1 |
1181 |
sfurman |
/* Perform non-arithmetic operations on values, for GDB.
|
2 |
|
|
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
|
3 |
|
|
1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program; if not, write to the Free Software
|
20 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
21 |
|
|
Boston, MA 02111-1307, USA. */
|
22 |
|
|
|
23 |
|
|
#include "defs.h"
|
24 |
|
|
#include "symtab.h"
|
25 |
|
|
#include "gdbtypes.h"
|
26 |
|
|
#include "value.h"
|
27 |
|
|
#include "frame.h"
|
28 |
|
|
#include "inferior.h"
|
29 |
|
|
#include "gdbcore.h"
|
30 |
|
|
#include "target.h"
|
31 |
|
|
#include "demangle.h"
|
32 |
|
|
#include "language.h"
|
33 |
|
|
#include "gdbcmd.h"
|
34 |
|
|
#include "regcache.h"
|
35 |
|
|
#include "cp-abi.h"
|
36 |
|
|
|
37 |
|
|
#include <errno.h>
|
38 |
|
|
#include "gdb_string.h"
|
39 |
|
|
#include "gdb_assert.h"
|
40 |
|
|
|
41 |
|
|
/* Flag indicating HP compilers were used; needed to correctly handle some
|
42 |
|
|
value operations with HP aCC code/runtime. */
|
43 |
|
|
extern int hp_som_som_object_present;
|
44 |
|
|
|
45 |
|
|
extern int overload_debug;
|
46 |
|
|
/* Local functions. */
|
47 |
|
|
|
48 |
|
|
static int typecmp (int staticp, int varargs, int nargs,
|
49 |
|
|
struct field t1[], struct value *t2[]);
|
50 |
|
|
|
51 |
|
|
static CORE_ADDR find_function_addr (struct value *, struct type **);
|
52 |
|
|
static struct value *value_arg_coerce (struct value *, struct type *, int);
|
53 |
|
|
|
54 |
|
|
|
55 |
|
|
static CORE_ADDR value_push (CORE_ADDR, struct value *);
|
56 |
|
|
|
57 |
|
|
static struct value *search_struct_field (char *, struct value *, int,
|
58 |
|
|
struct type *, int);
|
59 |
|
|
|
60 |
|
|
static struct value *search_struct_method (char *, struct value **,
|
61 |
|
|
struct value **,
|
62 |
|
|
int, int *, struct type *);
|
63 |
|
|
|
64 |
|
|
static int check_field_in (struct type *, const char *);
|
65 |
|
|
|
66 |
|
|
static CORE_ADDR allocate_space_in_inferior (int);
|
67 |
|
|
|
68 |
|
|
static struct value *cast_into_complex (struct type *, struct value *);
|
69 |
|
|
|
70 |
|
|
static struct fn_field *find_method_list (struct value ** argp, char *method,
|
71 |
|
|
int offset,
|
72 |
|
|
struct type *type, int *num_fns,
|
73 |
|
|
struct type **basetype,
|
74 |
|
|
int *boffset);
|
75 |
|
|
|
76 |
|
|
void _initialize_valops (void);
|
77 |
|
|
|
78 |
|
|
/* Flag for whether we want to abandon failed expression evals by default. */
|
79 |
|
|
|
80 |
|
|
#if 0
|
81 |
|
|
static int auto_abandon = 0;
|
82 |
|
|
#endif
|
83 |
|
|
|
84 |
|
|
int overload_resolution = 0;
|
85 |
|
|
|
86 |
|
|
/* This boolean tells what gdb should do if a signal is received while in
|
87 |
|
|
a function called from gdb (call dummy). If set, gdb unwinds the stack
|
88 |
|
|
and restore the context to what as it was before the call.
|
89 |
|
|
The default is to stop in the frame where the signal was received. */
|
90 |
|
|
|
91 |
|
|
int unwind_on_signal_p = 0;
|
92 |
|
|
|
93 |
|
|
|
94 |
|
|
|
95 |
|
|
/* Find the address of function name NAME in the inferior. */
|
96 |
|
|
|
97 |
|
|
struct value *
|
98 |
|
|
find_function_in_inferior (char *name)
|
99 |
|
|
{
|
100 |
|
|
register struct symbol *sym;
|
101 |
|
|
sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
|
102 |
|
|
if (sym != NULL)
|
103 |
|
|
{
|
104 |
|
|
if (SYMBOL_CLASS (sym) != LOC_BLOCK)
|
105 |
|
|
{
|
106 |
|
|
error ("\"%s\" exists in this program but is not a function.",
|
107 |
|
|
name);
|
108 |
|
|
}
|
109 |
|
|
return value_of_variable (sym, NULL);
|
110 |
|
|
}
|
111 |
|
|
else
|
112 |
|
|
{
|
113 |
|
|
struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
|
114 |
|
|
if (msymbol != NULL)
|
115 |
|
|
{
|
116 |
|
|
struct type *type;
|
117 |
|
|
CORE_ADDR maddr;
|
118 |
|
|
type = lookup_pointer_type (builtin_type_char);
|
119 |
|
|
type = lookup_function_type (type);
|
120 |
|
|
type = lookup_pointer_type (type);
|
121 |
|
|
maddr = SYMBOL_VALUE_ADDRESS (msymbol);
|
122 |
|
|
return value_from_pointer (type, maddr);
|
123 |
|
|
}
|
124 |
|
|
else
|
125 |
|
|
{
|
126 |
|
|
if (!target_has_execution)
|
127 |
|
|
error ("evaluation of this expression requires the target program to be active");
|
128 |
|
|
else
|
129 |
|
|
error ("evaluation of this expression requires the program to have a function \"%s\".", name);
|
130 |
|
|
}
|
131 |
|
|
}
|
132 |
|
|
}
|
133 |
|
|
|
134 |
|
|
/* Allocate NBYTES of space in the inferior using the inferior's malloc
|
135 |
|
|
and return a value that is a pointer to the allocated space. */
|
136 |
|
|
|
137 |
|
|
struct value *
|
138 |
|
|
value_allocate_space_in_inferior (int len)
|
139 |
|
|
{
|
140 |
|
|
struct value *blocklen;
|
141 |
|
|
struct value *val = find_function_in_inferior ("malloc");
|
142 |
|
|
|
143 |
|
|
blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
|
144 |
|
|
val = call_function_by_hand (val, 1, &blocklen);
|
145 |
|
|
if (value_logical_not (val))
|
146 |
|
|
{
|
147 |
|
|
if (!target_has_execution)
|
148 |
|
|
error ("No memory available to program now: you need to start the target first");
|
149 |
|
|
else
|
150 |
|
|
error ("No memory available to program: call to malloc failed");
|
151 |
|
|
}
|
152 |
|
|
return val;
|
153 |
|
|
}
|
154 |
|
|
|
155 |
|
|
static CORE_ADDR
|
156 |
|
|
allocate_space_in_inferior (int len)
|
157 |
|
|
{
|
158 |
|
|
return value_as_long (value_allocate_space_in_inferior (len));
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
/* Cast value ARG2 to type TYPE and return as a value.
|
162 |
|
|
More general than a C cast: accepts any two types of the same length,
|
163 |
|
|
and if ARG2 is an lvalue it can be cast into anything at all. */
|
164 |
|
|
/* In C++, casts may change pointer or object representations. */
|
165 |
|
|
|
166 |
|
|
struct value *
|
167 |
|
|
value_cast (struct type *type, struct value *arg2)
|
168 |
|
|
{
|
169 |
|
|
register enum type_code code1;
|
170 |
|
|
register enum type_code code2;
|
171 |
|
|
register int scalar;
|
172 |
|
|
struct type *type2;
|
173 |
|
|
|
174 |
|
|
int convert_to_boolean = 0;
|
175 |
|
|
|
176 |
|
|
if (VALUE_TYPE (arg2) == type)
|
177 |
|
|
return arg2;
|
178 |
|
|
|
179 |
|
|
CHECK_TYPEDEF (type);
|
180 |
|
|
code1 = TYPE_CODE (type);
|
181 |
|
|
COERCE_REF (arg2);
|
182 |
|
|
type2 = check_typedef (VALUE_TYPE (arg2));
|
183 |
|
|
|
184 |
|
|
/* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
|
185 |
|
|
is treated like a cast to (TYPE [N])OBJECT,
|
186 |
|
|
where N is sizeof(OBJECT)/sizeof(TYPE). */
|
187 |
|
|
if (code1 == TYPE_CODE_ARRAY)
|
188 |
|
|
{
|
189 |
|
|
struct type *element_type = TYPE_TARGET_TYPE (type);
|
190 |
|
|
unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
|
191 |
|
|
if (element_length > 0
|
192 |
|
|
&& TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
|
193 |
|
|
{
|
194 |
|
|
struct type *range_type = TYPE_INDEX_TYPE (type);
|
195 |
|
|
int val_length = TYPE_LENGTH (type2);
|
196 |
|
|
LONGEST low_bound, high_bound, new_length;
|
197 |
|
|
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
|
198 |
|
|
low_bound = 0, high_bound = 0;
|
199 |
|
|
new_length = val_length / element_length;
|
200 |
|
|
if (val_length % element_length != 0)
|
201 |
|
|
warning ("array element type size does not divide object size in cast");
|
202 |
|
|
/* FIXME-type-allocation: need a way to free this type when we are
|
203 |
|
|
done with it. */
|
204 |
|
|
range_type = create_range_type ((struct type *) NULL,
|
205 |
|
|
TYPE_TARGET_TYPE (range_type),
|
206 |
|
|
low_bound,
|
207 |
|
|
new_length + low_bound - 1);
|
208 |
|
|
VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
|
209 |
|
|
element_type, range_type);
|
210 |
|
|
return arg2;
|
211 |
|
|
}
|
212 |
|
|
}
|
213 |
|
|
|
214 |
|
|
if (current_language->c_style_arrays
|
215 |
|
|
&& TYPE_CODE (type2) == TYPE_CODE_ARRAY)
|
216 |
|
|
arg2 = value_coerce_array (arg2);
|
217 |
|
|
|
218 |
|
|
if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
|
219 |
|
|
arg2 = value_coerce_function (arg2);
|
220 |
|
|
|
221 |
|
|
type2 = check_typedef (VALUE_TYPE (arg2));
|
222 |
|
|
COERCE_VARYING_ARRAY (arg2, type2);
|
223 |
|
|
code2 = TYPE_CODE (type2);
|
224 |
|
|
|
225 |
|
|
if (code1 == TYPE_CODE_COMPLEX)
|
226 |
|
|
return cast_into_complex (type, arg2);
|
227 |
|
|
if (code1 == TYPE_CODE_BOOL)
|
228 |
|
|
{
|
229 |
|
|
code1 = TYPE_CODE_INT;
|
230 |
|
|
convert_to_boolean = 1;
|
231 |
|
|
}
|
232 |
|
|
if (code1 == TYPE_CODE_CHAR)
|
233 |
|
|
code1 = TYPE_CODE_INT;
|
234 |
|
|
if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
|
235 |
|
|
code2 = TYPE_CODE_INT;
|
236 |
|
|
|
237 |
|
|
scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
|
238 |
|
|
|| code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
|
239 |
|
|
|
240 |
|
|
if (code1 == TYPE_CODE_STRUCT
|
241 |
|
|
&& code2 == TYPE_CODE_STRUCT
|
242 |
|
|
&& TYPE_NAME (type) != 0)
|
243 |
|
|
{
|
244 |
|
|
/* Look in the type of the source to see if it contains the
|
245 |
|
|
type of the target as a superclass. If so, we'll need to
|
246 |
|
|
offset the object in addition to changing its type. */
|
247 |
|
|
struct value *v = search_struct_field (type_name_no_tag (type),
|
248 |
|
|
arg2, 0, type2, 1);
|
249 |
|
|
if (v)
|
250 |
|
|
{
|
251 |
|
|
VALUE_TYPE (v) = type;
|
252 |
|
|
return v;
|
253 |
|
|
}
|
254 |
|
|
}
|
255 |
|
|
if (code1 == TYPE_CODE_FLT && scalar)
|
256 |
|
|
return value_from_double (type, value_as_double (arg2));
|
257 |
|
|
else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
|
258 |
|
|
|| code1 == TYPE_CODE_RANGE)
|
259 |
|
|
&& (scalar || code2 == TYPE_CODE_PTR))
|
260 |
|
|
{
|
261 |
|
|
LONGEST longest;
|
262 |
|
|
|
263 |
|
|
if (hp_som_som_object_present && /* if target compiled by HP aCC */
|
264 |
|
|
(code2 == TYPE_CODE_PTR))
|
265 |
|
|
{
|
266 |
|
|
unsigned int *ptr;
|
267 |
|
|
struct value *retvalp;
|
268 |
|
|
|
269 |
|
|
switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
|
270 |
|
|
{
|
271 |
|
|
/* With HP aCC, pointers to data members have a bias */
|
272 |
|
|
case TYPE_CODE_MEMBER:
|
273 |
|
|
retvalp = value_from_longest (type, value_as_long (arg2));
|
274 |
|
|
/* force evaluation */
|
275 |
|
|
ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
|
276 |
|
|
*ptr &= ~0x20000000; /* zap 29th bit to remove bias */
|
277 |
|
|
return retvalp;
|
278 |
|
|
|
279 |
|
|
/* While pointers to methods don't really point to a function */
|
280 |
|
|
case TYPE_CODE_METHOD:
|
281 |
|
|
error ("Pointers to methods not supported with HP aCC");
|
282 |
|
|
|
283 |
|
|
default:
|
284 |
|
|
break; /* fall out and go to normal handling */
|
285 |
|
|
}
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
/* When we cast pointers to integers, we mustn't use
|
289 |
|
|
POINTER_TO_ADDRESS to find the address the pointer
|
290 |
|
|
represents, as value_as_long would. GDB should evaluate
|
291 |
|
|
expressions just as the compiler would --- and the compiler
|
292 |
|
|
sees a cast as a simple reinterpretation of the pointer's
|
293 |
|
|
bits. */
|
294 |
|
|
if (code2 == TYPE_CODE_PTR)
|
295 |
|
|
longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
|
296 |
|
|
TYPE_LENGTH (type2));
|
297 |
|
|
else
|
298 |
|
|
longest = value_as_long (arg2);
|
299 |
|
|
return value_from_longest (type, convert_to_boolean ?
|
300 |
|
|
(LONGEST) (longest ? 1 : 0) : longest);
|
301 |
|
|
}
|
302 |
|
|
else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
|
303 |
|
|
code2 == TYPE_CODE_ENUM ||
|
304 |
|
|
code2 == TYPE_CODE_RANGE))
|
305 |
|
|
{
|
306 |
|
|
/* TYPE_LENGTH (type) is the length of a pointer, but we really
|
307 |
|
|
want the length of an address! -- we are really dealing with
|
308 |
|
|
addresses (i.e., gdb representations) not pointers (i.e.,
|
309 |
|
|
target representations) here.
