1 |
1181 |
sfurman |
/* Sequent Symmetry host interface, for GDB when running under Unix.
|
2 |
|
|
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1999, 2000,
|
3 |
|
|
2001
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program; if not, write to the Free Software
|
20 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
21 |
|
|
Boston, MA 02111-1307, USA. */
|
22 |
|
|
|
23 |
|
|
/* FIXME, some 387-specific items of use taken from i387-tdep.c -- ought to be
|
24 |
|
|
merged back in. */
|
25 |
|
|
|
26 |
|
|
#include "defs.h"
|
27 |
|
|
#include "frame.h"
|
28 |
|
|
#include "inferior.h"
|
29 |
|
|
#include "symtab.h"
|
30 |
|
|
#include "target.h"
|
31 |
|
|
#include "regcache.h"
|
32 |
|
|
|
33 |
|
|
/* FIXME: What is the _INKERNEL define for? */
|
34 |
|
|
#define _INKERNEL
|
35 |
|
|
#include <signal.h>
|
36 |
|
|
#undef _INKERNEL
|
37 |
|
|
#include <sys/wait.h>
|
38 |
|
|
#include <sys/param.h>
|
39 |
|
|
#include <sys/user.h>
|
40 |
|
|
#include <sys/proc.h>
|
41 |
|
|
#include <sys/dir.h>
|
42 |
|
|
#include <sys/ioctl.h>
|
43 |
|
|
#include "gdb_stat.h"
|
44 |
|
|
#ifdef _SEQUENT_
|
45 |
|
|
#include <sys/ptrace.h>
|
46 |
|
|
#else
|
47 |
|
|
/* Dynix has only machine/ptrace.h, which is already included by sys/user.h */
|
48 |
|
|
/* Dynix has no mptrace call */
|
49 |
|
|
#define mptrace ptrace
|
50 |
|
|
#endif
|
51 |
|
|
#include "gdbcore.h"
|
52 |
|
|
#include <fcntl.h>
|
53 |
|
|
#include <sgtty.h>
|
54 |
|
|
#define TERMINAL struct sgttyb
|
55 |
|
|
|
56 |
|
|
#include "gdbcore.h"
|
57 |
|
|
|
58 |
|
|
void
|
59 |
|
|
store_inferior_registers (int regno)
|
60 |
|
|
{
|
61 |
|
|
struct pt_regset regs;
|
62 |
|
|
int i;
|
63 |
|
|
|
64 |
|
|
/* FIXME: Fetching the registers is a kludge to initialize all elements
|
65 |
|
|
in the fpu and fpa status. This works for normal debugging, but
|
66 |
|
|
might cause problems when calling functions in the inferior.
|
67 |
|
|
At least fpu_control and fpa_pcr (probably more) should be added
|
68 |
|
|
to the registers array to solve this properly. */
|
69 |
|
|
mptrace (XPT_RREGS, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regs, 0);
|
70 |
|
|
|
71 |
|
|
regs.pr_eax = *(int *) ®isters[REGISTER_BYTE (0)];
|
72 |
|
|
regs.pr_ebx = *(int *) ®isters[REGISTER_BYTE (5)];
|
73 |
|
|
regs.pr_ecx = *(int *) ®isters[REGISTER_BYTE (2)];
|
74 |
|
|
regs.pr_edx = *(int *) ®isters[REGISTER_BYTE (1)];
|
75 |
|
|
regs.pr_esi = *(int *) ®isters[REGISTER_BYTE (6)];
|
76 |
|
|
regs.pr_edi = *(int *) ®isters[REGISTER_BYTE (7)];
|
77 |
|
|
regs.pr_esp = *(int *) ®isters[REGISTER_BYTE (14)];
|
78 |
|
|
regs.pr_ebp = *(int *) ®isters[REGISTER_BYTE (15)];
|
79 |
|
|
regs.pr_eip = *(int *) ®isters[REGISTER_BYTE (16)];
|
80 |
|
|
regs.pr_flags = *(int *) ®isters[REGISTER_BYTE (17)];
|
81 |
|
|
for (i = 0; i < 31; i++)
|
82 |
|
|
{
|
83 |
|
|
regs.pr_fpa.fpa_regs[i] =
|
84 |
|
|
*(int *) ®isters[REGISTER_BYTE (FP1_REGNUM + i)];
|
85 |
|
|
}
|
86 |
|
|
memcpy (regs.pr_fpu.fpu_stack[0], ®isters[REGISTER_BYTE (ST0_REGNUM)], 10);
|
87 |
|
|
memcpy (regs.pr_fpu.fpu_stack[1], ®isters[REGISTER_BYTE (ST1_REGNUM)], 10);
|
88 |
|
|
memcpy (regs.pr_fpu.fpu_stack[2], ®isters[REGISTER_BYTE (ST2_REGNUM)], 10);
|
89 |
|
|
memcpy (regs.pr_fpu.fpu_stack[3], ®isters[REGISTER_BYTE (ST3_REGNUM)], 10);
|
90 |
|
|
memcpy (regs.pr_fpu.fpu_stack[4], ®isters[REGISTER_BYTE (ST4_REGNUM)], 10);
|
91 |
|
|
memcpy (regs.pr_fpu.fpu_stack[5], ®isters[REGISTER_BYTE (ST5_REGNUM)], 10);
|
92 |
|
|
memcpy (regs.pr_fpu.fpu_stack[6], ®isters[REGISTER_BYTE (ST6_REGNUM)], 10);
|
93 |
|
|
memcpy (regs.pr_fpu.fpu_stack[7], ®isters[REGISTER_BYTE (ST7_REGNUM)], 10);
|
94 |
|
|
mptrace (XPT_WREGS, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regs, 0);
|
95 |
|
|
}
|
96 |
|
|
|
97 |
|
|
void
|
98 |
|
|
fetch_inferior_registers (int regno)
|
99 |
|
|
{
|
100 |
|
|
int i;
|
101 |
|
|
