1 |
1181 |
sfurman |
/* Target-dependent code for the SPARC for GDB, the GNU debugger.
|
2 |
|
|
|
3 |
|
|
Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
4 |
|
|
1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation,
|
5 |
|
|
Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program; if not, write to the Free Software
|
21 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
22 |
|
|
Boston, MA 02111-1307, USA. */
|
23 |
|
|
|
24 |
|
|
/* ??? Support for calling functions from gdb in sparc64 is unfinished. */
|
25 |
|
|
|
26 |
|
|
#include "defs.h"
|
27 |
|
|
#include "arch-utils.h"
|
28 |
|
|
#include "frame.h"
|
29 |
|
|
#include "inferior.h"
|
30 |
|
|
#include "target.h"
|
31 |
|
|
#include "value.h"
|
32 |
|
|
#include "bfd.h"
|
33 |
|
|
#include "gdb_string.h"
|
34 |
|
|
#include "regcache.h"
|
35 |
|
|
#include "osabi.h"
|
36 |
|
|
|
37 |
|
|
#ifdef USE_PROC_FS
|
38 |
|
|
#include <sys/procfs.h>
|
39 |
|
|
/* Prototypes for supply_gregset etc. */
|
40 |
|
|
#include "gregset.h"
|
41 |
|
|
#endif
|
42 |
|
|
|
43 |
|
|
#include "gdbcore.h"
|
44 |
|
|
|
45 |
|
|
#include "symfile.h" /* for 'entry_point_address' */
|
46 |
|
|
|
47 |
|
|
/*
|
48 |
|
|
* Some local macros that have multi-arch and non-multi-arch versions:
|
49 |
|
|
*/
|
50 |
|
|
|
51 |
|
|
#if (GDB_MULTI_ARCH > 0)
|
52 |
|
|
|
53 |
|
|
/* Does the target have Floating Point registers? */
|
54 |
|
|
#define SPARC_HAS_FPU (gdbarch_tdep (current_gdbarch)->has_fpu)
|
55 |
|
|
/* Number of bytes devoted to Floating Point registers: */
|
56 |
|
|
#define FP_REGISTER_BYTES (gdbarch_tdep (current_gdbarch)->fp_register_bytes)
|
57 |
|
|
/* Highest numbered Floating Point register. */
|
58 |
|
|
#define FP_MAX_REGNUM (gdbarch_tdep (current_gdbarch)->fp_max_regnum)
|
59 |
|
|
/* Size of a general (integer) register: */
|
60 |
|
|
#define SPARC_INTREG_SIZE (gdbarch_tdep (current_gdbarch)->intreg_size)
|
61 |
|
|
/* Offset within the call dummy stack of the saved registers. */
|
62 |
|
|
#define DUMMY_REG_SAVE_OFFSET (gdbarch_tdep (current_gdbarch)->reg_save_offset)
|
63 |
|
|
|
64 |
|
|
#else /* non-multi-arch */
|
65 |
|
|
|
66 |
|
|
|
67 |
|
|
/* Does the target have Floating Point registers? */
|
68 |
|
|
#if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
|
69 |
|
|
#define SPARC_HAS_FPU 0
|
70 |
|
|
#else
|
71 |
|
|
#define SPARC_HAS_FPU 1
|
72 |
|
|
#endif
|
73 |
|
|
|
74 |
|
|
/* Number of bytes devoted to Floating Point registers: */
|
75 |
|
|
#if (GDB_TARGET_IS_SPARC64)
|
76 |
|
|
#define FP_REGISTER_BYTES (64 * 4)
|
77 |
|
|
#else
|
78 |
|
|
#if (SPARC_HAS_FPU)
|
79 |
|
|
#define FP_REGISTER_BYTES (32 * 4)
|
80 |
|
|
#else
|
81 |
|
|
#define FP_REGISTER_BYTES 0
|
82 |
|
|
#endif
|
83 |
|
|
#endif
|
84 |
|
|
|
85 |
|
|
/* Highest numbered Floating Point register. */
|
86 |
|
|
#if (GDB_TARGET_IS_SPARC64)
|
87 |
|
|
#define FP_MAX_REGNUM (FP0_REGNUM + 48)
|
88 |
|
|
#else
|
89 |
|
|
#define FP_MAX_REGNUM (FP0_REGNUM + 32)
|
90 |
|
|
#endif
|
91 |
|
|
|
92 |
|
|
/* Size of a general (integer) register: */
|
93 |
|
|
#define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))
|
94 |
|
|
|
95 |
|
|
/* Offset within the call dummy stack of the saved registers. */
|
96 |
|
|
#if (GDB_TARGET_IS_SPARC64)
|
97 |
|
|
#define DUMMY_REG_SAVE_OFFSET (128 + 16)
|
98 |
|
|
#else
|
99 |
|
|
#define DUMMY_REG_SAVE_OFFSET 0x60
|
100 |
|
|
#endif
|
101 |
|
|
|
102 |
|
|
#endif /* GDB_MULTI_ARCH */
|
103 |
|
|
|
104 |
|
|
struct gdbarch_tdep
|
105 |
|
|
{
|
106 |
|
|
int has_fpu;
|
107 |
|
|
int fp_register_bytes;
|
108 |
|
|
int y_regnum;
|
109 |
|
|
int fp_max_regnum;
|
110 |
|
|
int intreg_size;
|
111 |
|
|
int reg_save_offset;
|
112 |
|
|
int call_dummy_call_offset;
|
113 |
|
|
int print_insn_mach;
|
114 |
|
|
|
115 |
|
|
enum gdb_osabi osabi;
|
116 |
|
|
};
|
117 |
|
|
|
118 |
|
|
/* Now make GDB_TARGET_IS_SPARC64 a runtime test. */
|
119 |
|
|
/* FIXME MVS: or try testing bfd_arch_info.arch and bfd_arch_info.mach ...
|
120 |
|
|
* define GDB_TARGET_IS_SPARC64 \
|
121 |
|
|
* (TARGET_ARCHITECTURE->arch == bfd_arch_sparc && \
|
122 |
|
|
* (TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9 || \
|
123 |
|
|
* TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9a))
|
124 |
|
|
*/
|
125 |
|
|
|
126 |
|
|
/* From infrun.c */
|
127 |
|
|
extern int stop_after_trap;
|
128 |
|
|
|
129 |
|
|
/* We don't store all registers immediately when requested, since they
|
130 |
|
|
get sent over in large chunks anyway. Instead, we accumulate most
|
131 |
|
|
of the changes and send them over once. "deferred_stores" keeps
|
132 |
|
|
track of which sets of registers we have locally-changed copies of,
|
133 |
|
|
so we only need send the groups that have changed. */
|
134 |
|
|
|
135 |
|
|
int deferred_stores = 0; /* Accumulated stores we want to do eventually. */
|
136 |
|
|
|
137 |
|
|
|
138 |
|
|
/* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode
|
139 |
|
|
where instructions are big-endian and data are little-endian.
|
140 |
|
|
This flag is set when we detect that the target is of this type. */
|
141 |
|
|
|
142 |
|
|
int bi_endian = 0;
|
143 |
|
|
|
144 |
|
|
|
145 |
|
|
/* Fetch a single instruction. Even on bi-endian machines
|
146 |
|
|
such as sparc86x, instructions are always big-endian. */
|
147 |
|
|
|
148 |
|
|
static unsigned long
|
149 |
|
|
fetch_instruction (CORE_ADDR pc)
|
150 |
|
|
{
|
151 |
|
|
unsigned long retval;
|
152 |
|
|
int i;
|
153 |
|
|
unsigned char buf[4];
|
154 |
|
|
|
155 |
|
|
read_memory (pc, buf, sizeof (buf));
|
156 |
|
|
|
157 |
|
|
/* Start at the most significant end of the integer, and work towards
|
158 |
|
|
the least significant. */
|
159 |
|
|
retval = 0;
|
160 |
|
|
for (i = 0; i < sizeof (buf); ++i)
|
161 |
|
|
retval = (retval << 8) | buf[i];
|
162 |
|
|
return retval;
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
|
166 |
|
|
/* Branches with prediction are treated like their non-predicting cousins. */
|
167 |
|
|
/* FIXME: What about floating point branches? */
|
168 |
|
|
|
169 |
|
|
/* Macros to extract fields from sparc instructions. */
|
170 |
|
|
#define X_OP(i) (((i) >> 30) & 0x3)
|
171 |
|
|
#define X_RD(i) (((i) >> 25) & 0x1f)
|
172 |
|
|
#define X_A(i) (((i) >> 29) & 1)
|
173 |
|
|
#define X_COND(i) (((i) >> 25) & 0xf)
|
174 |
|
|
#define X_OP2(i) (((i) >> 22) & 0x7)
|
175 |
|
|
#define X_IMM22(i) ((i) & 0x3fffff)
|
176 |
|
|
#define X_OP3(i) (((i) >> 19) & 0x3f)
|
177 |
|
|
#define X_RS1(i) (((i) >> 14) & 0x1f)
|
178 |
|
|
#define X_I(i) (((i) >> 13) & 1)
|
179 |
|
|
#define X_IMM13(i) ((i) & 0x1fff)
|
180 |
|
|
/* Sign extension macros. */
|
181 |
|
|
#define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
|
182 |
|
|
#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
|
183 |
|
|
#define X_CC(i) (((i) >> 20) & 3)
|
184 |
|
|
#define X_P(i) (((i) >> 19) & 1)
|
185 |
|
|
#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
|
186 |
|
|
#define X_RCOND(i) (((i) >> 25) & 7)
|
187 |
|
|
#define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
|
188 |
|
|
#define X_FCN(i) (((i) >> 25) & 31)
|
189 |
|
|
|
190 |
|
|
typedef enum
|
191 |
|
|
{
|
192 |
|
|
Error, not_branch, bicc, bicca, ba, baa, ticc, ta, done_retry
|
193 |
|
|
} branch_type;
|
194 |
|
|
|
195 |
|
|
/* Simulate single-step ptrace call for sun4. Code written by Gary
|
196 |
|
|
Beihl (beihl@mcc.com). */
|
197 |
|
|
|
198 |
|
|
/* npc4 and next_pc describe the situation at the time that the
|
199 |
|
|
step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
|
200 |
|
|
static CORE_ADDR next_pc, npc4, target;
|
201 |
|
|
static int brknpc4, brktrg;
|
202 |
|
|
typedef char binsn_quantum[BREAKPOINT_MAX];
|
203 |
|
|
static binsn_quantum break_mem[3];
|
204 |
|
|
|
205 |
|
|
static branch_type isbranch (long, CORE_ADDR, CORE_ADDR *);
|
206 |
|
|
|
207 |
|
|
/* single_step() is called just before we want to resume the inferior,
|
208 |
|
|
if we want to single-step it but there is no hardware or kernel single-step
|
209 |
|
|
support (as on all SPARCs). We find all the possible targets of the
|
210 |
|
|
coming instruction and breakpoint them.
|
211 |
|
|
|
212 |
|
|
single_step is also called just after the inferior stops. If we had
|
213 |
|
|
set up a simulated single-step, we undo our damage. */
|
214 |
|
|
|
215 |
|
|
void
|
216 |
|
|
sparc_software_single_step (enum target_signal ignore, /* pid, but we don't need it */
|
217 |
|
|
int insert_breakpoints_p)
|
218 |
|
|
{
|
219 |
|
|
branch_type br;
|
220 |
|
|
CORE_ADDR pc;
|
221 |
|
|
long pc_instruction;
|
222 |
|
|
|
223 |
|
|
if (insert_breakpoints_p)
|
224 |
|
|
{
|
225 |
|
|
/* Always set breakpoint for NPC. */
|
226 |
|
|
next_pc = read_register (NPC_REGNUM);
|
227 |
|
|
npc4 = next_pc + 4; /* branch not taken */
|
228 |
|
|
|
229 |
|
|
target_insert_breakpoint (next_pc, break_mem[0]);
|
230 |
|
|
/* printf_unfiltered ("set break at %x\n",next_pc); */
|
231 |
|
|
|
232 |
|
|
pc = read_register (PC_REGNUM);
|
233 |
|
|
pc_instruction = fetch_instruction (pc);
|
234 |
|
|
br = isbranch (pc_instruction, pc, &target);
|
235 |
|
|
brknpc4 = brktrg = 0;
|
236 |
|
|
|
237 |
|
|
if (br == bicca)
|
238 |
|
|
{
|
239 |
|
|
/* Conditional annulled branch will either end up at
|
240 |
|
|
npc (if taken) or at npc+4 (if not taken).
|
241 |
|
|
Trap npc+4. */
|
242 |
|
|
brknpc4 = 1;
|
243 |
|
|
target_insert_breakpoint (npc4, break_mem[1]);
|
244 |
|
|
}
|
245 |
|
|
else if (br == baa && target != next_pc)
|
246 |
|
|
{
|
247 |
|
|
/* Unconditional annulled branch will always end up at
|
248 |
|
|
the target. */
|
249 |
|
|
brktrg = 1;
|
250 |
|
|
target_insert_breakpoint (target, break_mem[2]);
|
251 |
|
|
}
|
252 |
|
|
else if (GDB_TARGET_IS_SPARC64 && br == done_retry)
|
253 |
|
|
{
|
254 |
|
|
brktrg = 1;
|
255 |
|
|
target_insert_breakpoint (target, break_mem[2]);
|
256 |
|
|
}
|
257 |
|
|
}
|
258 |
|
|
else
|
259 |
|
|
{
|
260 |
|
|
/* Remove breakpoints */
|
261 |
|
|
target_remove_breakpoint (next_pc, break_mem[0]);
|
262 |
|
|
|
263 |
|
|
if (brknpc4)
|
264 |
|
|
target_remove_breakpoint (npc4, break_mem[1]);
|
265 |
|
|
|
266 |
|
|
if (brktrg)
|
267 |
|
|
target_remove_breakpoint (target, break_mem[2]);
|
268 |
|
|
}
|
269 |
|
|
}
|
270 |
|
|
|
271 |
|
|
struct frame_extra_info
|
272 |
|
|
{
|
273 |
|
|
CORE_ADDR bottom;
|
274 |
|
|
int in_prologue;
|
275 |
|
|
int flat;
|
276 |
|
|
/* Following fields only relevant for flat frames. */
|
277 |
|
|
CORE_ADDR pc_addr;
|
278 |
|
|
CORE_ADDR fp_addr;
|
279 |
|
|
/* Add this to ->frame to get the value of the stack pointer at the
|
280 |
|
|
time of the register saves. */
|
281 |
|
|
int sp_offset;
|
282 |
|
|
};
|
283 |
|
|
|
284 |
|
|
/* Call this for each newly created frame. For SPARC, we need to
|
285 |
|
|
calculate the bottom of the frame, and do some extra work if the
|
286 |
|
|
prologue has been generated via the -mflat option to GCC. In
|
287 |
|
|
particular, we need to know where the previous fp and the pc have
|
288 |
|
|
been stashed, since their exact position within the frame may vary. */
|
289 |
|
|
|
290 |
|
|
void
|
291 |
|
|
sparc_init_extra_frame_info (int fromleaf, struct frame_info *fi)
|
292 |
|
|
{
|
293 |
|
|
char *name;
|
294 |
|
|
CORE_ADDR prologue_start, prologue_end;
|
295 |
|
|
int insn;
|
296 |
|
|
|
297 |
|
|
fi->extra_info = (struct frame_extra_info *)
|
298 |
|
|
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
299 |
|
|
frame_saved_regs_zalloc (fi);
|
300 |
|
|
|
301 |
|
|
fi->extra_info->bottom =
|
302 |
|
|
(fi->next ?
|
303 |
|
|
(fi->frame == fi->next->frame ? fi->next->extra_info->bottom :
|
304 |
|
|
fi->next->frame) : read_sp ());
|
305 |
|
|
|
306 |
|
|
/* If fi->next is NULL, then we already set ->frame by passing read_fp()
|
307 |
|
|
to create_new_frame. */
|
308 |
|
|
if (fi->next)
|
309 |
|
|
{
|
310 |
|
|
char *buf;
|
311 |
|
|
|
312 |
|
|
buf = alloca (MAX_REGISTER_RAW_SIZE);
|
313 |
|
|
|
314 |
|
|
/* Compute ->frame as if not flat. If it is flat, we'll change
|
315 |
|
|
it later. */
|
316 |
|
|
if (fi->next->next != NULL
|
317 |
|
|
&& (fi->next->next->signal_handler_caller
|
318 |
|
|
|| frame_in_dummy (fi->next->next))
|
319 |
|
|
&& frameless_look_for_prologue (fi->next))
|
320 |
|
|
{
|
321 |
|
|
/* A frameless function interrupted by a signal did not change
|
322 |
|
|
the frame pointer, fix up frame pointer accordingly. */
|
323 |
|
|
fi->frame = FRAME_FP (fi->next);
|
324 |
|
|
fi->extra_info->bottom = fi->next->extra_info->bottom;
|
325 |
|
|
}
|
326 |
|
|
else
|
327 |
|
|
{
|
328 |
|
|
/* Should we adjust for stack bias here? */
|
329 |
|
|
get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0);
|
330 |
|
|
fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM));
|
331 |
|
|
|
332 |
|
|
if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1))
|
333 |
|
|
fi->frame += 2047;
|
334 |
|
|
}
|
335 |
|
|
}
|
336 |
|
|
|
337 |
|
|
/* Decide whether this is a function with a ``flat register window''
|
338 |
|
|
frame. For such functions, the frame pointer is actually in %i7. */
|
339 |
|
|
fi->extra_info->flat = 0;
|
340 |
|
|
fi->extra_info->in_prologue = 0;
|
341 |
|
|
if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end))
|
342 |
|
|
{
|
343 |
|
|
/* See if the function starts with an add (which will be of a
|
344 |
|
|
negative number if a flat frame) to the sp. FIXME: Does not
|
345 |
|
|
handle large frames which will need more than one instruction
|
346 |
|
|
to adjust the sp. */
|
347 |
|
|
insn = fetch_instruction (prologue_start);
|
348 |
|
|
if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
|
349 |
|
|
&& X_I (insn) && X_SIMM13 (insn) < 0)
|
350 |
|
|
{
|
351 |
|
|
int offset = X_SIMM13 (insn);
|
352 |
|
|
|
353 |
|
|
/* Then look for a save of %i7 into the frame. */
|
354 |
|
|
insn = fetch_instruction (prologue_start + 4);
|
355 |
|
|
if (X_OP (insn) == 3
|
356 |
|
|
&& X_RD (insn) == 31
|
357 |
|
|
&& X_OP3 (insn) == 4
|
358 |
|
|
&& X_RS1 (insn) == 14)
|
359 |
|
|
{
|
360 |
|
|
char *buf;
|
361 |
|
|
|
362 |
|
|
buf = alloca (MAX_REGISTER_RAW_SIZE);
|
363 |
|
|
|
364 |
|
|
/* We definitely have a flat frame now. */
|
365 |
|
|
fi->extra_info->flat = 1;
|
366 |
|
|
|
367 |
|
|
fi->extra_info->sp_offset = offset;
|
368 |
|
|
|
369 |
|
|
/* Overwrite the frame's address with the value in %i7. */
|
370 |
|
|
get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0);
|
371 |
|
|
fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM));
|
372 |
|
|
|
373 |
|
|
if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1))
|
374 |
|
|
fi->frame += 2047;
|
375 |
|
|
|
376 |
|
|
/* Record where the fp got saved. */
|
377 |
|
|
fi->extra_info->fp_addr =
|
378 |
|
|
fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
|
379 |
|
|
|
380 |
|
|
/* Also try to collect where the pc got saved to. */
|
381 |
|
|
fi->extra_info->pc_addr = 0;
|
382 |
|
|
insn = fetch_instruction (prologue_start + 12);
|
383 |
|
|
if (X_OP (insn) == 3
|
384 |
|
|
&& X_RD (insn) == 15
|
385 |
|
|
&& X_OP3 (insn) == 4
|
386 |
|
|
&& X_RS1 (insn) == 14)
|
387 |
|
|
fi->extra_info->pc_addr =
|
388 |
|
|
fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
|
389 |
|
|
}
|
390 |
|
|
}
|
391 |
|
|
else
|
392 |
|
|
{
|
393 |
|
|
/* Check if the PC is in the function prologue before a SAVE
|
394 |
|
|
instruction has been executed yet. If so, set the frame
|
395 |
|
|
to the current value of the stack pointer and set
|
396 |
|
|
the in_prologue flag. */
|
397 |
|
|
CORE_ADDR addr;
|
398 |
|
|
struct symtab_and_line sal;
|
399 |
|
|
|
400 |
|
|
sal = find_pc_line (prologue_start, 0);
|
401 |
|
|
if (sal.line == 0) /* no line info, use PC */
|
402 |
|
|
prologue_end = fi->pc;
|
403 |
|
|
else if (sal.end < prologue_end)
|
404 |
|
|
prologue_end = sal.end;
|
405 |
|
|
if (fi->pc < prologue_end)
|
406 |
|
|
{
|
407 |
|
|
for (addr = prologue_start; addr < fi->pc; addr += 4)
|
408 |
|
|
{
|
409 |
|
|
insn = read_memory_integer (addr, 4);
|
410 |
|
|
if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
|
411 |
|
|
break; /* SAVE seen, stop searching */
|
412 |
|
|
}
|
413 |
|
|
if (addr >= fi->pc)
|
414 |
|
|
{
|
415 |
|
|
fi->extra_info->in_prologue = 1;
|
416 |
|
|
fi->frame = read_register (SP_REGNUM);
|
417 |
|
|
}
|
418 |
|
|
}
|
419 |
|
|
}
|
420 |
|
|
}
|
421 |
|
|
if (fi->next && fi->frame == 0)
|
422 |
|
|
{
|
423 |
|
|
/* Kludge to cause init_prev_frame_info to destroy the new frame. */
|
424 |
|
|
fi->frame = fi->next->frame;
|
425 |
|
|
fi->pc = fi->next->pc;
|
426 |
|
|
}
|
427 |
|
|
}
|
428 |
|
|
|
429 |
|
|
CORE_ADDR
|
430 |
|
|
sparc_frame_chain (struct frame_info *frame)
|
431 |
|
|
{
|
432 |
|
|
/* Value that will cause FRAME_CHAIN_VALID to not worry about the chain
|
433 |
|
|
value. If it really is zero, we detect it later in
|
434 |
|
|
sparc_init_prev_frame. */
|
435 |
|
|
return (CORE_ADDR) 1;
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
CORE_ADDR
|
439 |
|
|
sparc_extract_struct_value_address (char *regbuf)
|
440 |
|
|
{
|
441 |
|
|
return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
|
442 |
|
|
REGISTER_RAW_SIZE (O0_REGNUM));
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
/* Find the pc saved in frame FRAME. */
|
446 |
|
|
|
447 |
|
|
CORE_ADDR
|
448 |
|
|
sparc_frame_saved_pc (struct frame_info *frame)
|
449 |
|
|
{
|
450 |
|
|
char *buf;
|
451 |
|
|
CORE_ADDR addr;
|
452 |
|
|
|
453 |
|
|
buf = alloca (MAX_REGISTER_RAW_SIZE);
|
454 |
|
|
if (frame->signal_handler_caller)
|
455 |
|
|
{
|
456 |
|
|
/* This is the signal trampoline frame.