|
310 |
|
|
|
311 |
|
|
This allows things like "print *(int *)0x01000234" to work
|
312 |
|
|
without printing a misleading message -- which would
|
313 |
|
|
otherwise occur when dealing with a target having two byte
|
314 |
|
|
pointers and four byte addresses. */
|
315 |
|
|
|
316 |
|
|
int addr_bit = TARGET_ADDR_BIT;
|
317 |
|
|
|
318 |
|
|
LONGEST longest = value_as_long (arg2);
|
319 |
|
|
if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
|
320 |
|
|
{
|
321 |
|
|
if (longest >= ((LONGEST) 1 << addr_bit)
|
322 |
|
|
|| longest <= -((LONGEST) 1 << addr_bit))
|
323 |
|
|
warning ("value truncated");
|
324 |
|
|
}
|
325 |
|
|
return value_from_longest (type, longest);
|
326 |
|
|
}
|
327 |
|
|
else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
|
328 |
|
|
{
|
329 |
|
|
if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
|
330 |
|
|
{
|
331 |
|
|
struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
|
332 |
|
|
struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
|
333 |
|
|
if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
|
334 |
|
|
&& TYPE_CODE (t2) == TYPE_CODE_STRUCT
|
335 |
|
|
&& !value_logical_not (arg2))
|
336 |
|
|
{
|
337 |
|
|
struct value *v;
|
338 |
|
|
|
339 |
|
|
/* Look in the type of the source to see if it contains the
|
340 |
|
|
type of the target as a superclass. If so, we'll need to
|
341 |
|
|
offset the pointer rather than just change its type. */
|
342 |
|
|
if (TYPE_NAME (t1) != NULL)
|
343 |
|
|
{
|
344 |
|
|
v = search_struct_field (type_name_no_tag (t1),
|
345 |
|
|
value_ind (arg2), 0, t2, 1);
|
346 |
|
|
if (v)
|
347 |
|
|
{
|
348 |
|
|
v = value_addr (v);
|
349 |
|
|
VALUE_TYPE (v) = type;
|
350 |
|
|
return v;
|
351 |
|
|
}
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
/* Look in the type of the target to see if it contains the
|
355 |
|
|
type of the source as a superclass. If so, we'll need to
|
356 |
|
|
offset the pointer rather than just change its type.
|
357 |
|
|
FIXME: This fails silently with virtual inheritance. */
|
358 |
|
|
if (TYPE_NAME (t2) != NULL)
|
359 |
|
|
{
|
360 |
|
|
v = search_struct_field (type_name_no_tag (t2),
|
361 |
|
|
value_zero (t1, not_lval), 0, t1, 1);
|
362 |
|
|
if (v)
|
363 |
|
|
{
|
364 |
|
|
CORE_ADDR addr2 = value_as_address (arg2);
|
365 |
|
|
addr2 -= (VALUE_ADDRESS (v)
|
366 |
|
|
+ VALUE_OFFSET (v)
|
367 |
|
|
+ VALUE_EMBEDDED_OFFSET (v));
|
368 |
|
|
return value_from_pointer (type, addr2);
|
369 |
|
|
}
|
370 |
|
|
}
|
371 |
|
|
}
|
372 |
|
|
/* No superclass found, just fall through to change ptr type. */
|
373 |
|
|
}
|
374 |
|
|
VALUE_TYPE (arg2) = type;
|
375 |
|
|
arg2 = value_change_enclosing_type (arg2, type);
|
376 |
|
|
VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
|
377 |
|
|
return arg2;
|
378 |
|
|
}
|
379 |
|
|
/* OBSOLETE else if (chill_varying_type (type)) */
|
380 |
|
|
/* OBSOLETE { */
|
381 |
|
|
/* OBSOLETE struct type *range1, *range2, *eltype1, *eltype2; */
|
382 |
|
|
/* OBSOLETE struct value *val; */
|
383 |
|
|
/* OBSOLETE int count1, count2; */
|
384 |
|
|
/* OBSOLETE LONGEST low_bound, high_bound; */
|
385 |
|
|
/* OBSOLETE char *valaddr, *valaddr_data; */
|
386 |
|
|
/* OBSOLETE *//* For lint warning about eltype2 possibly uninitialized: */
|
387 |
|
|
/* OBSOLETE eltype2 = NULL; */
|
388 |
|
|
/* OBSOLETE if (code2 == TYPE_CODE_BITSTRING) */
|
389 |
|
|
/* OBSOLETE error ("not implemented: converting bitstring to varying type"); */
|
390 |
|
|
/* OBSOLETE if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING) */
|
391 |
|
|
/* OBSOLETE || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))), */
|
392 |
|
|
/* OBSOLETE eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)), */
|
393 |
|
|
/* OBSOLETE (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2) */
|
394 |
|
|
/* OBSOLETE *//*|| TYPE_CODE (eltype1) != TYPE_CODE (eltype2) *//* ))) */
|
395 |
|
|
/* OBSOLETE error ("Invalid conversion to varying type"); */
|
396 |
|
|
/* OBSOLETE range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0); */
|
397 |
|
|
/* OBSOLETE range2 = TYPE_FIELD_TYPE (type2, 0); */
|
398 |
|
|
/* OBSOLETE if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0) */
|
399 |
|
|
/* OBSOLETE count1 = -1; */
|
400 |
|
|
/* OBSOLETE else */
|
401 |
|
|
/* OBSOLETE count1 = high_bound - low_bound + 1; */
|
402 |
|
|
/* OBSOLETE if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0) */
|
403 |
|
|
/* OBSOLETE count1 = -1, count2 = 0; *//* To force error before */
|
404 |
|
|
/* OBSOLETE else */
|
405 |
|
|
/* OBSOLETE count2 = high_bound - low_bound + 1; */
|
406 |
|
|
/* OBSOLETE if (count2 > count1) */
|
407 |
|
|
/* OBSOLETE error ("target varying type is too small"); */
|
408 |
|
|
/* OBSOLETE val = allocate_value (type); */
|
409 |
|
|
/* OBSOLETE valaddr = VALUE_CONTENTS_RAW (val); */
|
410 |
|
|
/* OBSOLETE valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8; */
|
411 |
|
|
/* OBSOLETE *//* Set val's __var_length field to count2. */
|
412 |
|
|
/* OBSOLETE store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)), */
|
413 |
|
|
/* OBSOLETE count2); */
|
414 |
|
|
/* OBSOLETE *//* Set the __var_data field to count2 elements copied from arg2. */
|
415 |
|
|
/* OBSOLETE memcpy (valaddr_data, VALUE_CONTENTS (arg2), */
|
416 |
|
|
/* OBSOLETE count2 * TYPE_LENGTH (eltype2)); */
|
417 |
|
|
/* OBSOLETE *//* Zero the rest of the __var_data field of val. */
|
418 |
|
|
/* OBSOLETE memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0', */
|
419 |
|
|
/* OBSOLETE (count1 - count2) * TYPE_LENGTH (eltype2)); */
|
420 |
|
|
/* OBSOLETE return val; */
|
421 |
|
|
/* OBSOLETE } */
|
422 |
|
|
else if (VALUE_LVAL (arg2) == lval_memory)
|
423 |
|
|
{
|
424 |
|
|
return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
|
425 |
|
|
VALUE_BFD_SECTION (arg2));
|
426 |
|
|
}
|
427 |
|
|
else if (code1 == TYPE_CODE_VOID)
|
428 |
|
|
{
|
429 |
|
|
return value_zero (builtin_type_void, not_lval);
|
430 |
|
|
}
|
431 |
|
|
else
|
432 |
|
|
{
|
433 |
|
|
error ("Invalid cast.");
|
434 |
|
|
return 0;
|
435 |
|
|
}
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
/* Create a value of type TYPE that is zero, and return it. */
|
439 |
|
|
|
440 |
|
|
struct value *
|
441 |
|
|
value_zero (struct type *type, enum lval_type lv)
|
442 |
|
|
{
|
443 |
|
|
struct value *val = allocate_value (type);
|
444 |
|
|
|
445 |
|
|
memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
|
446 |
|
|
VALUE_LVAL (val) = lv;
|
447 |
|
|
|
448 |
|
|
return val;
|
449 |
|
|
}
|
450 |
|
|
|
451 |
|
|
/* Return a value with type TYPE located at ADDR.
|
452 |
|
|
|
453 |
|
|
Call value_at only if the data needs to be fetched immediately;
|
454 |
|
|
if we can be 'lazy' and defer the fetch, perhaps indefinately, call
|
455 |
|
|
value_at_lazy instead. value_at_lazy simply records the address of
|
456 |
|
|
the data and sets the lazy-evaluation-required flag. The lazy flag
|
457 |
|
|
is tested in the VALUE_CONTENTS macro, which is used if and when
|
458 |
|
|
the contents are actually required.
|
459 |
|
|
|
460 |
|
|
Note: value_at does *NOT* handle embedded offsets; perform such
|
461 |
|
|
adjustments before or after calling it. */
|
462 |
|
|
|
463 |
|
|
struct value *
|
464 |
|
|
value_at (struct type *type, CORE_ADDR addr, asection *sect)
|
465 |
|
|
{
|
466 |
|
|
struct value *val;
|
467 |
|
|
|
468 |
|
|
if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
|
469 |
|
|
error ("Attempt to dereference a generic pointer.");
|
470 |
|
|
|
471 |
|
|
val = allocate_value (type);
|
472 |
|
|
|
473 |
|
|
read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
|
474 |
|
|
|
475 |
|
|
VALUE_LVAL (val) = lval_memory;
|
476 |
|
|
VALUE_ADDRESS (val) = addr;
|
477 |
|
|
VALUE_BFD_SECTION (val) = sect;
|
478 |
|
|
|
479 |
|
|
return val;
|
480 |
|
|
}
|
481 |
|
|
|
482 |
|
|
/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
|
483 |
|
|
|
484 |
|
|
struct value *
|
485 |
|
|
value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
|
486 |
|
|
{
|
487 |
|
|
struct value *val;
|
488 |
|
|
|
489 |
|
|
if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
|
490 |
|
|
error ("Attempt to dereference a generic pointer.");
|
491 |
|
|
|
492 |
|
|
val = allocate_value (type);
|
493 |
|
|
|
494 |
|
|
VALUE_LVAL (val) = lval_memory;
|
495 |
|
|
VALUE_ADDRESS (val) = addr;
|
496 |
|
|
VALUE_LAZY (val) = 1;
|
497 |
|
|
VALUE_BFD_SECTION (val) = sect;
|
498 |
|
|
|
499 |
|
|
return val;
|
500 |
|
|
}
|
501 |
|
|
|
502 |
|
|
/* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
|
503 |
|
|
if the current data for a variable needs to be loaded into
|
504 |
|
|
VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
|
505 |
|
|
clears the lazy flag to indicate that the data in the buffer is valid.
|
506 |
|
|
|
507 |
|
|
If the value is zero-length, we avoid calling read_memory, which would
|
508 |
|
|
abort. We mark the value as fetched anyway -- all 0 bytes of it.
|
509 |
|
|
|
510 |
|
|
This function returns a value because it is used in the VALUE_CONTENTS
|
511 |
|
|
macro as part of an expression, where a void would not work. The
|
512 |
|
|
value is ignored. */
|
513 |
|
|
|
514 |
|
|
int
|
515 |
|
|
value_fetch_lazy (struct value *val)
|
516 |
|
|
{
|
517 |
|
|
CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
|
518 |
|
|
int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
|
519 |
|
|
|
520 |
|
|
struct type *type = VALUE_TYPE (val);
|
521 |
|
|
if (length)
|
522 |
|
|
read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
|
523 |
|
|
|
524 |
|
|
VALUE_LAZY (val) = 0;
|
525 |
|
|
return 0;
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
|
529 |
|
|
/* Store the contents of FROMVAL into the location of TOVAL.
|
530 |
|
|
Return a new value with the location of TOVAL and contents of FROMVAL. */
|
531 |
|
|
|
532 |
|
|
struct value *
|
533 |
|
|
value_assign (struct value *toval, struct value *fromval)
|
534 |
|
|
{
|
535 |
|
|
register struct type *type;
|
536 |
|
|
struct value *val;
|
537 |
|
|
char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
|
538 |
|
|
int use_buffer = 0;
|
539 |
|
|
|
540 |
|
|
if (!toval->modifiable)
|
541 |
|
|
error ("Left operand of assignment is not a modifiable lvalue.");
|
542 |
|
|
|
543 |
|
|
COERCE_REF (toval);
|
544 |
|
|
|
545 |
|
|
type = VALUE_TYPE (toval);
|
546 |
|
|
if (VALUE_LVAL (toval) != lval_internalvar)
|
547 |
|
|
fromval = value_cast (type, fromval);
|
548 |
|
|
else
|
549 |
|
|
COERCE_ARRAY (fromval);
|
550 |
|
|
CHECK_TYPEDEF (type);
|
551 |
|
|
|
552 |
|
|
/* If TOVAL is a special machine register requiring conversion
|
553 |
|
|
of program values to a special raw format,
|
554 |
|
|
convert FROMVAL's contents now, with result in `raw_buffer',
|
555 |
|
|
and set USE_BUFFER to the number of bytes to write. */
|
556 |
|
|
|
557 |
|
|
if (VALUE_REGNO (toval) >= 0)
|
558 |
|
|
{
|
559 |
|
|
int regno = VALUE_REGNO (toval);
|
560 |
|
|
if (CONVERT_REGISTER_P (regno))
|
561 |
|
|
{
|
562 |
|
|
struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
|
563 |
|
|
VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
|
564 |
|
|
use_buffer = REGISTER_RAW_SIZE (regno);
|
565 |
|
|
}
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
switch (VALUE_LVAL (toval))
|
569 |
|
|
{
|
570 |
|
|
case lval_internalvar:
|
571 |
|
|
set_internalvar (VALUE_INTERNALVAR (toval), fromval);
|
572 |
|
|
val = value_copy (VALUE_INTERNALVAR (toval)->value);
|
573 |
|
|
val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
|
574 |
|
|
VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
|
575 |
|
|
VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
|
576 |
|
|
return val;
|
577 |
|
|
|
578 |
|
|
case lval_internalvar_component:
|
579 |
|
|
set_internalvar_component (VALUE_INTERNALVAR (toval),
|
580 |
|
|
VALUE_OFFSET (toval),
|
581 |
|
|
VALUE_BITPOS (toval),
|
582 |
|
|
VALUE_BITSIZE (toval),
|
583 |
|
|
fromval);
|
584 |
|
|
break;
|
585 |
|
|
|
586 |
|
|
case lval_memory:
|
587 |
|
|
{
|
588 |
|
|
char *dest_buffer;
|
589 |
|
|
CORE_ADDR changed_addr;
|
590 |
|
|
int changed_len;
|
591 |
|
|
|
592 |
|
|
if (VALUE_BITSIZE (toval))
|
593 |
|
|
{
|
594 |
|
|
char buffer[sizeof (LONGEST)];
|
595 |
|
|
/* We assume that the argument to read_memory is in units of
|
596 |
|
|
host chars. FIXME: Is that correct? */
|
597 |
|
|
changed_len = (VALUE_BITPOS (toval)
|
598 |
|
|
+ VALUE_BITSIZE (toval)
|
599 |
|
|
+ HOST_CHAR_BIT - 1)
|
600 |
|
|
/ HOST_CHAR_BIT;
|
601 |
|
|
|
602 |
|
|
if (changed_len > (int) sizeof (LONGEST))
|
603 |
|
|
error ("Can't handle bitfields which don't fit in a %d bit word.",
|
604 |
|
|
(int) sizeof (LONGEST) * HOST_CHAR_BIT);
|
605 |
|
|
|
606 |
|
|
read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
607 |
|
|
buffer, changed_len);
|
608 |
|
|
modify_field (buffer, value_as_long (fromval),
|
609 |
|
|
VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
|
610 |
|
|
changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
|
611 |
|
|
dest_buffer = buffer;
|
612 |
|
|
}
|
613 |
|
|
else if (use_buffer)
|
614 |
|
|
{
|
615 |
|
|
changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
|
616 |
|
|
changed_len = use_buffer;
|
617 |
|
|
dest_buffer = raw_buffer;
|
618 |
|
|
}
|
619 |
|
|
else
|
620 |
|
|
{
|
621 |
|
|
changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
|
622 |
|
|
changed_len = TYPE_LENGTH (type);
|
623 |
|
|
dest_buffer = VALUE_CONTENTS (fromval);
|
624 |
|
|
}
|
625 |
|
|
|
626 |
|
|
write_memory (changed_addr, dest_buffer, changed_len);
|
627 |