struct pt_regset regs;
|
102 |
|
|
|
103 |
|
|
registers_fetched ();
|
104 |
|
|
|
105 |
|
|
mptrace (XPT_RREGS, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regs, 0);
|
106 |
|
|
*(int *) ®isters[REGISTER_BYTE (EAX_REGNUM)] = regs.pr_eax;
|
107 |
|
|
*(int *) ®isters[REGISTER_BYTE (EBX_REGNUM)] = regs.pr_ebx;
|
108 |
|
|
*(int *) ®isters[REGISTER_BYTE (ECX_REGNUM)] = regs.pr_ecx;
|
109 |
|
|
*(int *) ®isters[REGISTER_BYTE (EDX_REGNUM)] = regs.pr_edx;
|
110 |
|
|
*(int *) ®isters[REGISTER_BYTE (ESI_REGNUM)] = regs.pr_esi;
|
111 |
|
|
*(int *) ®isters[REGISTER_BYTE (EDI_REGNUM)] = regs.pr_edi;
|
112 |
|
|
*(int *) ®isters[REGISTER_BYTE (EBP_REGNUM)] = regs.pr_ebp;
|
113 |
|
|
*(int *) ®isters[REGISTER_BYTE (ESP_REGNUM)] = regs.pr_esp;
|
114 |
|
|
*(int *) ®isters[REGISTER_BYTE (EIP_REGNUM)] = regs.pr_eip;
|
115 |
|
|
*(int *) ®isters[REGISTER_BYTE (EFLAGS_REGNUM)] = regs.pr_flags;
|
116 |
|
|
for (i = 0; i < FPA_NREGS; i++)
|
117 |
|
|
{
|
118 |
|
|
*(int *) ®isters[REGISTER_BYTE (FP1_REGNUM + i)] =
|
119 |
|
|
regs.pr_fpa.fpa_regs[i];
|
120 |
|
|
}
|
121 |
|
|
memcpy (®isters[REGISTER_BYTE (ST0_REGNUM)], regs.pr_fpu.fpu_stack[0], 10);
|
122 |
|
|
memcpy (®isters[REGISTER_BYTE (ST1_REGNUM)], regs.pr_fpu.fpu_stack[1], 10);
|
123 |
|
|
memcpy (®isters[REGISTER_BYTE (ST2_REGNUM)], regs.pr_fpu.fpu_stack[2], 10);
|
124 |
|
|
memcpy (®isters[REGISTER_BYTE (ST3_REGNUM)], regs.pr_fpu.fpu_stack[3], 10);
|
125 |
|
|
memcpy (®isters[REGISTER_BYTE (ST4_REGNUM)], regs.pr_fpu.fpu_stack[4], 10);
|
126 |
|
|
memcpy (®isters[REGISTER_BYTE (ST5_REGNUM)], regs.pr_fpu.fpu_stack[5], 10);
|
127 |
|
|
memcpy (®isters[REGISTER_BYTE (ST6_REGNUM)], regs.pr_fpu.fpu_stack[6], 10);
|
128 |
|
|
memcpy (®isters[REGISTER_BYTE (ST7_REGNUM)], regs.pr_fpu.fpu_stack[7], 10);
|
129 |
|
|
}
|
130 |
|
|
|
131 |
|
|
/* FIXME: This should be merged with i387-tdep.c as well. */
|
132 |
|
|
static
|
133 |
|
|
print_fpu_status (struct pt_regset ep)
|
134 |
|
|
{
|
135 |
|
|
int i;
|
136 |
|
|
int bothstatus;
|
137 |
|
|
int top;
|
138 |
|
|
int fpreg;
|
139 |
|
|
unsigned char *p;
|
140 |
|
|
|
141 |
|
|
printf_unfiltered ("80387:");
|
142 |
|
|
if (ep.pr_fpu.fpu_ip == 0)
|
143 |
|
|
{
|
144 |
|
|
printf_unfiltered (" not in use.\n");
|
145 |
|
|
return;
|
146 |
|
|
}
|
147 |
|
|
else
|
148 |
|
|
{
|
149 |
|
|
printf_unfiltered ("\n");
|
150 |
|
|
}
|
151 |
|
|
if (ep.pr_fpu.fpu_status != 0)
|
152 |
|
|
{
|
153 |
|
|
print_387_status_word (ep.pr_fpu.fpu_status);
|
154 |
|
|
}
|
155 |
|
|
print_387_control_word (ep.pr_fpu.fpu_control);
|
156 |
|
|
printf_unfiltered ("last exception: ");
|
157 |
|
|
printf_unfiltered ("opcode 0x%x; ", ep.pr_fpu.fpu_rsvd4);
|
158 |
|
|
printf_unfiltered ("pc 0x%x:0x%x; ", ep.pr_fpu.fpu_cs, ep.pr_fpu.fpu_ip);
|
159 |
|
|
printf_unfiltered ("operand 0x%x:0x%x\n", ep.pr_fpu.fpu_data_offset, ep.pr_fpu.fpu_op_sel);
|
160 |
|
|
|
161 |
|
|
top = (ep.pr_fpu.fpu_status >> 11) & 7;
|
162 |
|
|
|
163 |
|
|
printf_unfiltered ("regno tag msb lsb value\n");
|
164 |
|
|
for (fpreg = 7; fpreg >= 0; fpreg--)
|
165 |
|
|
{
|
166 |
|
|
double val;
|
167 |
|
|
|
168 |
|
|
printf_unfiltered ("%s %d: ", fpreg == top ? "=>" : " ", fpreg);
|
169 |
|
|
|
170 |
|
|
switch ((ep.pr_fpu.fpu_tag >> (fpreg * 2)) & 3)
|
171 |
|
|
{
|
172 |
|
|
case 0:
|
173 |
|
|
printf_unfiltered ("valid ");
|
174 |
|
|
break;
|
175 |
|
|
case 1:
|
176 |
|
|
printf_unfiltered ("zero ");
|
177 |
|
|
break;
|
178 |
|
|
case 2:
|
179 |
|
|
printf_unfiltered ("trap ");
|
180 |
|
|
break;
|
181 |
|
|
case 3:
|
182 |
|
|
printf_unfiltered ("empty ");
|
183 |
|
|
break;
|
184 |
|
|
}
|
185 |
|
|
for (i = 9; i >= 0; i--)
|
186 |
|
|
printf_unfiltered ("%02x", ep.pr_fpu.fpu_stack[fpreg][i]);
|
187 |
|
|
|
188 |
|
|
i387_to_double ((char *) ep.pr_fpu.fpu_stack[fpreg], (char *) &val);
|
189 |
|
|
printf_unfiltered (" %g\n", val);
|
190 |
|
|
}
|
191 |
|
|
if (ep.pr_fpu.fpu_rsvd1)