|
457 |
|
|
Get the saved PC from the sigcontext structure. */
|
458 |
|
|
|
459 |
|
|
#ifndef SIGCONTEXT_PC_OFFSET
|
460 |
|
|
#define SIGCONTEXT_PC_OFFSET 12
|
461 |
|
|
#endif
|
462 |
|
|
|
463 |
|
|
CORE_ADDR sigcontext_addr;
|
464 |
|
|
char *scbuf;
|
465 |
|
|
int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
|
466 |
|
|
char *name = NULL;
|
467 |
|
|
|
468 |
|
|
scbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT);
|
469 |
|
|
|
470 |
|
|
/* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
|
471 |
|
|
as the third parameter. The offset to the saved pc is 12. */
|
472 |
|
|
find_pc_partial_function (frame->pc, &name,
|
473 |
|
|
(CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
|
474 |
|
|
if (name && STREQ (name, "ucbsigvechandler"))
|
475 |
|
|
saved_pc_offset = 12;
|
476 |
|
|
|
477 |
|
|
/* The sigcontext address is contained in register O2. */
|
478 |
|
|
get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
|
479 |
|
|
frame, O0_REGNUM + 2, (enum lval_type *) NULL);
|
480 |
|
|
sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2));
|
481 |
|
|
|
482 |
|
|
/* Don't cause a memory_error when accessing sigcontext in case the
|
483 |
|
|
stack layout has changed or the stack is corrupt. */
|
484 |
|
|
target_read_memory (sigcontext_addr + saved_pc_offset,
|
485 |
|
|
scbuf, sizeof (scbuf));
|
486 |
|
|
return extract_address (scbuf, sizeof (scbuf));
|
487 |
|
|
}
|
488 |
|
|
else if (frame->extra_info->in_prologue ||
|
489 |
|
|
(frame->next != NULL &&
|
490 |
|
|
(frame->next->signal_handler_caller ||
|
491 |
|
|
frame_in_dummy (frame->next)) &&
|
492 |
|
|
frameless_look_for_prologue (frame)))
|
493 |
|
|
{
|
494 |
|
|
/* A frameless function interrupted by a signal did not save
|
495 |
|
|
the PC, it is still in %o7. */
|
496 |
|
|
get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
|
497 |
|
|
frame, O7_REGNUM, (enum lval_type *) NULL);
|
498 |
|
|
return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
|
499 |
|
|
}
|
500 |
|
|
if (frame->extra_info->flat)
|
501 |
|
|
addr = frame->extra_info->pc_addr;
|
502 |
|
|
else
|
503 |
|
|
addr = frame->extra_info->bottom + FRAME_SAVED_I0 +
|
504 |
|
|
SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);
|
505 |
|
|
|
506 |
|
|
if (addr == 0)
|
507 |
|
|
/* A flat frame leaf function might not save the PC anywhere,
|
508 |
|
|
just leave it in %o7. */
|
509 |
|
|
return PC_ADJUST (read_register (O7_REGNUM));
|
510 |
|
|
|
511 |
|
|
read_memory (addr, buf, SPARC_INTREG_SIZE);
|
512 |
|
|
return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
|
513 |
|
|
}
|
514 |
|
|
|
515 |
|
|
/* Since an individual frame in the frame cache is defined by two
|
516 |
|
|
arguments (a frame pointer and a stack pointer), we need two
|
517 |
|
|
arguments to get info for an arbitrary stack frame. This routine
|
518 |
|
|
takes two arguments and makes the cached frames look as if these
|
519 |
|
|
two arguments defined a frame on the cache. This allows the rest
|
520 |
|
|
of info frame to extract the important arguments without
|
521 |
|
|
difficulty. */
|
522 |
|
|
|
523 |
|
|
struct frame_info *
|
524 |
|
|
setup_arbitrary_frame (int argc, CORE_ADDR *argv)
|
525 |
|
|
{
|
526 |
|
|
struct frame_info *frame;
|
527 |
|
|
|
528 |
|
|
if (argc != 2)
|
529 |
|
|
error ("Sparc frame specifications require two arguments: fp and sp");
|
530 |
|
|
|
531 |
|
|
frame = create_new_frame (argv[0], 0);
|
532 |
|
|
|
533 |
|
|
if (!frame)
|
534 |
|
|
internal_error (__FILE__, __LINE__,
|
535 |
|
|
"create_new_frame returned invalid frame");
|
536 |
|
|
|
537 |
|
|
frame->extra_info->bottom = argv[1];
|
538 |
|
|
frame->pc = FRAME_SAVED_PC (frame);
|
539 |
|
|
return frame;
|
540 |
|
|
}
|
541 |
|
|
|
542 |
|
|
/* Given a pc value, skip it forward past the function prologue by
|
543 |
|
|
disassembling instructions that appear to be a prologue.
|
544 |
|
|
|
545 |
|
|
If FRAMELESS_P is set, we are only testing to see if the function
|
546 |
|
|
is frameless. This allows a quicker answer.
|
547 |
|
|
|
548 |
|
|
This routine should be more specific in its actions; making sure
|
549 |
|
|
that it uses the same register in the initial prologue section. */
|
550 |
|
|
|
551 |
|
|
static CORE_ADDR examine_prologue (CORE_ADDR, int, struct frame_info *,
|
552 |
|
|
CORE_ADDR *);
|
553 |
|
|
|
554 |
|
|
static CORE_ADDR
|
555 |
|
|
examine_prologue (CORE_ADDR start_pc, int frameless_p, struct frame_info *fi,
|
556 |
|
|
CORE_ADDR *saved_regs)
|
557 |
|
|
{
|
558 |
|
|
int insn;
|
559 |
|
|
int dest = -1;
|
560 |
|
|
CORE_ADDR pc = start_pc;
|
561 |
|
|
int is_flat = 0;
|
562 |
|
|
|
563 |
|
|
insn = fetch_instruction (pc);
|
564 |
|
|
|
565 |
|
|
/* Recognize the `sethi' insn and record its destination. */
|
566 |
|
|
if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
|
567 |
|
|
{
|
568 |
|
|
dest = X_RD (insn);
|
569 |
|
|
pc += 4;
|
570 |
|
|
insn = fetch_instruction (pc);
|
571 |
|
|
}
|
572 |
|
|
|
573 |
|
|
/* Recognize an add immediate value to register to either %g1 or
|
574 |
|
|
the destination register recorded above. Actually, this might
|
575 |
|
|
well recognize several different arithmetic operations.
|
576 |
|
|
It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
|
577 |
|
|
followed by "save %sp, %g1, %sp" is a valid prologue (Not that
|
578 |
|
|
I imagine any compiler really does that, however). */
|
579 |
|
|
if (X_OP (insn) == 2
|
580 |
|
|
&& X_I (insn)
|
581 |
|
|
&& (X_RD (insn) == 1 || X_RD (insn) == dest))
|
582 |
|
|
{
|
583 |
|
|
pc += 4;
|
584 |
|
|
insn = fetch_instruction (pc);
|
585 |
|
|
}
|
586 |
|
|
|
587 |
|
|
/* Recognize any SAVE insn. */
|
588 |
|
|
if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
|
589 |
|
|
{
|
590 |
|
|
pc += 4;
|
591 |
|
|
if (frameless_p) /* If the save is all we care about, */
|
592 |
|
|
return pc; /* return before doing more work */
|
593 |
|
|
insn = fetch_instruction (pc);
|
594 |
|
|
}
|
595 |
|
|
/* Recognize add to %sp. */
|
596 |
|
|
else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
|
597 |
|
|
{
|
598 |
|
|
pc += 4;
|
599 |
|
|
if (frameless_p) /* If the add is all we care about, */
|
600 |
|
|
return pc; /* return before doing more work */
|
601 |
|
|
is_flat = 1;
|
602 |
|
|
insn = fetch_instruction (pc);
|
603 |
|
|
/* Recognize store of frame pointer (i7). */
|
604 |
|
|
if (X_OP (insn) == 3
|
605 |
|
|
&& X_RD (insn) == 31
|
606 |
|
|
&& X_OP3 (insn) == 4
|
607 |
|
|
&& X_RS1 (insn) == 14)
|
608 |
|
|
{
|
609 |
|
|
pc += 4;
|
610 |
|
|
insn = fetch_instruction (pc);
|
611 |
|
|
|
612 |
|
|
/* Recognize sub %sp, <anything>, %i7. */
|
613 |
|
|
if (X_OP (insn) == 2
|
614 |
|
|
&& X_OP3 (insn) == 4
|
615 |
|
|
&& X_RS1 (insn) == 14
|
616 |
|
|
&& X_RD (insn) == 31)
|
617 |
|
|
{
|
618 |
|
|
pc += 4;
|
619 |
|
|
insn = fetch_instruction (pc);
|
620 |
|
|
}
|
621 |
|
|
else
|
622 |
|
|
return pc;
|
623 |
|
|
}
|
624 |
|
|
else
|
625 |
|
|
return pc;
|
626 |
|
|
}
|
627 |
|
|
else
|
628 |
|
|
/* Without a save or add instruction, it's not a prologue. */
|
629 |
|
|
return start_pc;
|
630 |
|
|
|
631 |
|
|
while (1)
|
632 |
|
|
{
|
633 |
|
|
/* Recognize stores into the frame from the input registers.
|
634 |
|
|
This recognizes all non alternate stores of an input register,
|
635 |
|
|
into a location offset from the frame pointer between
|
636 |
|
|
+68 and +92. */
|
637 |
|
|
|
638 |
|
|
/* The above will fail for arguments that are promoted
|
639 |
|
|
(eg. shorts to ints or floats to doubles), because the compiler
|
640 |
|
|
will pass them in positive-offset frame space, but the prologue
|
641 |
|
|
will save them (after conversion) in negative frame space at an
|
642 |
|
|
unpredictable offset. Therefore I am going to remove the
|
643 |
|
|
restriction on the target-address of the save, on the theory
|
644 |
|
|
that any unbroken sequence of saves from input registers must
|
645 |
|
|
be part of the prologue. In un-optimized code (at least), I'm
|
646 |
|
|
fairly sure that the compiler would emit SOME other instruction
|
647 |
|
|
(eg. a move or add) before emitting another save that is actually
|
648 |
|
|
a part of the function body.
|
649 |
|
|
|
650 |
|
|
Besides, the reserved stack space is different for SPARC64 anyway.
|
651 |
|
|
|
652 |
|
|
MVS 4/23/2000 */
|
653 |
|
|
|
654 |
|
|
if (X_OP (insn) == 3
|
655 |
|
|
&& (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */
|
656 |
|
|
&& (X_RD (insn) & 0x18) == 0x18 /* Input register. */
|
657 |
|
|
&& X_I (insn) /* Immediate mode. */
|
658 |
|
|
&& X_RS1 (insn) == 30) /* Off of frame pointer. */
|
659 |
|
|
; /* empty statement -- fall thru to end of loop */
|
660 |
|
|
else if (GDB_TARGET_IS_SPARC64
|
661 |
|
|
&& X_OP (insn) == 3
|
662 |
|
|
&& (X_OP3 (insn) & 0x3c) == 12 /* store, extended (64-bit) */
|
663 |
|
|
&& (X_RD (insn) & 0x18) == 0x18 /* input register */
|
664 |
|
|
&& X_I (insn) /* immediate mode */
|
665 |
|
|
&& X_RS1 (insn) == 30) /* off of frame pointer */
|
666 |
|
|
; /* empty statement -- fall thru to end of loop */
|
667 |
|
|
else if (X_OP (insn) == 3
|
668 |
|
|
&& (X_OP3 (insn) & 0x3c) == 36 /* store, floating-point */
|
669 |
|
|
&& X_I (insn) /* immediate mode */
|
670 |
|
|
&& X_RS1 (insn) == 30) /* off of frame pointer */
|
671 |
|
|
; /* empty statement -- fall thru to end of loop */
|
672 |
|
|
else if (is_flat
|
673 |
|
|
&& X_OP (insn) == 3
|
674 |
|
|
&& X_OP3 (insn) == 4 /* store? */
|
675 |
|
|
&& X_RS1 (insn) == 14) /* off of frame pointer */
|
676 |
|
|
{
|
677 |
|
|
if (saved_regs && X_I (insn))
|
678 |
|
|
saved_regs[X_RD (insn)] =
|
679 |
|
|
fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn);
|
680 |
|
|
}
|
681 |
|
|
else
|
682 |
|
|
break;
|
683 |
|
|
pc += 4;
|
684 |
|
|
insn = fetch_instruction (pc);
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
return pc;
|
688 |
|
|
}
|
689 |
|
|
|
690 |
|
|
/* Advance PC across any function entry prologue instructions to reach
|
691 |
|
|
some "real" code. */
|
692 |
|
|
|
693 |
|
|
CORE_ADDR
|
694 |
|
|
sparc_skip_prologue (CORE_ADDR start_pc)
|
695 |
|
|
{
|
696 |
|
|
struct symtab_and_line sal;
|
697 |
|
|
CORE_ADDR func_start, func_end;
|
698 |
|
|
|
699 |
|
|
/* This is the preferred method, find the end of the prologue by
|
700 |
|
|
using the debugging information. */
|
701 |
|
|
if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
|
702 |
|
|
{
|
703 |
|
|
sal = find_pc_line (func_start, 0);
|
704 |
|
|
|
705 |
|
|
if (sal.end < func_end
|
706 |
|
|
&& start_pc <= sal.end)
|
707 |
|
|
return sal.end;
|
708 |
|
|
}
|
709 |
|
|
|
710 |
|
|
/* Oh well, examine the code by hand. */
|
711 |
|
|
return examine_prologue (start_pc, 0, NULL, NULL);
|
712 |
|
|
}
|
713 |
|
|
|
714 |
|
|
/* Is the prologue at IP frameless? */
|
715 |
|
|
|
716 |
|
|
int
|
717 |
|
|
sparc_prologue_frameless_p (CORE_ADDR ip)
|
718 |
|
|
{
|
719 |
|
|
return ip == examine_prologue (ip, 1, NULL, NULL);
|
720 |
|
|
}
|
721 |
|
|
|
722 |
|
|
/* Check instruction at ADDR to see if it is a branch.
|
723 |
|
|
All non-annulled instructions will go to NPC or will trap.
|
724 |
|
|
Set *TARGET if we find a candidate branch; set to zero if not.
|
725 |
|
|
|
726 |
|
|
This isn't static as it's used by remote-sa.sparc.c. */
|
727 |
|
|
|
728 |
|
|
static branch_type
|
729 |
|
|
isbranch (long instruction, CORE_ADDR addr, CORE_ADDR *target)
|
730 |
|
|
{
|
731 |
|
|
branch_type val = not_branch;
|
732 |
|
|
long int offset = 0; /* Must be signed for sign-extend. */
|
733 |
|
|
|
734 |
|
|
*target = 0;
|
735 |
|
|
|
736 |
|
|
if (X_OP (instruction) == 0
|
737 |
|
|
&& (X_OP2 (instruction) == 2
|
738 |
|
|
|| X_OP2 (instruction) == 6
|
739 |
|
|
|| X_OP2 (instruction) == 1
|
740 |
|
|
|| X_OP2 (instruction) == 3
|
741 |
|
|
|| X_OP2 (instruction) == 5
|
742 |
|
|
|| (GDB_TARGET_IS_SPARC64 && X_OP2 (instruction) == 7)))
|
743 |
|
|
{
|
744 |
|
|
if (X_COND (instruction) == 8)
|
745 |
|
|
val = X_A (instruction) ? baa : ba;
|
746 |
|
|
else
|
747 |
|
|
val = X_A (instruction) ? bicca : bicc;
|
748 |
|
|
switch (X_OP2 (instruction))
|
749 |
|
|
{
|
750 |
|
|
case 7:
|
751 |
|
|
if (!GDB_TARGET_IS_SPARC64)
|
752 |
|
|
break;
|
753 |
|
|
/* else fall thru */
|
754 |
|
|
case 2:
|
755 |
|
|
case 6:
|
756 |
|
|
offset = 4 * X_DISP22 (instruction);
|
757 |
|
|
break;
|
758 |
|
|
case 1:
|
759 |
|
|
case 5:
|
760 |
|
|
offset = 4 * X_DISP19 (instruction);
|
761 |
|
|
break;
|
762 |
|
|
case 3:
|
763 |
|
|
offset = 4 * X_DISP16 (instruction);
|
764 |
|
|
break;
|
765 |
|
|
}
|
766 |
|
|
*target = addr + offset;
|
767 |
|
|
}
|
768 |
|
|
else if (GDB_TARGET_IS_SPARC64
|
769 |
|
|
&& X_OP (instruction) == 2
|
770 |
|
|
&& X_OP3 (instruction) == 62)
|
771 |
|
|
{
|
772 |
|
|
if (X_FCN (instruction) == 0)
|
773 |
|
|
{
|
774 |
|
|
/* done */
|
775 |
|
|
*target = read_register (TNPC_REGNUM);
|
776 |
|
|
val = done_retry;
|
777 |
|
|
}
|
778 |
|
|
else if (X_FCN (instruction) == 1)
|
779 |
|
|
{
|
780 |
|
|
/* retry */
|
781 |
|
|
*target = read_register (TPC_REGNUM);
|
782 |
|
|
val = done_retry;
|
783 |
|
|
}
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
return val;
|
787 |
|
|
}
|
788 |
|
|
|
789 |
|
|
/* Find register number REGNUM relative to FRAME and put its
|
790 |
|
|
(raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
|
791 |
|
|
was optimized out (and thus can't be fetched). If the variable
|
792 |
|
|
was fetched from memory, set *ADDRP to where it was fetched from,
|
793 |
|
|
otherwise it was fetched from a register.
|
794 |
|
|
|
795 |
|
|
The argument RAW_BUFFER must point to aligned memory. */
|
796 |
|
|
|
797 |
|
|
void
|
798 |
|
|
sparc_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
|
799 |
|
|
struct frame_info *frame, int regnum,
|
800 |
|
|
enum lval_type *lval)
|
801 |
|
|
{
|
802 |
|
|
struct frame_info *frame1;
|
803 |
|
|
CORE_ADDR addr;
|
804 |
|
|
|
805 |
|
|
if (!target_has_registers)
|
806 |
|
|
error ("No registers.");
|
807 |
|
|
|
808 |
|
|
if (optimized)
|
809 |
|
|
*optimized = 0;
|
810 |
|
|
|
811 |
|
|
addr = 0;
|
812 |
|
|
|
813 |
|
|
/* FIXME This code extracted from infcmd.c; should put elsewhere! */
|
814 |
|
|
if (frame == NULL)
|
815 |
|
|
{
|
816 |
|
|
/* error ("No selected frame."); */
|
817 |
|
|
if (!target_has_registers)
|
818 |
|
|
error ("The program has no registers now.");
|
819 |
|
|
if (selected_frame == NULL)
|
820 |
|
|
error ("No selected frame.");
|
821 |
|
|
/* Try to use selected frame */
|
822 |
|
|
frame = get_prev_frame (selected_frame);
|
823 |
|
|
if (frame == 0)
|
824 |
|
|
error ("Cmd not meaningful in the outermost frame.");
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
|
828 |
|
|
frame1 = frame->next;
|
829 |
|
|
|
830 |
|
|
/* Get saved PC from the frame info if not in innermost frame. */
|
831 |
|
|
if (regnum == PC_REGNUM && frame1 != NULL)
|
832 |
|
|
{
|
833 |
|
|
if (lval != NULL)
|
834 |
|
|
*lval = not_lval;
|
835 |
|
|
if (raw_buffer != NULL)
|
836 |
|
|
{
|
837 |
|
|
/* Put it back in target format. */
|
838 |
|
|
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc);
|
839 |
|
|
}
|
840 |
|
|
if (addrp != NULL)
|
841 |
|
|
*addrp = 0;
|
842 |
|
|
return;
|
843 |
|
|
}
|
844 |
|
|
|
845 |
|
|
while (frame1 != NULL)
|
846 |
|
|
{
|
847 |
|
|
/* FIXME MVS: wrong test for dummy frame at entry. */
|
848 |
|
|
|
849 |
|
|
if (frame1->pc >= (frame1->extra_info->bottom ?
|
850 |
|
|
frame1->extra_info->bottom : read_sp ())
|
851 |
|
|
&& frame1->pc <= FRAME_FP (frame1))
|
852 |
|
|
{
|
853 |
|
|
/* Dummy frame. All but the window regs are in there somewhere.
|
854 |
|
|
The window registers are saved on the stack, just like in a
|
855 |
|
|
normal frame. */
|
856 |
|
|
if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
|
857 |
|
|
addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
|
858 |
|
|
- (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
|
859 |
|
|
else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
|
860 |
|
|
/* NOTE: cagney/2002-05-04: The call to get_prev_frame()
|
861 |
|
|
is safe/cheap - there will always be a prev frame.
|
862 |
|
|
This is because frame1 is initialized to frame->next
|
863 |
|
|
(frame1->prev == frame) and is then advanced towards
|
864 |
|
|
the innermost (next) frame. */
|
865 |
|
|
addr = (get_prev_frame (frame1)->extra_info->bottom
|
866 |
|
|
+ (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
|
867 |
|
|
+ FRAME_SAVED_I0);
|
868 |
|
|
else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
|
869 |
|
|
/* NOTE: cagney/2002-05-04: The call to get_prev_frame()
|
870 |
|
|
is safe/cheap - there will always be a prev frame.