|
|
if (memory_changed_hook)
|
628 |
|
|
memory_changed_hook (changed_addr, changed_len);
|
629 |
|
|
target_changed_event ();
|
630 |
|
|
}
|
631 |
|
|
break;
|
632 |
|
|
|
633 |
|
|
case lval_register:
|
634 |
|
|
if (VALUE_BITSIZE (toval))
|
635 |
|
|
{
|
636 |
|
|
char buffer[sizeof (LONGEST)];
|
637 |
|
|
int len =
|
638 |
|
|
REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
|
639 |
|
|
|
640 |
|
|
if (len > (int) sizeof (LONGEST))
|
641 |
|
|
error ("Can't handle bitfields in registers larger than %d bits.",
|
642 |
|
|
(int) sizeof (LONGEST) * HOST_CHAR_BIT);
|
643 |
|
|
|
644 |
|
|
if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
|
645 |
|
|
> len * HOST_CHAR_BIT)
|
646 |
|
|
/* Getting this right would involve being very careful about
|
647 |
|
|
byte order. */
|
648 |
|
|
error ("Can't assign to bitfields that cross register "
|
649 |
|
|
"boundaries.");
|
650 |
|
|
|
651 |
|
|
read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
652 |
|
|
buffer, len);
|
653 |
|
|
modify_field (buffer, value_as_long (fromval),
|
654 |
|
|
VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
|
655 |
|
|
write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
656 |
|
|
buffer, len);
|
657 |
|
|
}
|
658 |
|
|
else if (use_buffer)
|
659 |
|
|
write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
660 |
|
|
raw_buffer, use_buffer);
|
661 |
|
|
else
|
662 |
|
|
{
|
663 |
|
|
/* Do any conversion necessary when storing this type to more
|
664 |
|
|
than one register. */
|
665 |
|
|
#ifdef REGISTER_CONVERT_FROM_TYPE
|
666 |
|
|
memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
|
667 |
|
|
REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
|
668 |
|
|
write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
669 |
|
|
raw_buffer, TYPE_LENGTH (type));
|
670 |
|
|
#else
|
671 |
|
|
write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
672 |
|
|
VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
|
673 |
|
|
#endif
|
674 |
|
|
}
|
675 |
|
|
|
676 |
|
|
target_changed_event ();
|
677 |
|
|
|
678 |
|
|
/* Assigning to the stack pointer, frame pointer, and other
|
679 |
|
|
(architecture and calling convention specific) registers may
|
680 |
|
|
cause the frame cache to be out of date. We just do this
|
681 |
|
|
on all assignments to registers for simplicity; I doubt the slowdown
|
682 |
|
|
matters. */
|
683 |
|
|
reinit_frame_cache ();
|
684 |
|
|
break;
|
685 |
|
|
|
686 |
|
|
case lval_reg_frame_relative:
|
687 |
|
|
{
|
688 |
|
|
/* value is stored in a series of registers in the frame
|
689 |
|
|
specified by the structure. Copy that value out, modify
|
690 |
|
|
it, and copy it back in. */
|
691 |
|
|
int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
|
692 |
|
|
int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
|
693 |
|
|
int byte_offset = VALUE_OFFSET (toval) % reg_size;
|
694 |
|
|
int reg_offset = VALUE_OFFSET (toval) / reg_size;
|
695 |
|
|
int amount_copied;
|
696 |
|
|
|
697 |
|
|
/* Make the buffer large enough in all cases. */
|
698 |
|
|
/* FIXME (alloca): Not safe for very large data types. */
|
699 |
|
|
char *buffer = (char *) alloca (amount_to_copy
|
700 |
|
|
+ sizeof (LONGEST)
|
701 |
|
|
+ MAX_REGISTER_RAW_SIZE);
|
702 |
|
|
|
703 |
|
|
int regno;
|
704 |
|
|
struct frame_info *frame;
|
705 |
|
|
|
706 |
|
|
/* Figure out which frame this is in currently. */
|
707 |
|
|
for (frame = get_current_frame ();
|
708 |
|
|
frame && FRAME_FP (frame) != VALUE_FRAME (toval);
|
709 |
|
|
frame = get_prev_frame (frame))
|
710 |
|
|
;
|
711 |
|
|
|
712 |
|
|
if (!frame)
|
713 |
|
|
error ("Value being assigned to is no longer active.");
|
714 |
|
|
|
715 |
|
|
amount_to_copy += (reg_size - amount_to_copy % reg_size);
|
716 |
|
|
|
717 |
|
|
/* Copy it out. */
|
718 |
|
|
for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
|
719 |
|
|
amount_copied = 0);
|
720 |
|
|
amount_copied < amount_to_copy;
|
721 |
|
|
amount_copied += reg_size, regno++)
|
722 |
|
|
{
|
723 |
|
|
get_saved_register (buffer + amount_copied,
|
724 |
|
|
(int *) NULL, (CORE_ADDR *) NULL,
|
725 |
|
|
frame, regno, (enum lval_type *) NULL);
|
726 |
|
|
}
|
727 |
|
|
|
728 |
|
|
/* Modify what needs to be modified. */
|
729 |
|
|
if (VALUE_BITSIZE (toval))
|
730 |
|
|
modify_field (buffer + byte_offset,
|
731 |
|
|
value_as_long (fromval),
|
732 |
|
|
VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
|
733 |
|
|
else if (use_buffer)
|
734 |
|
|
memcpy (buffer + byte_offset, raw_buffer, use_buffer);
|
735 |
|
|
else
|
736 |
|
|
memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
|
737 |
|
|
TYPE_LENGTH (type));
|
738 |
|
|
|
739 |
|
|
/* Copy it back. */
|
740 |
|
|
for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
|
741 |
|
|
amount_copied = 0);
|
742 |
|
|
amount_copied < amount_to_copy;
|
743 |
|
|
amount_copied += reg_size, regno++)
|
744 |
|
|
{
|
745 |
|
|
enum lval_type lval;
|
746 |
|
|
CORE_ADDR addr;
|
747 |
|
|
int optim;
|
748 |
|
|
|
749 |
|
|
/* Just find out where to put it. */
|
750 |
|
|
get_saved_register ((char *) NULL,
|
751 |
|
|
&optim, &addr, frame, regno, &lval);
|
752 |
|
|
|
753 |
|
|
if (optim)
|
754 |
|
|
error ("Attempt to assign to a value that was optimized out.");
|
755 |
|
|
if (lval == lval_memory)
|
756 |
|
|
write_memory (addr, buffer + amount_copied, reg_size);
|
757 |
|
|
else if (lval == lval_register)
|
758 |
|
|
write_register_bytes (addr, buffer + amount_copied, reg_size);
|
759 |
|
|
else
|
760 |
|
|
error ("Attempt to assign to an unmodifiable value.");
|
761 |
|
|
}
|
762 |
|
|
|
763 |
|
|
if (register_changed_hook)
|
764 |
|
|
register_changed_hook (-1);
|
765 |
|
|
target_changed_event ();
|
766 |
|
|
}
|
767 |
|
|
break;
|
768 |
|
|
|
769 |
|
|
|
770 |
|
|
default:
|
771 |
|
|
error ("Left operand of assignment is not an lvalue.");
|
772 |
|
|
}
|
773 |
|
|
|
774 |
|
|
/* If the field does not entirely fill a LONGEST, then zero the sign bits.
|
775 |
|
|
If the field is signed, and is negative, then sign extend. */
|
776 |
|
|
if ((VALUE_BITSIZE (toval) > 0)
|
777 |
|
|
&& (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
|
778 |
|
|
{
|
779 |
|
|
LONGEST fieldval = value_as_long (fromval);
|
780 |
|
|
LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
|
781 |
|
|
|
782 |
|
|
fieldval &= valmask;
|
783 |
|
|
if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
|
784 |
|
|
fieldval |= ~valmask;
|
785 |
|
|
|
786 |
|
|
fromval = value_from_longest (type, fieldval);
|
787 |
|
|
}
|
788 |
|
|
|
789 |
|
|
val = value_copy (toval);
|
790 |
|
|
memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
|
791 |
|
|
TYPE_LENGTH (type));
|
792 |
|
|
VALUE_TYPE (val) = type;
|
793 |
|
|
val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
|
794 |
|
|
VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
|
795 |
|
|
VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
|
796 |
|
|
|
797 |
|
|
return val;
|
798 |
|
|
}
|
799 |
|
|
|
800 |
|
|
/* Extend a value VAL to COUNT repetitions of its type. */
|
801 |
|
|
|
802 |
|
|
struct value *
|
803 |
|
|
value_repeat (struct value *arg1, int count)
|
804 |
|
|
{
|
805 |
|
|
struct value *val;
|
806 |
|
|
|
807 |
|
|
if (VALUE_LVAL (arg1) != lval_memory)
|
808 |
|
|
error ("Only values in memory can be extended with '@'.");
|
809 |
|
|
if (count < 1)
|
810 |
|
|
error ("Invalid number %d of repetitions.", count);
|
811 |
|
|
|
812 |
|
|
val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
|
813 |
|
|
|
814 |
|
|
read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
|
815 |
|
|
VALUE_CONTENTS_ALL_RAW (val),
|
816 |
|
|
TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
|
817 |
|
|
VALUE_LVAL (val) = lval_memory;
|
818 |
|
|
VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
|
819 |
|
|
|
820 |
|
|
return val;
|
821 |
|
|
}
|
822 |
|
|
|
823 |
|
|
struct value *
|
824 |
|
|
value_of_variable (struct symbol *var, struct block *b)
|
825 |
|
|
{
|
826 |
|
|
struct value *val;
|
827 |
|
|
struct frame_info *frame = NULL;
|
828 |
|
|
|
829 |
|
|
if (!b)
|
830 |
|
|
frame = NULL; /* Use selected frame. */
|
831 |
|
|
else if (symbol_read_needs_frame (var))
|
832 |
|
|
{
|
833 |
|
|
frame = block_innermost_frame (b);
|
834 |
|
|
if (!frame)
|
835 |
|
|
{
|
836 |
|
|
if (BLOCK_FUNCTION (b)
|
837 |
|
|
&& SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
|
838 |
|
|
error ("No frame is currently executing in block %s.",
|
839 |
|
|
SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
|
840 |
|
|
else
|
841 |
|
|
error ("No frame is currently executing in specified block");
|
842 |
|
|
}
|
843 |
|
|
}
|
844 |
|
|
|
845 |
|
|
val = read_var_value (var, frame);
|
846 |
|
|
if (!val)
|
847 |
|
|
error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
|
848 |
|
|
|
849 |
|
|
return val;
|
850 |
|
|
}
|
851 |
|
|
|
852 |
|
|
/* Given a value which is an array, return a value which is a pointer to its
|
853 |
|
|
first element, regardless of whether or not the array has a nonzero lower
|
854 |
|
|
bound.
|
855 |
|
|
|
856 |
|
|
FIXME: A previous comment here indicated that this routine should be
|
857 |
|
|
substracting the array's lower bound. It's not clear to me that this
|
858 |
|
|
is correct. Given an array subscripting operation, it would certainly
|
859 |
|
|
work to do the adjustment here, essentially computing:
|
860 |
|
|
|
861 |
|
|
(&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
|
862 |
|
|
|
863 |
|
|
However I believe a more appropriate and logical place to account for
|
864 |
|
|
the lower bound is to do so in value_subscript, essentially computing:
|
865 |
|
|
|
866 |
|
|
(&array[0] + ((index - lowerbound) * sizeof array[0]))
|
867 |
|
|
|
868 |
|
|
As further evidence consider what would happen with operations other
|
869 |
|
|
than array subscripting, where the caller would get back a value that
|
870 |
|
|
had an address somewhere before the actual first element of the array,
|
871 |
|
|
and the information about the lower bound would be lost because of
|
872 |
|
|
the coercion to pointer type.
|
873 |
|
|
*/
|
874 |
|
|
|
875 |
|
|
struct value *
|
876 |
|
|
value_coerce_array (struct value *arg1)
|
877 |
|
|
{
|
878 |
|
|
register struct type *type = check_typedef (VALUE_TYPE (arg1));
|
879 |
|
|
|
880 |
|
|
if (VALUE_LVAL (arg1) != lval_memory)
|
881 |
|
|
error ("Attempt to take address of value not located in memory.");
|
882 |
|
|
|
883 |
|
|
return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
884 |
|
|
(VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
|
885 |
|
|
}
|
886 |
|
|
|
887 |
|
|
/* Given a value which is a function, return a value which is a pointer
|
888 |
|
|
to it. */
|
889 |
|
|
|
890 |
|
|
struct value *
|
891 |
|
|
value_coerce_function (struct value *arg1)
|
892 |
|
|
{
|
893 |
|
|
struct value *retval;
|
894 |
|
|
|
895 |
|
|
if (VALUE_LVAL (arg1) != lval_memory)
|
896 |
|
|
error ("Attempt to take address of value not located in memory.");
|
897 |
|
|
|
898 |
|
|
retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
|
899 |
|
|
(VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
|
900 |
|
|
VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
|
901 |
|
|
return retval;
|
902 |
|
|
}
|
903 |
|
|
|
904 |
|
|
/* Return a pointer value for the object for which ARG1 is the contents. */
|
905 |
|
|
|
906 |
|
|
struct value *
|
907 |
|
|
value_addr (struct value *arg1)
|
908 |
|
|
{
|
909 |
|
|
struct value *arg2;
|
910 |
|
|
|
911 |
|
|
struct type *type = check_typedef (VALUE_TYPE (arg1));
|
912 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_REF)
|
913 |
|
|
{
|
914 |
|
|
/* Copy the value, but change the type from (T&) to (T*).
|
915 |
|
|
We keep the same location information, which is efficient,
|
916 |
|
|
and allows &(&X) to get the location containing the reference. */
|
917 |
|
|
arg2 = value_copy (arg1);
|
918 |
|
|
VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
|
919 |
|
|
return arg2;
|
920 |
|
|
}
|
921 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FUNC)
|
922 |
|
|
return value_coerce_function (arg1);
|
923 |
|
|
|
924 |
|
|
if (VALUE_LVAL (arg1) != lval_memory)
|
925 |
|
|
error ("Attempt to take address of value not located in memory.");
|
926 |
|
|
|
927 |
|
|
/* Get target memory address */
|
928 |
|
|
arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
|
929 |
|
|
(VALUE_ADDRESS (arg1)
|
930 |
|
|
+ VALUE_OFFSET (arg1)
|
931 |
|
|
+ VALUE_EMBEDDED_OFFSET (arg1)));
|
932 |
|
|
|
933 |
|
|
/* This may be a pointer to a base subobject; so remember the
|
934 |
|
|
full derived object's type ... */
|
935 |
|
|
arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
|
936 |
|
|
/* ... and also the relative position of the subobject in the full object */
|
937 |
|
|
VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
|
938 |
|
|
VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
|
939 |
|
|
return arg2;
|
940 |
|
|
}
|
941 |
|
|
|
942 |
|
|
/* Given a value of a pointer type, apply the C unary * operator to it. */
|
943 |
|
|
|
944 |
|
|
struct value *
|
945 |
|
|
value_ind (struct value *arg1)
|
946 |
|
|
{
|
947 |
|
|
struct type *base_type;
|
948 |
|
|
struct value *arg2;
|
949 |
|
|
|
950 |
|
|
COERCE_ARRAY (arg1);
|
951 |
|
|
|
952 |
|
|
base_type = check_typedef (VALUE_TYPE (arg1));
|
953 |
|
|
|
954 |
|
|
if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
|
955 |
|
|
error ("not implemented: member types in value_ind");
|
956 |
|
|
|
957 |
|
|
/* Allow * on an integer so we can cast it to whatever we want.