|
192 |
|
|
warning ("rsvd1 is 0x%x\n", ep.pr_fpu.fpu_rsvd1);
|
193 |
|
|
if (ep.pr_fpu.fpu_rsvd2)
|
194 |
|
|
warning ("rsvd2 is 0x%x\n", ep.pr_fpu.fpu_rsvd2);
|
195 |
|
|
if (ep.pr_fpu.fpu_rsvd3)
|
196 |
|
|
warning ("rsvd3 is 0x%x\n", ep.pr_fpu.fpu_rsvd3);
|
197 |
|
|
if (ep.pr_fpu.fpu_rsvd5)
|
198 |
|
|
warning ("rsvd5 is 0x%x\n", ep.pr_fpu.fpu_rsvd5);
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
|
202 |
|
|
print_1167_control_word (unsigned int pcr)
|
203 |
|
|
{
|
204 |
|
|
int pcr_tmp;
|
205 |
|
|
|
206 |
|
|
pcr_tmp = pcr & FPA_PCR_MODE;
|
207 |
|
|
printf_unfiltered ("\tMODE= %#x; RND= %#x ", pcr_tmp, pcr_tmp & 12);
|
208 |
|
|
switch (pcr_tmp & 12)
|
209 |
|
|
{
|
210 |
|
|
case 0:
|
211 |
|
|
printf_unfiltered ("RN (Nearest Value)");
|
212 |
|
|
break;
|
213 |
|
|
case 1:
|
214 |
|
|
printf_unfiltered ("RZ (Zero)");
|
215 |
|
|
break;
|
216 |
|
|
case 2:
|
217 |
|
|
printf_unfiltered ("RP (Positive Infinity)");
|
218 |
|
|
break;
|
219 |
|
|
case 3:
|
220 |
|
|
printf_unfiltered ("RM (Negative Infinity)");
|
221 |
|
|
break;
|
222 |
|
|
}
|
223 |
|
|
printf_unfiltered ("; IRND= %d ", pcr_tmp & 2);
|
224 |
|
|
if (0 == pcr_tmp & 2)
|
225 |
|
|
{
|
226 |
|
|
printf_unfiltered ("(same as RND)\n");
|
227 |
|
|
}
|
228 |
|
|
else
|
229 |
|
|
{
|
230 |
|
|
printf_unfiltered ("(toward zero)\n");
|
231 |
|
|
}
|
232 |
|
|
pcr_tmp = pcr & FPA_PCR_EM;
|
233 |
|
|
printf_unfiltered ("\tEM= %#x", pcr_tmp);
|
234 |
|
|
if (pcr_tmp & FPA_PCR_EM_DM)
|
235 |
|
|
printf_unfiltered (" DM");
|
236 |
|
|
if (pcr_tmp & FPA_PCR_EM_UOM)
|
237 |
|
|
printf_unfiltered (" UOM");
|
238 |
|
|
if (pcr_tmp & FPA_PCR_EM_PM)
|
239 |
|
|
printf_unfiltered (" PM");
|
240 |
|
|
if (pcr_tmp & FPA_PCR_EM_UM)
|
241 |
|
|
printf_unfiltered (" UM");
|
242 |
|
|
if (pcr_tmp & FPA_PCR_EM_OM)
|
243 |
|
|
printf_unfiltered (" OM");
|
244 |
|
|
if (pcr_tmp & FPA_PCR_EM_ZM)
|
245 |
|
|
printf_unfiltered (" ZM");
|
246 |
|
|
if (pcr_tmp & FPA_PCR_EM_IM)
|
247 |
|
|
printf_unfiltered (" IM");
|
248 |
|
|
printf_unfiltered ("\n");
|
249 |
|
|
pcr_tmp = FPA_PCR_CC;
|
250 |
|
|
printf_unfiltered ("\tCC= %#x", pcr_tmp);
|
251 |
|
|
if (pcr_tmp & FPA_PCR_20MHZ)
|
252 |
|
|
printf_unfiltered (" 20MHZ");
|
253 |
|
|
if (pcr_tmp & FPA_PCR_CC_Z)
|
254 |
|
|
printf_unfiltered (" Z");
|
255 |
|
|
if (pcr_tmp & FPA_PCR_CC_C2)
|
256 |
|
|
printf_unfiltered (" C2");
|
257 |
|
|
|
258 |
|
|
/* Dynix defines FPA_PCR_CC_C0 to 0x100 and ptx defines
|
259 |
|
|
FPA_PCR_CC_C1 to 0x100. Use whichever is defined and assume
|
260 |
|
|
the OS knows what it is doing. */
|
261 |
|
|
#ifdef FPA_PCR_CC_C1
|
262 |
|
|
if (pcr_tmp & FPA_PCR_CC_C1)
|
263 |
|
|
printf_unfiltered (" C1");
|
264 |
|
|
#else
|
265 |
|
|
if (pcr_tmp & FPA_PCR_CC_C0)
|
266 |
|
|
printf_unfiltered (" C0");
|
267 |
|
|
#endif
|
268 |
|
|
|
269 |
|
|
switch (pcr_tmp)
|
270 |
|
|
{
|
271 |
|
|
case FPA_PCR_CC_Z:
|
272 |
|
|
printf_unfiltered (" (Equal)");
|
273 |
|
|
break;
|
274 |
|
|
#ifdef FPA_PCR_CC_C1
|
275 |
|
|
case FPA_PCR_CC_C1:
|
276 |
|
|
#else
|
277 |
|
|
case FPA_PCR_CC_C0:
|
278 |
|
|
#endif
|
279 |
|
|
printf_unfiltered (" (Less than)");
|
280 |
|
|
break;
|
281 |
|
|
case 0:
|
282 |
|
|
printf_unfiltered (" (Greater than)");
|
283 |
|
|
break;
|
284 |
|
|
case FPA_PCR_CC_Z |
|
285 |
|
|
#ifdef FPA_PCR_CC_C1
|
286 |
|
|
FPA_PCR_CC_C1
|
287 |
|
|
#else
|
288 |
|
|
FPA_PCR_CC_C0
|
289 |
|
|
#endif
|
290 |
|
|
| FPA_PCR_CC_C2:
|
291 |
|
|
printf_unfiltered (" (Unordered)");
|
292 |
|
|
break;
|
293 |
|
|
default:
|
294 |
|
|
printf_unfiltered (" (Undefined)");
|
295 |
|
|
break;
|
296 |
|
|
}
|
297 |
|
|
printf_unfiltered ("\n");
|
298 |
|
|
pcr_tmp = pcr & FPA_PCR_AE;
|
299 |
|
|
printf_unfiltered ("\tAE= %#x", pcr_tmp);
|
300 |
|
|
if (pcr_tmp & FPA_PCR_AE_DE)
|
301 |
|
|
printf_unfiltered (" DE");
|
302 |
|
|
if (pcr_tmp & FPA_PCR_AE_UOE)
|
303 |
|
|