|
871 |
|
|
This is because frame1 is initialized to frame->next
|
872 |
|
|
(frame1->prev == frame) and is then advanced towards
|
873 |
|
|
the innermost (next) frame. */
|
874 |
|
|
addr = (get_prev_frame (frame1)->extra_info->bottom
|
875 |
|
|
+ (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
|
876 |
|
|
+ FRAME_SAVED_L0);
|
877 |
|
|
else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
|
878 |
|
|
addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
|
879 |
|
|
- (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
|
880 |
|
|
else if (SPARC_HAS_FPU &&
|
881 |
|
|
regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
|
882 |
|
|
addr = frame1->frame + (regnum - FP0_REGNUM) * 4
|
883 |
|
|
- (FP_REGISTER_BYTES);
|
884 |
|
|
else if (GDB_TARGET_IS_SPARC64 && SPARC_HAS_FPU &&
|
885 |
|
|
regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
|
886 |
|
|
addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
|
887 |
|
|
- (FP_REGISTER_BYTES);
|
888 |
|
|
else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
|
889 |
|
|
addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
|
890 |
|
|
- (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
|
891 |
|
|
}
|
892 |
|
|
else if (frame1->extra_info->flat)
|
893 |
|
|
{
|
894 |
|
|
|
895 |
|
|
if (regnum == RP_REGNUM)
|
896 |
|
|
addr = frame1->extra_info->pc_addr;
|
897 |
|
|
else if (regnum == I7_REGNUM)
|
898 |
|
|
addr = frame1->extra_info->fp_addr;
|
899 |
|
|
else
|
900 |
|
|
{
|
901 |
|
|
CORE_ADDR func_start;
|
902 |
|
|
CORE_ADDR *regs;
|
903 |
|
|
|
904 |
|
|
regs = alloca (NUM_REGS * sizeof (CORE_ADDR));
|
905 |
|
|
memset (regs, 0, NUM_REGS * sizeof (CORE_ADDR));
|
906 |
|
|
|
907 |
|
|
find_pc_partial_function (frame1->pc, NULL, &func_start, NULL);
|
908 |
|
|
examine_prologue (func_start, 0, frame1, regs);
|
909 |
|
|
addr = regs[regnum];
|
910 |
|
|
}
|
911 |
|
|
}
|
912 |
|
|
else
|
913 |
|
|
{
|
914 |
|
|
/* Normal frame. Local and In registers are saved on stack. */
|
915 |
|
|
if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
|
916 |
|
|
addr = (get_prev_frame (frame1)->extra_info->bottom
|
917 |
|
|
+ (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
|
918 |
|
|
+ FRAME_SAVED_I0);
|
919 |
|
|
else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
|
920 |
|
|
addr = (get_prev_frame (frame1)->extra_info->bottom
|
921 |
|
|
+ (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
|
922 |
|
|
+ FRAME_SAVED_L0);
|
923 |
|
|
else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
|
924 |
|
|
{
|
925 |
|
|
/* Outs become ins. */
|
926 |
|
|
get_saved_register (raw_buffer, optimized, addrp, frame1,
|
927 |
|
|
(regnum - O0_REGNUM + I0_REGNUM), lval);
|
928 |
|
|
return;
|
929 |
|
|
}
|
930 |
|
|
}
|
931 |
|
|
if (addr != 0)
|
932 |
|
|
break;
|
933 |
|
|
frame1 = frame1->next;
|
934 |
|
|
}
|
935 |
|
|
if (addr != 0)
|
936 |
|
|
{
|
937 |
|
|
if (lval != NULL)
|
938 |
|
|
*lval = lval_memory;
|
939 |
|
|
if (regnum == SP_REGNUM)
|
940 |
|
|
{
|
941 |
|
|
if (raw_buffer != NULL)
|
942 |
|
|
{
|
943 |
|
|
/* Put it back in target format. */
|
944 |
|
|
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
|
945 |
|
|
}
|
946 |
|
|
if (addrp != NULL)
|
947 |
|
|
*addrp = 0;
|
948 |
|
|
return;
|
949 |
|
|
}
|
950 |
|
|
if (raw_buffer != NULL)
|
951 |
|
|
read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
|
952 |
|
|
}
|
953 |
|
|
else
|
954 |
|
|
{
|
955 |
|
|
if (lval != NULL)
|
956 |
|
|
*lval = lval_register;
|
957 |
|
|
addr = REGISTER_BYTE (regnum);
|
958 |
|
|
if (raw_buffer != NULL)
|
959 |
|
|
read_register_gen (regnum, raw_buffer);
|
960 |
|
|
}
|
961 |
|
|
if (addrp != NULL)
|
962 |
|
|
*addrp = addr;
|
963 |
|
|
}
|
964 |
|
|
|
965 |
|
|
/* Push an empty stack frame, and record in it the current PC, regs, etc.
|
966 |
|
|
|
967 |
|
|
We save the non-windowed registers and the ins. The locals and outs
|
968 |
|
|
are new; they don't need to be saved. The i's and l's of
|
969 |
|
|
the last frame were already saved on the stack. */
|
970 |
|
|
|
971 |
|
|
/* Definitely see tm-sparc.h for more doc of the frame format here. */
|
972 |
|
|
|
973 |
|
|
/* See tm-sparc.h for how this is calculated. */
|
974 |
|
|
|
975 |
|
|
#define DUMMY_STACK_REG_BUF_SIZE \
|
976 |
|
|
(((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
|
977 |
|
|
#define DUMMY_STACK_SIZE \
|
978 |
|
|
(DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)
|
979 |
|
|
|
980 |
|
|
void
|
981 |
|
|
sparc_push_dummy_frame (void)
|
982 |
|
|
{
|
983 |
|
|
CORE_ADDR sp, old_sp;
|
984 |
|
|
char *register_temp;
|
985 |
|
|
|
986 |
|
|
register_temp = alloca (DUMMY_STACK_SIZE);
|
987 |
|
|
|
988 |
|
|
old_sp = sp = read_sp ();
|
989 |
|
|
|
990 |
|
|
if (GDB_TARGET_IS_SPARC64)
|
991 |
|
|
{
|
992 |
|
|
/* PC, NPC, CCR, FSR, FPRS, Y, ASI */
|
993 |
|
|
read_register_bytes (REGISTER_BYTE (PC_REGNUM), ®ister_temp[0],
|
994 |
|
|
REGISTER_RAW_SIZE (PC_REGNUM) * 7);
|
995 |
|
|
read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM),
|
996 |
|
|
®ister_temp[7 * SPARC_INTREG_SIZE],
|
997 |
|
|
REGISTER_RAW_SIZE (PSTATE_REGNUM));
|
998 |
|
|
/* FIXME: not sure what needs to be saved here. */
|
999 |
|
|
}
|
1000 |
|
|
else
|
1001 |
|
|
{
|
1002 |
|
|
/* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
|
1003 |
|
|
read_register_bytes (REGISTER_BYTE (Y_REGNUM), ®ister_temp[0],
|
1004 |
|
|
REGISTER_RAW_SIZE (Y_REGNUM) * 8);
|
1005 |
|
|
}
|
1006 |
|
|
|
1007 |
|
|
read_register_bytes (REGISTER_BYTE (O0_REGNUM),
|
1008 |
|
|
®ister_temp[8 * SPARC_INTREG_SIZE],
|
1009 |
|
|
SPARC_INTREG_SIZE * 8);
|
1010 |
|
|
|
1011 |
|
|
read_register_bytes (REGISTER_BYTE (G0_REGNUM),
|
1012 |
|
|
®ister_temp[16 * SPARC_INTREG_SIZE],
|
1013 |
|
|
SPARC_INTREG_SIZE * 8);
|
1014 |
|
|
|
1015 |
|
|
if (SPARC_HAS_FPU)
|
1016 |
|
|
read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
|
1017 |
|
|
®ister_temp[24 * SPARC_INTREG_SIZE],
|
1018 |
|
|
FP_REGISTER_BYTES);
|
1019 |
|
|
|
1020 |
|
|
sp -= DUMMY_STACK_SIZE;
|
1021 |
|
|
|
1022 |
|
|
write_sp (sp);
|
1023 |
|
|
|
1024 |
|
|
write_memory (sp + DUMMY_REG_SAVE_OFFSET, ®ister_temp[0],
|
1025 |
|
|
DUMMY_STACK_REG_BUF_SIZE);
|
1026 |
|
|
|
1027 |
|
|
if (strcmp (target_shortname, "sim") != 0)
|
1028 |
|
|
{
|
1029 |
|
|
/* NOTE: cagney/2002-04-04: The code below originally contained
|
1030 |
|
|
GDB's _only_ call to write_fp(). That call was eliminated by
|
1031 |
|
|
inlining the corresponding code. For the 64 bit case, the
|
1032 |
|
|
old function (sparc64_write_fp) did the below although I'm
|
1033 |
|
|
not clear why. The same goes for why this is only done when
|
1034 |
|
|
the underlying target is a simulator. */
|
1035 |
|
|
if (GDB_TARGET_IS_SPARC64)
|
1036 |
|
|
{
|
1037 |
|
|
/* Target is a 64 bit SPARC. */
|
1038 |
|
|
CORE_ADDR oldfp = read_register (FP_REGNUM);
|
1039 |
|
|
if (oldfp & 1)
|
1040 |
|
|
write_register (FP_REGNUM, old_sp - 2047);
|
1041 |
|
|
else
|
1042 |
|
|
write_register (FP_REGNUM, old_sp);
|
1043 |
|
|
}
|
1044 |
|
|
else
|
1045 |
|
|
{
|
1046 |
|
|
/* Target is a 32 bit SPARC. */
|
1047 |
|
|
write_register (FP_REGNUM, old_sp);
|
1048 |
|
|
}
|
1049 |
|
|
/* Set return address register for the call dummy to the current PC. */
|
1050 |
|
|
write_register (I7_REGNUM, read_pc () - 8);
|
1051 |
|
|
}
|
1052 |
|
|
else
|
1053 |
|
|
{
|
1054 |
|
|
/* The call dummy will write this value to FP before executing
|
1055 |
|
|
the 'save'. This ensures that register window flushes work
|
1056 |
|
|
correctly in the simulator. */
|
1057 |
|
|
write_register (G0_REGNUM + 1, read_register (FP_REGNUM));
|
1058 |
|
|
|
1059 |
|
|
/* The call dummy will write this value to FP after executing
|
1060 |
|
|
the 'save'. */
|
1061 |
|
|
write_register (G0_REGNUM + 2, old_sp);
|
1062 |
|
|
|
1063 |
|
|
/* The call dummy will write this value to the return address (%i7) after
|
1064 |
|
|
executing the 'save'. */
|
1065 |
|
|
write_register (G0_REGNUM + 3, read_pc () - 8);
|
1066 |
|
|
|
1067 |
|
|
/* Set the FP that the call dummy will be using after the 'save'.
|
1068 |
|
|
This makes backtraces from an inferior function call work properly. */
|
1069 |
|
|
write_register (FP_REGNUM, old_sp);
|
1070 |
|
|
}
|
1071 |
|
|
}
|
1072 |
|
|
|
1073 |
|
|
/* sparc_frame_find_saved_regs (). This function is here only because
|
1074 |
|
|
pop_frame uses it. Note there is an interesting corner case which
|
1075 |
|
|
I think few ports of GDB get right--if you are popping a frame
|
1076 |
|
|
which does not save some register that *is* saved by a more inner
|
1077 |
|
|
frame (such a frame will never be a dummy frame because dummy
|
1078 |
|
|
frames save all registers). Rewriting pop_frame to use
|
1079 |
|
|
get_saved_register would solve this problem and also get rid of the
|
1080 |
|
|
ugly duplication between sparc_frame_find_saved_regs and
|
1081 |
|
|
get_saved_register.
|
1082 |
|
|
|
1083 |
|
|
Stores, into an array of CORE_ADDR,
|
1084 |
|
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
1085 |
|
|
This includes special registers such as pc and fp saved in special
|
1086 |
|
|
ways in the stack frame. sp is even more special:
|
1087 |
|
|
the address we return for it IS the sp for the next frame.
|
1088 |
|
|
|
1089 |
|
|
Note that on register window machines, we are currently making the
|
1090 |
|
|
assumption that window registers are being saved somewhere in the
|
1091 |
|
|
frame in which they are being used. If they are stored in an
|
1092 |
|
|
inferior frame, find_saved_register will break.
|
1093 |
|
|
|
1094 |
|
|
On the Sun 4, the only time all registers are saved is when
|
1095 |
|
|
a dummy frame is involved. Otherwise, the only saved registers
|
1096 |
|
|
are the LOCAL and IN registers which are saved as a result
|
1097 |
|
|
of the "save/restore" opcodes. This condition is determined
|
1098 |
|
|
by address rather than by value.
|
1099 |
|
|
|
1100 |
|
|
The "pc" is not stored in a frame on the SPARC. (What is stored
|
1101 |
|
|
is a return address minus 8.) sparc_pop_frame knows how to
|
1102 |
|
|
deal with that. Other routines might or might not.
|
1103 |
|
|
|
1104 |
|
|
See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
|
1105 |
|
|
about how this works. */
|
1106 |
|
|
|
1107 |
|
|
static void sparc_frame_find_saved_regs (struct frame_info *, CORE_ADDR *);
|
1108 |
|
|
|
1109 |
|
|
static void
|
1110 |
|
|
sparc_frame_find_saved_regs (struct frame_info *fi, CORE_ADDR *saved_regs_addr)
|
1111 |
|
|
{
|
1112 |
|
|
register int regnum;
|
1113 |
|
|
CORE_ADDR frame_addr = FRAME_FP (fi);
|
1114 |
|
|
|
1115 |
|
|
if (!fi)
|
1116 |
|
|
internal_error (__FILE__, __LINE__,
|
1117 |
|
|
"Bad frame info struct in FRAME_FIND_SAVED_REGS");
|
1118 |
|
|
|
1119 |
|
|
memset (saved_regs_addr, 0, NUM_REGS * sizeof (CORE_ADDR));
|
1120 |
|
|
|
1121 |
|
|
if (fi->pc >= (fi->extra_info->bottom ?
|
1122 |
|
|
fi->extra_info->bottom : read_sp ())
|
1123 |
|
|
&& fi->pc <= FRAME_FP (fi))
|
1124 |
|
|
{
|
1125 |
|
|
/* Dummy frame. All but the window regs are in there somewhere. */
|
1126 |
|
|
for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++)
|
1127 |
|
|
saved_regs_addr[regnum] =
|
1128 |
|
|
frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
|
1129 |
|
|
- DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;
|
1130 |
|
|
|
1131 |
|
|
for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
|
1132 |
|
|
saved_regs_addr[regnum] =
|
1133 |
|
|
frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
|
1134 |
|
|
- DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;
|
1135 |
|
|
|
1136 |
|
|
if (SPARC_HAS_FPU)
|
1137 |
|
|
for (regnum = FP0_REGNUM; regnum < FP_MAX_REGNUM; regnum++)
|
1138 |
|
|
saved_regs_addr[regnum] = frame_addr + (regnum - FP0_REGNUM) * 4
|
1139 |
|
|
- DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
|
1140 |
|
|
|
1141 |
|
|
if (GDB_TARGET_IS_SPARC64)
|
1142 |
|
|
{
|
1143 |
|
|
for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
|
1144 |
|
|
{
|
1145 |
|
|
saved_regs_addr[regnum] =
|
1146 |
|
|
frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE
|
1147 |
|
|
- DUMMY_STACK_REG_BUF_SIZE;
|
1148 |
|
|
}
|
1149 |
|
|
saved_regs_addr[PSTATE_REGNUM] =
|
1150 |
|
|
frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
|
1151 |
|
|
}
|
1152 |
|
|
else
|
1153 |
|
|
for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
|
1154 |
|
|
saved_regs_addr[regnum] =
|
1155 |
|
|
frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
|
1156 |
|
|
- DUMMY_STACK_REG_BUF_SIZE;
|
1157 |
|
|
|
1158 |
|
|
frame_addr = fi->extra_info->bottom ?
|
1159 |
|
|
fi->extra_info->bottom : read_sp ();
|
1160 |
|
|
}
|
1161 |
|
|
else if (fi->extra_info->flat)
|
1162 |
|
|
{
|
1163 |
|
|
CORE_ADDR func_start;
|
1164 |
|
|
find_pc_partial_function (fi->pc, NULL, &func_start, NULL);
|
1165 |
|
|
examine_prologue (func_start, 0, fi, saved_regs_addr);
|
1166 |
|
|
|
1167 |
|
|
/* Flat register window frame. */
|
1168 |
|
|
saved_regs_addr[RP_REGNUM] = fi->extra_info->pc_addr;
|
1169 |
|
|
saved_regs_addr[I7_REGNUM] = fi->extra_info->fp_addr;
|
1170 |
|
|
}
|
1171 |
|
|
else
|
1172 |
|
|
{
|
1173 |
|
|
/* Normal frame. Just Local and In registers */
|
1174 |
|
|
frame_addr = fi->extra_info->bottom ?
|
1175 |
|
|
fi->extra_info->bottom : read_sp ();
|
1176 |
|
|
for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++)
|
1177 |
|
|
saved_regs_addr[regnum] =
|
1178 |
|
|
(frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
|
1179 |
|
|
+ FRAME_SAVED_L0);
|
1180 |
|
|
for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
|
1181 |
|
|
saved_regs_addr[regnum] =
|
1182 |
|
|
(frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
|
1183 |
|
|
+ FRAME_SAVED_I0);
|
1184 |
|
|
}
|
1185 |
|
|
if (fi->next)
|
1186 |
|
|
{
|
1187 |
|
|
if (fi->extra_info->flat)
|
1188 |
|
|
{
|
1189 |
|
|
saved_regs_addr[O7_REGNUM] = fi->extra_info->pc_addr;
|
1190 |
|
|
}
|
1191 |
|
|
else
|
1192 |
|
|
{
|
1193 |
|
|
/* Pull off either the next frame pointer or the stack pointer */
|
1194 |
|
|
CORE_ADDR next_next_frame_addr =
|
1195 |
|
|
(fi->next->extra_info->bottom ?
|
1196 |
|
|
fi->next->extra_info->bottom : read_sp ());
|
1197 |
|
|
for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++)
|
1198 |
|
|
saved_regs_addr[regnum] =
|
1199 |
|
|
(next_next_frame_addr
|
1200 |
|
|
+ (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
|
1201 |
|
|
+ FRAME_SAVED_I0);
|
1202 |
|
|
}
|
1203 |
|
|
}
|
1204 |
|
|
/* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
|
1205 |
|
|
/* FIXME -- should this adjust for the sparc64 offset? */
|
1206 |
|
|
saved_regs_addr[SP_REGNUM] = FRAME_FP (fi);
|
1207 |
|
|
}
|
1208 |
|
|
|
1209 |
|
|
/* Discard from the stack the innermost frame, restoring all saved registers.
|
1210 |
|
|
|
1211 |
|
|
Note that the values stored in fsr by get_frame_saved_regs are *in
|
1212 |
|
|
the context of the called frame*. What this means is that the i
|
1213 |
|
|
regs of fsr must be restored into the o regs of the (calling) frame that
|
1214 |
|
|
we pop into. We don't care about the output regs of the calling frame,
|
1215 |
|
|
since unless it's a dummy frame, it won't have any output regs in it.
|
1216 |
|
|
|
1217 |
|
|
We never have to bother with %l (local) regs, since the called routine's
|
1218 |
|
|
locals get tossed, and the calling routine's locals are already saved
|
1219 |
|
|
on its stack. */
|
1220 |
|
|
|
1221 |
|
|
/* Definitely see tm-sparc.h for more doc of the frame format here. */
|
1222 |
|
|
|
1223 |
|
|
void
|
1224 |
|
|
sparc_pop_frame (void)
|
1225 |
|
|
{
|
1226 |
|
|
register struct frame_info *frame = get_current_frame ();
|
1227 |
|
|
register CORE_ADDR pc;
|
1228 |
|
|
CORE_ADDR *fsr;
|
1229 |
|
|
char *raw_buffer;
|
1230 |
|
|
int regnum;
|
1231 |
|
|
|
1232 |
|
|
fsr = alloca (NUM_REGS * sizeof (CORE_ADDR));
|
1233 |
|
|
raw_buffer = alloca (REGISTER_BYTES);
|
1234 |
|
|
sparc_frame_find_saved_regs (frame, &fsr[0]);
|
1235 |
|
|
if (SPARC_HAS_FPU)
|
1236 |
|
|
{
|
1237 |
|
|
if (fsr[FP0_REGNUM])
|
1238 |
|
|
{
|
1239 |
|
|
read_memory (fsr[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
|
1240 |
|
|
write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
|
1241 |
|
|
raw_buffer, FP_REGISTER_BYTES);
|
1242 |
|
|
}
|
1243 |
|
|
if (!(GDB_TARGET_IS_SPARC64))
|
1244 |
|
|
{
|
1245 |
|
|
if (fsr[FPS_REGNUM])
|
1246 |
|
|
{
|
1247 |
|
|
read_memory (fsr[FPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
|
1248 |
|
|
write_register_gen (FPS_REGNUM, raw_buffer);
|
1249 |
|
|
}
|
1250 |
|
|
if (fsr[CPS_REGNUM])
|
1251 |
|
|
{
|
1252 |
|
|
read_memory (fsr[CPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
|
1253 |
|
|
write_register_gen (CPS_REGNUM, raw_buffer);
|
1254 |
|
|
}
|
1255 |
|
|
}
|
1256 |
|
|
}
|
1257 |
|
|
if (fsr[G1_REGNUM])
|
1258 |
|
|
{
|
1259 |
|
|
read_memory (fsr[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
|
1260 |
|
|
write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
|
1261 |
|
|
7 * SPARC_INTREG_SIZE);
|
1262 |
|
|
}
|
1263 |
|
|
|
1264 |
|
|
if (frame->extra_info->flat)
|
1265 |
|
|
{
|
1266 |
|
|
/* Each register might or might not have been saved, need to test
|
1267 |
|
|
individually. */
|
1268 |
|
|
for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
|
1269 |
|
|
if (fsr[regnum])
|
1270 |
|
|
write_register (regnum, read_memory_integer (fsr[regnum],
|
1271 |
|
|
SPARC_INTREG_SIZE));
|
1272 |
|
|
for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
|
1273 |
|
|
if (fsr[regnum])
|
1274 |
|
|
write_register (regnum, read_memory_integer (fsr[regnum],
|
1275 |
|
|
SPARC_INTREG_SIZE));
|
1276 |
|
|
|
1277 |
|
|
/* Handle all outs except stack pointer (o0-o5; o7). */
|
1278 |
|
|
for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
|
1279 |
|
|
if (fsr[regnum])
|
1280 |
|
|
write_register (regnum, read_memory_integer (fsr[regnum],
|
1281 |
|
|
SPARC_INTREG_SIZE));
|
1282 |
|
|
if (fsr[O0_REGNUM + 7])
|
1283 |
|
|
write_register (O0_REGNUM + 7,
|
1284 |
|
|
read_memory_integer (fsr[O0_REGNUM + 7],
|
1285 |
|
|
SPARC_INTREG_SIZE));
|
1286 |
|
|
|
1287 |
|
|
write_sp (frame->frame);
|
1288 |
|
|
}
|
1289 |
|
|
else if (fsr[I0_REGNUM])
|
1290 |
|
|
{
|
1291 |
|
|
CORE_ADDR sp;
|
1292 |
|
|
|
1293 |
|
|
char *reg_temp;
|
1294 |
|
|
|
1295 |
|
|
reg_temp = alloca (SPARC_INTREG_SIZE * 16);
|
1296 |
|
|
|
1297 |
|
|
read_memory (fsr[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);
|
1298 |
|
|
|
1299 |
|
|
/* Get the ins and locals which we are about to restore. Just
|
1300 |
|
|
moving the stack pointer is all that is really needed, except
|
1301 |
|
|
store_inferior_registers is then going to write the ins and
|
1302 |
|
|
locals from the registers array, so we need to muck with the
|
1303 |
|
|
registers array. */
|
1304 |
|
|
sp = fsr[SP_REGNUM];
|
1305 |
|
|
|
1306 |
|
|
if (GDB_TARGET_IS_SPARC64 && (sp & 1))
|
1307 |
|
|
sp += 2047;
|
1308 |
|
|
|
1309 |
|
|
read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);
|
1310 |
|
|
|
1311 |
|
|
/* Restore the out registers.