|
958 |
|
|
This returns an int, which seems like the most C-like thing
|
959 |
|
|
to do. "long long" variables are rare enough that
|
960 |
|
|
BUILTIN_TYPE_LONGEST would seem to be a mistake. */
|
961 |
|
|
if (TYPE_CODE (base_type) == TYPE_CODE_INT)
|
962 |
|
|
return value_at_lazy (builtin_type_int,
|
963 |
|
|
(CORE_ADDR) value_as_long (arg1),
|
964 |
|
|
VALUE_BFD_SECTION (arg1));
|
965 |
|
|
else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
|
966 |
|
|
{
|
967 |
|
|
struct type *enc_type;
|
968 |
|
|
/* We may be pointing to something embedded in a larger object */
|
969 |
|
|
/* Get the real type of the enclosing object */
|
970 |
|
|
enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
|
971 |
|
|
enc_type = TYPE_TARGET_TYPE (enc_type);
|
972 |
|
|
/* Retrieve the enclosing object pointed to */
|
973 |
|
|
arg2 = value_at_lazy (enc_type,
|
974 |
|
|
value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
|
975 |
|
|
VALUE_BFD_SECTION (arg1));
|
976 |
|
|
/* Re-adjust type */
|
977 |
|
|
VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
|
978 |
|
|
/* Add embedding info */
|
979 |
|
|
arg2 = value_change_enclosing_type (arg2, enc_type);
|
980 |
|
|
VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
|
981 |
|
|
|
982 |
|
|
/* We may be pointing to an object of some derived type */
|
983 |
|
|
arg2 = value_full_object (arg2, NULL, 0, 0, 0);
|
984 |
|
|
return arg2;
|
985 |
|
|
}
|
986 |
|
|
|
987 |
|
|
error ("Attempt to take contents of a non-pointer value.");
|
988 |
|
|
return 0; /* For lint -- never reached */
|
989 |
|
|
}
|
990 |
|
|
|
991 |
|
|
/* Pushing small parts of stack frames. */
|
992 |
|
|
|
993 |
|
|
/* Push one word (the size of object that a register holds). */
|
994 |
|
|
|
995 |
|
|
CORE_ADDR
|
996 |
|
|
push_word (CORE_ADDR sp, ULONGEST word)
|
997 |
|
|
{
|
998 |
|
|
register int len = REGISTER_SIZE;
|
999 |
|
|
char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
|
1000 |
|
|
|
1001 |
|
|
store_unsigned_integer (buffer, len, word);
|
1002 |
|
|
if (INNER_THAN (1, 2))
|
1003 |
|
|
{
|
1004 |
|
|
/* stack grows downward */
|
1005 |
|
|
sp -= len;
|
1006 |
|
|
write_memory (sp, buffer, len);
|
1007 |
|
|
}
|
1008 |
|
|
else
|
1009 |
|
|
{
|
1010 |
|
|
/* stack grows upward */
|
1011 |
|
|
write_memory (sp, buffer, len);
|
1012 |
|
|
sp += len;
|
1013 |
|
|
}
|
1014 |
|
|
|
1015 |
|
|
return sp;
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
/* Push LEN bytes with data at BUFFER. */
|
1019 |
|
|
|
1020 |
|
|
CORE_ADDR
|
1021 |
|
|
push_bytes (CORE_ADDR sp, char *buffer, int len)
|
1022 |
|
|
{
|
1023 |
|
|
if (INNER_THAN (1, 2))
|
1024 |
|
|
{
|
1025 |
|
|
/* stack grows downward */
|
1026 |
|
|
sp -= len;
|
1027 |
|
|
write_memory (sp, buffer, len);
|
1028 |
|
|
}
|
1029 |
|
|
else
|
1030 |
|
|
{
|
1031 |
|
|
/* stack grows upward */
|
1032 |
|
|
write_memory (sp, buffer, len);
|
1033 |
|
|
sp += len;
|
1034 |
|
|
}
|
1035 |
|
|
|
1036 |
|
|
return sp;
|
1037 |
|
|
}
|
1038 |
|
|
|
1039 |
|
|
#ifndef PARM_BOUNDARY
|
1040 |
|
|
#define PARM_BOUNDARY (0)
|
1041 |
|
|
#endif
|
1042 |
|
|
|
1043 |
|
|
/* Push onto the stack the specified value VALUE. Pad it correctly for
|
1044 |
|
|
it to be an argument to a function. */
|
1045 |
|
|
|
1046 |
|
|
static CORE_ADDR
|
1047 |
|
|
value_push (register CORE_ADDR sp, struct value *arg)
|
1048 |
|
|
{
|
1049 |
|
|
register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
|
1050 |
|
|
register int container_len = len;
|
1051 |
|
|
register int offset;
|
1052 |
|
|
|
1053 |
|
|
/* How big is the container we're going to put this value in? */
|
1054 |
|
|
if (PARM_BOUNDARY)
|
1055 |
|
|
container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
|
1056 |
|
|
& ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
|
1057 |
|
|
|
1058 |
|
|
/* Are we going to put it at the high or low end of the container? */
|
1059 |
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
1060 |
|
|
offset = container_len - len;
|
1061 |
|
|
else
|
1062 |
|
|
offset = 0;
|
1063 |
|
|
|
1064 |
|
|
if (INNER_THAN (1, 2))
|
1065 |
|
|
{
|
1066 |
|
|
/* stack grows downward */
|
1067 |
|
|
sp -= container_len;
|
1068 |
|
|
write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
|
1069 |
|
|
}
|
1070 |
|
|
else
|
1071 |
|
|
{
|
1072 |
|
|
/* stack grows upward */
|
1073 |
|
|
write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
|
1074 |
|
|
sp += container_len;
|
1075 |
|
|
}
|
1076 |
|
|
|
1077 |
|
|
return sp;
|
1078 |
|
|
}
|
1079 |
|
|
|
1080 |
|
|
CORE_ADDR
|
1081 |
|
|
default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
1082 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
1083 |
|
|
{
|
1084 |
|
|
/* ASSERT ( !struct_return); */
|
1085 |
|
|
int i;
|
1086 |
|
|
for (i = nargs - 1; i >= 0; i--)
|
1087 |
|
|
sp = value_push (sp, args[i]);
|
1088 |
|
|
return sp;
|
1089 |
|
|
}
|
1090 |
|
|
|
1091 |
|
|
|
1092 |
|
|
/* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
|
1093 |
|
|
|
1094 |
|
|
How you should pass arguments to a function depends on whether it
|
1095 |
|
|
was defined in K&R style or prototype style. If you define a
|
1096 |
|
|
function using the K&R syntax that takes a `float' argument, then
|
1097 |
|
|
callers must pass that argument as a `double'. If you define the
|
1098 |
|
|
function using the prototype syntax, then you must pass the
|
1099 |
|
|
argument as a `float', with no promotion.
|
1100 |
|
|
|
1101 |
|
|
Unfortunately, on certain older platforms, the debug info doesn't
|
1102 |
|
|
indicate reliably how each function was defined. A function type's
|
1103 |
|
|
TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
|
1104 |
|
|
defined in prototype style. When calling a function whose
|
1105 |
|
|
TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
|
1106 |
|
|
COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
|
1107 |
|
|
|
1108 |
|
|
For modern targets, it is proper to assume that, if the prototype
|
1109 |
|
|
flag is clear, that can be trusted: `float' arguments should be
|
1110 |
|
|
promoted to `double'. You should register the function
|
1111 |
|
|
`standard_coerce_float_to_double' to get this behavior.
|
1112 |
|
|
|
1113 |
|
|
For some older targets, if the prototype flag is clear, that
|
1114 |
|
|
doesn't tell us anything. So we guess that, if we don't have a
|
1115 |
|
|
type for the formal parameter (i.e., the first argument to
|
1116 |
|
|
COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
|
1117 |
|
|
otherwise, we should leave it alone. The function
|
1118 |
|
|
`default_coerce_float_to_double' provides this behavior; it is the
|
1119 |
|
|
default value, for compatibility with older configurations. */
|
1120 |
|
|
int
|
1121 |
|
|
default_coerce_float_to_double (struct type *formal, struct type *actual)
|
1122 |
|
|
{
|
1123 |
|
|
return formal == NULL;
|
1124 |
|
|
}
|
1125 |
|
|
|
1126 |
|
|
|
1127 |
|
|
int
|
1128 |
|
|
standard_coerce_float_to_double (struct type *formal, struct type *actual)
|
1129 |
|
|
{
|
1130 |
|
|
return 1;
|
1131 |
|
|
}
|
1132 |
|
|
|
1133 |
|
|
|
1134 |
|
|
/* Perform the standard coercions that are specified
|
1135 |
|
|
for arguments to be passed to C functions.
|
1136 |
|
|
|
1137 |
|
|
If PARAM_TYPE is non-NULL, it is the expected parameter type.
|
1138 |
|
|
IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
|
1139 |
|
|
|
1140 |
|
|
static struct value *
|
1141 |
|
|
value_arg_coerce (struct value *arg, struct type *param_type,
|
1142 |
|
|
int is_prototyped)
|
1143 |
|
|
{
|
1144 |
|
|
register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
|
1145 |
|
|
register struct type *type
|
1146 |
|
|
= param_type ? check_typedef (param_type) : arg_type;
|
1147 |
|
|
|
1148 |
|
|
switch (TYPE_CODE (type))
|
1149 |
|
|
{
|
1150 |
|
|
case TYPE_CODE_REF:
|
1151 |
|
|
if (TYPE_CODE (arg_type) != TYPE_CODE_REF
|
1152 |
|
|
&& TYPE_CODE (arg_type) != TYPE_CODE_PTR)
|
1153 |
|
|
{
|
1154 |
|
|
arg = value_addr (arg);
|
1155 |
|
|
VALUE_TYPE (arg) = param_type;
|
1156 |
|
|
return arg;
|
1157 |
|
|
}
|
1158 |
|
|
break;
|
1159 |
|
|
case TYPE_CODE_INT:
|
1160 |
|
|
case TYPE_CODE_CHAR:
|
1161 |
|
|
case TYPE_CODE_BOOL:
|
1162 |
|
|
case TYPE_CODE_ENUM:
|
1163 |
|
|
/* If we don't have a prototype, coerce to integer type if necessary. */
|
1164 |
|
|
if (!is_prototyped)
|
1165 |
|
|
{
|
1166 |
|
|
if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
|
1167 |
|
|
type = builtin_type_int;
|
1168 |
|
|
}
|
1169 |
|
|
/* Currently all target ABIs require at least the width of an integer
|
1170 |
|
|
type for an argument. We may have to conditionalize the following
|
1171 |
|
|
type coercion for future targets. */
|
1172 |
|
|
if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
|
1173 |
|
|
type = builtin_type_int;
|
1174 |
|
|
break;
|
1175 |
|
|
case TYPE_CODE_FLT:
|
1176 |
|
|
/* FIXME: We should always convert floats to doubles in the
|
1177 |
|
|
non-prototyped case. As many debugging formats include
|
1178 |
|
|
no information about prototyping, we have to live with
|
1179 |
|
|
COERCE_FLOAT_TO_DOUBLE for now. */
|
1180 |
|
|
if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
|
1181 |
|
|
{
|
1182 |
|
|
if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
|
1183 |
|
|
type = builtin_type_double;
|
1184 |
|
|
else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
|
1185 |
|
|
type = builtin_type_long_double;
|
1186 |
|
|
}
|
1187 |
|
|
break;
|
1188 |
|
|
case TYPE_CODE_FUNC:
|
1189 |
|
|
type = lookup_pointer_type (type);
|
1190 |
|
|
break;
|
1191 |
|
|
case TYPE_CODE_ARRAY:
|
1192 |
|
|
/* Arrays are coerced to pointers to their first element, unless
|
1193 |
|
|
they are vectors, in which case we want to leave them alone,
|
1194 |
|
|
because they are passed by value. */
|
1195 |
|
|
if (current_language->c_style_arrays)
|
1196 |
|
|
if (!TYPE_VECTOR (type))
|
1197 |
|
|
type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
|
1198 |
|
|
break;
|
1199 |
|
|
case TYPE_CODE_UNDEF:
|
1200 |
|
|
case TYPE_CODE_PTR:
|
1201 |
|
|
case TYPE_CODE_STRUCT:
|
1202 |
|
|
case TYPE_CODE_UNION:
|
1203 |
|
|
case TYPE_CODE_VOID:
|
1204 |
|
|
case TYPE_CODE_SET:
|
1205 |
|
|
case TYPE_CODE_RANGE:
|
1206 |
|
|
case TYPE_CODE_STRING:
|
1207 |
|
|
case TYPE_CODE_BITSTRING:
|
1208 |
|
|
case TYPE_CODE_ERROR:
|
1209 |
|
|
case TYPE_CODE_MEMBER:
|
1210 |
|
|
case TYPE_CODE_METHOD:
|
1211 |
|
|
case TYPE_CODE_COMPLEX:
|
1212 |
|
|
default:
|
1213 |
|
|
break;
|
1214 |
|
|
}
|
1215 |
|
|
|
1216 |
|
|
return value_cast (type, arg);
|
1217 |
|
|
}
|
1218 |
|
|
|
1219 |
|
|
/* Determine a function's address and its return type from its value.
|
1220 |
|
|
Calls error() if the function is not valid for calling. */
|
1221 |
|
|
|
1222 |
|
|
static CORE_ADDR
|
1223 |
|
|
find_function_addr (struct value *function, struct type **retval_type)
|
1224 |
|
|
{
|
1225 |
|
|
register struct type *ftype = check_typedef (VALUE_TYPE (function));
|
1226 |
|
|
register enum type_code code = TYPE_CODE (ftype);
|
1227 |
|
|
struct type *value_type;
|
1228 |
|
|
CORE_ADDR funaddr;
|
1229 |
|
|
|
1230 |
|
|
/* If it's a member function, just look at the function
|
1231 |
|
|
part of it. */
|
1232 |
|
|
|
1233 |
|
|
/* Determine address to call. */
|
1234 |
|
|
if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
|
1235 |
|
|
{
|
1236 |
|
|
funaddr = VALUE_ADDRESS (function);
|
1237 |
|
|
value_type = TYPE_TARGET_TYPE (ftype);
|
1238 |
|
|
}
|
1239 |
|
|
else if (code == TYPE_CODE_PTR)
|
1240 |
|
|
{
|
1241 |
|
|
funaddr = value_as_address (function);
|
1242 |
|
|
ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
|
1243 |
|
|
if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
|
1244 |
|
|
|| TYPE_CODE (ftype) == TYPE_CODE_METHOD)
|
1245 |
|
|
{
|
1246 |
|
|
funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
|
1247 |
|
|
value_type = TYPE_TARGET_TYPE (ftype);
|
1248 |
|
|
}
|
1249 |
|
|
else
|
1250 |
|
|
value_type = builtin_type_int;
|
1251 |
|
|
}
|
1252 |
|
|
else if (code == TYPE_CODE_INT)
|
1253 |
|
|
{
|
1254 |
|
|
/* Handle the case of functions lacking debugging info.
|
1255 |
|
|
Their values are characters since their addresses are char */
|
1256 |
|
|
if (TYPE_LENGTH (ftype) == 1)
|
1257 |
|
|
funaddr = value_as_address (value_addr (function));
|
1258 |
|
|
else
|
1259 |
|
|
/* Handle integer used as address of a function. */
|
1260 |
|
|
funaddr = (CORE_ADDR) value_as_long (function);
|
1261 |
|
|
|
1262 |
|
|
value_type = builtin_type_int;
|
1263 |
|
|
}
|
1264 |
|
|
else
|
1265 |
|
|
error ("Invalid data type for function to be called.");
|
1266 |
|
|
|
1267 |
|
|
*retval_type = value_type;
|
1268 |
|
|
return funaddr;
|
1269 |
|
|
}
|
1270 |
|
|
|
1271 |
|
|
/* All this stuff with a dummy frame may seem unnecessarily complicated
|
1272 |
|
|
(why not just save registers in GDB?). The purpose of pushing a dummy
|
1273 |
|
|
frame which looks just like a real frame is so that if you call a
|
1274 |
|
|
function and then hit a breakpoint (get a signal, etc), "backtrace"
|
1275 |
|
|
will look right. Whether the backtrace needs to actually show the
|
1276 |
|
|
stack at the time the inferior function was called is debatable, but
|
1277 |
|
|
it certainly needs to not display garbage. So if you are contemplating
|
1278 |
|
|
making dummy frames be different from normal frames, consider that. */
|
1279 |
|
|
|
1280 |
|
|
/* Perform a function call in the inferior.