printf_unfiltered (" UOE");
|
304 |
|
|
if (pcr_tmp & FPA_PCR_AE_PE)
|
305 |
|
|
printf_unfiltered (" PE");
|
306 |
|
|
if (pcr_tmp & FPA_PCR_AE_UE)
|
307 |
|
|
printf_unfiltered (" UE");
|
308 |
|
|
if (pcr_tmp & FPA_PCR_AE_OE)
|
309 |
|
|
printf_unfiltered (" OE");
|
310 |
|
|
if (pcr_tmp & FPA_PCR_AE_ZE)
|
311 |
|
|
printf_unfiltered (" ZE");
|
312 |
|
|
if (pcr_tmp & FPA_PCR_AE_EE)
|
313 |
|
|
printf_unfiltered (" EE");
|
314 |
|
|
if (pcr_tmp & FPA_PCR_AE_IE)
|
315 |
|
|
printf_unfiltered (" IE");
|
316 |
|
|
printf_unfiltered ("\n");
|
317 |
|
|
}
|
318 |
|
|
|
319 |
|
|
print_1167_regs (long regs[FPA_NREGS])
|
320 |
|
|
{
|
321 |
|
|
int i;
|
322 |
|
|
|
323 |
|
|
union
|
324 |
|
|
{
|
325 |
|
|
double d;
|
326 |
|
|
long l[2];
|
327 |
|
|
}
|
328 |
|
|
xd;
|
329 |
|
|
union
|
330 |
|
|
{
|
331 |
|
|
float f;
|
332 |
|
|
long l;
|
333 |
|
|
}
|
334 |
|
|
xf;
|
335 |
|
|
|
336 |
|
|
|
337 |
|
|
for (i = 0; i < FPA_NREGS; i++)
|
338 |
|
|
{
|
339 |
|
|
xf.l = regs[i];
|
340 |
|
|
printf_unfiltered ("%%fp%d: raw= %#x, single= %f", i + 1, regs[i], xf.f);
|
341 |
|
|
if (!(i & 1))
|
342 |
|
|
{
|
343 |
|
|
printf_unfiltered ("\n");
|
344 |
|
|
}
|
345 |
|
|
else
|
346 |
|
|
{
|
347 |
|
|
xd.l[1] = regs[i];
|
348 |
|
|
xd.l[0] = regs[i + 1];
|
349 |
|
|
printf_unfiltered (", double= %f\n", xd.d);
|
350 |
|
|
}
|
351 |
|
|
}
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
print_fpa_status (struct pt_regset ep)
|
355 |
|
|
{
|
356 |
|
|
|
357 |
|
|
printf_unfiltered ("WTL 1167:");
|
358 |
|
|
if (ep.pr_fpa.fpa_pcr != 0)
|
359 |
|
|
{
|
360 |
|
|
printf_unfiltered ("\n");
|
361 |
|
|
print_1167_control_word (ep.pr_fpa.fpa_pcr);
|
362 |
|
|
print_1167_regs (ep.pr_fpa.fpa_regs);
|
363 |
|
|
}
|
364 |
|
|
else
|
365 |
|
|
{
|
366 |
|
|
printf_unfiltered (" not in use.\n");
|
367 |
|
|
}
|
368 |
|
|
}
|
369 |
|
|
|
370 |
|
|
#if 0 /* disabled because it doesn't go through the target vector. */
|
371 |
|
|
i386_float_info (void)
|
372 |
|
|
{
|
373 |
|
|
char ubuf[UPAGES * NBPG];
|
374 |
|
|
struct pt_regset regset;
|
375 |
|
|
|
376 |
|
|
if (have_inferior_p ())
|
377 |
|
|
{
|
378 |
|
|
PTRACE_READ_REGS (PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regset);
|
379 |
|
|
}
|
380 |
|
|
else
|
381 |
|
|
{
|
382 |
|
|
int corechan = bfd_cache_lookup (core_bfd);
|
383 |
|
|
if (lseek (corechan, 0, 0) < 0)
|
384 |
|
|
{
|
385 |
|
|
perror ("seek on core file");
|
386 |
|
|
}
|
387 |
|
|
if (myread (corechan, ubuf, UPAGES * NBPG) < 0)
|
388 |
|
|
{
|
389 |
|
|
perror ("read on core file");
|
390 |
|
|
}
|
391 |
|
|
/* only interested in the floating point registers */
|
392 |
|
|
regset.pr_fpu = ((struct user *) ubuf)->u_fpusave;
|
393 |
|
|
regset.pr_fpa = ((struct user *) ubuf)->u_fpasave;
|
394 |
|
|
}
|
395 |
|
|
print_fpu_status (regset);
|
396 |
|
|
print_fpa_status (regset);
|
397 |
|
|
}
|
398 |
|
|
#endif
|
399 |
|
|
|
400 |
|
|
static volatile int got_sigchld;
|
401 |
|
|
|
402 |
|
|
/*ARGSUSED */
|
403 |
|
|
/* This will eventually be more interesting. */
|
404 |
|
|
void
|
405 |
|
|
sigchld_handler (int signo)
|
406 |
|
|
{
|
407 |
|
|
got_sigchld++;
|
408 |
|
|
}
|
409 |
|
|
|
410 |
|
|
/*
|
411 |
|
|
* Signals for which the default action does not cause the process
|
412 |
|
|
* to die. See <sys/signal.h> for where this came from (alas, we
|
413 |
|
|
* can't use those macros directly)
|
414 |
|
|
*/
|
415 |
|
|
#ifndef sigmask
|
416 |
|
|
#define sigmask(s) (1 << ((s) - 1))
|
417 |
|
|
#endif
|
418 |
|
|
#define SIGNALS_DFL_SAFE sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
|
419 |
|
|
sigmask(SIGTTIN) | sigmask(SIGTTOU) | sigmask(SIGCHLD) | \
|
420 |
|
|
sigmask(SIGCONT) | sigmask(SIGWINCH) | sigmask(SIGPWR) | \
|
421 |
|
|
sigmask(SIGURG) | sigmask(SIGPOLL)
|
422 |
|
|
|
423 |
|
|
#ifdef ATTACH_DETACH
|
424 |
|
|
/*
|
425 |
|
|
* Thanks to XPT_MPDEBUGGER, we have to mange child_wait().
