772
                                               rs6000_extract_return_value);
2773
  set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2774
 
2775
  if (v->arch == bfd_arch_powerpc)
2776
    switch (v->mach)
2777
      {
2778
      case bfd_mach_ppc:
2779
        tdep->ppc_vr0_regnum = 71;
2780
        tdep->ppc_vrsave_regnum = 104;
2781
        tdep->ppc_ev0_regnum = -1;
2782
        tdep->ppc_ev31_regnum = -1;
2783
        break;
2784
      case bfd_mach_ppc_7400:
2785
        tdep->ppc_vr0_regnum = 119;
2786
        tdep->ppc_vrsave_regnum = 152;
2787
        tdep->ppc_ev0_regnum = -1;
2788
        tdep->ppc_ev31_regnum = -1;
2789
        break;
2790
      case bfd_mach_ppc_e500:
2791
        tdep->ppc_gp0_regnum = 39;
2792
        tdep->ppc_gplast_regnum = 70;
2793
        tdep->ppc_toc_regnum = -1;
2794
        tdep->ppc_ps_regnum = 1;
2795
        tdep->ppc_cr_regnum = 2;
2796
        tdep->ppc_lr_regnum = 3;
2797
        tdep->ppc_ctr_regnum = 4;
2798
        tdep->ppc_xer_regnum = 5;
2799
        tdep->ppc_ev0_regnum = 7;
2800
        tdep->ppc_ev31_regnum = 38;
2801
        set_gdbarch_pc_regnum (gdbarch, 0);
2802
        set_gdbarch_sp_regnum (gdbarch, 40);
2803
        set_gdbarch_fp_regnum (gdbarch, 40);
2804
        set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2805
        set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2806
        set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2807
        set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2808
        set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2809
        break;
2810
      default:
2811
        tdep->ppc_vr0_regnum = -1;
2812
        tdep->ppc_vrsave_regnum = -1;
2813
        tdep->ppc_ev0_regnum = -1;
2814
        tdep->ppc_ev31_regnum = -1;
2815
        break;
2816
      }
2817
 
2818
  /* Set lr_frame_offset.  */
2819
  if (wordsize == 8)
2820
    tdep->lr_frame_offset = 16;
2821
  else if (sysv_abi)
2822
    tdep->lr_frame_offset = 4;
2823
  else
2824
    tdep->lr_frame_offset = 8;
2825
 
2826
  /* Calculate byte offsets in raw register array.  */
2827
  tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2828
  for (i = off = 0; i < v->num_tot_regs; i++)
2829
    {
2830
      tdep->regoff[i] = off;
2831
      off += regsize (v->regs + i, wordsize);
2832
    }
2833
 
2834
  /* Select instruction printer.  */
2835
  if (arch == power)
2836
    set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2837
  else
2838
    set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2839
 
2840
  set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2841
  set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2842
  set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2843
  set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2844
  set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2845
 
2846
  set_gdbarch_num_regs (gdbarch, v->nregs);
2847
  set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2848
  set_gdbarch_register_name (gdbarch, rs6000_register_name);
2849
  set_gdbarch_register_size (gdbarch, wordsize);
2850
  set_gdbarch_register_bytes (gdbarch, off);
2851
  set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2852
  set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2853
  set_gdbarch_max_register_raw_size (gdbarch, 16);
2854
  set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2855
  set_gdbarch_max_register_virtual_size (gdbarch, 16);
2856
  set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2857
 
2858
  set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2859
  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2860
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2861
  set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2862
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2863
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2864
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2865
  set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2866
  set_gdbarch_char_signed (gdbarch, 0);
2867
 
2868
  set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2869
  set_gdbarch_call_dummy_length (gdbarch, 0);
2870
  set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2871
  set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2872
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2873
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2874
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2875
  set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2876
  set_gdbarch_call_dummy_p (gdbarch, 1);
2877
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2878
  set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
2879
  set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2880
  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2881
  set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2882
  set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2883
  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2884
  set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2885
 
2886
  set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2887
  set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2888
  set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2889
  set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2890
  /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2891
     is correct for the SysV ABI when the wordsize is 8, but I'm also
2892
     fairly certain that ppc_sysv_abi_push_arguments() will give even
2893
     worse results since it only works for 32-bit code.  So, for the moment,
2894
     we're better off calling rs6000_push_arguments() since it works for
2895
     64-bit code.  At some point in the future, this matter needs to be
2896
     revisited.  */
2897
  if (sysv_abi && wordsize == 4)
2898
    set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2899
  else
2900
    set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2901
 
2902
  set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2903
  set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2904
  set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2905
 
2906
  set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2907
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2908
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
2909
  set_gdbarch_function_start_offset (gdbarch, 0);
2910
  set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2911
 
2912
  /* Not sure on this. FIXMEmgo */
2913
  set_gdbarch_frame_args_skip (gdbarch, 8);
2914
 
2915
  if (sysv_abi)
2916
    set_gdbarch_use_struct_convention (gdbarch,
2917
                                       ppc_sysv_abi_use_struct_convention);
2918
  else
2919
    set_gdbarch_use_struct_convention (gdbarch,
2920
                                       generic_use_struct_convention);
2921
 
2922
  set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2923
 
2924
  set_gdbarch_frameless_function_invocation (gdbarch,
2925
                                         rs6000_frameless_function_invocation);
2926
  set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2927
  set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2928
 
2929
  set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2930
  set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2931
 
2932
  if (!sysv_abi)
2933
    {
2934
      /* Handle RS/6000 function pointers (which are really function
2935
         descriptors).  */
2936
      set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2937
        rs6000_convert_from_func_ptr_addr);
2938
    }
2939
  set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2940
  set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2941
  set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2942
 
2943
  /* We can't tell how many args there are
2944
     now that the C compiler delays popping them.  */
2945
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2946
 
2947
  /* Hook in ABI-specific overrides, if they have been registered.  */
2948
  gdbarch_init_osabi (info, gdbarch, osabi);
2949
 
2950
  return gdbarch;
2951
}
2952
 
2953
static void
2954
rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2955
{
2956
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2957
 
2958
  if (tdep == NULL)
2959
    return;
2960
 
2961
  fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n",
2962
                      gdbarch_osabi_name (tdep->osabi));
2963
}
2964
 
2965
static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2966
 
2967
static void
2968
rs6000_info_powerpc_command (char *args, int from_tty)
2969
{
2970
  help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2971
}
2972
 
2973
/* Initialization code.  */
2974
 
2975
void
2976
_initialize_rs6000_tdep (void)
2977
{
2978
  gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2979
  gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2980
 
2981
  /* Add root prefix command for "info powerpc" commands */
2982
  add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2983
                  "Various POWERPC info specific commands.",
2984
                  &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2985
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.