OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [gdb/] [solib-irix.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* Shared library support for IRIX.
2
   Copyright 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002
3
   Free Software Foundation, Inc.
4
 
5
   This file was created using portions of irix5-nat.c originally
6
   contributed to GDB by Ian Lance Taylor.
7
 
8
   This file is part of GDB.
9
 
10
   This program is free software; you can redistribute it and/or modify
11
   it under the terms of the GNU General Public License as published by
12
   the Free Software Foundation; either version 2 of the License, or
13
   (at your option) any later version.
14
 
15
   This program is distributed in the hope that it will be useful,
16
   but WITHOUT ANY WARRANTY; without even the implied warranty of
17
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
   GNU General Public License for more details.
19
 
20
   You should have received a copy of the GNU General Public License
21
   along with this program; if not, write to the Free Software
22
   Foundation, Inc., 59 Temple Place - Suite 330,
23
   Boston, MA 02111-1307, USA.  */
24
 
25
#include "defs.h"
26
 
27
#include "symtab.h"
28
#include "bfd.h"
29
#include "symfile.h"
30
#include "objfiles.h"
31
#include "gdbcore.h"
32
#include "target.h"
33
#include "inferior.h"
34
 
35
#include "solist.h"
36
 
37
/* Link map info to include in an allocate so_list entry.  Unlike some
38
   of the other solib backends, this (Irix) backend chooses to decode
39
   the link map info obtained from the target and store it as (mostly)
40
   CORE_ADDRs which need no further decoding.  This is more convenient
41
   because there are three different link map formats to worry about.
42
   We use a single routine (fetch_lm_info) to read (and decode) the target
43
   specific link map data.  */
44
 
45
struct lm_info
46
{
47
  CORE_ADDR addr;               /* address of obj_info or obj_list
48
                                   struct on target (from which the
49
                                   following information is obtained).  */
50
  CORE_ADDR next;               /* address of next item in list.  */
51
  CORE_ADDR reloc_offset;       /* amount to relocate by  */
52
  CORE_ADDR pathname_addr;      /* address of pathname  */
53
  int pathname_len;             /* length of pathname */
54
};
55
 
56
/* It's not desirable to use the system header files to obtain the
57
   structure of the obj_list or obj_info structs.  Therefore, we use a
58
   platform neutral representation which has been derived from the IRIX
59
   header files.  */
60
 
61
typedef struct
62
{
63
  char b[4];
64
}
65
gdb_int32_bytes;
66
typedef struct
67
{
68
  char b[8];
69
}
70
gdb_int64_bytes;
71
 
72
/* The "old" obj_list struct.  This is used with old (o32) binaries.
73
   The ``data'' member points at a much larger and more complicated
74
   struct which we will only refer to by offsets.  See
75
   fetch_lm_info().  */
76
 
77
struct irix_obj_list
78
{
79
  gdb_int32_bytes data;
80
  gdb_int32_bytes next;
81
  gdb_int32_bytes prev;
82
};
83
 
84
/* The ELF32 and ELF64 versions of the above struct.  The oi_magic value
85
   corresponds to the ``data'' value in the "old" struct.  When this value
86
   is 0xffffffff, the data will be in one of the following formats.  The
87
   ``oi_size'' field is used to decide which one we actually have.  */
88
 
89
struct irix_elf32_obj_info
90
{
91
  gdb_int32_bytes oi_magic;
92
  gdb_int32_bytes oi_size;
93
  gdb_int32_bytes oi_next;
94
  gdb_int32_bytes oi_prev;
95
  gdb_int32_bytes oi_ehdr;
96
  gdb_int32_bytes oi_orig_ehdr;
97
  gdb_int32_bytes oi_pathname;
98
  gdb_int32_bytes oi_pathname_len;
99
};
100
 
101
struct irix_elf64_obj_info
102
{
103
  gdb_int32_bytes oi_magic;
104
  gdb_int32_bytes oi_size;
105
  gdb_int64_bytes oi_next;
106
  gdb_int64_bytes oi_prev;
107
  gdb_int64_bytes oi_ehdr;
108
  gdb_int64_bytes oi_orig_ehdr;
109
  gdb_int64_bytes oi_pathname;
110
  gdb_int32_bytes oi_pathname_len;
111
  gdb_int32_bytes padding;
112
};
113
 