|
1281 |
|
|
ARGS is a vector of values of arguments (NARGS of them).
|
1282 |
|
|
FUNCTION is a value, the function to be called.
|
1283 |
|
|
Returns a value representing what the function returned.
|
1284 |
|
|
May fail to return, if a breakpoint or signal is hit
|
1285 |
|
|
during the execution of the function.
|
1286 |
|
|
|
1287 |
|
|
ARGS is modified to contain coerced values. */
|
1288 |
|
|
|
1289 |
|
|
static struct value *
|
1290 |
|
|
hand_function_call (struct value *function, int nargs, struct value **args)
|
1291 |
|
|
{
|
1292 |
|
|
register CORE_ADDR sp;
|
1293 |
|
|
register int i;
|
1294 |
|
|
int rc;
|
1295 |
|
|
CORE_ADDR start_sp;
|
1296 |
|
|
/* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
|
1297 |
|
|
is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
|
1298 |
|
|
and remove any extra bytes which might exist because ULONGEST is
|
1299 |
|
|
bigger than REGISTER_SIZE.
|
1300 |
|
|
|
1301 |
|
|
NOTE: This is pretty wierd, as the call dummy is actually a
|
1302 |
|
|
sequence of instructions. But CISC machines will have
|
1303 |
|
|
to pack the instructions into REGISTER_SIZE units (and
|
1304 |
|
|
so will RISC machines for which INSTRUCTION_SIZE is not
|
1305 |
|
|
REGISTER_SIZE).
|
1306 |
|
|
|
1307 |
|
|
NOTE: This is pretty stupid. CALL_DUMMY should be in strict
|
1308 |
|
|
target byte order. */
|
1309 |
|
|
|
1310 |
|
|
static ULONGEST *dummy;
|
1311 |
|
|
int sizeof_dummy1;
|
1312 |
|
|
char *dummy1;
|
1313 |
|
|
CORE_ADDR old_sp;
|
1314 |
|
|
struct type *value_type;
|
1315 |
|
|
unsigned char struct_return;
|
1316 |
|
|
CORE_ADDR struct_addr = 0;
|
1317 |
|
|
struct regcache *retbuf;
|
1318 |
|
|
struct cleanup *retbuf_cleanup;
|
1319 |
|
|
struct inferior_status *inf_status;
|
1320 |
|
|
struct cleanup *inf_status_cleanup;
|
1321 |
|
|
CORE_ADDR funaddr;
|
1322 |
|
|
int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
|
1323 |
|
|
CORE_ADDR real_pc;
|
1324 |
|
|
struct type *param_type = NULL;
|
1325 |
|
|
struct type *ftype = check_typedef (SYMBOL_TYPE (function));
|
1326 |
|
|
int n_method_args = 0;
|
1327 |
|
|
|
1328 |
|
|
dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
|
1329 |
|
|
sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
|
1330 |
|
|
dummy1 = alloca (sizeof_dummy1);
|
1331 |
|
|
memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
|
1332 |
|
|
|
1333 |
|
|
if (!target_has_execution)
|
1334 |
|
|
noprocess ();
|
1335 |
|
|
|
1336 |
|
|
/* Create a cleanup chain that contains the retbuf (buffer
|
1337 |
|
|
containing the register values). This chain is create BEFORE the
|
1338 |
|
|
inf_status chain so that the inferior status can cleaned up
|
1339 |
|
|
(restored or discarded) without having the retbuf freed. */
|
1340 |
|
|
retbuf = regcache_xmalloc (current_gdbarch);
|
1341 |
|
|
retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
|
1342 |
|
|
|
1343 |
|
|
/* A cleanup for the inferior status. Create this AFTER the retbuf
|
1344 |
|
|
so that this can be discarded or applied without interfering with
|
1345 |
|
|
the regbuf. */
|
1346 |
|
|
inf_status = save_inferior_status (1);
|
1347 |
|
|
inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
|
1348 |
|
|
|
1349 |
|
|
/* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
|
1350 |
|
|
(and POP_FRAME for restoring them). (At least on most machines)
|
1351 |
|
|
they are saved on the stack in the inferior. */
|
1352 |
|
|
PUSH_DUMMY_FRAME;
|
1353 |
|
|
|
1354 |
|
|
old_sp = sp = read_sp ();
|
1355 |
|
|
|
1356 |
|
|
if (INNER_THAN (1, 2))
|
1357 |
|
|
{
|
1358 |
|
|
/* Stack grows down */
|
1359 |
|
|
sp -= sizeof_dummy1;
|
1360 |
|
|
start_sp = sp;
|
1361 |
|
|
}
|
1362 |
|
|
else
|
1363 |
|
|
{
|
1364 |
|
|
/* Stack grows up */
|
1365 |
|
|
start_sp = sp;
|
1366 |
|
|
sp += sizeof_dummy1;
|
1367 |
|
|
}
|
1368 |
|
|
|
1369 |
|
|
funaddr = find_function_addr (function, &value_type);
|
1370 |
|
|
CHECK_TYPEDEF (value_type);
|
1371 |
|
|
|
1372 |
|
|
{
|
1373 |
|
|
struct block *b = block_for_pc (funaddr);
|
1374 |
|
|
/* If compiled without -g, assume GCC 2. */
|
1375 |
|
|
using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
|
1376 |
|
|
}
|
1377 |
|
|
|
1378 |
|
|
/* Are we returning a value using a structure return or a normal
|
1379 |
|
|
value return? */
|
1380 |
|
|
|
1381 |
|
|
struct_return = using_struct_return (function, funaddr, value_type,
|
1382 |
|
|
using_gcc);
|
1383 |
|
|
|
1384 |
|
|
/* Create a call sequence customized for this function
|
1385 |
|
|
and the number of arguments for it. */
|
1386 |
|
|
for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
|
1387 |
|
|
store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
|
1388 |
|
|
REGISTER_SIZE,
|
1389 |
|
|
(ULONGEST) dummy[i]);
|
1390 |
|
|
|
1391 |
|
|
#ifdef GDB_TARGET_IS_HPPA
|
1392 |
|
|
real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
|
1393 |
|
|
value_type, using_gcc);
|
1394 |
|
|
#else
|
1395 |
|
|
FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
|
1396 |
|
|
value_type, using_gcc);
|
1397 |
|
|
real_pc = start_sp;
|
1398 |
|
|
#endif
|
1399 |
|
|
|
1400 |
|
|
if (CALL_DUMMY_LOCATION == ON_STACK)
|
1401 |
|
|
{
|
1402 |
|
|
write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
|
1403 |
|
|
if (USE_GENERIC_DUMMY_FRAMES)
|
1404 |
|
|
generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
|
1405 |
|
|
}
|
1406 |
|
|
|
1407 |
|
|
if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
|
1408 |
|
|
{
|
1409 |
|
|
/* Convex Unix prohibits executing in the stack segment. */
|
1410 |
|
|
/* Hope there is empty room at the top of the text segment. */
|
1411 |
|
|
extern CORE_ADDR text_end;
|
1412 |
|
|
static int checked = 0;
|
1413 |
|
|
if (!checked)
|
1414 |
|
|
for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
|
1415 |
|
|
if (read_memory_integer (start_sp, 1) != 0)
|
1416 |
|
|
error ("text segment full -- no place to put call");
|
1417 |
|
|
checked = 1;
|
1418 |
|
|
sp = old_sp;
|
1419 |
|
|
real_pc = text_end - sizeof_dummy1;
|
1420 |
|
|
write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
|
1421 |
|
|
if (USE_GENERIC_DUMMY_FRAMES)
|
1422 |
|
|
generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
|
1423 |
|
|
}
|
1424 |
|
|
|
1425 |
|
|
if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
|
1426 |
|
|
{
|
1427 |
|
|
extern CORE_ADDR text_end;
|
1428 |
|
|
int errcode;
|
1429 |
|
|
sp = old_sp;
|
1430 |
|
|
real_pc = text_end;
|
1431 |
|
|
errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
|
1432 |
|
|
if (errcode != 0)
|
1433 |
|
|
error ("Cannot write text segment -- call_function failed");
|
1434 |
|
|
if (USE_GENERIC_DUMMY_FRAMES)
|
1435 |
|
|
generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
|
1436 |
|
|
}
|
1437 |
|
|
|
1438 |
|
|
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
|
1439 |
|
|
{
|
1440 |
|
|
real_pc = funaddr;
|
1441 |
|
|
if (USE_GENERIC_DUMMY_FRAMES)
|
1442 |
|
|
/* NOTE: cagney/2002-04-13: The entry point is going to be
|
1443 |
|
|
modified with a single breakpoint. */
|
1444 |
|
|
generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
|
1445 |
|
|
CALL_DUMMY_ADDRESS () + 1);
|
1446 |
|
|
}
|
1447 |
|
|
|
1448 |
|
|
#ifdef lint
|
1449 |
|
|
sp = old_sp; /* It really is used, for some ifdef's... */
|
1450 |
|
|
#endif
|
1451 |
|
|
|
1452 |
|
|
if (nargs < TYPE_NFIELDS (ftype))
|
1453 |
|
|
error ("too few arguments in function call");
|
1454 |
|
|
|
1455 |
|
|
for (i = nargs - 1; i >= 0; i--)
|
1456 |
|
|
{
|
1457 |
|
|
int prototyped;
|
1458 |
|
|
|
1459 |
|
|
/* FIXME drow/2002-05-31: Should just always mark methods as
|
1460 |
|
|
prototyped. Can we respect TYPE_VARARGS? Probably not. */
|
1461 |
|
|
if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
|
1462 |
|
|
prototyped = 1;
|
1463 |
|
|
else
|
1464 |
|
|
prototyped = TYPE_PROTOTYPED (ftype);
|
1465 |
|
|
|
1466 |
|
|
if (i < TYPE_NFIELDS (ftype))
|
1467 |
|
|
args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
|
1468 |
|
|
prototyped);
|
1469 |
|
|
else
|
1470 |
|
|
args[i] = value_arg_coerce (args[i], NULL, 0);
|
1471 |
|
|
|
1472 |
|
|
/*elz: this code is to handle the case in which the function to be called
|
1473 |
|
|
has a pointer to function as parameter and the corresponding actual argument
|
1474 |
|
|
is the address of a function and not a pointer to function variable.
|
1475 |
|
|
In aCC compiled code, the calls through pointers to functions (in the body
|
1476 |
|
|
of the function called by hand) are made via $$dyncall_external which
|
1477 |
|
|
requires some registers setting, this is taken care of if we call
|
1478 |
|
|
via a function pointer variable, but not via a function address.
|
1479 |
|
|
In cc this is not a problem. */
|
1480 |
|
|
|
1481 |
|
|
if (using_gcc == 0)
|
1482 |
|
|
if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
|
1483 |
|
|
/* if this parameter is a pointer to function */
|
1484 |
|
|
if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
|
1485 |
|
|
if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
|
1486 |
|
|
/* elz: FIXME here should go the test about the compiler used
|
1487 |
|
|
to compile the target. We want to issue the error
|
1488 |
|
|
message only if the compiler used was HP's aCC.