|
1312 |
|
|
Among other things this writes the new stack pointer. */
|
1313 |
|
|
write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
|
1314 |
|
|
SPARC_INTREG_SIZE * 8);
|
1315 |
|
|
|
1316 |
|
|
write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
|
1317 |
|
|
SPARC_INTREG_SIZE * 16);
|
1318 |
|
|
}
|
1319 |
|
|
|
1320 |
|
|
if (!(GDB_TARGET_IS_SPARC64))
|
1321 |
|
|
if (fsr[PS_REGNUM])
|
1322 |
|
|
write_register (PS_REGNUM,
|
1323 |
|
|
read_memory_integer (fsr[PS_REGNUM],
|
1324 |
|
|
REGISTER_RAW_SIZE (PS_REGNUM)));
|
1325 |
|
|
|
1326 |
|
|
if (fsr[Y_REGNUM])
|
1327 |
|
|
write_register (Y_REGNUM,
|
1328 |
|
|
read_memory_integer (fsr[Y_REGNUM],
|
1329 |
|
|
REGISTER_RAW_SIZE (Y_REGNUM)));
|
1330 |
|
|
if (fsr[PC_REGNUM])
|
1331 |
|
|
{
|
1332 |
|
|
/* Explicitly specified PC (and maybe NPC) -- just restore them. */
|
1333 |
|
|
write_register (PC_REGNUM,
|
1334 |
|
|
read_memory_integer (fsr[PC_REGNUM],
|
1335 |
|
|
REGISTER_RAW_SIZE (PC_REGNUM)));
|
1336 |
|
|
if (fsr[NPC_REGNUM])
|
1337 |
|
|
write_register (NPC_REGNUM,
|
1338 |
|
|
read_memory_integer (fsr[NPC_REGNUM],
|
1339 |
|
|
REGISTER_RAW_SIZE (NPC_REGNUM)));
|
1340 |
|
|
}
|
1341 |
|
|
else if (frame->extra_info->flat)
|
1342 |
|
|
{
|
1343 |
|
|
if (frame->extra_info->pc_addr)
|
1344 |
|
|
pc = PC_ADJUST ((CORE_ADDR)
|
1345 |
|
|
read_memory_integer (frame->extra_info->pc_addr,
|
1346 |
|
|
REGISTER_RAW_SIZE (PC_REGNUM)));
|
1347 |
|
|
else
|
1348 |
|
|
{
|
1349 |
|
|
/* I think this happens only in the innermost frame, if so then
|
1350 |
|
|
it is a complicated way of saying
|
1351 |
|
|
"pc = read_register (O7_REGNUM);". */
|
1352 |
|
|
char *buf;
|
1353 |
|
|
|
1354 |
|
|
buf = alloca (MAX_REGISTER_RAW_SIZE);
|
1355 |
|
|
get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0);
|
1356 |
|
|
pc = PC_ADJUST (extract_address
|
1357 |
|
|
(buf, REGISTER_RAW_SIZE (O7_REGNUM)));
|
1358 |
|
|
}
|
1359 |
|
|
|
1360 |
|
|
write_register (PC_REGNUM, pc);
|
1361 |
|
|
write_register (NPC_REGNUM, pc + 4);
|
1362 |
|
|
}
|
1363 |
|
|
else if (fsr[I7_REGNUM])
|
1364 |
|
|
{
|
1365 |
|
|
/* Return address in %i7 -- adjust it, then restore PC and NPC from it */
|
1366 |
|
|
pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr[I7_REGNUM],
|
1367 |
|
|
SPARC_INTREG_SIZE));
|
1368 |
|
|
write_register (PC_REGNUM, pc);
|
1369 |
|
|
write_register (NPC_REGNUM, pc + 4);
|
1370 |
|
|
}
|
1371 |
|
|
flush_cached_frames ();
|
1372 |
|
|
}
|
1373 |
|
|
|
1374 |
|
|
/* On the Sun 4 under SunOS, the compile will leave a fake insn which
|
1375 |
|
|
encodes the structure size being returned. If we detect such
|
1376 |
|
|
a fake insn, step past it. */
|
1377 |
|
|
|
1378 |
|
|
CORE_ADDR
|
1379 |
|
|
sparc_pc_adjust (CORE_ADDR pc)
|
1380 |
|
|
{
|
1381 |
|
|
unsigned long insn;
|
1382 |
|
|
char buf[4];
|
1383 |
|
|
int err;
|
1384 |
|
|
|
1385 |
|
|
err = target_read_memory (pc + 8, buf, 4);
|
1386 |
|
|
insn = extract_unsigned_integer (buf, 4);
|
1387 |
|
|
if ((err == 0) && (insn & 0xffc00000) == 0)
|
1388 |
|
|
return pc + 12;
|
1389 |
|
|
else
|
1390 |
|
|
return pc + 8;
|
1391 |
|
|
}
|
1392 |
|
|
|
1393 |
|
|
/* If pc is in a shared library trampoline, return its target.
|
1394 |
|
|
The SunOs 4.x linker rewrites the jump table entries for PIC
|
1395 |
|
|
compiled modules in the main executable to bypass the dynamic linker
|
1396 |
|
|
with jumps of the form
|
1397 |
|
|
sethi %hi(addr),%g1
|
1398 |
|
|
jmp %g1+%lo(addr)
|
1399 |
|
|
and removes the corresponding jump table relocation entry in the
|
1400 |
|
|
dynamic relocations.
|
1401 |
|
|
find_solib_trampoline_target relies on the presence of the jump
|
1402 |
|
|
table relocation entry, so we have to detect these jump instructions
|
1403 |
|
|
by hand. */
|
1404 |
|
|
|
1405 |
|
|
CORE_ADDR
|
1406 |
|
|
sunos4_skip_trampoline_code (CORE_ADDR pc)
|
1407 |
|
|
{
|
1408 |
|
|
unsigned long insn1;
|
1409 |
|
|
char buf[4];
|
1410 |
|
|
int err;
|
1411 |
|
|
|
1412 |
|
|
err = target_read_memory (pc, buf, 4);
|
1413 |
|
|
insn1 = extract_unsigned_integer (buf, 4);
|
1414 |
|
|
if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
|
1415 |
|
|
{
|
1416 |
|
|
unsigned long insn2;
|
1417 |
|
|
|
1418 |
|
|
err = target_read_memory (pc + 4, buf, 4);
|
1419 |
|
|
insn2 = extract_unsigned_integer (buf, 4);
|
1420 |
|
|
if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
|
1421 |
|
|
{
|
1422 |
|
|
CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
|
1423 |
|
|
int delta = insn2 & 0x1fff;
|
1424 |
|
|
|
1425 |
|
|
/* Sign extend the displacement. */
|
1426 |
|
|
if (delta & 0x1000)
|
1427 |
|
|
delta |= ~0x1fff;
|
1428 |
|
|
return target_pc + delta;
|
1429 |
|
|
}
|
1430 |
|
|
}
|
1431 |
|
|
return find_solib_trampoline_target (pc);
|
1432 |
|
|
}
|
1433 |
|
|
|
1434 |
|
|
#ifdef USE_PROC_FS /* Target dependent support for /proc */
|
1435 |
|
|
/* *INDENT-OFF* */
|
1436 |
|
|
/* The /proc interface divides the target machine's register set up into
|
1437 |
|
|
two different sets, the general register set (gregset) and the floating
|
1438 |
|
|
point register set (fpregset). For each set, there is an ioctl to get
|
1439 |
|
|
the current register set and another ioctl to set the current values.
|
1440 |
|
|
|
1441 |
|
|
The actual structure passed through the ioctl interface is, of course,
|
1442 |
|
|
naturally machine dependent, and is different for each set of registers.
|
1443 |
|
|
For the sparc for example, the general register set is typically defined
|
1444 |
|
|
by:
|
1445 |
|
|
|
1446 |
|
|
typedef int gregset_t[38];
|
1447 |
|
|
|
1448 |
|
|
#define R_G0 0
|
1449 |
|
|
...
|
1450 |
|
|
#define R_TBR 37
|
1451 |
|
|
|
1452 |
|
|
and the floating point set by:
|
1453 |
|
|
|
1454 |
|
|
typedef struct prfpregset {
|
1455 |
|
|
union {
|
1456 |
|
|
u_long pr_regs[32];
|
1457 |
|
|
double pr_dregs[16];
|
1458 |
|
|
} pr_fr;
|
1459 |
|
|
void * pr_filler;
|
1460 |
|
|
u_long pr_fsr;
|
1461 |
|
|
u_char pr_qcnt;
|
1462 |
|
|
u_char pr_q_entrysize;
|
1463 |
|
|
u_char pr_en;
|
1464 |
|
|
u_long pr_q[64];
|
1465 |
|
|
} prfpregset_t;
|
1466 |
|
|
|
1467 |
|
|
These routines provide the packing and unpacking of gregset_t and
|
1468 |
|
|
fpregset_t formatted data.
|
1469 |
|
|
|
1470 |
|
|
*/
|
1471 |
|
|
/* *INDENT-ON* */
|
1472 |
|
|
|
1473 |
|
|
/* Given a pointer to a general register set in /proc format (gregset_t *),
|
1474 |
|
|
unpack the register contents and supply them as gdb's idea of the current
|
1475 |
|
|
register values. */
|
1476 |
|
|
|
1477 |
|
|
void
|
1478 |
|
|
supply_gregset (gdb_gregset_t *gregsetp)
|
1479 |
|
|
{
|
1480 |
|
|
prgreg_t *regp = (prgreg_t *) gregsetp;
|
1481 |
|
|
int regi, offset = 0;
|
1482 |
|
|
|
1483 |
|
|
/* If the host is 64-bit sparc, but the target is 32-bit sparc,
|
1484 |
|
|
then the gregset may contain 64-bit ints while supply_register
|
1485 |
|
|
is expecting 32-bit ints. Compensate. */
|
1486 |
|
|
if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
|
1487 |
|
|
offset = 4;
|
1488 |
|
|
|
1489 |
|
|
/* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
|
1490 |
|
|
/* FIXME MVS: assumes the order of the first 32 elements... */
|
1491 |
|
|
for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++)
|
1492 |
|
|
{
|
1493 |
|
|
supply_register (regi, ((char *) (regp + regi)) + offset);
|
1494 |
|
|
}
|
1495 |
|
|
|
1496 |
|
|
/* These require a bit more care. */
|
1497 |
|
|
supply_register (PC_REGNUM, ((char *) (regp + R_PC)) + offset);
|
1498 |
|
|
supply_register (NPC_REGNUM, ((char *) (regp + R_nPC)) + offset);
|
1499 |
|
|
supply_register (Y_REGNUM, ((char *) (regp + R_Y)) + offset);
|
1500 |
|
|
|
1501 |
|
|
if (GDB_TARGET_IS_SPARC64)
|
1502 |
|
|
{
|
1503 |
|
|
#ifdef R_CCR
|
1504 |
|
|
supply_register (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
|
1505 |
|
|
#else
|
1506 |
|
|
supply_register (CCR_REGNUM, NULL);
|
1507 |
|
|
#endif
|
1508 |
|
|
#ifdef R_FPRS
|
1509 |
|
|
supply_register (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
|
1510 |
|
|
#else
|
1511 |
|
|
supply_register (FPRS_REGNUM, NULL);
|
1512 |
|
|
#endif
|
1513 |
|
|
#ifdef R_ASI
|
1514 |
|
|
supply_register (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
|
1515 |
|
|
#else
|
1516 |
|
|
supply_register (ASI_REGNUM, NULL);
|
1517 |
|
|
#endif
|
1518 |
|
|
}
|
1519 |
|
|
else /* sparc32 */
|
1520 |
|
|
{
|
1521 |
|
|
#ifdef R_PS
|
1522 |
|
|
supply_register (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
|
1523 |
|
|
#else
|
1524 |
|
|
supply_register (PS_REGNUM, NULL);
|
1525 |
|
|
#endif
|
1526 |
|
|
|
1527 |
|
|
/* For 64-bit hosts, R_WIM and R_TBR may not be defined.
|
1528 |
|
|
Steal R_ASI and R_FPRS, and hope for the best! */
|
1529 |
|
|
|
1530 |
|
|
#if !defined (R_WIM) && defined (R_ASI)
|
1531 |
|
|
#define R_WIM R_ASI
|
1532 |
|
|
#endif
|
1533 |
|
|
|
1534 |
|
|
#if !defined (R_TBR) && defined (R_FPRS)
|
1535 |
|
|
#define R_TBR R_FPRS
|
1536 |
|
|
#endif
|
1537 |
|
|
|
1538 |
|
|
#if defined (R_WIM)
|
1539 |
|
|
supply_register (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
|
1540 |
|
|
#else
|
1541 |
|
|
supply_register (WIM_REGNUM, NULL);
|
1542 |
|
|
#endif
|
1543 |
|
|
|
1544 |
|
|
#if defined (R_TBR)
|
1545 |
|
|
supply_register (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
|
1546 |
|
|
#else
|
1547 |
|
|
supply_register (TBR_REGNUM, NULL);
|
1548 |
|
|
#endif
|
1549 |
|
|
}
|
1550 |
|
|
|
1551 |
|
|
/* Fill inaccessible registers with zero. */
|
1552 |
|
|
if (GDB_TARGET_IS_SPARC64)
|
1553 |
|
|
{
|
1554 |
|
|
/*
|
1555 |
|
|
* don't know how to get value of any of the following:
|
1556 |
|
|
*/
|
1557 |
|
|
supply_register (VER_REGNUM, NULL);
|
1558 |
|
|
supply_register (TICK_REGNUM, NULL);
|
1559 |
|
|
supply_register (PIL_REGNUM, NULL);
|
1560 |
|
|
supply_register (PSTATE_REGNUM, NULL);
|
1561 |
|
|
supply_register (TSTATE_REGNUM, NULL);
|
1562 |
|
|
supply_register (TBA_REGNUM, NULL);
|
1563 |
|
|
supply_register (TL_REGNUM, NULL);
|
1564 |
|
|
supply_register (TT_REGNUM, NULL);
|
1565 |
|
|
supply_register (TPC_REGNUM, NULL);
|
1566 |
|
|
supply_register (TNPC_REGNUM, NULL);
|
1567 |
|
|
supply_register (WSTATE_REGNUM, NULL);
|
1568 |
|
|
supply_register (CWP_REGNUM, NULL);
|
1569 |
|
|
supply_register (CANSAVE_REGNUM, NULL);
|
1570 |
|
|
supply_register (CANRESTORE_REGNUM, NULL);
|
1571 |
|
|
supply_register (CLEANWIN_REGNUM, NULL);
|
1572 |
|
|
supply_register (OTHERWIN_REGNUM, NULL);
|
1573 |
|
|
supply_register (ASR16_REGNUM, NULL);
|
1574 |
|
|
supply_register (ASR17_REGNUM, NULL);
|
1575 |
|
|
supply_register (ASR18_REGNUM, NULL);
|
1576 |
|
|
supply_register (ASR19_REGNUM, NULL);
|
1577 |
|
|
supply_register (ASR20_REGNUM, NULL);
|
1578 |
|
|
supply_register (ASR21_REGNUM, NULL);
|
1579 |
|
|
supply_register (ASR22_REGNUM, NULL);
|
1580 |
|
|
supply_register (ASR23_REGNUM, NULL);
|
1581 |
|
|
supply_register (ASR24_REGNUM, NULL);
|
1582 |
|
|
supply_register (ASR25_REGNUM, NULL);
|
1583 |
|
|
supply_register (ASR26_REGNUM, NULL);
|
1584 |
|
|
supply_register (ASR27_REGNUM, NULL);
|
1585 |
|
|
supply_register (ASR28_REGNUM, NULL);
|
1586 |
|
|
supply_register (ASR29_REGNUM, NULL);
|
1587 |
|
|
supply_register (ASR30_REGNUM, NULL);
|
1588 |
|
|
supply_register (ASR31_REGNUM, NULL);
|
1589 |
|
|
supply_register (ICC_REGNUM, NULL);
|
1590 |
|
|
supply_register (XCC_REGNUM, NULL);
|
1591 |
|
|
}
|
1592 |
|
|
else
|
1593 |
|
|
{
|
1594 |
|
|
supply_register (CPS_REGNUM, NULL);
|
1595 |
|
|
}
|
1596 |
|
|
}
|
1597 |
|
|
|
1598 |
|
|
void
|
1599 |
|
|
fill_gregset (gdb_gregset_t *gregsetp, int regno)
|
1600 |
|
|
{
|
1601 |
|
|
prgreg_t *regp = (prgreg_t *) gregsetp;
|
1602 |
|
|
int regi, offset = 0;
|
1603 |
|
|
|
1604 |
|
|
/* If the host is 64-bit sparc, but the target is 32-bit sparc,
|
1605 |
|
|
then the gregset may contain 64-bit ints while supply_register
|
1606 |
|
|
is expecting 32-bit ints. Compensate. */
|
1607 |
|
|
if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
|
1608 |
|
|
offset = 4;
|
1609 |
|
|
|
1610 |
|
|
for (regi = 0; regi <= R_I7; regi++)
|
1611 |
|
|
if ((regno == -1) || (regno == regi))
|
1612 |
|
|
read_register_gen (regi, (char *) (regp + regi) + offset);
|
1613 |
|
|
|
1614 |
|
|
if ((regno == -1) || (regno == PC_REGNUM))
|
1615 |
|
|
read_register_gen (PC_REGNUM, (char *) (regp + R_PC) + offset);
|
1616 |
|
|
|
1617 |
|
|
if ((regno == -1) || (regno == NPC_REGNUM))
|
1618 |
|
|
read_register_gen (NPC_REGNUM, (char *) (regp + R_nPC) + offset);
|
1619 |
|
|
|
1620 |
|
|
if ((regno == -1) || (regno == Y_REGNUM))
|
1621 |
|
|
read_register_gen (Y_REGNUM, (char *) (regp + R_Y) + offset);
|
1622 |
|
|
|
1623 |
|
|
if (GDB_TARGET_IS_SPARC64)
|
1624 |
|
|
{
|
1625 |
|
|
#ifdef R_CCR
|
1626 |
|
|
if (regno == -1 || regno == CCR_REGNUM)
|
1627 |
|
|
read_register_gen (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
|
1628 |
|
|
#endif
|
1629 |
|
|
#ifdef R_FPRS
|
1630 |
|
|
if (regno == -1 || regno == FPRS_REGNUM)
|
1631 |
|
|
read_register_gen (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
|
1632 |
|
|
#endif
|
1633 |
|
|
#ifdef R_ASI
|
1634 |
|
|
if (regno == -1 || regno == ASI_REGNUM)
|
1635 |
|
|
read_register_gen (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
|
1636 |
|
|
#endif
|
1637 |
|
|
}
|
1638 |
|
|
else /* sparc32 */
|
1639 |
|
|
{
|
1640 |
|
|
#ifdef R_PS
|
1641 |
|
|
if (regno == -1 || regno == PS_REGNUM)
|
1642 |
|
|
read_register_gen (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
|
1643 |
|
|
#endif
|
1644 |
|
|
|
1645 |
|
|
/* For 64-bit hosts, R_WIM and R_TBR may not be defined.