114
/* Union of all of the above (plus a split out magic field).  */
115
 
116
union irix_obj_info
117
{
118
  gdb_int32_bytes magic;
119
  struct irix_obj_list ol32;
120
  struct irix_elf32_obj_info oi32;
121
  struct irix_elf64_obj_info oi64;
122
};
123
 
124
/* MIPS sign extends its 32 bit addresses.  We could conceivably use
125
   extract_typed_address here, but to do so, we'd have to construct an
126
   appropriate type.  Calling extract_signed_integer or
127
   extract_address seems simpler.  */
128
 
129
static CORE_ADDR
130
extract_mips_address (void *addr, int len)
131
{
132
  if (len <= 32)
133
    return extract_signed_integer (addr, len);
134
  else
135
    return extract_address (addr, len);
136
}
137
 
138
/* Fetch and return the link map data associated with ADDR.  Note that
139
   this routine automatically determines which (of three) link map
140
   formats is in use by the target.  */
141
 
142
struct lm_info
143
fetch_lm_info (CORE_ADDR addr)
144
{
145
  struct lm_info li;
146
  union irix_obj_info buf;
147
 
148
  li.addr = addr;
149
 
150
  /* The smallest region that we'll need is for buf.ol32.  We'll read
151
     that first.  We'll read more of the buffer later if we have to deal
152
     with one of the other cases.  (We don't want to incur a memory error
153
     if we were to read a larger region that generates an error due to
154
     being at the end of a page or the like.)  */
155
  read_memory (addr, (char *) &buf, sizeof (buf.ol32));
156
 
157
  if (extract_unsigned_integer (&buf.magic, sizeof (buf.magic)) != 0xffffffff)
158
    {
159
      /* Use buf.ol32... */
160
      char obj_buf[432];
161
      CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
162
                                                 sizeof (buf.ol32.data));
163
      li.next = extract_mips_address (&buf.ol32.next, sizeof (buf.ol32.next));
164
 
165
      read_memory (obj_addr, obj_buf, sizeof (obj_buf));
166
 
167
      li.pathname_addr = extract_mips_address (&obj_buf[236], 4);
168
      li.pathname_len = 0;       /* unknown */
169
      li.reloc_offset = extract_mips_address (&obj_buf[196], 4)
170
        - extract_mips_address (&obj_buf[248], 4);
171
 
172
    }
173
  else if (extract_unsigned_integer (&buf.oi32.oi_size,
174
                                     sizeof (buf.oi32.oi_size))
175
           == sizeof (buf.oi32))
176
    {
177
      /* Use buf.oi32...  */
178
 
179
      /* Read rest of buffer.  */
180
      read_memory (addr + sizeof (buf.ol32),
181
                   ((char *) &buf) + sizeof (buf.ol32),
182
                   sizeof (buf.oi32) - sizeof (buf.ol32));
183
 
184
      /* Fill in fields using buffer contents.  */
185
      li.next = extract_mips_address (&buf.oi32.oi_next,
186
                                      sizeof (buf.oi32.oi_next));
187
      li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
188
                                              sizeof (buf.oi32.oi_ehdr))
189
        - extract_mips_address (&buf.oi32.oi_orig_ehdr,
190
                                sizeof (buf.oi32.oi_orig_ehdr));
191
      li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
192
                                               sizeof (buf.oi32.oi_pathname));
193
      li.pathname_len = extract_unsigned_integer (&buf.oi32.oi_pathname_len,
194
                                                  sizeof (buf.oi32.
195
                                                          oi_pathname_len));
196
    }
197
  else if (extract_unsigned_integer (&buf.oi64.oi_size,
198
                                     sizeof (buf.oi64.oi_size))
199
           == sizeof (buf.oi64))
200
    {
201
      /* Use buf.oi64...  */
202
 
203
      /* Read rest of buffer.  */
204
      read_memory (addr + sizeof (buf.ol32),
205
                   ((char *) &buf) + sizeof (buf.ol32),
206
                   sizeof (buf.oi64) - sizeof (buf.ol32));
207
 