|
1489 |
|
|
If we used HP's cc, then there is no problem and no need
|
1490 |
|
|
to return at this point */
|
1491 |
|
|
if (using_gcc == 0) /* && compiler == aCC */
|
1492 |
|
|
/* go see if the actual parameter is a variable of type
|
1493 |
|
|
pointer to function or just a function */
|
1494 |
|
|
if (args[i]->lval == not_lval)
|
1495 |
|
|
{
|
1496 |
|
|
char *arg_name;
|
1497 |
|
|
if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
|
1498 |
|
|
error ("\
|
1499 |
|
|
You cannot use function <%s> as argument. \n\
|
1500 |
|
|
You must use a pointer to function type variable. Command ignored.", arg_name);
|
1501 |
|
|
}
|
1502 |
|
|
}
|
1503 |
|
|
|
1504 |
|
|
if (REG_STRUCT_HAS_ADDR_P ())
|
1505 |
|
|
{
|
1506 |
|
|
/* This is a machine like the sparc, where we may need to pass a
|
1507 |
|
|
pointer to the structure, not the structure itself. */
|
1508 |
|
|
for (i = nargs - 1; i >= 0; i--)
|
1509 |
|
|
{
|
1510 |
|
|
struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
|
1511 |
|
|
if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
|
1512 |
|
|
|| TYPE_CODE (arg_type) == TYPE_CODE_UNION
|
1513 |
|
|
|| TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
|
1514 |
|
|
|| TYPE_CODE (arg_type) == TYPE_CODE_STRING
|
1515 |
|
|
|| TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
|
1516 |
|
|
|| TYPE_CODE (arg_type) == TYPE_CODE_SET
|
1517 |
|
|
|| (TYPE_CODE (arg_type) == TYPE_CODE_FLT
|
1518 |
|
|
&& TYPE_LENGTH (arg_type) > 8)
|
1519 |
|
|
)
|
1520 |
|
|
&& REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
|
1521 |
|
|
{
|
1522 |
|
|
CORE_ADDR addr;
|
1523 |
|
|
int len; /* = TYPE_LENGTH (arg_type); */
|
1524 |
|
|
int aligned_len;
|
1525 |
|
|
arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
|
1526 |
|
|
len = TYPE_LENGTH (arg_type);
|
1527 |
|
|
|
1528 |
|
|
if (STACK_ALIGN_P ())
|
1529 |
|
|
/* MVS 11/22/96: I think at least some of this
|
1530 |
|
|
stack_align code is really broken. Better to let
|
1531 |
|
|
PUSH_ARGUMENTS adjust the stack in a target-defined
|
1532 |
|
|
manner. */
|
1533 |
|
|
aligned_len = STACK_ALIGN (len);
|
1534 |
|
|
else
|
1535 |
|
|
aligned_len = len;
|
1536 |
|
|
if (INNER_THAN (1, 2))
|
1537 |
|
|
{
|
1538 |
|
|
/* stack grows downward */
|
1539 |
|
|
sp -= aligned_len;
|
1540 |
|
|
/* ... so the address of the thing we push is the
|
1541 |
|
|
stack pointer after we push it. */
|
1542 |
|
|
addr = sp;
|
1543 |
|
|
}
|
1544 |
|
|
else
|
1545 |
|
|
{
|
1546 |
|
|
/* The stack grows up, so the address of the thing
|
1547 |
|
|
we push is the stack pointer before we push it. */
|
1548 |
|
|
addr = sp;
|
1549 |
|
|
sp += aligned_len;
|
1550 |
|
|
}
|
1551 |
|
|
/* Push the structure. */
|
1552 |
|
|
write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
|
1553 |
|
|
/* The value we're going to pass is the address of the
|
1554 |
|
|
thing we just pushed. */
|
1555 |
|
|
/*args[i] = value_from_longest (lookup_pointer_type (value_type),
|
1556 |
|
|
(LONGEST) addr); */
|
1557 |
|
|
args[i] = value_from_pointer (lookup_pointer_type (arg_type),
|
1558 |
|
|
addr);
|
1559 |
|
|
}
|
1560 |
|
|
}
|
1561 |
|
|
}
|
1562 |
|
|
|
1563 |
|
|
|
1564 |
|
|
/* Reserve space for the return structure to be written on the
|
1565 |
|
|
stack, if necessary */
|
1566 |
|
|
|
1567 |
|
|
if (struct_return)
|
1568 |
|
|
{
|
1569 |
|
|
int len = TYPE_LENGTH (value_type);
|
1570 |
|
|
if (STACK_ALIGN_P ())
|
1571 |
|
|
/* MVS 11/22/96: I think at least some of this stack_align
|
1572 |
|
|
code is really broken. Better to let PUSH_ARGUMENTS adjust
|
1573 |
|
|
the stack in a target-defined manner. */
|
1574 |
|
|
len = STACK_ALIGN (len);
|
1575 |
|
|
if (INNER_THAN (1, 2))
|
1576 |
|
|
{
|
1577 |
|
|
/* stack grows downward */
|
1578 |
|
|
sp -= len;
|
1579 |
|
|
struct_addr = sp;
|
1580 |
|
|
}
|
1581 |
|
|
else
|
1582 |
|
|
{
|
1583 |
|
|
/* stack grows upward */
|
1584 |
|
|
struct_addr = sp;
|
1585 |
|
|
sp += len;
|
1586 |
|
|
}
|
1587 |
|
|
}
|
1588 |
|
|
|
1589 |
|
|
/* elz: on HPPA no need for this extra alignment, maybe it is needed
|
1590 |
|
|
on other architectures. This is because all the alignment is
|
1591 |
|
|
taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
|
1592 |
|
|
in hppa_push_arguments */
|
1593 |
|
|
if (EXTRA_STACK_ALIGNMENT_NEEDED)
|
1594 |
|
|
{
|
1595 |
|
|
/* MVS 11/22/96: I think at least some of this stack_align code
|
1596 |
|
|
is really broken. Better to let PUSH_ARGUMENTS adjust the
|
1597 |
|
|
stack in a target-defined manner. */
|
1598 |
|
|
if (STACK_ALIGN_P () && INNER_THAN (1, 2))
|
1599 |
|
|
{
|
1600 |
|
|
/* If stack grows down, we must leave a hole at the top. */
|
1601 |
|
|
int len = 0;
|
1602 |
|
|
|
1603 |
|
|
for (i = nargs - 1; i >= 0; i--)
|
1604 |
|
|
len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
|
1605 |
|
|
if (CALL_DUMMY_STACK_ADJUST_P)
|
1606 |
|
|
len += CALL_DUMMY_STACK_ADJUST;
|
1607 |
|
|
sp -= STACK_ALIGN (len) - len;
|
1608 |
|
|
}
|
1609 |
|
|
}
|
1610 |
|
|
|
1611 |
|
|
sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
|
1612 |
|
|
|
1613 |
|
|
if (PUSH_RETURN_ADDRESS_P ())
|
1614 |
|
|
/* for targets that use no CALL_DUMMY */
|
1615 |
|
|
/* There are a number of targets now which actually don't write
|
1616 |
|
|
any CALL_DUMMY instructions into the target, but instead just
|
1617 |
|
|
save the machine state, push the arguments, and jump directly
|
1618 |
|
|
to the callee function. Since this doesn't actually involve
|
1619 |
|
|
executing a JSR/BSR instruction, the return address must be set
|
1620 |
|
|
up by hand, either by pushing onto the stack or copying into a
|
1621 |
|
|
return-address register as appropriate. Formerly this has been
|
1622 |
|
|
done in PUSH_ARGUMENTS, but that's overloading its
|
1623 |
|
|
functionality a bit, so I'm making it explicit to do it here. */
|
1624 |
|
|
sp = PUSH_RETURN_ADDRESS (real_pc, sp);
|
1625 |
|
|
|
1626 |
|
|
if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
|
1627 |
|
|
{
|
1628 |
|
|
/* If stack grows up, we must leave a hole at the bottom, note
|
1629 |
|
|
that sp already has been advanced for the arguments! */
|
1630 |
|
|
if (CALL_DUMMY_STACK_ADJUST_P)
|
1631 |
|
|
sp += CALL_DUMMY_STACK_ADJUST;
|
1632 |
|
|
sp = STACK_ALIGN (sp);
|
1633 |
|
|
}
|
1634 |
|
|
|
1635 |
|
|
/* XXX This seems wrong. For stacks that grow down we shouldn't do
|
1636 |
|
|
anything here! */
|
1637 |
|
|
/* MVS 11/22/96: I think at least some of this stack_align code is
|
1638 |
|
|
really broken. Better to let PUSH_ARGUMENTS adjust the stack in
|
1639 |
|
|
a target-defined manner. */
|
1640 |
|
|
if (CALL_DUMMY_STACK_ADJUST_P)
|
1641 |
|
|
if (INNER_THAN (1, 2))
|
1642 |
|
|
{
|
1643 |
|
|
/* stack grows downward */
|
1644 |
|
|
sp -= CALL_DUMMY_STACK_ADJUST;
|
1645 |
|
|
}
|
1646 |
|
|
|
1647 |
|
|
/* Store the address at which the structure is supposed to be
|
1648 |
|
|
written. Note that this (and the code which reserved the space
|
1649 |
|
|
above) assumes that gcc was used to compile this function. Since
|
1650 |
|
|
it doesn't cost us anything but space and if the function is pcc
|
1651 |
|
|
it will ignore this value, we will make that assumption.
|
1652 |
|
|
|
1653 |
|
|
Also note that on some machines (like the sparc) pcc uses a
|
1654 |
|
|
convention like gcc's. */
|
1655 |
|
|
|
1656 |
|
|
if (struct_return)
|
1657 |
|
|
STORE_STRUCT_RETURN (struct_addr, sp);
|
1658 |
|
|
|
1659 |
|
|
/* Write the stack pointer. This is here because the statements above
|
1660 |
|
|
might fool with it. On SPARC, this write also stores the register
|
1661 |
|
|
window into the right place in the new stack frame, which otherwise
|
1662 |
|
|
wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
|
1663 |
|
|
write_sp (sp);
|
1664 |
|
|
|
1665 |
|
|
if (SAVE_DUMMY_FRAME_TOS_P ())
|
1666 |
|
|
SAVE_DUMMY_FRAME_TOS (sp);
|
1667 |
|
|
|
1668 |
|
|
{
|
1669 |
|
|
char *name;
|
1670 |
|
|
struct symbol *symbol;
|
1671 |
|
|
|
1672 |
|
|
name = NULL;
|
1673 |
|
|
symbol = find_pc_function (funaddr);
|
1674 |
|
|
if (symbol)
|
1675 |
|
|
{
|
1676 |
|
|
name = SYMBOL_SOURCE_NAME (symbol);
|
1677 |
|
|
}
|
1678 |
|
|
else
|
1679 |
|
|
{
|
1680 |
|
|
/* Try the minimal symbols. */
|
1681 |
|
|
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
|
1682 |
|
|
|
1683 |
|
|
if (msymbol)
|
1684 |
|
|
{
|
1685 |
|
|
name = SYMBOL_SOURCE_NAME (msymbol);
|
1686 |
|
|
}
|
1687 |
|
|
}
|
1688 |
|
|
if (name == NULL)
|
1689 |
|
|
{
|
1690 |
|
|
char format[80];
|
1691 |
|
|
sprintf (format, "at %s", local_hex_format ());
|
1692 |
|
|
name = alloca (80);
|
1693 |
|
|
/* FIXME-32x64: assumes funaddr fits in a long. */
|
1694 |
|
|
sprintf (name, format, (unsigned long) funaddr);
|
1695 |
|
|
}
|
1696 |
|
|
|
1697 |
|
|
/* Execute the stack dummy routine, calling FUNCTION.
|
1698 |
|
|
When it is done, discard the empty frame
|
1699 |
|
|
after storing the contents of all regs into retbuf. */
|
1700 |
|
|
rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
|
1701 |
|
|
|
1702 |
|
|
if (rc == 1)
|
1703 |
|
|
{
|
1704 |
|
|
/* We stopped inside the FUNCTION because of a random signal.
|
1705 |
|
|
Further execution of the FUNCTION is not allowed. */
|
1706 |
|
|
|
1707 |
|
|
if (unwind_on_signal_p)
|
1708 |
|
|
{
|
1709 |
|
|
/* The user wants the context restored. */
|
1710 |
|
|
|
1711 |
|
|
/* We must get back to the frame we were before the dummy call. */
|
1712 |
|
|
POP_FRAME;
|
1713 |
|
|
|
1714 |
|
|
/* FIXME: Insert a bunch of wrap_here; name can be very long if it's
|
1715 |
|
|
a C++ name with arguments and stuff. */
|
1716 |
|
|
error ("\
|
1717 |
|
|
The program being debugged was signaled while in a function called from GDB.\n\
|
1718 |
|
|
GDB has restored the context to what it was before the call.\n\
|
1719 |
|
|
To change this behavior use \"set unwindonsignal off\"\n\
|
1720 |
|
|
Evaluation of the expression containing the function (%s) will be abandoned.",
|
1721 |
|
|
name);
|
1722 |
|
|
}
|
1723 |
|
|
else
|
1724 |
|
|
{
|
1725 |
|
|
/* The user wants to stay in the frame where we stopped (default).*/
|
1726 |
|
|
|
1727 |
|
|
/* If we restored the inferior status (via the cleanup),
|
1728 |
|
|
we would print a spurious error message (Unable to
|
1729 |
|
|
restore previously selected frame), would write the
|
1730 |
|
|
registers from the inf_status (which is wrong), and
|
1731 |
|
|
would do other wrong things. */
|
1732 |
|
|
discard_cleanups (inf_status_cleanup);
|
1733 |
|
|
discard_inferior_status (inf_status);
|
1734 |
|
|
|
1735 |
|
|
/* FIXME: Insert a bunch of wrap_here; name can be very long if it's
|
1736 |
|
|
a C++ name with arguments and stuff. */
|
1737 |
|
|
error ("\
|
1738 |
|
|
The program being debugged was signaled while in a function called from GDB.\n\
|
1739 |
|
|
GDB remains in the frame where the signal was received.\n\
|
1740 |
|
|
To change this behavior use \"set unwindonsignal on\"\n\
|
1741 |
|
|
Evaluation of the expression containing the function (%s) will be abandoned.",
|
1742 |
|
|
name);
|
1743 |
|
|
}
|
1744 |
|
|
}
|
1745 |
|
|
|
1746 |
|
|
if (rc == 2)
|
1747 |
|
|
{
|
1748 |
|
|
/* We hit a breakpoint inside the FUNCTION. */
|
1749 |
|
|
|
1750 |
|
|
/* If we restored the inferior status (via the cleanup), we
|
1751 |
|
|
would print a spurious error message (Unable to restore
|
1752 |
|
|
previously selected frame), would write the registers from
|
1753 |
|
|
the inf_status (which is wrong), and would do other wrong
|
1754 |
|
|
things. */
|
1755 |
|
|
discard_cleanups (inf_status_cleanup);
|
1756 |
|
|
discard_inferior_status (inf_status);
|
1757 |
|
|
|
1758 |
|
|
/* The following error message used to say "The expression
|
1759 |
|
|
which contained the function call has been discarded." It
|
1760 |
|
|
is a hard concept to explain in a few words. Ideally, GDB
|
1761 |
|
|
would be able to resume evaluation of the expression when
|
1762 |
|
|
the function finally is done executing. Perhaps someday
|
1763 |
|
|
this will be implemented (it would not be easy). */
|
1764 |
|
|
|
1765 |
|
|
/* FIXME: Insert a bunch of wrap_here; name can be very long if it's
|
1766 |
|
|
a C++ name with arguments and stuff. */
|
1767 |
|
|
error ("\
|
1768 |
|
|
The program being debugged stopped while in a function called from GDB.\n\
|
1769 |
|
|
When the function (%s) is done executing, GDB will silently\n\
|
1770 |
|
|
stop (instead of continuing to evaluate the expression containing\n\
|
1771 |
|
|
the function call).", name);
|
1772 |
|
|
}
|
1773 |
|
|
|
1774 |
|
|
/* If we get here the called FUNCTION run to completion. */
|
1775 |
|
|
|
1776 |
|
|
/* Restore the inferior status, via its cleanup. At this stage,
|
1777 |
|
|
leave the RETBUF alone. */
|
1778 |
|
|
do_cleanups (inf_status_cleanup);
|
1779 |
|
|
|
1780 |
|
|
/* Figure out the value returned by the function. */
|
1781 |
|
|
/* elz: I defined this new macro for the hppa architecture only.
|
1782 |
|
|
this gives us a way to get the value returned by the function from the stack,
|
1783 |
|
|
at the same address we told the function to put it.
|
1784 |
|
|
We cannot assume on the pa that r28 still contains the address of the returned
|
1785 |
|
|
structure. Usually this will be overwritten by the callee.
|
1786 |
|
|
I don't know about other architectures, so I defined this macro
|
1787 |
|
|
*/
|
1788 |
|
|
|
1789 |
|
|
#ifdef VALUE_RETURNED_FROM_STACK
|
1790 |
|
|
if (struct_return)
|
1791 |
|
|
{
|
1792 |
|
|
do_cleanups (retbuf_cleanup);
|
1793 |
|
|
return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
|
1794 |
|
|
}
|
1795 |
|
|
#endif
|
1796 |
|
|
|
1797 |
|
|
{
|
1798 |
|
|
struct value *retval = value_being_returned (value_type, retbuf, struct_return);
|
1799 |
|
|
do_cleanups (retbuf_cleanup);
|
1800 |
|
|
return retval;
|
1801 |
|
|
}
|
1802 |
|
|
}
|
1803 |
|
|
}
|
1804 |
|
|
|
1805 |
|
|
struct value *
|
1806 |
|
|
call_function_by_hand (struct value *function, int nargs, struct value **args)
|
1807 |
|
|
{
|
1808 |
|
|
if (CALL_DUMMY_P)
|
1809 |
|
|
{
|
1810 |
|
|
return hand_function_call (function, nargs, args);
|
1811 |
|
|
}
|
1812 |
|
|
else
|
1813 |
|
|
{
|
1814 |
|
|
error ("Cannot invoke functions on this machine.");
|
1815 |
|
|
}
|
1816 |
|
|
}
|
1817 |
|
|
|
1818 |
|
|
|
1819 |
|
|
|
1820 |
|
|
/* Create a value for an array by allocating space in the inferior, copying
|
1821 |
|
|
the data into that space, and then setting up an array value.
|
1822 |
|
|
|
1823 |
|
|
The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
|
1824 |
|
|
populated from the values passed in ELEMVEC.