|
1646 |
|
|
Steal R_ASI and R_FPRS, and hope for the best! */
|
1647 |
|
|
|
1648 |
|
|
#if !defined (R_WIM) && defined (R_ASI)
|
1649 |
|
|
#define R_WIM R_ASI
|
1650 |
|
|
#endif
|
1651 |
|
|
|
1652 |
|
|
#if !defined (R_TBR) && defined (R_FPRS)
|
1653 |
|
|
#define R_TBR R_FPRS
|
1654 |
|
|
#endif
|
1655 |
|
|
|
1656 |
|
|
#if defined (R_WIM)
|
1657 |
|
|
if (regno == -1 || regno == WIM_REGNUM)
|
1658 |
|
|
read_register_gen (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
|
1659 |
|
|
#else
|
1660 |
|
|
if (regno == -1 || regno == WIM_REGNUM)
|
1661 |
|
|
read_register_gen (WIM_REGNUM, NULL);
|
1662 |
|
|
#endif
|
1663 |
|
|
|
1664 |
|
|
#if defined (R_TBR)
|
1665 |
|
|
if (regno == -1 || regno == TBR_REGNUM)
|
1666 |
|
|
read_register_gen (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
|
1667 |
|
|
#else
|
1668 |
|
|
if (regno == -1 || regno == TBR_REGNUM)
|
1669 |
|
|
read_register_gen (TBR_REGNUM, NULL);
|
1670 |
|
|
#endif
|
1671 |
|
|
}
|
1672 |
|
|
}
|
1673 |
|
|
|
1674 |
|
|
/* Given a pointer to a floating point register set in /proc format
|
1675 |
|
|
(fpregset_t *), unpack the register contents and supply them as gdb's
|
1676 |
|
|
idea of the current floating point register values. */
|
1677 |
|
|
|
1678 |
|
|
void
|
1679 |
|
|
supply_fpregset (gdb_fpregset_t *fpregsetp)
|
1680 |
|
|
{
|
1681 |
|
|
register int regi;
|
1682 |
|
|
char *from;
|
1683 |
|
|
|
1684 |
|
|
if (!SPARC_HAS_FPU)
|
1685 |
|
|
return;
|
1686 |
|
|
|
1687 |
|
|
for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
|
1688 |
|
|
{
|
1689 |
|
|
from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
|
1690 |
|
|
supply_register (regi, from);
|
1691 |
|
|
}
|
1692 |
|
|
|
1693 |
|
|
if (GDB_TARGET_IS_SPARC64)
|
1694 |
|
|
{
|
1695 |
|
|
/*
|
1696 |
|
|
* don't know how to get value of the following.
|
1697 |
|
|
*/
|
1698 |
|
|
supply_register (FSR_REGNUM, NULL); /* zero it out for now */
|
1699 |
|
|
supply_register (FCC0_REGNUM, NULL);
|
1700 |
|
|
supply_register (FCC1_REGNUM, NULL); /* don't know how to get value */
|
1701 |
|
|
supply_register (FCC2_REGNUM, NULL); /* don't know how to get value */
|
1702 |
|
|
supply_register (FCC3_REGNUM, NULL); /* don't know how to get value */
|
1703 |
|
|
}
|
1704 |
|
|
else
|
1705 |
|
|
{
|
1706 |
|
|
supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
|
1707 |
|
|
}
|
1708 |
|
|
}
|
1709 |
|
|
|
1710 |
|
|
/* Given a pointer to a floating point register set in /proc format
|
1711 |
|
|
(fpregset_t *), update the register specified by REGNO from gdb's idea
|
1712 |
|
|
of the current floating point register set. If REGNO is -1, update
|
1713 |
|
|
them all. */
|
1714 |
|
|
/* This will probably need some changes for sparc64. */
|
1715 |
|
|
|
1716 |
|
|
void
|
1717 |
|
|
fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
|
1718 |
|
|
{
|
1719 |
|
|
int regi;
|
1720 |
|
|
char *to;
|
1721 |
|
|
char *from;
|
1722 |
|
|
|
1723 |
|
|
if (!SPARC_HAS_FPU)
|
1724 |
|
|
return;
|
1725 |
|
|
|
1726 |
|
|
for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
|
1727 |
|
|
{
|
1728 |
|
|
if ((regno == -1) || (regno == regi))
|
1729 |
|
|
{
|
1730 |
|
|
from = (char *) ®isters[REGISTER_BYTE (regi)];
|
1731 |
|
|
to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
|
1732 |
|
|
memcpy (to, from, REGISTER_RAW_SIZE (regi));
|
1733 |
|
|
}
|
1734 |
|
|
}
|
1735 |
|
|
|
1736 |
|
|
if (!(GDB_TARGET_IS_SPARC64)) /* FIXME: does Sparc64 have this register? */
|
1737 |
|
|
if ((regno == -1) || (regno == FPS_REGNUM))
|
1738 |
|
|
{
|
1739 |
|
|
from = (char *)®isters[REGISTER_BYTE (FPS_REGNUM)];
|
1740 |
|
|
to = (char *) &fpregsetp->pr_fsr;
|
1741 |
|
|
memcpy (to, from, REGISTER_RAW_SIZE (FPS_REGNUM));
|
1742 |
|
|
}
|
1743 |
|
|
}
|
1744 |
|
|
|
1745 |
|
|
#endif /* USE_PROC_FS */
|
1746 |
|
|
|
1747 |
|
|
/* Because of Multi-arch, GET_LONGJMP_TARGET is always defined. So test
|
1748 |
|
|
for a definition of JB_PC. */
|
1749 |
|
|
#ifdef JB_PC
|
1750 |
|
|
|
1751 |
|
|
/* Figure out where the longjmp will land. We expect that we have just entered
|
1752 |
|
|
longjmp and haven't yet setup the stack frame, so the args are still in the
|
1753 |
|
|
output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
|
1754 |
|
|
extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
|
1755 |
|
|
This routine returns true on success */
|
1756 |
|
|
|
1757 |
|
|
int
|
1758 |
|
|
get_longjmp_target (CORE_ADDR *pc)
|
1759 |
|
|
{
|
1760 |
|
|
CORE_ADDR jb_addr;
|
1761 |
|
|
#define LONGJMP_TARGET_SIZE 4
|
1762 |
|
|
char buf[LONGJMP_TARGET_SIZE];
|
1763 |
|
|
|
1764 |
|
|
jb_addr = read_register (O0_REGNUM);
|
1765 |
|
|
|
1766 |
|
|
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
|
1767 |
|
|
LONGJMP_TARGET_SIZE))
|
1768 |
|
|
return 0;
|
1769 |
|
|
|
1770 |
|
|
*pc = extract_address (buf, LONGJMP_TARGET_SIZE);
|
1771 |
|
|
|
1772 |
|
|
return 1;
|
1773 |
|
|
}
|
1774 |
|
|
#endif /* GET_LONGJMP_TARGET */
|
1775 |
|
|
|
1776 |
|
|
#ifdef STATIC_TRANSFORM_NAME
|
1777 |
|
|
/* SunPRO (3.0 at least), encodes the static variables. This is not
|
1778 |
|
|
related to C++ mangling, it is done for C too. */
|
1779 |
|
|
|
1780 |
|
|
char *
|
1781 |
|
|
sunpro_static_transform_name (char *name)
|
1782 |
|
|
{
|
1783 |
|
|
char *p;
|
1784 |
|
|
if (name[0] == '$')
|
1785 |
|
|
{
|
1786 |
|
|
/* For file-local statics there will be a dollar sign, a bunch
|
1787 |
|
|
of junk (the contents of which match a string given in the
|
1788 |
|
|
N_OPT), a period and the name. For function-local statics
|
1789 |
|
|
there will be a bunch of junk (which seems to change the
|
1790 |
|
|
second character from 'A' to 'B'), a period, the name of the
|
1791 |
|
|
function, and the name. So just skip everything before the
|
1792 |
|
|
last period. */
|
1793 |
|
|
p = strrchr (name, '.');
|
1794 |
|
|
if (p != NULL)
|
1795 |
|
|
name = p + 1;
|
1796 |
|
|
}
|
1797 |
|
|
return name;
|
1798 |
|
|
}
|
1799 |
|
|
#endif /* STATIC_TRANSFORM_NAME */
|
1800 |
|
|
|
1801 |
|
|
|
1802 |
|
|
/* Utilities for printing registers.
|
1803 |
|
|
Page numbers refer to the SPARC Architecture Manual. */
|
1804 |
|
|
|
1805 |
|
|
static void dump_ccreg (char *, int);
|
1806 |
|
|
|
1807 |
|
|
static void
|
1808 |
|
|
dump_ccreg (char *reg, int val)
|
1809 |
|
|
{
|
1810 |
|
|
/* page 41 */
|
1811 |
|
|
printf_unfiltered ("%s:%s,%s,%s,%s", reg,
|
1812 |
|
|
val & 8 ? "N" : "NN",
|
1813 |
|
|
val & 4 ? "Z" : "NZ",
|
1814 |
|
|
val & 2 ? "O" : "NO",
|
1815 |
|
|
val & 1 ? "C" : "NC");
|
1816 |
|
|
}
|
1817 |
|
|
|
1818 |
|
|
static char *
|
1819 |
|
|
decode_asi (int val)
|
1820 |
|
|
{
|
1821 |
|
|
/* page 72 */
|
1822 |
|
|
switch (val)
|
1823 |
|
|
{
|
1824 |
|
|
case 4:
|
1825 |
|
|
return "ASI_NUCLEUS";
|
1826 |
|
|
case 0x0c:
|
1827 |
|
|
return "ASI_NUCLEUS_LITTLE";
|
1828 |
|
|
case 0x10:
|
1829 |
|
|
return "ASI_AS_IF_USER_PRIMARY";
|
1830 |
|
|
case 0x11:
|
1831 |
|
|
return "ASI_AS_IF_USER_SECONDARY";
|
1832 |
|
|
case 0x18:
|
1833 |
|
|
return "ASI_AS_IF_USER_PRIMARY_LITTLE";
|
1834 |
|
|
case 0x19:
|
1835 |
|
|
return "ASI_AS_IF_USER_SECONDARY_LITTLE";
|
1836 |
|
|
case 0x80:
|
1837 |
|
|
return "ASI_PRIMARY";
|
1838 |
|
|
case 0x81:
|
1839 |
|
|
return "ASI_SECONDARY";
|
1840 |
|
|
case 0x82:
|
1841 |
|
|
return "ASI_PRIMARY_NOFAULT";
|
1842 |
|
|
case 0x83:
|
1843 |
|
|
return "ASI_SECONDARY_NOFAULT";
|
1844 |
|
|
case 0x88:
|
1845 |
|
|
return "ASI_PRIMARY_LITTLE";
|
1846 |
|
|
case 0x89:
|
1847 |
|
|
return "ASI_SECONDARY_LITTLE";
|
1848 |
|
|
case 0x8a:
|
1849 |
|
|
return "ASI_PRIMARY_NOFAULT_LITTLE";
|
1850 |
|
|
case 0x8b:
|
1851 |
|
|
return "ASI_SECONDARY_NOFAULT_LITTLE";
|
1852 |
|
|
default:
|
1853 |
|
|
return NULL;
|
1854 |
|
|
}
|
1855 |
|
|
}
|
1856 |
|
|
|
1857 |
|
|
/* PRINT_REGISTER_HOOK routine.
|
1858 |
|
|
Pretty print various registers. */
|
1859 |
|
|
/* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */
|
1860 |
|
|
|
1861 |
|
|
void
|
1862 |
|
|
sparc_print_register_hook (int regno)
|
1863 |
|
|
{
|
1864 |
|
|
ULONGEST val;
|
1865 |
|
|
|
1866 |
|
|
/* Handle double/quad versions of lower 32 fp regs. */
|
1867 |
|
|
if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
|
1868 |
|
|
&& (regno & 1) == 0)
|
1869 |
|
|
{
|
1870 |
|
|
char value[16];
|
1871 |
|
|
|
1872 |
|
|
if (frame_register_read (selected_frame, regno, value)
|
1873 |
|
|
&& frame_register_read (selected_frame, regno + 1, value + 4))
|
1874 |
|
|
{
|
1875 |
|
|
printf_unfiltered ("\t");
|
1876 |
|
|
print_floating (value, builtin_type_double, gdb_stdout);
|
1877 |
|
|
}
|
1878 |
|
|
#if 0 /* FIXME: gdb doesn't handle long doubles */
|
1879 |
|
|
if ((regno & 3) == 0)
|
1880 |
|
|
{
|
1881 |
|
|
if (frame_register_read (selected_frame, regno + 2, value + 8)
|
1882 |
|
|
&& frame_register_read (selected_frame, regno + 3, value + 12))
|
1883 |
|
|
{
|
1884 |
|
|
printf_unfiltered ("\t");
|
1885 |
|
|
print_floating (value, builtin_type_long_double, gdb_stdout);
|
1886 |
|
|
}
|
1887 |
|
|
}
|
1888 |
|
|
#endif
|
1889 |
|
|
return;
|
1890 |
|
|
}
|
1891 |
|
|
|
1892 |
|
|
#if 0 /* FIXME: gdb doesn't handle long doubles */
|
1893 |
|
|
/* Print upper fp regs as long double if appropriate. */
|
1894 |
|
|
if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
|
1895 |
|
|
/* We test for even numbered regs and not a multiple of 4 because
|
1896 |
|
|
the upper fp regs are recorded as doubles. */
|
1897 |
|
|
&& (regno & 1) == 0)
|
1898 |
|
|
{
|
1899 |
|
|
char value[16];
|
1900 |
|
|
|
1901 |
|
|
if (frame_register_read (selected_frame, regno, value)
|
1902 |
|
|
&& frame_register_read (selected_frame, regno + 1, value + 8))
|
1903 |
|
|
{
|
1904 |
|
|
printf_unfiltered ("\t");
|
1905 |
|
|
print_floating (value, builtin_type_long_double, gdb_stdout);
|
1906 |
|
|
}
|
1907 |
|
|
return;
|
1908 |
|
|
}
|
1909 |
|
|
#endif
|
1910 |
|
|
|
1911 |
|
|
/* FIXME: Some of these are priviledged registers.
|
1912 |
|
|
Not sure how they should be handled. */
|
1913 |
|
|
|
1914 |
|
|
#define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))
|
1915 |
|
|
|
1916 |
|
|
val = read_register (regno);
|
1917 |
|
|
|
1918 |
|
|
/* pages 40 - 60 */
|
1919 |
|
|
if (GDB_TARGET_IS_SPARC64)
|
1920 |
|
|
switch (regno)
|
1921 |
|
|
{
|
1922 |
|
|
case CCR_REGNUM:
|
1923 |
|
|
printf_unfiltered ("\t");
|
1924 |
|
|
dump_ccreg ("xcc", val >> 4);
|
1925 |
|
|
printf_unfiltered (", ");
|
1926 |
|
|
dump_ccreg ("icc", val & 15);
|
1927 |
|
|
break;
|
1928 |
|
|
case FPRS_REGNUM:
|
1929 |
|
|
printf ("\tfef:%d, du:%d, dl:%d",
|
1930 |
|
|
BITS (2, 1), BITS (1, 1), BITS (0, 1));
|
1931 |
|
|
break;
|
1932 |
|
|
case FSR_REGNUM:
|
1933 |
|
|
{
|
1934 |
|
|
static char *fcc[4] =
|
1935 |
|
|
{"=", "<", ">", "?"};
|
1936 |
|
|
static char *rd[4] =
|
1937 |
|
|
{"N", "0", "+", "-"};
|
1938 |
|
|
/* Long, but I'd rather leave it as is and use a wide screen. */
|
1939 |
|
|
printf_filtered ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ",
|
1940 |
|
|
fcc[BITS (10, 3)], fcc[BITS (32, 3)],
|
1941 |
|
|
fcc[BITS (34, 3)], fcc[BITS (36, 3)],
|
1942 |
|
|
rd[BITS (30, 3)], BITS (23, 31));
|
1943 |
|
|
printf_filtered ("ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
|
1944 |
|
|
BITS (22, 1), BITS (17, 7), BITS (14, 7),
|
1945 |
|
|
BITS (13, 1), BITS (5, 31), BITS (0, 31));
|
1946 |
|
|
break;
|
1947 |
|
|
}
|
1948 |
|
|
case ASI_REGNUM:
|
1949 |
|
|
{
|
1950 |
|
|
char *asi = decode_asi (val);
|
1951 |
|
|
if (asi != NULL)
|
1952 |
|
|
printf ("\t%s", asi);
|
1953 |
|
|
break;
|
1954 |
|
|
}
|
1955 |
|
|
case VER_REGNUM:
|
1956 |
|
|
printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
|
1957 |
|
|
BITS (48, 0xffff), BITS (32, 0xffff),
|
1958 |
|
|
BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
|
1959 |
|
|
break;
|
1960 |
|
|
case PSTATE_REGNUM:
|
1961 |
|
|
{
|
1962 |
|
|
static char *mm[4] =
|
1963 |
|
|
{"tso", "pso", "rso", "?"};
|
1964 |
|
|
printf_filtered ("\tcle:%d, tle:%d, mm:%s, red:%d, ",
|
1965 |
|
|
BITS (9, 1), BITS (8, 1),
|
1966 |
|
|
mm[BITS (6, 3)], BITS (5, 1));
|
1967 |
|
|
printf_filtered ("pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
|
1968 |
|
|
BITS (4, 1), BITS (3, 1), BITS (2, 1),
|
1969 |
|
|
BITS (1, 1), BITS (0, 1));
|
1970 |
|
|
break;
|
1971 |
|
|
}
|
1972 |
|
|
case TSTATE_REGNUM:
|
1973 |
|
|
/* FIXME: print all 4? */
|
1974 |
|
|
break;
|
1975 |
|
|
case TT_REGNUM:
|
1976 |
|
|
/* FIXME: print all 4? */
|
1977 |
|
|
break;
|
1978 |
|
|
case TPC_REGNUM:
|
1979 |
|
|
/* FIXME: print all 4? */
|
1980 |
|
|
break;
|
1981 |
|
|
case TNPC_REGNUM:
|
1982 |
|
|
/* FIXME: print all 4? */
|
1983 |
|
|
break;
|
1984 |
|
|
case WSTATE_REGNUM:
|
1985 |
|
|
printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
|
1986 |
|
|
break;
|
1987 |
|
|
case CWP_REGNUM:
|
1988 |
|
|
printf ("\t%d", BITS (0, 31));
|
1989 |
|
|
break;
|
1990 |
|
|
case CANSAVE_REGNUM:
|
1991 |
|
|
printf ("\t%-2d before spill", BITS (0, 31));
|
1992 |
|
|
break;
|
1993 |
|
|
case CANRESTORE_REGNUM:
|
1994 |
|
|
printf ("\t%-2d before fill", BITS (0, 31));
|
1995 |
|
|
break;
|
1996 |
|
|
case CLEANWIN_REGNUM:
|
1997 |
|
|
printf ("\t%-2d before clean", BITS (0, 31));
|
1998 |
|
|
break;
|
1999 |
|
|
case OTHERWIN_REGNUM:
|
2000 |
|
|
printf ("\t%d", BITS (0, 31));
|
2001 |
|
|
break;
|
2002 |
|
|
}
|
2003 |
|
|
else /* Sparc32 */
|
2004 |
|
|
switch (regno)
|
2005 |
|
|
{
|
2006 |
|
|
case PS_REGNUM:
|
2007 |
|
|
printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
|
2008 |
|
|
BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
|
2009 |
|
|
BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
|
2010 |
|
|
BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
|
2011 |
|
|
BITS (0, 31));
|
2012 |
|
|
break;
|
2013 |
|
|
case FPS_REGNUM:
|
2014 |
|
|
{
|
2015 |
|
|
static char *fcc[4] =
|
2016 |
|
|
{"=", "<", ">", "?"};
|
2017 |
|
|
static char *rd[4] =
|
2018 |
|
|
{"N", "0", "+", "-"};
|
2019 |
|
|
/* Long, but I'd rather leave it as is and use a wide screen. */
|
2020 |
|
|
printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
|
2021 |
|
|
"fcc:%s, aexc:%d, cexc:%d",
|
2022 |
|
|
rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
|
2023 |
|
|
BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
|
2024 |
|
|
BITS (0, 31));
|
2025 |
|
|
break;
|
2026 |
|
|
}
|
2027 |
|
|
}
|
2028 |
|
|
|
2029 |
|
|
#undef BITS
|
2030 |
|
|
}
|
2031 |
|
|
|
2032 |
|
|
int
|
2033 |
|
|
gdb_print_insn_sparc (bfd_vma memaddr, disassemble_info *info)
|
2034 |
|
|
{
|
2035 |
|
|
/* It's necessary to override mach again because print_insn messes it up. */
|
2036 |
|
|
info->mach = TARGET_ARCHITECTURE->mach;
|
2037 |
|
|
return print_insn_sparc (memaddr, info);
|
2038 |
|
|
}
|
2039 |
|
|
|
2040 |
|
|
/* The SPARC passes the arguments on the stack; arguments smaller
|
2041 |
|
|
than an int are promoted to an int. The first 6 words worth of
|
2042 |
|
|
args are also passed in registers o0 - o5. */
|
2043 |
|
|
|
2044 |
|
|
CORE_ADDR
|
2045 |
|
|
sparc32_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
2046 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
2047 |
|
|
{
|
2048 |
|
|
int i, j, oregnum;
|
2049 |
|
|
int accumulate_size = 0;
|
2050 |
|
|
struct sparc_arg
|
2051 |
|
|
{
|
2052 |
|
|
char *contents;
|
2053 |
|
|
int len;
|
2054 |
|
|
int offset;
|
2055 |
|
|
};
|
2056 |
|
|
struct sparc_arg *sparc_args =
|
2057 |
|
|
(struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg));
|
2058 |
|
|
struct sparc_arg *m_arg;
|
2059 |
|
|
|
2060 |
|
|
/* Promote arguments if necessary, and calculate their stack offsets
|
2061 |
|
|
and sizes. */
|
2062 |
|
|
for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
|
2063 |
|
|
{
|
2064 |
|
|
struct value *arg = args[i];
|
2065 |
|
|
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
|
2066 |
|
|
/* Cast argument to long if necessary as the compiler does it too. */
|
2067 |
|
|
switch (TYPE_CODE (arg_type))
|
2068 |
|
|
{
|
2069 |
|
|
case TYPE_CODE_INT:
|
2070 |
|
|
case TYPE_CODE_BOOL:
|
2071 |
|
|
case TYPE_CODE_CHAR:
|
2072 |
|
|
case TYPE_CODE_RANGE:
|
2073 |
|
|
case TYPE_CODE_ENUM:
|
2074 |
|
|
if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
|
2075 |
|
|
{
|
2076 |
|
|
arg_type = builtin_type_long;
|
2077 |
|
|
arg = value_cast (arg_type, arg);
|
2078 |
|
|
}
|
2079 |
|
|
break;
|
2080 |
|
|
default:
|
2081 |
|
|
break;
|
2082 |
|
|
}
|
2083 |
|
|
m_arg->len = TYPE_LENGTH (arg_type);
|
2084 |
|
|
m_arg->offset = accumulate_size;
|
2085 |
|
|
accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
|
2086 |
|
|
m_arg->contents = VALUE_CONTENTS (arg);
|
2087 |
|
|
}
|
2088 |
|
|
|
2089 |
|
|
/* Make room for the arguments on the stack. */
|
2090 |
|
|
accumulate_size += CALL_DUMMY_STACK_ADJUST;
|
2091 |
|
|
sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST;
|
2092 |
|
|
|
2093 |
|
|
/* `Push' arguments on the stack. */
|
2094 |
|
|
for (i = 0, oregnum = 0, m_arg = sparc_args;
|
2095 |
|
|
i < nargs;
|
2096 |
|
|
i++, m_arg++)
|
2097 |
|
|
{
|
2098 |
|
|
write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
|
2099 |
|
|
for (j = 0;
|
2100 |
|
|
j < m_arg->len && oregnum < 6;
|
2101 |
|
|
j += SPARC_INTREG_SIZE, oregnum++)
|
2102 |
|
|
write_register_gen (O0_REGNUM + oregnum, m_arg->contents + j);
|
2103 |
|
|
}
|
2104 |
|
|
|
2105 |
|
|
return sp;
|
2106 |
|
|
}
|
2107 |
|
|
|
2108 |
|
|
|
2109 |
|
|
/* Extract from an array REGBUF containing the (raw) register state
|
2110 |
|
|
a function return value of type TYPE, and copy that, in virtual format,
|
2111 |
|
|
into VALBUF. */
|
2112 |
|
|
|
2113 |
|
|
void
|
2114 |
|
|
sparc32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
2115 |
|
|
{
|
2116 |
|
|
int typelen = TYPE_LENGTH (type);
|
2117 |
|
|
int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
|
2118 |
|
|
|
2119 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
|
2120 |
|
|
memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen);
|
2121 |
|
|
else
|
2122 |
|
|
memcpy (valbuf,
|
2123 |
|
|
®buf[O0_REGNUM * regsize +
|
2124 |
|
|
(typelen >= regsize
|
2125 |
|
|
|| TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE ? 0
|
2126 |
|
|
: regsize - typelen)],
|
2127 |
|
|
typelen);
|
2128 |
|
|
}
|
2129 |
|
|
|
2130 |
|
|
|
2131 |
|
|
/* Write into appropriate registers a function return value
|
2132 |
|
|
of type TYPE, given in virtual format. On SPARCs with FPUs,
|
2133 |
|
|
float values are returned in %f0 (and %f1). In all other cases,
|
2134 |
|
|
values are returned in register %o0. */
|
2135 |
|
|
|
2136 |
|
|
void
|
2137 |
|
|
sparc_store_return_value (struct type *type, char *valbuf)
|
2138 |
|
|
{
|
2139 |
|
|
int regno;
|
2140 |
|
|
char *buffer;
|
2141 |
|
|
|
2142 |
|
|
buffer = alloca (MAX_REGISTER_RAW_SIZE);
|
2143 |
|
|
|
2144 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
|
2145 |
|
|
/* Floating-point values are returned in the register pair */
|
2146 |
|
|
/* formed by %f0 and %f1 (doubles are, anyway). */
|
2147 |
|
|
regno = FP0_REGNUM;
|
2148 |
|
|
else
|
2149 |
|
|
/* Other values are returned in register %o0. */
|
2150 |
|
|
regno = O0_REGNUM;
|
2151 |
|
|
|
2152 |
|
|
/* Add leading zeros to the value. */
|
2153 |
|
|
if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno))
|
2154 |
|
|
{
|
2155 |
|
|
memset (buffer, 0, REGISTER_RAW_SIZE (regno));
|
2156 |
|
|
memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf,
|
2157 |
|
|
TYPE_LENGTH (type));
|
2158 |
|
|
write_register_gen (regno, buffer);
|
2159 |
|
|
}
|
2160 |
|
|
else
|
2161 |
|
|
write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type));
|
2162 |
|
|
}
|
2163 |
|
|
|
2164 |
|
|
extern void
|
2165 |
|
|
sparclet_store_return_value (struct type *type, char *valbuf)
|
2166 |
|
|
{
|
2167 |
|
|
/* Other values are returned in register %o0. */
|
2168 |
|
|
write_register_bytes (REGISTER_BYTE (O0_REGNUM), valbuf,
|
2169 |
|
|
TYPE_LENGTH (type));
|
2170 |
|
|
}
|
2171 |
|
|
|
2172 |
|
|
|
2173 |
|
|
#ifndef CALL_DUMMY_CALL_OFFSET
|
2174 |
|
|
#define CALL_DUMMY_CALL_OFFSET \
|
2175 |
|
|
(gdbarch_tdep (current_gdbarch)->call_dummy_call_offset)
|
2176 |
|
|
#endif /* CALL_DUMMY_CALL_OFFSET */
|
2177 |
|
|
|
2178 |
|
|
/* Insert the function address into a call dummy instruction sequence
|
2179 |
|
|
stored at DUMMY.