208
      /* Fill in fields using buffer contents.  */
209
      li.next = extract_mips_address (&buf.oi64.oi_next,
210
                                      sizeof (buf.oi64.oi_next));
211
      li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
212
                                              sizeof (buf.oi64.oi_ehdr))
213
        - extract_mips_address (&buf.oi64.oi_orig_ehdr,
214
                                sizeof (buf.oi64.oi_orig_ehdr));
215
      li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
216
                                               sizeof (buf.oi64.oi_pathname));
217
      li.pathname_len = extract_unsigned_integer (&buf.oi64.oi_pathname_len,
218
                                                  sizeof (buf.oi64.
219
                                                          oi_pathname_len));
220
    }
221
  else
222
    {
223
      error ("Unable to fetch shared library obj_info or obj_list info.");
224
    }
225
 
226
  return li;
227
}
228
 
229
/* The symbol which starts off the list of shared libraries.  */
230
#define DEBUG_BASE "__rld_obj_head"
231
 
232
char shadow_contents[BREAKPOINT_MAX];   /* Stash old bkpt addr contents */
233
 
234
static CORE_ADDR debug_base;    /* Base of dynamic linker structures */
235
static CORE_ADDR breakpoint_addr;       /* Address where end bkpt is set */
236
 
237
/*
238
 
239
   LOCAL FUNCTION
240
 
241
   locate_base -- locate the base address of dynamic linker structs
242
 
243
   SYNOPSIS
244
 
245
   CORE_ADDR locate_base (void)
246
 
247
   DESCRIPTION
248
 
249
   For both the SunOS and SVR4 shared library implementations, if the
250
   inferior executable has been linked dynamically, there is a single
251
   address somewhere in the inferior's data space which is the key to
252
   locating all of the dynamic linker's runtime structures.  This
253
   address is the value of the symbol defined by the macro DEBUG_BASE.
254
   The job of this function is to find and return that address, or to
255
   return 0 if there is no such address (the executable is statically
256
   linked for example).
257
 
258
   For SunOS, the job is almost trivial, since the dynamic linker and
259
   all of it's structures are statically linked to the executable at
260
   link time.  Thus the symbol for the address we are looking for has
261
   already been added to the minimal symbol table for the executable's
262
   objfile at the time the symbol file's symbols were read, and all we
263
   have to do is look it up there.  Note that we explicitly do NOT want
264
   to find the copies in the shared library.
265
 
266
   The SVR4 version is much more complicated because the dynamic linker
267
   and it's structures are located in the shared C library, which gets
268
   run as the executable's "interpreter" by the kernel.  We have to go
269
   to a lot more work to discover the address of DEBUG_BASE.  Because
270
   of this complexity, we cache the value we find and return that value
271
   on subsequent invocations.  Note there is no copy in the executable
272
   symbol tables.
273
 
274
   Irix 5 is basically like SunOS.
275
 
276
   Note that we can assume nothing about the process state at the time
277
   we need to find this address.  We may be stopped on the first instruc-
278
   tion of the interpreter (C shared library), the first instruction of
279
   the executable itself, or somewhere else entirely (if we attached
280
   to the process for example).
281
 
282
 */
283
 
284
static CORE_ADDR
285
locate_base (void)
286
{
287
  struct minimal_symbol *msymbol;
288
  CORE_ADDR address = 0;
289
 
290
  msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
291
  if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
292
    {
293
      address = SYMBOL_VALUE_ADDRESS (msymbol);
294
    }
295
  return (address);
296
}
297
 
298
/*
299
 
300
   LOCAL FUNCTION
301
 
302
   disable_break -- remove the "mapping changed" breakpoint
303
 
304
   SYNOPSIS
305
 
306
   static int disable_break ()
307
 
308
   DESCRIPTION
309
 
310
   Removes the breakpoint that gets hit when the dynamic linker
311
   completes a mapping change.
312
 
313
 */
314
 
315
static int
316
disable_break (void)
317
{
318
  int status = 1;
319
 
320
 
321
  /* Note that breakpoint address and original contents are in our address
322
     space, so we just need to write the original contents back. */
323
 
324
  if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
325
    {
326
      status = 0;
327
    }
328
 
329
  /* For the SVR4 version, we always know the breakpoint address.  For the
330
     SunOS version we don't know it until the above code is executed.
331
     Grumble if we are stopped anywhere besides the breakpoint address. */
332
 