|
1825 |
|
|
|
1826 |
|
|
The element type of the array is inherited from the type of the
|
1827 |
|
|
first element, and all elements must have the same size (though we
|
1828 |
|
|
don't currently enforce any restriction on their types). */
|
1829 |
|
|
|
1830 |
|
|
struct value *
|
1831 |
|
|
value_array (int lowbound, int highbound, struct value **elemvec)
|
1832 |
|
|
{
|
1833 |
|
|
int nelem;
|
1834 |
|
|
int idx;
|
1835 |
|
|
unsigned int typelength;
|
1836 |
|
|
struct value *val;
|
1837 |
|
|
struct type *rangetype;
|
1838 |
|
|
struct type *arraytype;
|
1839 |
|
|
CORE_ADDR addr;
|
1840 |
|
|
|
1841 |
|
|
/* Validate that the bounds are reasonable and that each of the elements
|
1842 |
|
|
have the same size. */
|
1843 |
|
|
|
1844 |
|
|
nelem = highbound - lowbound + 1;
|
1845 |
|
|
if (nelem <= 0)
|
1846 |
|
|
{
|
1847 |
|
|
error ("bad array bounds (%d, %d)", lowbound, highbound);
|
1848 |
|
|
}
|
1849 |
|
|
typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
|
1850 |
|
|
for (idx = 1; idx < nelem; idx++)
|
1851 |
|
|
{
|
1852 |
|
|
if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
|
1853 |
|
|
{
|
1854 |
|
|
error ("array elements must all be the same size");
|
1855 |
|
|
}
|
1856 |
|
|
}
|
1857 |
|
|
|
1858 |
|
|
rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
|
1859 |
|
|
lowbound, highbound);
|
1860 |
|
|
arraytype = create_array_type ((struct type *) NULL,
|
1861 |
|
|
VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
|
1862 |
|
|
|
1863 |
|
|
if (!current_language->c_style_arrays)
|
1864 |
|
|
{
|
1865 |
|
|
val = allocate_value (arraytype);
|
1866 |
|
|
for (idx = 0; idx < nelem; idx++)
|
1867 |
|
|
{
|
1868 |
|
|
memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
|
1869 |
|
|
VALUE_CONTENTS_ALL (elemvec[idx]),
|
1870 |
|
|
typelength);
|
1871 |
|
|
}
|
1872 |
|
|
VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
|
1873 |
|
|
return val;
|
1874 |
|
|
}
|
1875 |
|
|
|
1876 |
|
|
/* Allocate space to store the array in the inferior, and then initialize
|
1877 |
|
|
it by copying in each element. FIXME: Is it worth it to create a
|
1878 |
|
|
local buffer in which to collect each value and then write all the
|
1879 |
|
|
bytes in one operation? */
|
1880 |
|
|
|
1881 |
|
|
addr = allocate_space_in_inferior (nelem * typelength);
|
1882 |
|
|
for (idx = 0; idx < nelem; idx++)
|
1883 |
|
|
{
|
1884 |
|
|
write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
|
1885 |
|
|
typelength);
|
1886 |
|
|
}
|
1887 |
|
|
|
1888 |
|
|
/* Create the array type and set up an array value to be evaluated lazily. */
|
1889 |
|
|
|
1890 |
|
|
val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
|
1891 |
|
|
return (val);
|
1892 |
|
|
}
|
1893 |
|
|
|
1894 |
|
|
/* Create a value for a string constant by allocating space in the inferior,
|
1895 |
|
|
copying the data into that space, and returning the address with type
|
1896 |
|
|
TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
|
1897 |
|
|
of characters.
|
1898 |
|
|
Note that string types are like array of char types with a lower bound of
|
1899 |
|
|
zero and an upper bound of LEN - 1. Also note that the string may contain
|
1900 |
|
|
embedded null bytes. */
|
1901 |
|
|
|
1902 |
|
|
struct value *
|
1903 |
|
|
value_string (char *ptr, int len)
|
1904 |
|
|
{
|
1905 |
|
|
struct value *val;
|
1906 |
|
|
int lowbound = current_language->string_lower_bound;
|
1907 |
|
|
struct type *rangetype = create_range_type ((struct type *) NULL,
|
1908 |
|
|
builtin_type_int,
|
1909 |
|
|
lowbound, len + lowbound - 1);
|
1910 |
|
|
struct type *stringtype
|
1911 |
|
|
= create_string_type ((struct type *) NULL, rangetype);
|
1912 |
|
|
CORE_ADDR addr;
|
1913 |
|
|
|
1914 |
|
|
if (current_language->c_style_arrays == 0)
|
1915 |
|
|
{
|
1916 |
|
|
val = allocate_value (stringtype);
|
1917 |
|
|
memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
|
1918 |
|
|
return val;
|
1919 |
|
|
}
|
1920 |
|
|
|
1921 |
|
|
|
1922 |
|
|
/* Allocate space to store the string in the inferior, and then
|
1923 |
|
|
copy LEN bytes from PTR in gdb to that address in the inferior. */
|
1924 |
|
|
|
1925 |
|
|
addr = allocate_space_in_inferior (len);
|
1926 |
|
|
write_memory (addr, ptr, len);
|
1927 |
|
|
|
1928 |
|
|
val = value_at_lazy (stringtype, addr, NULL);
|
1929 |
|
|
return (val);
|
1930 |
|
|
}
|
1931 |
|
|
|
1932 |
|
|
struct value *
|
1933 |
|
|
value_bitstring (char *ptr, int len)
|
1934 |
|
|
{
|
1935 |
|
|
struct value *val;
|
1936 |
|
|
struct type *domain_type = create_range_type (NULL, builtin_type_int,
|
1937 |
|
|
0, len - 1);
|
1938 |
|
|
struct type *type = create_set_type ((struct type *) NULL, domain_type);
|
1939 |
|
|
TYPE_CODE (type) = TYPE_CODE_BITSTRING;
|
1940 |
|
|
val = allocate_value (type);
|
1941 |
|
|
memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
|
1942 |
|
|
return val;
|
1943 |
|
|
}
|
1944 |
|
|
|
1945 |
|
|
/* See if we can pass arguments in T2 to a function which takes arguments
|
1946 |
|
|
of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
|
1947 |
|
|
vector. If some arguments need coercion of some sort, then the coerced
|
1948 |
|
|
values are written into T2. Return value is 0 if the arguments could be
|
1949 |
|
|
matched, or the position at which they differ if not.
|
1950 |
|
|
|
1951 |
|
|
STATICP is nonzero if the T1 argument list came from a
|
1952 |
|
|
static member function. T2 will still include the ``this'' pointer,
|
1953 |
|
|
but it will be skipped.
|
1954 |
|
|
|
1955 |
|
|
For non-static member functions, we ignore the first argument,
|
1956 |
|
|
which is the type of the instance variable. This is because we want
|
1957 |
|
|
to handle calls with objects from derived classes. This is not
|
1958 |
|
|
entirely correct: we should actually check to make sure that a
|
1959 |
|
|
requested operation is type secure, shouldn't we? FIXME. */
|
1960 |
|
|
|
1961 |
|
|
static int
|
1962 |
|
|
typecmp (int staticp, int varargs, int nargs,
|
1963 |
|
|
struct field t1[], struct value *t2[])
|
1964 |
|
|
{
|
1965 |
|
|
int i;
|
1966 |
|
|
|
1967 |
|
|
if (t2 == 0)
|
1968 |
|
|
internal_error (__FILE__, __LINE__, "typecmp: no argument list");
|
1969 |
|
|
|
1970 |
|
|
/* Skip ``this'' argument if applicable. T2 will always include THIS. */
|
1971 |
|
|
if (staticp)
|
1972 |
|
|
t2 ++;
|
1973 |
|
|
|
1974 |
|
|
for (i = 0;
|
1975 |
|
|
(i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
|
1976 |
|
|
i++)
|
1977 |
|
|
{
|
1978 |
|
|
struct type *tt1, *tt2;
|
1979 |
|
|
|
1980 |
|
|
if (!t2[i])
|
1981 |
|
|
return i + 1;
|
1982 |
|
|
|
1983 |
|
|
tt1 = check_typedef (t1[i].type);
|
1984 |
|
|
tt2 = check_typedef (VALUE_TYPE (t2[i]));
|
1985 |
|
|
|
1986 |
|
|
if (TYPE_CODE (tt1) == TYPE_CODE_REF
|
1987 |
|
|
/* We should be doing hairy argument matching, as below. */
|
1988 |
|
|
&& (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
|
1989 |
|
|
{
|
1990 |
|
|
if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
|
1991 |
|
|
t2[i] = value_coerce_array (t2[i]);
|
1992 |
|
|
else
|
1993 |
|
|
t2[i] = value_addr (t2[i]);
|
1994 |
|
|
continue;
|
1995 |
|
|
}
|
1996 |
|
|
|
1997 |
|
|
/* djb - 20000715 - Until the new type structure is in the
|
1998 |
|
|
place, and we can attempt things like implicit conversions,
|
1999 |
|
|
we need to do this so you can take something like a map<const
|
2000 |
|
|
char *>, and properly access map["hello"], because the
|
2001 |
|
|
argument to [] will be a reference to a pointer to a char,
|
2002 |
|
|
and the argument will be a pointer to a char. */
|
2003 |
|
|
while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
|
2004 |
|
|
TYPE_CODE (tt1) == TYPE_CODE_PTR)
|
2005 |
|
|
{
|
2006 |
|
|
tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
|
2007 |
|
|
}
|
2008 |
|
|
while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
|
2009 |
|
|
TYPE_CODE(tt2) == TYPE_CODE_PTR ||
|
2010 |
|
|
TYPE_CODE(tt2) == TYPE_CODE_REF)
|
2011 |
|
|
{
|
2012 |
|
|
tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
|
2013 |
|
|
}
|
2014 |
|
|
if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
|
2015 |
|
|
continue;
|
2016 |
|
|
/* Array to pointer is a `trivial conversion' according to the ARM. */
|
2017 |
|
|
|
2018 |
|
|
/* We should be doing much hairier argument matching (see section 13.2
|
2019 |
|
|
of the ARM), but as a quick kludge, just check for the same type
|
2020 |
|
|
code. */
|
2021 |
|
|
if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
|
2022 |
|
|
return i + 1;
|
2023 |
|
|
}
|
2024 |
|
|
if (varargs || t2[i] == NULL)
|
2025 |
|
|
return 0;
|
2026 |
|
|
return i + 1;
|
2027 |
|
|
}
|
2028 |
|
|
|
2029 |
|
|
/* Helper function used by value_struct_elt to recurse through baseclasses.
|
2030 |
|
|
Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
|
2031 |
|
|
and search in it assuming it has (class) type TYPE.
|
2032 |
|
|
If found, return value, else return NULL.
|
2033 |
|
|
|
2034 |
|
|
If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
|
2035 |
|
|
look for a baseclass named NAME. */
|
2036 |
|
|
|
2037 |
|
|
static struct value *
|
2038 |
|
|
search_struct_field (char *name, struct value *arg1, int offset,
|
2039 |
|
|
register struct type *type, int looking_for_baseclass)
|
2040 |
|
|
{
|
2041 |
|
|
int i;
|
2042 |
|
|
int nbases = TYPE_N_BASECLASSES (type);
|
2043 |
|
|
|
2044 |
|
|
CHECK_TYPEDEF (type);
|
2045 |
|
|
|
2046 |
|
|
if (!looking_for_baseclass)
|
2047 |
|
|
for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
|
2048 |
|
|
{
|
2049 |
|
|
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
2050 |
|
|
|
2051 |
|
|
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
|
2052 |
|
|
{
|
2053 |
|
|
struct value *v;
|
2054 |
|
|
if (TYPE_FIELD_STATIC (type, i))
|
2055 |
|
|
{
|
2056 |
|
|
v = value_static_field (type, i);
|
2057 |
|
|
if (v == 0)
|
2058 |
|
|
error ("field %s is nonexistent or has been optimised out",
|
2059 |
|
|
name);
|
2060 |
|
|
}
|
2061 |
|
|
else
|
2062 |
|
|
{
|
2063 |
|
|
v = value_primitive_field (arg1, offset, i, type);
|
2064 |
|
|
if (v == 0)
|
2065 |
|
|
error ("there is no field named %s", name);
|
2066 |
|
|
}
|
2067 |
|
|
return v;
|
2068 |
|
|
}
|
2069 |
|
|
|
2070 |
|
|
if (t_field_name
|
2071 |
|
|
&& (t_field_name[0] == '\0'
|
2072 |
|
|
|| (TYPE_CODE (type) == TYPE_CODE_UNION
|
2073 |
|
|
&& (strcmp_iw (t_field_name, "else") == 0))))
|
2074 |
|
|
{
|
2075 |
|
|
struct type *field_type = TYPE_FIELD_TYPE (type, i);
|
2076 |
|
|
if (TYPE_CODE (field_type) == TYPE_CODE_UNION
|
2077 |
|
|
|| TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
|
2078 |
|
|
{
|
2079 |
|
|
/* Look for a match through the fields of an anonymous union,
|
2080 |
|
|
or anonymous struct. C++ provides anonymous unions.
|
2081 |
|
|
|
2082 |
|
|
In the GNU Chill (OBSOLETE) implementation of
|
2083 |
|
|
variant record types, each <alternative field> has
|
2084 |
|
|
an (anonymous) union type, each member of the union
|
2085 |
|
|
represents a <variant alternative>. Each <variant
|
2086 |
|
|
alternative> is represented as a struct, with a
|
2087 |
|
|
member for each <variant field>. */
|
2088 |
|
|
|
2089 |
|
|
struct value *v;
|
2090 |
|
|
int new_offset = offset;
|
2091 |
|
|
|
2092 |
|
|
/* This is pretty gross. In G++, the offset in an
|
2093 |
|
|
anonymous union is relative to the beginning of the
|
2094 |
|
|
enclosing struct. In the GNU Chill (OBSOLETE)
|
2095 |
|
|
implementation of variant records, the bitpos is
|
2096 |
|
|
zero in an anonymous union field, so we have to add
|
2097 |
|
|
the offset of the union here. */
|
2098 |
|
|
if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
|
2099 |
|
|
|| (TYPE_NFIELDS (field_type) > 0
|
2100 |
|
|
&& TYPE_FIELD_BITPOS (field_type, 0) == 0))
|
2101 |
|
|
new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
|
2102 |
|
|
|
2103 |
|
|
v = search_struct_field (name, arg1, new_offset, field_type,
|
2104 |
|
|
looking_for_baseclass);
|
2105 |
|
|
if (v)
|
2106 |
|
|
return v;
|
2107 |
|
|
}
|
2108 |
|
|
}
|
2109 |
|
|
}
|
2110 |
|
|
|
2111 |
|
|
for (i = 0; i < nbases; i++)
|
2112 |
|
|
{
|
2113 |
|
|
struct value *v;
|
2114 |
|
|
struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
|
2115 |
|
|
/* If we are looking for baseclasses, this is what we get when we
|
2116 |
|
|
hit them. But it could happen that the base part's member name
|
2117 |
|
|
is not yet filled in. */
|
2118 |
|
|
int found_baseclass = (looking_for_baseclass
|
2119 |
|
|
&& TYPE_BASECLASS_NAME (type, i) != NULL
|
2120 |
|
|
&& (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
|
2121 |
|
|
|
2122 |
|
|
if (BASETYPE_VIA_VIRTUAL (type, i))
|
2123 |
|
|
{
|
2124 |
|
|
int boffset;
|
2125 |
|
|
struct value *v2 = allocate_value (basetype);
|
2126 |
|
|
|
2127 |
|
|
boffset = baseclass_offset (type, i,
|
2128 |
|
|
VALUE_CONTENTS (arg1) + offset,
|
2129 |
|
|
VALUE_ADDRESS (arg1)
|
2130 |
|
|
+ VALUE_OFFSET (arg1) + offset);
|
2131 |
|
|
if (boffset == -1)
|
2132 |
|
|
error ("virtual baseclass botch");
|
2133 |
|
|
|
2134 |
|
|
/* The virtual base class pointer might have been clobbered by the
|
2135 |
|
|
user program. Make sure that it still points to a valid memory
|
2136 |
|
|
location. */
|
2137 |
|
|
|
2138 |
|
|
boffset += offset;
|
2139 |
|
|
if (boffset < 0 || boffset >= TYPE_LENGTH (type))
|
2140 |
|
|
{
|
2141 |
|
|
CORE_ADDR base_addr;
|
2142 |
|
|
|
2143 |
|
|
base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
|
2144 |
|
|
if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
|
2145 |
|
|
TYPE_LENGTH (basetype)) != 0)
|
2146 |
|
|
error ("virtual baseclass botch");
|
2147 |
|
|
VALUE_LVAL (v2) = lval_memory;
|
2148 |
|
|
VALUE_ADDRESS (v2) = base_addr;
|
2149 |
|
|
}
|
2150 |
|
|
else
|
2151 |
|
|
{
|
2152 |
|
|
VALUE_LVAL (v2) = VALUE_LVAL (arg1);
|
2153 |
|
|
VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
|
2154 |
|
|
VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
|
2155 |
|
|
if (VALUE_LAZY (arg1))
|
2156 |
|
|
VALUE_LAZY (v2) = 1;
|
2157 |
|
|
else
|
2158 |
|
|
memcpy (VALUE_CONTENTS_RAW (v2),
|
2159 |
|
|
VALUE_CONTENTS_RAW (arg1) + boffset,
|
2160 |
|
|
TYPE_LENGTH (basetype));
|
2161 |
|
|
}
|
2162 |
|
|
|
2163 |
|
|
if (found_baseclass)
|
2164 |
|
|
return v2;
|
2165 |
|
|
v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
|
2166 |
|
|
looking_for_baseclass);
|
2167 |
|
|
}
|
2168 |
|
|
else if (found_baseclass)
|
2169 |
|
|
v = value_primitive_field (arg1, offset, i, type);
|
2170 |
|
|
else
|
2171 |
|
|
v = search_struct_field (name, arg1,
|
2172 |
|
|
offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
|
2173 |
|
|
basetype, looking_for_baseclass);
|
2174 |
|
|
if (v)
|
2175 |
|
|
return v;
|
2176 |
|
|
}
|
2177 |
|
|
return NULL;
|
2178 |
|
|
}
|
2179 |
|
|
|
2180 |
|
|
|
2181 |
|
|
/* Return the offset (in bytes) of the virtual base of type BASETYPE
|
2182 |
|
|
* in an object pointed to by VALADDR (on the host), assumed to be of
|
2183 |
|
|
* type TYPE. OFFSET is number of bytes beyond start of ARG to start
|
2184 |
|
|
* looking (in case VALADDR is the contents of an enclosing object).