|
2180 |
|
|
|
2181 |
|
|
For structs and unions, if the function was compiled with Sun cc,
|
2182 |
|
|
it expects 'unimp' after the call. But gcc doesn't use that
|
2183 |
|
|
(twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY
|
2184 |
|
|
can assume it is operating on a pristine CALL_DUMMY, not one that
|
2185 |
|
|
has already been customized for a different function). */
|
2186 |
|
|
|
2187 |
|
|
void
|
2188 |
|
|
sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
|
2189 |
|
|
struct type *value_type, int using_gcc)
|
2190 |
|
|
{
|
2191 |
|
|
int i;
|
2192 |
|
|
|
2193 |
|
|
/* Store the relative adddress of the target function into the
|
2194 |
|
|
'call' instruction. */
|
2195 |
|
|
store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
|
2196 |
|
|
(0x40000000
|
2197 |
|
|
| (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
|
2198 |
|
|
& 0x3fffffff)));
|
2199 |
|
|
|
2200 |
|
|
/* If the called function returns an aggregate value, fill in the UNIMP
|
2201 |
|
|
instruction containing the size of the returned aggregate return value,
|
2202 |
|
|
which follows the call instruction.
|
2203 |
|
|
For details see the SPARC Architecture Manual Version 8, Appendix D.3.
|
2204 |
|
|
|
2205 |
|
|
Adjust the call_dummy_breakpoint_offset for the bp_call_dummy breakpoint
|
2206 |
|
|
to the proper address in the call dummy, so that `finish' after a stop
|
2207 |
|
|
in a call dummy works.
|
2208 |
|
|
Tweeking current_gdbarch is not an optimal solution, but the call to
|
2209 |
|
|
sparc_fix_call_dummy is immediately followed by a call to run_stack_dummy,
|
2210 |
|
|
which is the only function where dummy_breakpoint_offset is actually
|
2211 |
|
|
used, if it is non-zero. */
|
2212 |
|
|
if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
|
2213 |
|
|
|| TYPE_CODE (value_type) == TYPE_CODE_UNION)
|
2214 |
|
|
{
|
2215 |
|
|
store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
|
2216 |
|
|
TYPE_LENGTH (value_type) & 0x1fff);
|
2217 |
|
|
set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x30);
|
2218 |
|
|
}
|
2219 |
|
|
else
|
2220 |
|
|
set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x2c);
|
2221 |
|
|
|
2222 |
|
|
if (!(GDB_TARGET_IS_SPARC64))
|
2223 |
|
|
{
|
2224 |
|
|
/* If this is not a simulator target, change the first four
|
2225 |
|
|
instructions of the call dummy to NOPs. Those instructions
|
2226 |
|
|
include a 'save' instruction and are designed to work around
|
2227 |
|
|
problems with register window flushing in the simulator. */
|
2228 |
|
|
|
2229 |
|
|
if (strcmp (target_shortname, "sim") != 0)
|
2230 |
|
|
{
|
2231 |
|
|
for (i = 0; i < 4; i++)
|
2232 |
|
|
store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
|
2233 |
|
|
}
|
2234 |
|
|
}
|
2235 |
|
|
|
2236 |
|
|
/* If this is a bi-endian target, GDB has written the call dummy
|
2237 |
|
|
in little-endian order. We must byte-swap it back to big-endian. */
|
2238 |
|
|
if (bi_endian)
|
2239 |
|
|
{
|
2240 |
|
|
for (i = 0; i < CALL_DUMMY_LENGTH; i += 4)
|
2241 |
|
|
{
|
2242 |
|
|
char tmp = dummy[i];
|
2243 |
|
|
dummy[i] = dummy[i + 3];
|
2244 |
|
|
dummy[i + 3] = tmp;
|
2245 |
|
|
tmp = dummy[i + 1];
|
2246 |
|
|
dummy[i + 1] = dummy[i + 2];
|
2247 |
|
|
dummy[i + 2] = tmp;
|
2248 |
|
|
}
|
2249 |
|
|
}
|
2250 |
|
|
}
|
2251 |
|
|
|
2252 |
|
|
|
2253 |
|
|
/* Set target byte order based on machine type. */
|
2254 |
|
|
|
2255 |
|
|
static int
|
2256 |
|
|
sparc_target_architecture_hook (const bfd_arch_info_type *ap)
|
2257 |
|
|
{
|
2258 |
|
|
int i, j;
|
2259 |
|
|
|
2260 |
|
|
if (ap->mach == bfd_mach_sparc_sparclite_le)
|
2261 |
|
|
{
|
2262 |
|
|
target_byte_order = BFD_ENDIAN_LITTLE;
|
2263 |
|
|
bi_endian = 1;
|
2264 |
|
|
}
|
2265 |
|
|
else
|
2266 |
|
|
bi_endian = 0;
|
2267 |
|
|
return 1;
|
2268 |
|
|
}
|
2269 |
|
|
|
2270 |
|
|
|
2271 |
|
|
/*
|
2272 |
|
|
* Module "constructor" function.
|
2273 |
|
|
*/
|
2274 |
|
|
|
2275 |
|
|
static struct gdbarch * sparc_gdbarch_init (struct gdbarch_info info,
|
2276 |
|
|
struct gdbarch_list *arches);
|
2277 |
|
|
static void sparc_dump_tdep (struct gdbarch *, struct ui_file *);
|
2278 |
|
|
|
2279 |
|
|
void
|
2280 |
|
|
_initialize_sparc_tdep (void)
|
2281 |
|
|
{
|
2282 |
|
|
/* Hook us into the gdbarch mechanism. */
|
2283 |
|
|
gdbarch_register (bfd_arch_sparc, sparc_gdbarch_init, sparc_dump_tdep);
|
2284 |
|
|
|
2285 |
|
|
tm_print_insn = gdb_print_insn_sparc;
|
2286 |
|
|
tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */
|
2287 |
|
|
target_architecture_hook = sparc_target_architecture_hook;
|
2288 |
|
|
}
|
2289 |
|
|
|
2290 |
|
|
/* Compensate for stack bias. Note that we currently don't handle
|
2291 |
|
|
mixed 32/64 bit code. */
|
2292 |
|
|
|
2293 |
|
|
CORE_ADDR
|
2294 |
|
|
sparc64_read_sp (void)
|
2295 |
|
|
{
|
2296 |
|
|
CORE_ADDR sp = read_register (SP_REGNUM);
|
2297 |
|
|
|
2298 |
|
|
if (sp & 1)
|
2299 |
|
|
sp += 2047;
|
2300 |
|
|
return sp;
|
2301 |
|
|
}
|
2302 |
|
|
|
2303 |
|
|
CORE_ADDR
|
2304 |
|
|
sparc64_read_fp (void)
|
2305 |
|
|
{
|
2306 |
|
|
CORE_ADDR fp = read_register (FP_REGNUM);
|
2307 |
|
|
|
2308 |
|
|
if (fp & 1)
|
2309 |
|
|
fp += 2047;
|
2310 |
|
|
return fp;
|
2311 |
|
|
}
|
2312 |
|
|
|
2313 |
|
|
void
|
2314 |
|
|
sparc64_write_sp (CORE_ADDR val)
|
2315 |
|
|
{
|
2316 |
|
|
CORE_ADDR oldsp = read_register (SP_REGNUM);
|
2317 |
|
|
if (oldsp & 1)
|
2318 |
|
|
write_register (SP_REGNUM, val - 2047);
|
2319 |
|
|
else
|
2320 |
|
|
write_register (SP_REGNUM, val);
|
2321 |
|
|
}
|
2322 |
|
|
|
2323 |
|
|
/* The SPARC 64 ABI passes floating-point arguments in FP0 to FP31,
|
2324 |
|
|
and all other arguments in O0 to O5. They are also copied onto
|
2325 |
|
|
the stack in the correct places. Apparently (empirically),
|
2326 |
|
|
structs of less than 16 bytes are passed member-by-member in
|
2327 |
|
|
separate registers, but I am unable to figure out the algorithm.
|
2328 |
|
|
Some members go in floating point regs, but I don't know which.
|
2329 |
|
|
|
2330 |
|
|
FIXME: Handle small structs (less than 16 bytes containing floats).
|
2331 |
|
|
|
2332 |
|
|
The counting regimen for using both integer and FP registers
|
2333 |
|
|
for argument passing is rather odd -- a single counter is used
|
2334 |
|
|
for both; this means that if the arguments alternate between
|
2335 |
|
|
int and float, we will waste every other register of both types. */
|
2336 |
|
|
|
2337 |
|
|
CORE_ADDR
|
2338 |
|
|
sparc64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
2339 |
|
|
int struct_return, CORE_ADDR struct_retaddr)
|
2340 |
|
|
{
|
2341 |
|
|
int i, j, register_counter = 0;
|
2342 |
|
|
CORE_ADDR tempsp;
|
2343 |
|
|
struct type *sparc_intreg_type =
|
2344 |
|
|
TYPE_LENGTH (builtin_type_long) == SPARC_INTREG_SIZE ?
|
2345 |
|
|
builtin_type_long : builtin_type_long_long;
|
2346 |
|
|
|
2347 |
|
|
sp = (sp & ~(((unsigned long) SPARC_INTREG_SIZE) - 1UL));
|
2348 |
|
|
|
2349 |
|
|
/* Figure out how much space we'll need. */
|
2350 |
|
|
for (i = nargs - 1; i >= 0; i--)
|
2351 |
|
|
{
|
2352 |
|
|
int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
|
2353 |
|
|
struct value *copyarg = args[i];
|
2354 |
|
|
int copylen = len;
|
2355 |
|
|
|
2356 |
|
|
if (copylen < SPARC_INTREG_SIZE)
|
2357 |
|
|
{
|
2358 |
|
|
copyarg = value_cast (sparc_intreg_type, copyarg);
|
2359 |
|
|
copylen = SPARC_INTREG_SIZE;
|
2360 |
|
|
}
|
2361 |
|
|
sp -= copylen;
|
2362 |
|
|
}
|
2363 |
|
|
|
2364 |
|
|
/* Round down. */
|
2365 |
|
|
sp = sp & ~7;
|
2366 |
|
|
tempsp = sp;
|
2367 |
|
|
|
2368 |
|
|
/* if STRUCT_RETURN, then first argument is the struct return location. */
|
2369 |
|
|
if (struct_return)
|
2370 |
|
|
write_register (O0_REGNUM + register_counter++, struct_retaddr);
|
2371 |
|
|
|
2372 |
|
|
/* Now write the arguments onto the stack, while writing FP
|
2373 |
|
|
arguments into the FP registers, and other arguments into the
|
2374 |
|
|
first six 'O' registers. */
|
2375 |
|
|
|
2376 |
|
|
for (i = 0; i < nargs; i++)
|
2377 |
|
|
{
|
2378 |
|
|
int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
|
2379 |
|
|
struct value *copyarg = args[i];
|
2380 |
|
|
enum type_code typecode = TYPE_CODE (VALUE_TYPE (args[i]));
|
2381 |
|
|
int copylen = len;
|
2382 |
|
|
|
2383 |
|
|
if (typecode == TYPE_CODE_INT ||
|
2384 |
|
|
typecode == TYPE_CODE_BOOL ||
|
2385 |
|
|
typecode == TYPE_CODE_CHAR ||
|
2386 |
|
|
typecode == TYPE_CODE_RANGE ||
|
2387 |
|
|
typecode == TYPE_CODE_ENUM)
|
2388 |
|
|
if (len < SPARC_INTREG_SIZE)
|
2389 |
|
|
{
|
2390 |
|
|
/* Small ints will all take up the size of one intreg on
|
2391 |
|
|
the stack. */
|
2392 |
|
|
copyarg = value_cast (sparc_intreg_type, copyarg);
|
2393 |
|
|
copylen = SPARC_INTREG_SIZE;
|
2394 |
|
|
}
|
2395 |
|
|
|
2396 |
|
|
write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
|
2397 |
|
|
tempsp += copylen;
|
2398 |
|
|
|
2399 |
|
|
/* Corner case: Structs consisting of a single float member are floats.
|
2400 |
|
|
* FIXME! I don't know about structs containing multiple floats!
|
2401 |
|
|
* Structs containing mixed floats and ints are even more weird.