333
  if (stop_pc != breakpoint_addr)
334
    {
335
      warning
336
        ("stopped at unknown breakpoint while handling shared libraries");
337
    }
338
 
339
  return (status);
340
}
341
 
342
/*
343
 
344
   LOCAL FUNCTION
345
 
346
   enable_break -- arrange for dynamic linker to hit breakpoint
347
 
348
   SYNOPSIS
349
 
350
   int enable_break (void)
351
 
352
   DESCRIPTION
353
 
354
   This functions inserts a breakpoint at the entry point of the
355
   main executable, where all shared libraries are mapped in.
356
 */
357
 
358
static int
359
enable_break (void)
360
{
361
  if (symfile_objfile != NULL
362
      && target_insert_breakpoint (symfile_objfile->ei.entry_point,
363
                                   shadow_contents) == 0)
364
    {
365
      breakpoint_addr = symfile_objfile->ei.entry_point;
366
      return 1;
367
    }
368
 
369
  return 0;
370
}
371
 
372
/*
373
 
374
   LOCAL FUNCTION
375
 
376
   irix_solib_create_inferior_hook -- shared library startup support
377
 
378
   SYNOPSIS
379
 
380
   void solib_create_inferior_hook()
381
 
382
   DESCRIPTION
383
 
384
   When gdb starts up the inferior, it nurses it along (through the
385
   shell) until it is ready to execute it's first instruction.  At this
386
   point, this function gets called via expansion of the macro
387
   SOLIB_CREATE_INFERIOR_HOOK.
388
 
389
   For SunOS executables, this first instruction is typically the
390
   one at "_start", or a similar text label, regardless of whether
391
   the executable is statically or dynamically linked.  The runtime
392
   startup code takes care of dynamically linking in any shared
393
   libraries, once gdb allows the inferior to continue.
394
 
395
   For SVR4 executables, this first instruction is either the first
396
   instruction in the dynamic linker (for dynamically linked
397
   executables) or the instruction at "start" for statically linked
398
   executables.  For dynamically linked executables, the system
399
   first exec's /lib/libc.so.N, which contains the dynamic linker,
400
   and starts it running.  The dynamic linker maps in any needed
401
   shared libraries, maps in the actual user executable, and then
402
   jumps to "start" in the user executable.
403
 
404
   For both SunOS shared libraries, and SVR4 shared libraries, we
405
   can arrange to cooperate with the dynamic linker to discover the
406
   names of shared libraries that are dynamically linked, and the
407
   base addresses to which they are linked.
408
 
409
   This function is responsible for discovering those names and
410
   addresses, and saving sufficient information about them to allow
411
   their symbols to be read at a later time.
412
 
413
   FIXME
414
 
415
   Between enable_break() and disable_break(), this code does not
416
   properly handle hitting breakpoints which the user might have
417
   set in the startup code or in the dynamic linker itself.  Proper
418
   handling will probably have to wait until the implementation is
419
   changed to use the "breakpoint handler function" method.
420
 
421
   Also, what if child has exit()ed?  Must exit loop somehow.
422
 */
423
 
424
static void
425
irix_solib_create_inferior_hook (void)
426
{
427
  if (!enable_break ())
428
    {
429
      warning ("shared library handler failed to enable breakpoint");
430
      return;
431
    }
432
 
433
  /* Now run the target.  It will eventually hit the breakpoint, at
434
     which point all of the libraries will have been mapped in and we
435
     can go groveling around in the dynamic linker structures to find
436
     out what we need to know about them. */
437
 
438
  clear_proceed_status ();
439
  stop_soon_quietly = 1;
440
  stop_signal = TARGET_SIGNAL_0;
441
  do
442
    {
443
      target_resume (pid_to_ptid (-1), 0, stop_signal);
444
      wait_for_inferior ();
445
    }
446
  while (stop_signal != TARGET_SIGNAL_TRAP);
447
 
448
  /* We are now either at the "mapping complete" breakpoint (or somewhere
449
     else, a condition we aren't prepared to deal with anyway), so adjust
450
     the PC as necessary after a breakpoint, disable the breakpoint, and
451
     add any shared libraries that were mapped in. */
452
 