|
426 |
|
|
*/
|
427 |
|
|
ptid_t
|
428 |
|
|
child_wait (ptid_t ptid, struct target_waitstatus *status)
|
429 |
|
|
{
|
430 |
|
|
int save_errno, rv, xvaloff, saoff, sa_hand;
|
431 |
|
|
struct pt_stop pt;
|
432 |
|
|
struct user u;
|
433 |
|
|
sigset_t set;
|
434 |
|
|
/* Host signal number for a signal which the inferior terminates with, or
|
435 |
|
|
|
436 |
|
|
static int death_by_signal = 0;
|
437 |
|
|
#ifdef SVR4_SHARED_LIBS /* use this to distinguish ptx 2 vs ptx 4 */
|
438 |
|
|
prstatus_t pstatus;
|
439 |
|
|
#endif
|
440 |
|
|
int pid = PIDGET (ptid);
|
441 |
|
|
|
442 |
|
|
do
|
443 |
|
|
{
|
444 |
|
|
set_sigint_trap (); /* Causes SIGINT to be passed on to the
|
445 |
|
|
attached process. */
|
446 |
|
|
save_errno = errno;
|
447 |
|
|
|
448 |
|
|
got_sigchld = 0;
|
449 |
|
|
|
450 |
|
|
sigemptyset (&set);
|
451 |
|
|
|
452 |
|
|
while (got_sigchld == 0)
|
453 |
|
|
{
|
454 |
|
|
sigsuspend (&set);
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
clear_sigint_trap ();
|
458 |
|
|
|
459 |
|
|
rv = mptrace (XPT_STOPSTAT, 0, (char *) &pt, 0);
|
460 |
|
|
if (-1 == rv)
|
461 |
|
|
{
|
462 |
|
|
printf ("XPT_STOPSTAT: errno %d\n", errno); /* DEBUG */
|
463 |
|
|
continue;
|
464 |
|
|
}
|
465 |
|
|
|
466 |
|
|
pid = pt.ps_pid;
|
467 |
|
|
|
468 |
|
|
if (pid != PIDGET (inferior_ptid))
|
469 |
|
|
{
|
470 |
|
|
/* NOTE: the mystery fork in csh/tcsh needs to be ignored.
|
471 |
|
|
* We should not return new children for the initial run
|
472 |
|
|
* of a process until it has done the exec.
|
473 |
|
|
*/
|
474 |
|
|
/* inferior probably forked; send it on its way */
|
475 |
|
|
rv = mptrace (XPT_UNDEBUG, pid, 0, 0);
|
476 |
|
|
if (-1 == rv)
|
477 |
|
|
{
|
478 |
|
|
printf ("child_wait: XPT_UNDEBUG: pid %d: %s\n", pid,
|
479 |
|
|
safe_strerror (errno));
|
480 |
|
|
}
|
481 |
|
|
continue;
|
482 |
|
|
}
|
483 |
|
|
/* FIXME: Do we deal with fork notification correctly? */
|
484 |
|
|
switch (pt.ps_reason)
|
485 |
|
|
{
|
486 |
|
|
case PTS_FORK:
|
487 |
|
|
/* multi proc: treat like PTS_EXEC */
|
488 |
|
|
/*
|
489 |
|
|
* Pretend this didn't happen, since gdb isn't set up
|
490 |
|
|
* to deal with stops on fork.
|
491 |
|
|
*/
|
492 |
|
|
rv = ptrace (PT_CONTSIG, pid, 1, 0);
|
493 |
|
|
if (-1 == rv)
|
494 |
|
|
{
|
495 |
|
|
printf ("PTS_FORK: PT_CONTSIG: error %d\n", errno);
|
496 |
|
|
}
|
497 |
|
|
continue;
|
498 |
|
|
case PTS_EXEC:
|
499 |
|
|
/*
|
500 |
|
|
* Pretend this is a SIGTRAP.
|
501 |
|
|
*/
|
502 |
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
503 |
|
|
status->value.sig = TARGET_SIGNAL_TRAP;
|
504 |
|
|
break;
|
505 |
|
|
case PTS_EXIT:
|
506 |
|
|
/*
|
507 |
|
|
* Note: we stop before the exit actually occurs. Extract
|
508 |
|
|
* the exit code from the uarea. If we're stopped in the
|
509 |
|
|
* exit() system call, the exit code will be in
|
510 |
|
|
* u.u_ap[0]. An exit due to an uncaught signal will have
|
511 |
|
|
* something else in here, see the comment in the default:
|
512 |
|
|
* case, below. Finally,let the process exit.
|
513 |
|
|
*/
|
514 |
|
|
if (death_by_signal)
|
515 |
|
|
{
|
516 |
|
|
status->kind = TARGET_WAITKIND_SIGNALED;
|
517 |
|
|
status->value.sig = target_signal_from_host (death_by_signal);
|
518 |
|
|
death_by_signal = 0;
|
519 |
|
|
break;
|
520 |
|
|
}
|
521 |
|
|
xvaloff = (unsigned long) &u.u_ap[0] - (unsigned long) &u;
|
522 |
|
|
errno = 0;
|
523 |
|
|
rv = ptrace (PT_RUSER, pid, (char *) xvaloff, 0);
|
524 |
|
|
status->kind = TARGET_WAITKIND_EXITED;
|
525 |
|
|
status->value.integer = rv;
|
526 |
|
|
/*
|
527 |
|
|
* addr & data to mptrace() don't matter here, since
|
528 |
|
|
* the process is already dead.