|
2402 |
|
|
*/
|
2403 |
|
|
|
2404 |
|
|
|
2405 |
|
|
|
2406 |
|
|
/* Separate float args from all other args. */
|
2407 |
|
|
if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
|
2408 |
|
|
{
|
2409 |
|
|
if (register_counter < 16)
|
2410 |
|
|
{
|
2411 |
|
|
/* This arg gets copied into a FP register. */
|
2412 |
|
|
int fpreg;
|
2413 |
|
|
|
2414 |
|
|
switch (len) {
|
2415 |
|
|
case 4: /* Single-precision (float) */
|
2416 |
|
|
fpreg = FP0_REGNUM + 2 * register_counter + 1;
|
2417 |
|
|
register_counter += 1;
|
2418 |
|
|
break;
|
2419 |
|
|
case 8: /* Double-precision (double) */
|
2420 |
|
|
fpreg = FP0_REGNUM + 2 * register_counter;
|
2421 |
|
|
register_counter += 1;
|
2422 |
|
|
break;
|
2423 |
|
|
case 16: /* Quad-precision (long double) */
|
2424 |
|
|
fpreg = FP0_REGNUM + 2 * register_counter;
|
2425 |
|
|
register_counter += 2;
|
2426 |
|
|
break;
|
2427 |
|
|
default:
|
2428 |
|
|
internal_error (__FILE__, __LINE__, "bad switch");
|
2429 |
|
|
}
|
2430 |
|
|
write_register_bytes (REGISTER_BYTE (fpreg),
|
2431 |
|
|
VALUE_CONTENTS (args[i]),
|
2432 |
|
|
len);
|
2433 |
|
|
}
|
2434 |
|
|
}
|
2435 |
|
|
else /* all other args go into the first six 'o' registers */
|
2436 |
|
|
{
|
2437 |
|
|
for (j = 0;
|
2438 |
|
|
j < len && register_counter < 6;
|
2439 |
|
|
j += SPARC_INTREG_SIZE)
|
2440 |
|
|
{
|
2441 |
|
|
int oreg = O0_REGNUM + register_counter;
|
2442 |
|
|
|
2443 |
|
|
write_register_gen (oreg, VALUE_CONTENTS (copyarg) + j);
|
2444 |
|
|
register_counter += 1;
|
2445 |
|
|
}
|
2446 |
|
|
}
|
2447 |
|
|
}
|
2448 |
|
|
return sp;
|
2449 |
|
|
}
|
2450 |
|
|
|
2451 |
|
|
/* Values <= 32 bytes are returned in o0-o3 (floating-point values are
|
2452 |
|
|
returned in f0-f3). */
|
2453 |
|
|
|
2454 |
|
|
void
|
2455 |
|
|
sp64_extract_return_value (struct type *type, char *regbuf, char *valbuf,
|
2456 |
|
|
int bitoffset)
|
2457 |
|
|
{
|
2458 |
|
|
int typelen = TYPE_LENGTH (type);
|
2459 |
|
|
int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
|
2460 |
|
|
|
2461 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
|
2462 |
|
|
{
|
2463 |
|
|
memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen);
|
2464 |
|
|
return;
|
2465 |
|
|
}
|
2466 |
|
|
|
2467 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
2468 |
|
|
|| (TYPE_LENGTH (type) > 32))
|
2469 |
|
|
{
|
2470 |
|
|
memcpy (valbuf,
|
2471 |
|
|
®buf[O0_REGNUM * regsize +
|
2472 |
|
|
(typelen >= regsize ? 0 : regsize - typelen)],
|
2473 |
|
|
typelen);
|
2474 |
|
|
return;
|
2475 |
|
|
}
|
2476 |
|
|
else
|
2477 |
|
|
{
|
2478 |
|
|
char *o0 = ®buf[O0_REGNUM * regsize];
|
2479 |
|
|
char *f0 = ®buf[FP0_REGNUM * regsize];
|
2480 |
|
|
int x;
|
2481 |
|
|
|
2482 |
|
|
for (x = 0; x < TYPE_NFIELDS (type); x++)
|
2483 |
|
|
{
|
2484 |
|
|
struct field *f = &TYPE_FIELDS (type)[x];
|
2485 |
|
|
/* FIXME: We may need to handle static fields here. */
|
2486 |
|
|
int whichreg = (f->loc.bitpos + bitoffset) / 32;
|
2487 |
|
|
int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
|
2488 |
|
|
int where = (f->loc.bitpos + bitoffset) / 8;
|
2489 |
|
|
int size = TYPE_LENGTH (f->type);
|
2490 |
|
|
int typecode = TYPE_CODE (f->type);
|
2491 |
|
|
|
2492 |
|
|
if (typecode == TYPE_CODE_STRUCT)
|
2493 |
|
|
{
|
2494 |
|
|
sp64_extract_return_value (f->type,
|
2495 |
|
|
regbuf,
|
2496 |
|
|
valbuf,
|
2497 |
|
|
bitoffset + f->loc.bitpos);
|
2498 |
|
|
}
|
2499 |
|
|
else if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
|
2500 |
|
|
{
|
2501 |
|
|
memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
|
2502 |
|
|
}
|
2503 |
|
|
else
|
2504 |
|
|
{
|
2505 |
|
|
memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
|
2506 |
|
|
}
|
2507 |
|
|
}
|
2508 |
|
|
}
|
2509 |
|
|
}
|
2510 |
|
|
|
2511 |
|
|
extern void
|
2512 |
|
|
sparc64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
2513 |
|
|
{
|
2514 |
|
|
sp64_extract_return_value (type, regbuf, valbuf, 0);
|
2515 |
|
|
}
|
2516 |
|
|
|
2517 |
|
|
extern void
|
2518 |
|
|
sparclet_extract_return_value (struct type *type,
|
2519 |
|
|
char *regbuf,
|
2520 |
|
|
char *valbuf)
|
2521 |
|
|
{
|
2522 |
|
|
regbuf += REGISTER_RAW_SIZE (O0_REGNUM) * 8;
|
2523 |
|
|
if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (O0_REGNUM))
|
2524 |
|
|
regbuf += REGISTER_RAW_SIZE (O0_REGNUM) - TYPE_LENGTH (type);
|
2525 |
|
|
|
2526 |
|
|
memcpy ((void *) valbuf, regbuf, TYPE_LENGTH (type));
|
2527 |
|
|
}
|
2528 |
|
|
|
2529 |
|
|
|
2530 |
|
|
extern CORE_ADDR
|
2531 |
|
|
sparc32_stack_align (CORE_ADDR addr)
|
2532 |
|
|
{
|
2533 |
|
|
return ((addr + 7) & -8);
|
2534 |
|
|
}
|
2535 |
|
|
|
2536 |
|
|
extern CORE_ADDR
|
2537 |
|
|
sparc64_stack_align (CORE_ADDR addr)
|
2538 |
|
|
{
|
2539 |
|
|
return ((addr + 15) & -16);
|
2540 |
|
|
}
|
2541 |
|
|
|
2542 |
|
|
extern void
|
2543 |
|
|
sparc_print_extra_frame_info (struct frame_info *fi)
|
2544 |
|
|
{
|
2545 |
|
|
if (fi && fi->extra_info && fi->extra_info->flat)
|
2546 |
|
|
printf_filtered (" flat, pc saved at 0x%s, fp saved at 0x%s\n",
|
2547 |
|
|
paddr_nz (fi->extra_info->pc_addr),
|
2548 |
|
|
paddr_nz (fi->extra_info->fp_addr));
|
2549 |
|
|
}
|
2550 |
|
|
|
2551 |
|
|
/* MULTI_ARCH support */
|
2552 |
|
|
|
2553 |
|
|
static const char *
|
2554 |
|
|
sparc32_register_name (int regno)
|
2555 |
|
|
{
|
2556 |
|
|
static char *register_names[] =
|
2557 |
|
|
{ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
|
2558 |
|
|
"o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
|
2559 |
|
|
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
|
2560 |
|
|
"i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
|
2561 |
|
|
|
2562 |
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
2563 |
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
2564 |
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
2565 |
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
2566 |
|
|
|
2567 |
|
|
"y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr"
|
2568 |
|
|
};
|
2569 |
|
|
|
2570 |
|
|
if (regno < 0 ||
|
2571 |
|
|
regno >= (sizeof (register_names) / sizeof (register_names[0])))
|
2572 |
|
|
return NULL;
|
2573 |
|
|
else
|
2574 |
|
|
return register_names[regno];
|
2575 |
|
|
}
|
2576 |
|
|
|
2577 |
|
|
static const char *
|
2578 |
|
|
sparc64_register_name (int regno)
|
2579 |
|
|
{
|
2580 |
|
|
static char *register_names[] =
|
2581 |
|
|
{ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
|
2582 |
|
|
"o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
|
2583 |
|
|
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
|
2584 |
|
|
"i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
|
2585 |
|
|
|
2586 |
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
2587 |
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
2588 |
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
2589 |
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
2590 |
|
|
"f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46",
|
2591 |
|
|
"f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62",
|
2592 |
|
|
|
2593 |
|
|
"pc", "npc", "ccr", "fsr", "fprs", "y", "asi", "ver",
|
2594 |
|
|
"tick", "pil", "pstate", "tstate", "tba", "tl", "tt", "tpc",
|
2595 |
|
|
"tnpc", "wstate", "cwp", "cansave", "canrestore", "cleanwin", "otherwin",
|
2596 |
|
|
"asr16", "asr17", "asr18", "asr19", "asr20", "asr21", "asr22", "asr23",
|
2597 |
|
|
"asr24", "asr25", "asr26", "asr27", "asr28", "asr29", "asr30", "asr31",
|
2598 |
|
|
/* These are here at the end to simplify removing them if we have to. */
|
2599 |
|
|
"icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3"
|
2600 |
|
|
};
|
2601 |
|
|
|
2602 |
|
|
if (regno < 0 ||
|
2603 |
|
|
regno >= (sizeof (register_names) / sizeof (register_names[0])))
|
2604 |
|
|
return NULL;
|
2605 |
|
|
else
|
2606 |
|
|
return register_names[regno];
|
2607 |
|
|
}
|
2608 |
|
|
|
2609 |
|
|
static const char *
|
2610 |
|
|
sparclite_register_name (int regno)
|
2611 |
|
|
{
|
2612 |
|
|
static char *register_names[] =
|
2613 |
|
|
{ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
|
2614 |
|
|
"o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
|
2615 |
|
|
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
|
2616 |
|
|
"i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
|
2617 |
|
|
|
2618 |
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
2619 |
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
2620 |
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
2621 |
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
2622 |
|
|
|
2623 |
|
|
"y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr",
|
2624 |
|
|
"dia1", "dia2", "dda1", "dda2", "ddv1", "ddv2", "dcr", "dsr"
|
2625 |
|
|
};
|
2626 |
|
|
|
2627 |
|
|
if (regno < 0 ||
|
2628 |
|
|
regno >= (sizeof (register_names) / sizeof (register_names[0])))
|
2629 |
|
|
return NULL;
|
2630 |
|
|
else
|
2631 |
|
|
return register_names[regno];
|
2632 |
|
|
}
|
2633 |
|
|
|
2634 |
|
|
static const char *
|
2635 |
|
|
sparclet_register_name (int regno)
|
2636 |
|
|
{
|
2637 |
|
|
static char *register_names[] =
|
2638 |
|
|
{ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
|
2639 |
|
|
"o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
|
2640 |
|
|
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
|
2641 |
|
|
"i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
|
2642 |
|
|
|
2643 |
|
|
"", "", "", "", "", "", "", "", /* no floating point registers */
|
2644 |
|
|
"", "", "", "", "", "", "", "",
|
2645 |
|
|
"", "", "", "", "", "", "", "",
|
2646 |
|
|
"", "", "", "", "", "", "", "",
|
2647 |
|
|
|
2648 |
|
|
"y", "psr", "wim", "tbr", "pc", "npc", "", "", /* no FPSR or CPSR */
|
2649 |
|
|
"ccsr", "ccpr", "cccrcr", "ccor", "ccobr", "ccibr", "ccir", "",
|
2650 |
|
|
|
2651 |
|
|
/* ASR15 ASR19 (don't display them) */
|
2652 |
|
|
"asr1", "", "asr17", "asr18", "", "asr20", "asr21", "asr22"
|
2653 |
|
|
/* None of the rest get displayed */
|
2654 |
|
|
#if 0
|
2655 |
|
|
"awr0", "awr1", "awr2", "awr3", "awr4", "awr5", "awr6", "awr7",
|
2656 |
|
|
"awr8", "awr9", "awr10", "awr11", "awr12", "awr13", "awr14", "awr15",
|
2657 |
|
|
"awr16", "awr17", "awr18", "awr19", "awr20", "awr21", "awr22", "awr23",
|
2658 |
|
|
"awr24", "awr25", "awr26", "awr27", "awr28", "awr29", "awr30", "awr31",
|
2659 |
|
|
"apsr"
|
2660 |
|
|
#endif /* 0 */
|
2661 |
|
|
};
|
2662 |
|
|
|
2663 |
|
|
if (regno < 0 ||
|
2664 |
|
|
regno >= (sizeof (register_names) / sizeof (register_names[0])))
|
2665 |
|
|
return NULL;
|
2666 |
|
|
else
|
2667 |
|
|
return register_names[regno];
|
2668 |
|
|
}
|
2669 |
|
|
|
2670 |
|
|
CORE_ADDR
|
2671 |
|
|
sparc_push_return_address (CORE_ADDR pc_unused, CORE_ADDR sp)
|
2672 |
|
|
{
|
2673 |
|
|
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
2674 |
|
|
{
|
2675 |
|
|
/* The return PC of the dummy_frame is the former 'current' PC
|
2676 |
|
|
(where we were before we made the target function call).
|
2677 |
|
|
This is saved in %i7 by push_dummy_frame.
|
2678 |
|
|
|
2679 |
|
|
We will save the 'call dummy location' (ie. the address
|
2680 |
|
|
to which the target function will return) in %o7.
|
2681 |
|
|
This address will actually be the program's entry point.
|
2682 |
|
|
There will be a special call_dummy breakpoint there. */
|
2683 |
|
|
|
2684 |
|
|
write_register (O7_REGNUM,
|
2685 |
|
|
CALL_DUMMY_ADDRESS () - 8);
|
2686 |
|
|
}
|
2687 |
|
|
|
2688 |
|
|
return sp;
|
2689 |
|
|
}
|
2690 |
|
|
|
2691 |
|
|
/* Should call_function allocate stack space for a struct return? */
|
2692 |
|
|
|
2693 |
|
|
static int
|
2694 |
|
|
sparc64_use_struct_convention (int gcc_p, struct type *type)
|
2695 |
|
|
{
|
2696 |
|
|
return (TYPE_LENGTH (type) > 32);
|
2697 |
|
|
}
|
2698 |
|
|
|
2699 |
|
|
/* Store the address of the place in which to copy the structure the
|
2700 |
|
|
subroutine will return. This is called from call_function_by_hand.
|
2701 |
|
|
The ultimate mystery is, tho, what is the value "16"?
|
2702 |
|
|
|
2703 |
|
|
MVS: That's the offset from where the sp is now, to where the
|
2704 |
|
|
subroutine is gonna expect to find the struct return address. */
|
2705 |
|
|
|
2706 |
|
|
static void
|
2707 |
|
|
sparc32_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
2708 |
|
|
{
|
2709 |
|
|
char *val;
|
2710 |
|
|
CORE_ADDR o7;
|
2711 |
|
|
|
2712 |
|
|
val = alloca (SPARC_INTREG_SIZE);
|
2713 |
|
|
store_unsigned_integer (val, SPARC_INTREG_SIZE, addr);
|
2714 |
|
|
write_memory (sp + (16 * SPARC_INTREG_SIZE), val, SPARC_INTREG_SIZE);
|
2715 |
|
|
|
2716 |
|
|
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
2717 |
|
|
{
|
2718 |
|
|
/* Now adjust the value of the link register, which was previously
|
2719 |
|
|
stored by push_return_address. Functions that return structs are
|
2720 |
|
|
peculiar in that they return to link register + 12, rather than
|
2721 |
|
|
link register + 8. */
|
2722 |
|
|
|
2723 |
|
|
o7 = read_register (O7_REGNUM);
|
2724 |
|
|
write_register (O7_REGNUM, o7 - 4);
|
2725 |
|
|
}
|
2726 |
|
|
}
|
2727 |
|
|
|
2728 |
|
|
static void
|
2729 |
|
|
sparc64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
2730 |
|
|
{
|
2731 |
|
|
/* FIXME: V9 uses %o0 for this. */
|
2732 |
|
|
/* FIXME MVS: Only for small enough structs!!! */
|
2733 |
|
|
|
2734 |
|
|
target_write_memory (sp + (16 * SPARC_INTREG_SIZE),
|
2735 |
|
|
(char *) &addr, SPARC_INTREG_SIZE);
|
2736 |
|
|
#if 0
|
2737 |
|
|
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
2738 |
|
|
{
|
2739 |
|
|
/* Now adjust the value of the link register, which was previously
|
2740 |
|
|
stored by push_return_address. Functions that return structs are
|
2741 |
|
|
peculiar in that they return to link register + 12, rather than
|
2742 |
|
|
link register + 8. */
|
2743 |
|
|
|
2744 |
|
|
write_register (O7_REGNUM, read_register (O7_REGNUM) - 4);
|
2745 |
|
|
}
|
2746 |
|
|
#endif
|
2747 |
|
|
}
|
2748 |
|
|
|
2749 |
|
|
/* Default target data type for register REGNO. */
|
2750 |
|
|
|
2751 |
|
|
static struct type *
|
2752 |
|
|
sparc32_register_virtual_type (int regno)
|
2753 |
|
|
{
|
2754 |
|
|
if (regno == PC_REGNUM ||
|
2755 |
|
|
regno == FP_REGNUM ||
|
2756 |
|
|
regno == SP_REGNUM)
|
2757 |
|
|
return builtin_type_unsigned_int;
|
2758 |
|
|
if (regno < 32)
|
2759 |
|
|
return builtin_type_int;
|
2760 |
|
|
if (regno < 64)
|
2761 |
|
|
return builtin_type_float;
|
2762 |
|
|
return builtin_type_int;
|
2763 |
|
|
}
|
2764 |
|
|
|
2765 |
|
|
static struct type *
|
2766 |
|
|
sparc64_register_virtual_type (int regno)
|
2767 |
|
|
{
|
2768 |
|
|
if (regno == PC_REGNUM ||
|
2769 |
|
|
regno == FP_REGNUM ||
|
2770 |
|
|
regno == SP_REGNUM)
|
2771 |
|
|
return builtin_type_unsigned_long_long;
|
2772 |
|
|
if (regno < 32)
|
2773 |
|
|
return builtin_type_long_long;
|
2774 |
|
|
if (regno < 64)
|
2775 |
|
|
return builtin_type_float;
|
2776 |
|
|
if (regno < 80)
|
2777 |
|
|
return builtin_type_double;
|
2778 |
|
|
return builtin_type_long_long;
|
2779 |
|
|
}
|
2780 |
|
|
|
2781 |
|
|
/* Number of bytes of storage in the actual machine representation for
|
2782 |
|
|
register REGNO. */
|
2783 |
|
|
|
2784 |
|
|
static int
|
2785 |
|
|
sparc32_register_size (int regno)
|
2786 |
|
|
{
|
2787 |
|
|
return 4;
|
2788 |
|
|
}
|
2789 |
|
|
|
2790 |
|
|
static int
|
2791 |
|
|
sparc64_register_size (int regno)
|
2792 |
|
|
{
|
2793 |
|
|
return (regno < 32 ? 8 : regno < 64 ? 4 : 8);
|
2794 |
|
|
}
|
2795 |
|
|
|
2796 |
|
|
/* Index within the `registers' buffer of the first byte of the space
|
2797 |
|
|
for register REGNO. */
|
2798 |
|
|
|
2799 |
|
|
static int
|
2800 |
|
|
sparc32_register_byte (int regno)
|
2801 |
|
|
{
|
2802 |
|
|
return (regno * 4);
|
2803 |
|
|
}
|
2804 |
|
|
|
2805 |
|
|
static int
|
2806 |
|
|
sparc64_register_byte (int regno)
|
2807 |
|
|
{
|
2808 |
|
|
if (regno < 32)
|
2809 |
|
|
return regno * 8;
|
2810 |
|
|
else if (regno < 64)
|
2811 |
|
|
return 32 * 8 + (regno - 32) * 4;
|
2812 |
|
|
else if (regno < 80)
|
2813 |
|
|
return 32 * 8 + 32 * 4 + (regno - 64) * 8;
|
2814 |
|
|
else
|
2815 |
|
|
return 64 * 8 + (regno - 80) * 8;
|
2816 |
|
|
}
|
2817 |
|
|
|
2818 |
|
|
/* Immediately after a function call, return the saved pc.
|
2819 |
|
|
Can't go through the frames for this because on some machines
|
2820 |
|
|
the new frame is not set up until the new function executes
|
2821 |
|
|
some instructions. */
|
2822 |
|
|
|
2823 |
|
|
static CORE_ADDR
|
2824 |
|
|
sparc_saved_pc_after_call (struct frame_info *fi)
|
2825 |
|
|
{
|
2826 |
|
|
return sparc_pc_adjust (read_register (RP_REGNUM));
|
2827 |
|
|
}
|
2828 |
|
|
|
2829 |
|
|
/* Convert registers between 'raw' and 'virtual' formats.
|
2830 |
|
|
They are the same on sparc, so there's nothing to do. */
|
2831 |
|
|
|
2832 |
|
|
static void
|
2833 |
|
|
sparc_convert_to_virtual (int regnum, struct type *type, char *from, char *to)
|
2834 |
|
|
{ /* do nothing (should never be called) */
|
2835 |
|
|
}
|
2836 |
|
|
|
2837 |
|
|
static void
|
2838 |
|
|
sparc_convert_to_raw (struct type *type, int regnum, char *from, char *to)
|
2839 |
|
|
{ /* do nothing (should never be called) */
|
2840 |
|
|
}
|
2841 |
|
|
|
2842 |
|
|
/* Init saved regs: nothing to do, just a place-holder function. */
|
2843 |
|
|
|
2844 |
|
|
static void
|
2845 |
|
|
sparc_frame_init_saved_regs (struct frame_info *fi_ignored)
|
2846 |
|
|
{ /* no-op */
|
2847 |
|
|
}
|
2848 |
|
|
|
2849 |
|
|
/* gdbarch fix call dummy:
|
2850 |
|
|
All this function does is rearrange the arguments before calling
|
2851 |
|
|
sparc_fix_call_dummy (which does the real work). */
|
2852 |
|
|
|
2853 |
|
|
static void
|
2854 |
|
|
sparc_gdbarch_fix_call_dummy (char *dummy,
|
2855 |
|
|
CORE_ADDR pc,
|
2856 |
|
|
CORE_ADDR fun,
|
2857 |
|
|
int nargs,
|
2858 |
|
|
struct value **args,
|
2859 |
|
|
struct type *type,
|
2860 |
|
|
int gcc_p)
|
2861 |
|
|
{
|
2862 |
|
|
if (CALL_DUMMY_LOCATION == ON_STACK)
|
2863 |
|
|
sparc_fix_call_dummy (dummy, pc, fun, type, gcc_p);
|
2864 |
|
|
}
|
2865 |
|
|
|
2866 |
|
|
/* Coerce float to double: a no-op. */
|
2867 |
|
|
|
2868 |
|
|
static int
|
2869 |
|
|
sparc_coerce_float_to_double (struct type *formal, struct type *actual)
|
2870 |
|
|
{
|
2871 |
|
|
return 1;
|
2872 |
|
|
}
|
2873 |
|
|
|
2874 |
|
|
/* CALL_DUMMY_ADDRESS: fetch the breakpoint address for a call dummy. */
|
2875 |
|
|
|
2876 |
|
|
static CORE_ADDR
|
2877 |
|
|
sparc_call_dummy_address (void)
|
2878 |
|
|
{
|
2879 |
|
|
return (CALL_DUMMY_START_OFFSET) + CALL_DUMMY_BREAKPOINT_OFFSET;
|
2880 |
|
|
}
|
2881 |
|
|
|
2882 |
|
|
/* Supply the Y register number to those that need it. */
|
2883 |
|
|
|
2884 |
|
|
int
|
2885 |
|
|
sparc_y_regnum (void)
|
2886 |
|
|
{
|
2887 |
|
|
return gdbarch_tdep (current_gdbarch)->y_regnum;
|
2888 |
|
|
}
|
2889 |
|
|
|
2890 |
|
|
int
|
2891 |
|
|
sparc_reg_struct_has_addr (int gcc_p, struct type *type)
|
2892 |
|
|
{
|
2893 |
|
|
if (GDB_TARGET_IS_SPARC64)
|
2894 |
|
|
return (TYPE_LENGTH (type) > 32);
|
2895 |
|
|
else
|
2896 |
|
|
return (gcc_p != 1);
|
2897 |
|
|
}
|
2898 |
|
|
|
2899 |
|
|
int
|
2900 |
|
|
sparc_intreg_size (void)
|
2901 |
|
|
{
|
2902 |
|
|
return SPARC_INTREG_SIZE;
|
2903 |
|
|
}
|
2904 |
|
|
|
2905 |
|
|
static int
|
2906 |
|
|
sparc_return_value_on_stack (struct type *type)
|
2907 |
|
|
{
|
2908 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT &&
|
2909 |
|
|
TYPE_LENGTH (type) > 8)
|
2910 |
|
|
return 1;
|
2911 |
|
|
else
|
2912 |
|
|
return 0;
|
2913 |
|
|
}
|
2914 |
|
|
|
2915 |
|
|
/*
|
2916 |
|
|
* Gdbarch "constructor" function.