453
  if (!disable_break ())
454
    {
455
      warning ("shared library handler failed to disable breakpoint");
456
    }
457
 
458
  /* solib_add will call reinit_frame_cache.
459
     But we are stopped in the startup code and we might not have symbols
460
     for the startup code, so heuristic_proc_start could be called
461
     and will put out an annoying warning.
462
     Delaying the resetting of stop_soon_quietly until after symbol loading
463
     suppresses the warning.  */
464
  solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
465
  stop_soon_quietly = 0;
466
  re_enable_breakpoints_in_shlibs ();
467
}
468
 
469
/* LOCAL FUNCTION
470
 
471
   current_sos -- build a list of currently loaded shared objects
472
 
473
   SYNOPSIS
474
 
475
   struct so_list *current_sos ()
476
 
477
   DESCRIPTION
478
 
479
   Build a list of `struct so_list' objects describing the shared
480
   objects currently loaded in the inferior.  This list does not
481
   include an entry for the main executable file.
482
 
483
   Note that we only gather information directly available from the
484
   inferior --- we don't examine any of the shared library files
485
   themselves.  The declaration of `struct so_list' says which fields
486
   we provide values for.  */
487
 
488
static struct so_list *
489
irix_current_sos (void)
490
{
491
  CORE_ADDR lma;
492
  char addr_buf[8];
493
  struct so_list *head = 0;
494
  struct so_list **link_ptr = &head;
495
  int is_first = 1;
496
  struct lm_info lm;
497
 
498
  /* Make sure we've looked up the inferior's dynamic linker's base
499
     structure.  */
500
  if (!debug_base)
501
    {
502
      debug_base = locate_base ();
503
 
504
      /* If we can't find the dynamic linker's base structure, this
505
         must not be a dynamically linked executable.  Hmm.  */
506
      if (!debug_base)
507
        return 0;
508
    }
509
 
510
  read_memory (debug_base, addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
511
  lma = extract_mips_address (addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
512
 
513
  while (lma)
514
    {
515
      lm = fetch_lm_info (lma);
516
      if (!is_first)
517
        {
518
          int errcode;
519
          char *name_buf;
520
          int name_size;
521
          struct so_list *new
522
            = (struct so_list *) xmalloc (sizeof (struct so_list));
523
          struct cleanup *old_chain = make_cleanup (xfree, new);
524
 
525
          memset (new, 0, sizeof (*new));
526
 
527
          new->lm_info = xmalloc (sizeof (struct lm_info));
528
          make_cleanup (xfree, new->lm_info);
529
 
530
          *new->lm_info = lm;
531
 
532
          /* Extract this shared object's name.  */
533
          name_size = lm.pathname_len;
534
          if (name_size == 0)
535
            name_size = SO_NAME_MAX_PATH_SIZE - 1;
536
 
537
          if (name_size >= SO_NAME_MAX_PATH_SIZE)
538
            {
539
              name_size = SO_NAME_MAX_PATH_SIZE - 1;
540
              warning
541
                ("current_sos: truncating name of %d characters to only %d characters",
542
                 lm.pathname_len, name_size);
543
            }
544
 
545
          target_read_string (lm.pathname_addr, &name_buf,
546
                              name_size, &errcode);
547
          if (errcode != 0)
548
            {
549
              warning ("current_sos: Can't read pathname for load map: %s\n",
550
                       safe_strerror (errcode));
551
            }
552
          else
553
            {
554
              strncpy (new->so_name, name_buf, name_size);
555
              new->so_name[name_size] = '\0';
556
              xfree (name_buf);
557
              strcpy (new->so_original_name, new->so_name);
558
            }
559
 
560
          new->next = 0;
561
          *link_ptr = new;
562
          link_ptr = &new->next;
563
 
564
          discard_cleanups (old_chain);
565
        }
566
      is_first = 0;
567
      lma = lm.next;
568
    }
569
 
570
  return head;
571
}
572
 
573
/*
574
 
575
  LOCAL FUNCTION
576
 
577
  irix_open_symbol_file_object
578
 
579
  SYNOPSIS
580
 
581
  void irix_open_symbol_file_object (void *from_tty)
582
 
583
  DESCRIPTION
584
 
585
  If no open symbol file, attempt to locate and open the main symbol
586
  file.  On IRIX, this is the first link map entry.  If its name is
587
  here, we can open it.  Useful when attaching to a process without
588
  first loading its symbol file.
589
 