|
529 |
|
|
*/
|
530 |
|
|
rv = mptrace (XPT_UNDEBUG, pid, 0, 0);
|
531 |
|
|
if (-1 == rv)
|
532 |
|
|
{
|
533 |
|
|
printf ("child_wait: PTS_EXIT: XPT_UNDEBUG: pid %d error %d\n", pid,
|
534 |
|
|
errno);
|
535 |
|
|
}
|
536 |
|
|
break;
|
537 |
|
|
case PTS_WATCHPT_HIT:
|
538 |
|
|
internal_error (__FILE__, __LINE__,
|
539 |
|
|
"PTS_WATCHPT_HIT\n");
|
540 |
|
|
break;
|
541 |
|
|
default:
|
542 |
|
|
/* stopped by signal */
|
543 |
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
544 |
|
|
status->value.sig = target_signal_from_host (pt.ps_reason);
|
545 |
|
|
death_by_signal = 0;
|
546 |
|
|
|
547 |
|
|
if (0 == (SIGNALS_DFL_SAFE & sigmask (pt.ps_reason)))
|
548 |
|
|
{
|
549 |
|
|
break;
|
550 |
|
|
}
|
551 |
|
|
/* else default action of signal is to die */
|
552 |
|
|
#ifdef SVR4_SHARED_LIBS
|
553 |
|
|
rv = ptrace (PT_GET_PRSTATUS, pid, (char *) &pstatus, 0);
|
554 |
|
|
if (-1 == rv)
|
555 |
|
|
error ("child_wait: signal %d PT_GET_PRSTATUS: %s\n",
|
556 |
|
|
pt.ps_reason, safe_strerror (errno));
|
557 |
|
|
if (pstatus.pr_cursig != pt.ps_reason)
|
558 |
|
|
{
|
559 |
|
|
printf ("pstatus signal %d, pt signal %d\n",
|
560 |
|
|
pstatus.pr_cursig, pt.ps_reason);
|
561 |
|
|
}
|
562 |
|
|
sa_hand = (int) pstatus.pr_action.sa_handler;
|
563 |
|
|
#else
|
564 |
|
|
saoff = (unsigned long) &u.u_sa[0] - (unsigned long) &u;
|
565 |
|
|
saoff += sizeof (struct sigaction) * (pt.ps_reason - 1);
|
566 |
|
|
errno = 0;
|
567 |
|
|
sa_hand = ptrace (PT_RUSER, pid, (char *) saoff, 0);
|
568 |
|
|
if (errno)
|
569 |
|
|
error ("child_wait: signal %d: RUSER: %s\n",
|
570 |
|
|
pt.ps_reason, safe_strerror (errno));
|
571 |
|
|
#endif
|
572 |
|
|
if ((int) SIG_DFL == sa_hand)
|
573 |
|
|
{
|
574 |
|
|
/* we will be dying */
|
575 |
|
|
death_by_signal = pt.ps_reason;
|
576 |
|
|
}
|
577 |
|
|
break;
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
}
|
581 |
|
|
while (pid != PIDGET (inferior_ptid)); /* Some other child died or stopped */
|
582 |
|
|
|
583 |
|
|
return pid_to_ptid (pid);
|
584 |
|
|
}
|
585 |
|
|
#else /* !ATTACH_DETACH */
|
586 |
|
|
/*
|
587 |
|
|
* Simple child_wait() based on inftarg.c child_wait() for use until
|
588 |
|
|
* the MPDEBUGGER child_wait() works properly. This will go away when
|
589 |
|
|
* that is fixed.
|
590 |
|
|
*/
|
591 |
|
|
ptid_t
|
592 |
|
|
child_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
|
593 |
|
|
{
|
594 |
|
|
int save_errno;
|
595 |
|
|
int status;
|
596 |
|
|
int pid = PIDGET (ptid);
|
597 |
|
|
|
598 |
|
|
do
|
599 |
|
|
{
|
600 |
|
|
pid = wait (&status);
|
601 |
|
|
save_errno = errno;
|
602 |
|
|
|
603 |
|
|
if (pid == -1)
|
604 |
|
|
{
|
605 |
|
|
if (save_errno == EINTR)
|
606 |
|
|
continue;
|
607 |
|
|
fprintf (stderr, "Child process unexpectedly missing: %s.\n",
|
608 |
|
|
safe_strerror (save_errno));
|
609 |
|
|
ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
|
610 |
|
|
ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
|
611 |
|
|
return pid_to_ptid (-1);
|
612 |
|
|
}
|
613 |
|
|
}
|
614 |
|
|
while (pid != PIDGET (inferior_ptid)); /* Some other child died or stopped */
|
615 |
|
|
store_waitstatus (ourstatus, status);
|
616 |
|
|
return pid_to_ptid (pid);
|
617 |
|
|
}
|
618 |
|
|
#endif /* ATTACH_DETACH */
|
619 |
|
|
|
620 |
|
|
|
621 |
|
|
|
622 |
|
|
/* This function simply calls ptrace with the given arguments.
|
623 |
|
|
It exists so that all calls to ptrace are isolated in this
|
624 |
|
|
machine-dependent file. */
|
625 |
|
|
int
|
626 |
|
|
call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
|
627 |
|
|
{
|
628 |
|
|
return ptrace (request, pid, addr, data);
|
629 |
|
|
}
|
630 |
|
|
|
631 |
|
|
int
|
632 |
|
|
call_mptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
|
633 |
|
|
{
|
634 |
|
|
return mptrace (request, pid, addr, data);
|
635 |
|
|
}
|
636 |
|
|
|
637 |
|
|
#if defined (DEBUG_PTRACE)
|
638 |
|
|
/* For the rest of the file, use an extra level of indirection */
|
639 |
|
|
/* This lets us breakpoint usefully on call_ptrace. */
|
640 |
|
|
#define ptrace call_ptrace
|
641 |
|
|
#define mptrace call_mptrace
|
642 |
|
|
#endif
|
643 |
|
|
|
644 |
|
|
void
|
645 |
|
|
kill_inferior (void)
|
646 |
|
|
{
|
647 |
|
|
if (ptid_equal (inferior_ptid, null_ptid))
|
648 |
|
|
return;
|
649 |
|
|
|
650 |
|
|
/* For MPDEBUGGER, don't use PT_KILL, since the child will stop
|
651 |
|
|
again with a PTS_EXIT. Just hit him with SIGKILL (so he stops)
|
652 |
|
|
and detach. */
|
653 |
|
|
|
654 |
|
|
kill (PIDGET (inferior_ptid), SIGKILL);
|
655 |
|
|
#ifdef ATTACH_DETACH
|
656 |
|
|
detach (SIGKILL);
|
657 |
|
|
#else /* ATTACH_DETACH */
|
658 |
|
|
ptrace (PT_KILL, PIDGET (inferior_ptid), 0, 0);
|
659 |
|
|
wait ((int *) NULL);
|
660 |
|
|
#endif /* ATTACH_DETACH */
|
661 |
|
|
target_mourn_inferior ();
|
662 |
|
|
}
|
663 |
|
|
|
664 |
|
|
/* Resume execution of the inferior process.