|
2917 |
|
|
*/
|
2918 |
|
|
|
2919 |
|
|
#define SPARC32_CALL_DUMMY_ON_STACK
|
2920 |
|
|
|
2921 |
|
|
#define SPARC_SP_REGNUM 14
|
2922 |
|
|
#define SPARC_FP_REGNUM 30
|
2923 |
|
|
#define SPARC_FP0_REGNUM 32
|
2924 |
|
|
#define SPARC32_NPC_REGNUM 69
|
2925 |
|
|
#define SPARC32_PC_REGNUM 68
|
2926 |
|
|
#define SPARC32_Y_REGNUM 64
|
2927 |
|
|
#define SPARC64_PC_REGNUM 80
|
2928 |
|
|
#define SPARC64_NPC_REGNUM 81
|
2929 |
|
|
#define SPARC64_Y_REGNUM 85
|
2930 |
|
|
|
2931 |
|
|
static struct gdbarch *
|
2932 |
|
|
sparc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
2933 |
|
|
{
|
2934 |
|
|
struct gdbarch *gdbarch;
|
2935 |
|
|
struct gdbarch_tdep *tdep;
|
2936 |
|
|
enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
|
2937 |
|
|
|
2938 |
|
|
static LONGEST call_dummy_32[] =
|
2939 |
|
|
{ 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003,
|
2940 |
|
|
0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c,
|
2941 |
|
|
0xd203a048, 0x40000000, 0xd003a044, 0x01000000,
|
2942 |
|
|
0x91d02001, 0x01000000
|
2943 |
|
|
};
|
2944 |
|
|
static LONGEST call_dummy_64[] =
|
2945 |
|
|
{ 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL,
|
2946 |
|
|
0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL,
|
2947 |
|
|
0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL,
|
2948 |
|
|
0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL,
|
2949 |
|
|
0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL,
|
2950 |
|
|
0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL,
|
2951 |
|
|
0xf03fa73f01000000LL, 0x0100000001000000LL,
|
2952 |
|
|
0x0100000091580000LL, 0xd027a72b93500000LL,
|
2953 |
|
|
0xd027a72791480000LL, 0xd027a72391400000LL,
|
2954 |
|
|
0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL,
|
2955 |
|
|
0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL,
|
2956 |
|
|
0x0100000091d02001LL, 0x0100000001000000LL
|
2957 |
|
|
};
|
2958 |
|
|
static LONGEST call_dummy_nil[] = {0};
|
2959 |
|
|
|
2960 |
|
|
/* Try to determine the OS ABI of the object we are loading. */
|
2961 |
|
|
|
2962 |
|
|
if (info.abfd != NULL)
|
2963 |
|
|
{
|
2964 |
|
|
osabi = gdbarch_lookup_osabi (info.abfd);
|
2965 |
|
|
if (osabi == GDB_OSABI_UNKNOWN)
|
2966 |
|
|
{
|
2967 |
|
|
/* If it's an ELF file, assume it's Solaris. */
|
2968 |
|
|
if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
|
2969 |
|
|
osabi = GDB_OSABI_SOLARIS;
|
2970 |
|
|
}
|
2971 |
|
|
}
|
2972 |
|
|
|
2973 |
|
|
/* First see if there is already a gdbarch that can satisfy the request. */
|
2974 |
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
2975 |
|
|
arches != NULL;
|
2976 |
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
2977 |
|
|
{
|
2978 |
|
|
/* Make sure the ABI selection matches. */
|
2979 |
|
|
tdep = gdbarch_tdep (arches->gdbarch);
|
2980 |
|
|
if (tdep && tdep->osabi == osabi)
|
2981 |
|
|
return arches->gdbarch;
|
2982 |
|
|
}
|
2983 |
|
|
|
2984 |
|
|
/* None found: is the request for a sparc architecture? */
|
2985 |
|
|
if (info.bfd_arch_info->arch != bfd_arch_sparc)
|
2986 |
|
|
return NULL; /* No; then it's not for us. */
|
2987 |
|
|
|
2988 |
|
|
/* Yes: create a new gdbarch for the specified machine type. */
|
2989 |
|
|
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
|
2990 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
2991 |
|
|
|
2992 |
|
|
tdep->osabi = osabi;
|
2993 |
|
|
|
2994 |
|
|
/* First set settings that are common for all sparc architectures. */
|
2995 |
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
2996 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, memory_breakpoint_from_pc);
|
2997 |
|
|
set_gdbarch_coerce_float_to_double (gdbarch,
|
2998 |
|
|
sparc_coerce_float_to_double);
|
2999 |
|
|
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
|
3000 |
|
|
set_gdbarch_call_dummy_p (gdbarch, 1);
|
3001 |
|
|
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 1);
|
3002 |
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
3003 |
|
|
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
3004 |
|
|
set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sparc_extract_struct_value_address);
|
3005 |
|
|
set_gdbarch_fix_call_dummy (gdbarch, sparc_gdbarch_fix_call_dummy);
|
3006 |
|
|
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
3007 |
|
|
set_gdbarch_fp_regnum (gdbarch, SPARC_FP_REGNUM);
|
3008 |
|
|
set_gdbarch_fp0_regnum (gdbarch, SPARC_FP0_REGNUM);
|
3009 |
|
|
set_gdbarch_frame_args_address (gdbarch, default_frame_address);
|
3010 |
|
|
set_gdbarch_frame_chain (gdbarch, sparc_frame_chain);
|
3011 |
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, sparc_frame_init_saved_regs);
|
3012 |
|
|
set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
|
3013 |
|
|
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
3014 |
|
|
set_gdbarch_frame_saved_pc (gdbarch, sparc_frame_saved_pc);
|
3015 |
|
|
set_gdbarch_frameless_function_invocation (gdbarch,
|
3016 |
|
|
frameless_look_for_prologue);
|
3017 |
|
|
set_gdbarch_get_saved_register (gdbarch, sparc_get_saved_register);
|
3018 |
|
|
set_gdbarch_init_extra_frame_info (gdbarch, sparc_init_extra_frame_info);
|
3019 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
3020 |
|
|
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
3021 |
|
|
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
|
3022 |
|
|
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
3023 |
|
|
set_gdbarch_max_register_raw_size (gdbarch, 8);
|
3024 |
|
|
set_gdbarch_max_register_virtual_size (gdbarch, 8);
|
3025 |
|
|
set_gdbarch_pop_frame (gdbarch, sparc_pop_frame);
|
3026 |
|
|
set_gdbarch_push_return_address (gdbarch, sparc_push_return_address);
|
3027 |
|
|
set_gdbarch_push_dummy_frame (gdbarch, sparc_push_dummy_frame);
|
3028 |
|
|
set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
|
3029 |
|
|
set_gdbarch_register_convert_to_raw (gdbarch, sparc_convert_to_raw);
|
3030 |
|
|
set_gdbarch_register_convert_to_virtual (gdbarch,
|
3031 |
|
|
sparc_convert_to_virtual);
|
3032 |
|
|
set_gdbarch_register_convertible (gdbarch,
|
3033 |
|
|
generic_register_convertible_not);
|
3034 |
|
|
set_gdbarch_reg_struct_has_addr (gdbarch, sparc_reg_struct_has_addr);
|
3035 |
|
|
set_gdbarch_return_value_on_stack (gdbarch, sparc_return_value_on_stack);
|
3036 |
|
|
set_gdbarch_saved_pc_after_call (gdbarch, sparc_saved_pc_after_call);
|
3037 |
|
|
set_gdbarch_prologue_frameless_p (gdbarch, sparc_prologue_frameless_p);
|
3038 |
|
|
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
3039 |
|
|
set_gdbarch_skip_prologue (gdbarch, sparc_skip_prologue);
|
3040 |
|
|
set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM);
|
3041 |
|
|
set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
|
3042 |
|
|
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
|
3043 |
|
|
|
3044 |
|
|
/*
|
3045 |
|
|
* Settings that depend only on 32/64 bit word size
|
3046 |
|
|
*/
|
3047 |
|
|
|
3048 |
|
|
switch (info.bfd_arch_info->mach)
|
3049 |
|
|
{
|
3050 |
|
|
case bfd_mach_sparc:
|
3051 |
|
|
case bfd_mach_sparc_sparclet:
|
3052 |
|
|
case bfd_mach_sparc_sparclite:
|
3053 |
|
|
case bfd_mach_sparc_v8plus:
|
3054 |
|
|
case bfd_mach_sparc_v8plusa:
|
3055 |
|
|
case bfd_mach_sparc_sparclite_le:
|
3056 |
|
|
/* 32-bit machine types: */
|
3057 |
|
|
|
3058 |
|
|
#ifdef SPARC32_CALL_DUMMY_ON_STACK
|
3059 |
|
|
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
|
3060 |
|
|
set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
|
3061 |
|
|
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0x30);
|
3062 |
|
|
set_gdbarch_call_dummy_length (gdbarch, 0x38);
|
3063 |
|
|
|
3064 |
|
|
/* NOTE: cagney/2002-04-26: Based from info posted by Peter
|
3065 |
|
|
Schauer around Oct '99. Briefly, due to aspects of the SPARC
|
3066 |
|
|
ABI, it isn't possible to use ON_STACK with a strictly
|
3067 |
|
|
compliant compiler.
|
3068 |
|
|
|
3069 |
|
|
Peter Schauer writes ...
|
3070 |
|
|
|
3071 |
|
|
No, any call from GDB to a user function returning a
|
3072 |
|
|
struct/union will fail miserably. Try this:
|
3073 |
|
|
|
3074 |
|
|
*NOINDENT*
|
3075 |
|
|
struct x
|
3076 |
|
|
{
|
3077 |
|
|
int a[4];
|
3078 |
|
|
};
|
3079 |
|
|
|
3080 |
|
|
struct x gx;
|
3081 |
|
|
|
3082 |
|
|
struct x
|
3083 |
|
|
sret ()
|
3084 |
|
|
{
|
3085 |
|
|
return gx;
|
3086 |
|
|
}
|
3087 |
|
|
|
3088 |
|
|
main ()
|
3089 |
|
|
{
|
3090 |
|
|
int i;
|
3091 |
|
|
for (i = 0; i < 4; i++)
|
3092 |
|
|
gx.a[i] = i + 1;
|
3093 |
|
|
gx = sret ();
|
3094 |
|
|
}
|
3095 |
|
|
*INDENT*
|
3096 |
|
|
|
3097 |
|
|
Set a breakpoint at the gx = sret () statement, run to it and
|
3098 |
|
|
issue a `print sret()'. It will not succed with your
|
3099 |
|
|
approach, and I doubt that continuing the program will work
|
3100 |
|
|
as well.
|
3101 |
|
|
|
3102 |
|
|
For details of the ABI see the Sparc Architecture Manual. I
|
3103 |
|
|
have Version 8 (Prentice Hall ISBN 0-13-825001-4) and the
|
3104 |
|
|
calling conventions for functions returning aggregate values
|
3105 |
|
|
are explained in Appendix D.3. */
|
3106 |
|
|
|
3107 |
|
|
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
|
3108 |
|
|
set_gdbarch_call_dummy_words (gdbarch, call_dummy_32);
|
3109 |
|
|
#else
|
3110 |
|
|
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
|
3111 |
|
|
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
3112 |
|
|
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
3113 |
|
|
set_gdbarch_call_dummy_length (gdbarch, 0);
|
3114 |
|
|
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
3115 |
|
|
set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
|
3116 |
|
|
#endif
|
3117 |
|
|
set_gdbarch_call_dummy_stack_adjust (gdbarch, 68);
|
3118 |
|
|
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
3119 |
|
|
set_gdbarch_frame_args_skip (gdbarch, 68);
|
3120 |
|
|
set_gdbarch_function_start_offset (gdbarch, 0);
|
3121 |
|
|
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
3122 |
|
|
set_gdbarch_npc_regnum (gdbarch, SPARC32_NPC_REGNUM);
|
3123 |
|
|
set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM);
|
3124 |
|
|
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
3125 |
|
|
set_gdbarch_push_arguments (gdbarch, sparc32_push_arguments);
|
3126 |
|
|
set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
|
3127 |
|
|
set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
|
3128 |
|
|
|
3129 |
|
|
set_gdbarch_register_byte (gdbarch, sparc32_register_byte);
|
3130 |
|
|
set_gdbarch_register_raw_size (gdbarch, sparc32_register_size);
|
3131 |
|
|
set_gdbarch_register_size (gdbarch, 4);
|
3132 |
|
|
set_gdbarch_register_virtual_size (gdbarch, sparc32_register_size);
|
3133 |
|
|
set_gdbarch_register_virtual_type (gdbarch,
|
3134 |
|
|
sparc32_register_virtual_type);
|
3135 |
|
|
#ifdef SPARC32_CALL_DUMMY_ON_STACK
|
3136 |
|
|
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_32));
|
3137 |
|
|
#else
|
3138 |
|
|
set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
|
3139 |
|
|
#endif
|
3140 |
|
|
set_gdbarch_stack_align (gdbarch, sparc32_stack_align);
|
3141 |
|
|
set_gdbarch_store_struct_return (gdbarch, sparc32_store_struct_return);
|
3142 |
|
|
set_gdbarch_use_struct_convention (gdbarch,
|
3143 |
|
|
generic_use_struct_convention);
|
3144 |
|
|
set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
|
3145 |
|
|
tdep->y_regnum = SPARC32_Y_REGNUM;
|
3146 |
|
|
tdep->fp_max_regnum = SPARC_FP0_REGNUM + 32;
|
3147 |
|
|
tdep->intreg_size = 4;
|
3148 |
|
|
tdep->reg_save_offset = 0x60;
|
3149 |
|
|
tdep->call_dummy_call_offset = 0x24;
|
3150 |
|
|
break;
|
3151 |
|
|
|
3152 |
|
|
case bfd_mach_sparc_v9:
|
3153 |
|
|
case bfd_mach_sparc_v9a:
|
3154 |
|
|
/* 64-bit machine types: */
|
3155 |
|
|
default: /* Any new machine type is likely to be 64-bit. */
|
3156 |
|
|
|
3157 |
|
|
#ifdef SPARC64_CALL_DUMMY_ON_STACK
|
3158 |
|
|
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
|
3159 |
|
|
set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
|
3160 |
|
|
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8 * 4);
|
3161 |
|
|
set_gdbarch_call_dummy_length (gdbarch, 192);
|
3162 |
|
|
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
|
3163 |
|
|
set_gdbarch_call_dummy_start_offset (gdbarch, 148);
|
3164 |
|
|
set_gdbarch_call_dummy_words (gdbarch, call_dummy_64);
|
3165 |
|
|
#else
|
3166 |
|
|
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
|
3167 |
|
|
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
3168 |
|
|
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
3169 |
|
|
set_gdbarch_call_dummy_length (gdbarch, 0);
|
3170 |
|
|
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
3171 |
|
|
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
3172 |
|
|
set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
|
3173 |
|
|
#endif
|
3174 |
|
|
set_gdbarch_call_dummy_stack_adjust (gdbarch, 128);
|
3175 |
|
|
set_gdbarch_frame_args_skip (gdbarch, 136);
|
3176 |
|
|
set_gdbarch_function_start_offset (gdbarch, 0);
|
3177 |
|
|
set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
3178 |
|
|
set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM);
|
3179 |
|
|
set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM);
|
3180 |
|
|
set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
3181 |
|
|
set_gdbarch_push_arguments (gdbarch, sparc64_push_arguments);
|
3182 |
|
|
/* NOTE different for at_entry */
|
3183 |
|
|
set_gdbarch_read_fp (gdbarch, sparc64_read_fp);
|
3184 |
|
|
set_gdbarch_read_sp (gdbarch, sparc64_read_sp);
|
3185 |
|
|
/* Some of the registers aren't 64 bits, but it's a lot simpler just
|
3186 |
|
|
to assume they all are (since most of them are). */
|
3187 |
|
|
set_gdbarch_register_byte (gdbarch, sparc64_register_byte);
|
3188 |
|
|
set_gdbarch_register_raw_size (gdbarch, sparc64_register_size);
|
3189 |
|
|
set_gdbarch_register_size (gdbarch, 8);
|
3190 |
|
|
set_gdbarch_register_virtual_size (gdbarch, sparc64_register_size);
|
3191 |
|
|
set_gdbarch_register_virtual_type (gdbarch,
|
3192 |
|
|
sparc64_register_virtual_type);
|
3193 |
|
|
#ifdef SPARC64_CALL_DUMMY_ON_STACK
|
3194 |
|
|
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_64));
|
3195 |
|
|
#else
|
3196 |
|
|
set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
|
3197 |
|
|
#endif
|
3198 |
|
|
set_gdbarch_stack_align (gdbarch, sparc64_stack_align);
|
3199 |
|
|
set_gdbarch_store_struct_return (gdbarch, sparc64_store_struct_return);
|
3200 |
|
|
set_gdbarch_use_struct_convention (gdbarch,
|
3201 |
|
|
sparc64_use_struct_convention);
|
3202 |
|
|
set_gdbarch_write_sp (gdbarch, sparc64_write_sp);
|
3203 |
|
|
tdep->y_regnum = SPARC64_Y_REGNUM;
|
3204 |
|
|
tdep->fp_max_regnum = SPARC_FP0_REGNUM + 48;
|
3205 |
|
|
tdep->intreg_size = 8;
|
3206 |
|
|
tdep->reg_save_offset = 0x90;
|
3207 |
|
|
tdep->call_dummy_call_offset = 148 + 4 * 5;
|
3208 |
|
|
break;
|
3209 |
|
|
}
|
3210 |
|
|
|
3211 |
|
|
/*
|
3212 |
|
|
* Settings that vary per-architecture:
|
3213 |
|
|
*/
|
3214 |
|
|
|
3215 |
|
|
switch (info.bfd_arch_info->mach)
|
3216 |
|
|
{
|
3217 |
|
|
case bfd_mach_sparc:
|
3218 |
|
|
set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
|
3219 |
|
|
set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
|
3220 |
|
|
set_gdbarch_num_regs (gdbarch, 72);
|
3221 |
|
|
set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
|
3222 |
|
|
set_gdbarch_register_name (gdbarch, sparc32_register_name);
|
3223 |
|
|
set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
|
3224 |
|
|
tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
|
3225 |
|
|
tdep->fp_register_bytes = 32 * 4;
|
3226 |
|
|
tdep->print_insn_mach = bfd_mach_sparc;
|
3227 |
|
|
break;
|
3228 |
|
|
case bfd_mach_sparc_sparclet:
|
3229 |
|
|
set_gdbarch_deprecated_extract_return_value (gdbarch, sparclet_extract_return_value);
|
3230 |
|
|
set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
|
3231 |
|
|
set_gdbarch_num_regs (gdbarch, 32 + 32 + 8 + 8 + 8);
|
3232 |
|
|
set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4 + 8*4);
|
3233 |
|
|
set_gdbarch_register_name (gdbarch, sparclet_register_name);
|
3234 |
|
|
set_gdbarch_deprecated_store_return_value (gdbarch, sparclet_store_return_value);
|
3235 |
|
|
tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
|
3236 |
|
|
tdep->fp_register_bytes = 0;
|
3237 |
|
|
tdep->print_insn_mach = bfd_mach_sparc_sparclet;
|
3238 |
|
|
break;
|
3239 |
|
|
case bfd_mach_sparc_sparclite:
|
3240 |
|
|
set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
|
3241 |
|
|
set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
|
3242 |
|
|
set_gdbarch_num_regs (gdbarch, 80);
|
3243 |
|
|
set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
|
3244 |
|
|
set_gdbarch_register_name (gdbarch, sparclite_register_name);
|
3245 |
|
|
set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
|
3246 |
|
|
tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
|
3247 |
|
|
tdep->fp_register_bytes = 0;
|
3248 |
|
|
tdep->print_insn_mach = bfd_mach_sparc_sparclite;
|
3249 |
|
|
break;
|
3250 |
|
|
case bfd_mach_sparc_v8plus:
|
3251 |
|
|
set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
|
3252 |
|
|
set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
|
3253 |
|
|
set_gdbarch_num_regs (gdbarch, 72);
|
3254 |
|
|
set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
|
3255 |
|
|
set_gdbarch_register_name (gdbarch, sparc32_register_name);
|
3256 |
|
|
set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
|
3257 |
|
|
tdep->print_insn_mach = bfd_mach_sparc;
|
3258 |
|
|
tdep->fp_register_bytes = 32 * 4;
|
3259 |
|
|
tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
|
3260 |
|
|
break;
|
3261 |
|
|
case bfd_mach_sparc_v8plusa:
|
3262 |
|
|
set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
|
3263 |
|
|
set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
|
3264 |
|
|
set_gdbarch_num_regs (gdbarch, 72);
|
3265 |
|
|
set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
|
3266 |
|
|
set_gdbarch_register_name (gdbarch, sparc32_register_name);
|
3267 |
|
|
set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
|
3268 |
|
|
tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
|
3269 |
|
|
tdep->fp_register_bytes = 32 * 4;
|
3270 |
|
|
tdep->print_insn_mach = bfd_mach_sparc;
|
3271 |
|
|
break;
|
3272 |
|
|
case bfd_mach_sparc_sparclite_le:
|
3273 |
|
|
set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
|
3274 |
|
|
set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
|
3275 |
|
|
set_gdbarch_num_regs (gdbarch, 80);
|
3276 |
|
|
set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
|
3277 |
|
|
set_gdbarch_register_name (gdbarch, sparclite_register_name);
|
3278 |
|
|
set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
|
3279 |
|
|
tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
|
3280 |
|
|
tdep->fp_register_bytes = 0;
|
3281 |
|
|
tdep->print_insn_mach = bfd_mach_sparc_sparclite;
|
3282 |
|
|
break;
|
3283 |
|
|
case bfd_mach_sparc_v9:
|
3284 |
|
|
set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value);
|
3285 |
|
|
set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
|
3286 |
|
|
set_gdbarch_num_regs (gdbarch, 125);
|
3287 |
|
|
set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
|
3288 |
|
|
set_gdbarch_register_name (gdbarch, sparc64_register_name);
|
3289 |
|
|
set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
|
3290 |
|
|
tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
|
3291 |
|
|
tdep->fp_register_bytes = 64 * 4;
|
3292 |
|
|
tdep->print_insn_mach = bfd_mach_sparc_v9a;
|
3293 |
|
|
break;
|
3294 |
|
|
case bfd_mach_sparc_v9a:
|
3295 |
|
|
set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value);
|
3296 |
|
|
set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
|
3297 |
|
|
set_gdbarch_num_regs (gdbarch, 125);
|
3298 |
|
|
set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
|
3299 |
|
|
set_gdbarch_register_name (gdbarch, sparc64_register_name);
|
3300 |
|
|
set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
|
3301 |
|
|
tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
|
3302 |
|
|
tdep->fp_register_bytes = 64 * 4;
|
3303 |
|
|
tdep->print_insn_mach = bfd_mach_sparc_v9a;
|
3304 |
|
|
break;
|
3305 |
|
|
}
|
3306 |
|
|
|
3307 |
|
|
/* Hook in OS ABI-specific overrides, if they have been registered. */
|
3308 |
|
|
gdbarch_init_osabi (info, gdbarch, osabi);
|
3309 |
|
|
|
3310 |
|
|
return gdbarch;
|
3311 |
|
|
}
|
3312 |
|
|
|
3313 |
|
|
static void
|
3314 |
|
|
sparc_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
|
3315 |
|
|
{
|
3316 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
3317 |
|
|
|
3318 |
|
|
if (tdep == NULL)
|
3319 |
|
|
return;
|
3320 |
|
|
|
3321 |
|
|
fprintf_unfiltered (file, "sparc_dump_tdep: OS ABI = %s\n",
|
3322 |
|
|
gdbarch_osabi_name (tdep->osabi));
|
3323 |
|
|
}
|