590
  If FROM_TTYP dereferences to a non-zero integer, allow messages to
591
  be printed.  This parameter is a pointer rather than an int because
592
  open_symbol_file_object() is called via catch_errors() and
593
  catch_errors() requires a pointer argument. */
594
 
595
static int
596
irix_open_symbol_file_object (void *from_ttyp)
597
{
598
  CORE_ADDR lma;
599
  char addr_buf[8];
600
  struct lm_info lm;
601
  struct cleanup *cleanups;
602
  int errcode;
603
  int from_tty = *(int *) from_ttyp;
604
  char *filename;
605
 
606
  if (symfile_objfile)
607
    if (!query ("Attempt to reload symbols from process? "))
608
      return 0;
609
 
610
  if ((debug_base = locate_base ()) == 0)
611
    return 0;                    /* failed somehow...  */
612
 
613
  /* First link map member should be the executable.  */
614
  read_memory (debug_base, addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
615
  lma = extract_mips_address (addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
616
  if (lma == 0)
617
    return 0;                    /* failed somehow...  */
618
 
619
  lm = fetch_lm_info (lma);
620
 
621
  if (lm.pathname_addr == 0)
622
    return 0;                    /* No filename.  */
623
 
624
  /* Now fetch the filename from target memory.  */
625
  target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
626
                      &errcode);
627
 
628
  if (errcode)
629
    {
630
      warning ("failed to read exec filename from attached file: %s",
631
               safe_strerror (errcode));
632
      return 0;
633
    }
634
 
635
  cleanups = make_cleanup (xfree, filename);
636
  /* Have a pathname: read the symbol file.  */
637
  symbol_file_add_main (filename, from_tty);
638
 
639
  do_cleanups (cleanups);
640
 
641
  return 1;
642
}
643
 
644
 
645
/*
646
 
647
   LOCAL FUNCTION
648
 
649
   irix_special_symbol_handling -- additional shared library symbol handling
650
 
651
   SYNOPSIS
652
 
653
   void irix_special_symbol_handling ()
654
 
655
   DESCRIPTION
656
 
657
   Once the symbols from a shared object have been loaded in the usual
658
   way, we are called to do any system specific symbol handling that
659
   is needed.
660
 
661
   For SunOS4, this consisted of grunging around in the dynamic
662
   linkers structures to find symbol definitions for "common" symbols
663
   and adding them to the minimal symbol table for the runtime common
664
   objfile.
665
 
666
   However, for IRIX, there's nothing to do.
667
 
668
 */
669
 
670
static void
671
irix_special_symbol_handling (void)
672
{
673
}
674
 
675
/* Using the solist entry SO, relocate the addresses in SEC.  */
676
 
677
static void
678
irix_relocate_section_addresses (struct so_list *so,
679
                                 struct section_table *sec)
680
{
681
  sec->addr += so->lm_info->reloc_offset;
682
  sec->endaddr += so->lm_info->reloc_offset;
683
}
684
 
685
/* Free the lm_info struct.  */
686
 
687
static void
688
irix_free_so (struct so_list *so)
689
{
690
  xfree (so->lm_info);
691
}
692
 
693
/* Clear backend specific state.  */
694
 
695
static void
696
irix_clear_solib (void)
697
{
698
  debug_base = 0;
699
}
700
 
701
/* Return 1 if PC lies in the dynamic symbol resolution code of the
702
   run time loader.  */
703
static int
704
irix_in_dynsym_resolve_code (CORE_ADDR pc)
705
{
706
  return 0;
707
}
708
 
709
static struct target_so_ops irix_so_ops;
710
 
711
void
712
_initialize_irix_solib (void)
713
{
714
  irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
715
  irix_so_ops.free_so = irix_free_so;
716
  irix_so_ops.clear_solib = irix_clear_solib;
717
  irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
718
  irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
719
  irix_so_ops.current_sos = irix_current_sos;
720
  irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
721
  irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
722
 
723
  /* FIXME: Don't do this here.  *_gdbarch_init() should set so_ops. */
724
  current_target_so_ops = &irix_so_ops;
725
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.