|
665 |
|
|
If STEP is nonzero, single-step it.
|
666 |
|
|
If SIGNAL is nonzero, give it that signal. */
|
667 |
|
|
|
668 |
|
|
void
|
669 |
|
|
child_resume (ptid_t ptid, int step, enum target_signal signal)
|
670 |
|
|
{
|
671 |
|
|
int pid = PIDGET (ptid);
|
672 |
|
|
|
673 |
|
|
errno = 0;
|
674 |
|
|
|
675 |
|
|
if (pid == -1)
|
676 |
|
|
pid = PIDGET (inferior_ptid);
|
677 |
|
|
|
678 |
|
|
/* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
|
679 |
|
|
it was. (If GDB wanted it to start some other way, we have already
|
680 |
|
|
written a new PC value to the child.)
|
681 |
|
|
|
682 |
|
|
If this system does not support PT_SSTEP, a higher level function will
|
683 |
|
|
have called single_step() to transmute the step request into a
|
684 |
|
|
continue request (by setting breakpoints on all possible successor
|
685 |
|
|
instructions), so we don't have to worry about that here. */
|
686 |
|
|
|
687 |
|
|
if (step)
|
688 |
|
|
ptrace (PT_SSTEP, pid, (PTRACE_ARG3_TYPE) 1, signal);
|
689 |
|
|
else
|
690 |
|
|
ptrace (PT_CONTSIG, pid, (PTRACE_ARG3_TYPE) 1, signal);
|
691 |
|
|
|
692 |
|
|
if (errno)
|
693 |
|
|
perror_with_name ("ptrace");
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
#ifdef ATTACH_DETACH
|
697 |
|
|
/* Start debugging the process whose number is PID. */
|
698 |
|
|
int
|
699 |
|
|
attach (int pid)
|
700 |
|
|
{
|
701 |
|
|
sigset_t set;
|
702 |
|
|
int rv;
|
703 |
|
|
|
704 |
|
|
rv = mptrace (XPT_DEBUG, pid, 0, 0);
|
705 |
|
|
if (-1 == rv)
|
706 |
|
|
{
|
707 |
|
|
error ("mptrace(XPT_DEBUG): %s", safe_strerror (errno));
|
708 |
|
|
}
|
709 |
|
|
rv = mptrace (XPT_SIGNAL, pid, 0, SIGSTOP);
|
710 |
|
|
if (-1 == rv)
|
711 |
|
|
{
|
712 |
|
|
error ("mptrace(XPT_SIGNAL): %s", safe_strerror (errno));
|
713 |
|
|
}
|
714 |
|
|
attach_flag = 1;
|
715 |
|
|
return pid;
|
716 |
|
|
}
|
717 |
|
|
|
718 |
|
|
void
|
719 |
|
|
detach (int signo)
|
720 |
|
|
{
|
721 |
|
|
int rv;
|
722 |
|
|
|
723 |
|
|
rv = mptrace (XPT_UNDEBUG, PIDGET (inferior_ptid), 1, signo);
|
724 |
|
|
if (-1 == rv)
|
725 |
|
|
{
|
726 |
|
|
error ("mptrace(XPT_UNDEBUG): %s", safe_strerror (errno));
|
727 |
|
|
}
|
728 |
|
|
attach_flag = 0;
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
#endif /* ATTACH_DETACH */
|
732 |
|
|
|
733 |
|
|
/* Default the type of the ptrace transfer to int. */
|
734 |
|
|
#ifndef PTRACE_XFER_TYPE
|
735 |
|
|
#define PTRACE_XFER_TYPE int
|
736 |
|
|
#endif
|
737 |
|
|
|
738 |
|
|
|
739 |
|
|
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
|
740 |
|
|
in the NEW_SUN_PTRACE case.
|
741 |
|
|
It ought to be straightforward. But it appears that writing did
|
742 |
|
|
not write the data that I specified. I cannot understand where
|
743 |
|
|
it got the data that it actually did write. */
|
744 |
|
|
|
745 |
|
|
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
|
746 |
|
|
to debugger memory starting at MYADDR. Copy to inferior if
|
747 |
|
|
WRITE is nonzero. TARGET is ignored.
|
748 |
|
|
|
749 |
|
|
Returns the length copied, which is either the LEN argument or zero.
|
750 |
|
|
This xfer function does not do partial moves, since child_ops
|
751 |
|
|
doesn't allow memory operations to cross below us in the target stack
|
752 |
|
|
anyway. */
|
753 |
|
|
|
754 |
|
|
int
|
755 |
|
|
child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
|
756 |
|
|
struct mem_attrib *attrib,
|
757 |
|
|
struct target_ops *target)
|
758 |
|
|
{
|
759 |
|
|
register int i;
|
760 |
|
|
/* Round starting address down to longword boundary. */
|
761 |
|
|
register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
|
762 |
|
|
/* Round ending address up; get number of longwords that makes. */
|
763 |
|
|
register int count
|
764 |
|
|
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
|
765 |
|
|
/ sizeof (PTRACE_XFER_TYPE);
|
766 |
|
|
/* Allocate buffer of that many longwords. */
|
767 |
|
|
/* FIXME (alloca): This code, cloned from infptrace.c, is unsafe
|
768 |
|
|
because it uses alloca to allocate a buffer of arbitrary size.
|
769 |
|
|
For very large xfers, this could crash GDB's stack. */
|
770 |
|
|
register PTRACE_XFER_TYPE *buffer
|
771 |
|
|
= (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
|
772 |
|
|
|
773 |
|
|
if (write)
|
774 |
|
|
{
|
775 |
|
|
/* Fill start and end extra bytes of buffer with existing memory data. */
|
776 |
|
|
|
777 |
|
|
if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
|
778 |
|
|
{
|
779 |
|
|
/* Need part of initial word -- fetch it. */
|
780 |
|
|
buffer[0] = ptrace (PT_RTEXT, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) addr,
|
781 |
|
|
0);
|
782 |
|
|
}
|
783 |
|
|
|
784 |
|
|
if (count > 1) /* FIXME, avoid if even boundary */
|
785 |
|
|
{
|
786 |
|
|
buffer[count - 1]
|
787 |
|
|
= ptrace (PT_RTEXT, PIDGET (inferior_ptid),
|
788 |
|
|
((PTRACE_ARG3_TYPE)
|
789 |
|
|
(addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
|
790 |
|
|
0);
|
791 |
|
|
}
|
792 |
|
|
|
793 |
|
|
/* Copy data to be written over corresponding part of buffer */
|
794 |
|
|
|
795 |
|
|
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
796 |
|
|
myaddr,
|
797 |
|
|
len);
|
798 |
|
|
|
799 |
|
|
/* Write the entire buffer. */
|
800 |
|
|
|
801 |
|
|
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
802 |
|
|
{
|
803 |
|
|
errno = 0;
|
804 |
|
|
ptrace (PT_WDATA, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) addr,
|
805 |
|
|
buffer[i]);
|
806 |
|
|
if (errno)
|
807 |
|
|
{
|
808 |
|
|
/* Using the appropriate one (I or D) is necessary for
|
809 |
|
|
Gould NP1, at least. */
|
810 |
|
|
errno = 0;
|
811 |
|
|
ptrace (PT_WTEXT, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) addr,
|
812 |
|
|
buffer[i]);
|
813 |
|
|
}
|
814 |
|
|
if (errno)
|
815 |
|
|
return 0;
|
816 |
|
|
}
|
817 |
|
|
}
|
818 |
|
|
else
|
819 |
|
|
{
|
820 |
|
|
/* Read all the longwords */
|
821 |
|
|
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
822 |
|
|
{
|
823 |
|
|
errno = 0;
|
824 |
|
|
buffer[i] = ptrace (PT_RTEXT, PIDGET (inferior_ptid),
|
825 |
|
|
(PTRACE_ARG3_TYPE) addr, 0);
|
826 |
|
|
if (errno)
|
827 |
|
|
return 0;
|
828 |
|
|
QUIT;
|
829 |
|
|
}
|
830 |
|
|
|
831 |
|
|
/* Copy appropriate bytes out of the buffer. */
|
832 |
|
|
memcpy (myaddr,
|
833 |
|
|
(char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
834 |
|
|
len);
|
835 |
|
|
}
|
836 |
|
|
return len;
|
837 |
|
|
}
|
838 |
|
|
|
839 |
|
|
|
840 |
|
|
void
|
841 |
|
|
_initialize_symm_nat (void)
|
842 |
|
|
{
|
843 |
|
|
#ifdef ATTACH_DETACH
|
844 |
|
|
/*
|
845 |
|
|
* the MPDEBUGGER is necessary for process tree debugging and attach
|
846 |
|
|
* to work, but it alters the behavior of debugged processes, so other
|
847 |
|
|
* things (at least child_wait()) will have to change to accomodate
|
848 |
|
|
* that.
|
849 |
|
|
*
|
850 |
|
|
* Note that attach is not implemented in dynix 3, and not in ptx
|
851 |
|
|
* until version 2.1 of the OS.
|
852 |
|
|
*/
|
853 |
|
|
int rv;
|
854 |
|
|
sigset_t set;
|
855 |
|
|
struct sigaction sact;
|
856 |
|
|
|
857 |
|
|
rv = mptrace (XPT_MPDEBUGGER, 0, 0, 0);
|
858 |
|
|
if (-1 == rv)
|
859 |
|
|
{
|
860 |
|
|
internal_error (__FILE__, __LINE__,
|
861 |
|
|
"_initialize_symm_nat(): mptrace(XPT_MPDEBUGGER): %s",
|
862 |
|
|
safe_strerror (errno));
|
863 |
|
|
}
|
864 |
|
|
|
865 |
|
|
/*
|
866 |
|
|
* Under MPDEBUGGER, we get SIGCLHD when a traced process does
|
867 |
|
|
* anything of interest.
|
868 |
|
|
*/
|
869 |
|
|
|
870 |
|
|
/*
|
871 |
|
|
* Block SIGCHLD. We leave it blocked all the time, and then
|
872 |
|
|
* call sigsuspend() in child_wait() to wait for the child
|
873 |
|
|
* to do something. None of these ought to fail, but check anyway.
|
874 |
|
|
*/
|
875 |
|
|
sigemptyset (&set);
|
876 |
|
|
rv = sigaddset (&set, SIGCHLD);
|
877 |
|
|
if (-1 == rv)
|
878 |
|
|
{
|
879 |
|
|
internal_error (__FILE__, __LINE__,
|
880 |
|
|
"_initialize_symm_nat(): sigaddset(SIGCHLD): %s",
|
881 |
|
|
safe_strerror (errno));
|
882 |
|
|
}
|
883 |
|
|
rv = sigprocmask (SIG_BLOCK, &set, (sigset_t *) NULL);
|
884 |
|
|
if (-1 == rv)
|
885 |
|
|
{
|
886 |
|
|
internal_error (__FILE__, __LINE__,
|
887 |
|
|
"_initialize_symm_nat(): sigprocmask(SIG_BLOCK): %s",
|
888 |
|
|
safe_strerror (errno));
|
889 |
|
|
}
|
890 |
|
|
|
891 |
|
|
sact.sa_handler = sigchld_handler;
|
892 |
|
|
sigemptyset (&sact.sa_mask);
|
893 |
|
|
sact.sa_flags = SA_NOCLDWAIT; /* keep the zombies away */
|
894 |
|
|
rv = sigaction (SIGCHLD, &sact, (struct sigaction *) NULL);
|
895 |
|
|
if (-1 == rv)
|
896 |
|
|
{
|
897 |
|
|
internal_error (__FILE__, __LINE__,
|
898 |
|
|
"_initialize_symm_nat(): sigaction(SIGCHLD): %s",
|
899 |
|
|
safe_strerror (errno));
|
900 |
|
|
}
|
901 |
|
|
#endif
|
902 |
|
|
}
|