|
2185 |
|
|
*
|
2186 |
|
|
* This routine recurses on the primary base of the derived class because
|
2187 |
|
|
* the virtual base entries of the primary base appear before the other
|
2188 |
|
|
* virtual base entries.
|
2189 |
|
|
*
|
2190 |
|
|
* If the virtual base is not found, a negative integer is returned.
|
2191 |
|
|
* The magnitude of the negative integer is the number of entries in
|
2192 |
|
|
* the virtual table to skip over (entries corresponding to various
|
2193 |
|
|
* ancestral classes in the chain of primary bases).
|
2194 |
|
|
*
|
2195 |
|
|
* Important: This assumes the HP / Taligent C++ runtime
|
2196 |
|
|
* conventions. Use baseclass_offset() instead to deal with g++
|
2197 |
|
|
* conventions. */
|
2198 |
|
|
|
2199 |
|
|
void
|
2200 |
|
|
find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
|
2201 |
|
|
int offset, int *boffset_p, int *skip_p)
|
2202 |
|
|
{
|
2203 |
|
|
int boffset; /* offset of virtual base */
|
2204 |
|
|
int index; /* displacement to use in virtual table */
|
2205 |
|
|
int skip;
|
2206 |
|
|
|
2207 |
|
|
struct value *vp;
|
2208 |
|
|
CORE_ADDR vtbl; /* the virtual table pointer */
|
2209 |
|
|
struct type *pbc; /* the primary base class */
|
2210 |
|
|
|
2211 |
|
|
/* Look for the virtual base recursively in the primary base, first.
|
2212 |
|
|
* This is because the derived class object and its primary base
|
2213 |
|
|
* subobject share the primary virtual table. */
|
2214 |
|
|
|
2215 |
|
|
boffset = 0;
|
2216 |
|
|
pbc = TYPE_PRIMARY_BASE (type);
|
2217 |
|
|
if (pbc)
|
2218 |
|
|
{
|
2219 |
|
|
find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
|
2220 |
|
|
if (skip < 0)
|
2221 |
|
|
{
|
2222 |
|
|
*boffset_p = boffset;
|
2223 |
|
|
*skip_p = -1;
|
2224 |
|
|
return;
|
2225 |
|
|
}
|
2226 |
|
|
}
|
2227 |
|
|
else
|
2228 |
|
|
skip = 0;
|
2229 |
|
|
|
2230 |
|
|
|
2231 |
|
|
/* Find the index of the virtual base according to HP/Taligent
|
2232 |
|
|
runtime spec. (Depth-first, left-to-right.) */
|
2233 |
|
|
index = virtual_base_index_skip_primaries (basetype, type);
|
2234 |
|
|
|
2235 |
|
|
if (index < 0)
|
2236 |
|
|
{
|
2237 |
|
|
*skip_p = skip + virtual_base_list_length_skip_primaries (type);
|
2238 |
|
|
*boffset_p = 0;
|
2239 |
|
|
return;
|
2240 |
|
|
}
|
2241 |
|
|
|
2242 |
|
|
/* pai: FIXME -- 32x64 possible problem */
|
2243 |
|
|
/* First word (4 bytes) in object layout is the vtable pointer */
|
2244 |
|
|
vtbl = *(CORE_ADDR *) (valaddr + offset);
|
2245 |
|
|
|
2246 |
|
|
/* Before the constructor is invoked, things are usually zero'd out. */
|
2247 |
|
|
if (vtbl == 0)
|
2248 |
|
|
error ("Couldn't find virtual table -- object may not be constructed yet.");
|
2249 |
|
|
|
2250 |
|
|
|
2251 |
|
|
/* Find virtual base's offset -- jump over entries for primary base
|
2252 |
|
|
* ancestors, then use the index computed above. But also adjust by
|
2253 |
|
|
* HP_ACC_VBASE_START for the vtable slots before the start of the
|
2254 |
|
|
* virtual base entries. Offset is negative -- virtual base entries
|
2255 |
|
|
* appear _before_ the address point of the virtual table. */
|
2256 |
|
|
|
2257 |
|
|
/* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
|
2258 |
|
|
& use long type */
|
2259 |
|
|
|
2260 |
|
|
/* epstein : FIXME -- added param for overlay section. May not be correct */
|
2261 |
|
|
vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
|
2262 |
|
|
boffset = value_as_long (vp);
|
2263 |
|
|
*skip_p = -1;
|
2264 |
|
|
*boffset_p = boffset;
|
2265 |
|
|
return;
|
2266 |
|
|
}
|
2267 |
|
|
|
2268 |
|
|
|
2269 |
|
|
/* Helper function used by value_struct_elt to recurse through baseclasses.
|
2270 |
|
|
Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
|
2271 |
|
|
and search in it assuming it has (class) type TYPE.
|
2272 |
|
|
If found, return value, else if name matched and args not return (value)-1,
|
2273 |
|
|
else return NULL. */
|
2274 |
|
|
|
2275 |
|
|
static struct value *
|
2276 |
|
|
search_struct_method (char *name, struct value **arg1p,
|
2277 |
|
|
struct value **args, int offset,
|
2278 |
|
|
int *static_memfuncp, register struct type *type)
|
2279 |
|
|
{
|
2280 |
|
|
int i;
|
2281 |
|
|
struct value *v;
|
2282 |
|
|
int name_matched = 0;
|
2283 |
|
|
char dem_opname[64];
|
2284 |
|
|
|
2285 |
|
|
CHECK_TYPEDEF (type);
|
2286 |
|
|
for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
|
2287 |
|
|
{
|
2288 |
|
|
char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
|
2289 |
|
|
/* FIXME! May need to check for ARM demangling here */
|
2290 |
|
|
if (strncmp (t_field_name, "__", 2) == 0 ||
|
2291 |
|
|
strncmp (t_field_name, "op", 2) == 0 ||
|
2292 |
|
|
strncmp (t_field_name, "type", 4) == 0)
|
2293 |
|
|
{
|
2294 |
|
|
if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
|
2295 |
|
|
t_field_name = dem_opname;
|
2296 |
|
|
else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
|
2297 |
|
|
t_field_name = dem_opname;
|
2298 |
|
|
}
|
2299 |
|
|
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
|
2300 |
|
|
{
|
2301 |
|
|
int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
|
2302 |
|
|
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
|
2303 |
|
|
name_matched = 1;
|
2304 |
|
|
|
2305 |
|
|
if (j > 0 && args == 0)
|
2306 |
|
|
error ("cannot resolve overloaded method `%s': no arguments supplied", name);
|
2307 |
|
|
else if (j == 0 && args == 0)
|
2308 |
|
|
{
|
2309 |
|
|
if (TYPE_FN_FIELD_STUB (f, j))
|
2310 |
|
|
check_stub_method (type, i, j);
|
2311 |
|
|
v = value_fn_field (arg1p, f, j, type, offset);
|
2312 |
|
|
if (v != NULL)
|
2313 |
|
|
return v;
|
2314 |
|
|
}
|
2315 |
|
|
else
|
2316 |
|
|
while (j >= 0)
|
2317 |
|
|
{
|
2318 |
|
|
if (TYPE_FN_FIELD_STUB (f, j))
|
2319 |
|
|
check_stub_method (type, i, j);
|
2320 |
|
|
if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
|
2321 |
|
|
TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
|
2322 |
|
|
TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
|
2323 |
|
|
TYPE_FN_FIELD_ARGS (f, j), args))
|
2324 |
|
|
{
|
2325 |
|
|
if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
|
2326 |
|
|
return value_virtual_fn_field (arg1p, f, j, type, offset);
|
2327 |
|
|
if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
|
2328 |
|
|
*static_memfuncp = 1;
|
2329 |
|
|
v = value_fn_field (arg1p, f, j, type, offset);
|
2330 |
|
|
if (v != NULL)
|
2331 |
|
|
return v;
|
2332 |
|
|
}
|
2333 |
|
|
j--;
|
2334 |
|
|
}
|
2335 |
|
|
}
|
2336 |
|
|
}
|
2337 |
|
|
|
2338 |
|
|
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
2339 |
|
|
{
|
2340 |
|
|
int base_offset;
|
2341 |
|
|
|
2342 |
|
|
if (BASETYPE_VIA_VIRTUAL (type, i))
|
2343 |
|
|
{
|
2344 |
|
|
if (TYPE_HAS_VTABLE (type))
|
2345 |
|
|
{
|
2346 |
|
|
/* HP aCC compiled type, search for virtual base offset
|
2347 |
|
|
according to HP/Taligent runtime spec. */
|
2348 |
|
|
int skip;
|
2349 |
|
|
find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
|
2350 |
|
|
VALUE_CONTENTS_ALL (*arg1p),
|
2351 |
|
|
offset + VALUE_EMBEDDED_OFFSET (*arg1p),
|
2352 |
|
|
&base_offset, &skip);
|
2353 |
|
|
if (skip >= 0)
|
2354 |
|
|
error ("Virtual base class offset not found in vtable");
|
2355 |
|
|
}
|
2356 |
|
|
else
|
2357 |
|
|
{
|
2358 |
|
|
struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
|
2359 |
|
|
char *base_valaddr;
|
2360 |
|
|
|
2361 |
|
|
/* The virtual base class pointer might have been clobbered by the
|
2362 |
|
|
user program. Make sure that it still points to a valid memory
|
2363 |
|
|
location. */
|
2364 |
|
|
|
2365 |
|
|
if (offset < 0 || offset >= TYPE_LENGTH (type))
|
2366 |
|
|
{
|
2367 |
|
|
base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
|
2368 |
|
|
if (target_read_memory (VALUE_ADDRESS (*arg1p)
|
2369 |
|
|
+ VALUE_OFFSET (*arg1p) + offset,
|
2370 |
|
|
base_valaddr,
|
2371 |
|
|
TYPE_LENGTH (baseclass)) != 0)
|
2372 |
|
|
error ("virtual baseclass botch");
|
2373 |
|
|
}
|
2374 |
|
|
else
|
2375 |
|
|
base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
|
2376 |
|
|
|
2377 |
|
|
base_offset =
|
2378 |
|
|
baseclass_offset (type, i, base_valaddr,
|
2379 |
|
|
VALUE_ADDRESS (*arg1p)
|
2380 |
|
|
+ VALUE_OFFSET (*arg1p) + offset);
|
2381 |
|
|
if (base_offset == -1)
|
2382 |
|
|
error ("virtual baseclass botch");
|
2383 |
|
|
}
|
2384 |
|
|
}
|
2385 |
|
|
else
|
2386 |
|
|
{
|
2387 |
|
|
base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
|
2388 |
|
|
}
|
2389 |
|
|
v = search_struct_method (name, arg1p, args, base_offset + offset,
|
2390 |
|
|
static_memfuncp, TYPE_BASECLASS (type, i));
|
2391 |
|
|
if (v == (struct value *) - 1)
|
2392 |
|
|
{
|
2393 |
|
|
name_matched = 1;
|
2394 |
|
|
}
|
2395 |
|
|
else if (v)
|
2396 |
|
|
{
|
2397 |
|
|
/* FIXME-bothner: Why is this commented out? Why is it here? */
|
2398 |
|
|
/* *arg1p = arg1_tmp; */
|
2399 |
|
|
return v;
|
2400 |
|
|
}
|
2401 |
|
|
}
|
2402 |
|
|
if (name_matched)
|
2403 |
|
|
return (struct value *) - 1;
|
2404 |
|
|
else
|
2405 |
|
|
return NULL;
|
2406 |
|
|
}
|
2407 |
|
|
|
2408 |
|
|
/* Given *ARGP, a value of type (pointer to a)* structure/union,
|
2409 |
|
|
extract the component named NAME from the ultimate target structure/union
|
2410 |
|
|
and return it as a value with its appropriate type.
|
2411 |
|
|
ERR is used in the error message if *ARGP's type is wrong.
|
2412 |
|
|
|
2413 |
|
|
C++: ARGS is a list of argument types to aid in the selection of
|
2414 |
|
|
an appropriate method. Also, handle derived types.
|
2415 |
|
|
|
2416 |
|
|
STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
|
2417 |
|
|
where the truthvalue of whether the function that was resolved was
|
2418 |
|
|
a static member function or not is stored.
|
2419 |
|
|
|
2420 |
|
|
ERR is an error message to be printed in case the field is not found. */
|
2421 |
|
|
|
2422 |
|
|
struct value *
|
2423 |
|
|
value_struct_elt (struct value **argp, struct value **args,
|
2424 |
|
|
char *name, int *static_memfuncp, char *err)
|
2425 |
|
|
{
|
2426 |
|
|
register struct type *t;
|
2427 |
|
|
struct value *v;
|
2428 |
|
|
|
2429 |
|
|
COERCE_ARRAY (*argp);
|
2430 |
|
|
|
2431 |
|
|
t = check_typedef (VALUE_TYPE (*argp));
|
2432 |
|
|
|
2433 |
|
|
/* Follow pointers until we get to a non-pointer. */
|
2434 |
|
|
|
2435 |
|
|
while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
|
2436 |
|
|
{
|
2437 |
|
|
*argp = value_ind (*argp);
|
2438 |
|
|
/* Don't coerce fn pointer to fn and then back again! */
|
2439 |
|
|
if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
|
2440 |
|
|
COERCE_ARRAY (*argp);
|
2441 |
|
|
t = check_typedef (VALUE_TYPE (*argp));
|
2442 |
|
|
}
|
2443 |
|
|
|
2444 |
|
|
if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
|
2445 |
|
|
error ("not implemented: member type in value_struct_elt");
|
2446 |
|
|
|
2447 |
|
|
if (TYPE_CODE (t) != TYPE_CODE_STRUCT
|
2448 |
|
|
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
2449 |
|
|
error ("Attempt to extract a component of a value that is not a %s.", err);
|
2450 |
|
|
|
2451 |
|
|
/* Assume it's not, unless we see that it is. */
|
2452 |
|
|
if (static_memfuncp)
|
2453 |
|
|
*static_memfuncp = 0;
|
2454 |
|
|
|
2455 |
|
|
if (!args)
|
2456 |
|
|
{
|
2457 |
|
|
/* if there are no arguments ...do this... */
|
2458 |
|
|
|
2459 |
|
|
/* Try as a field first, because if we succeed, there
|
2460 |
|
|
is less work to be done. */
|
2461 |
|
|
v = search_struct_field (name, *argp, 0, t, 0);
|
2462 |
|
|
if (v)
|
2463 |
|
|
return v;
|
2464 |
|
|
|
2465 |
|
|
/* C++: If it was not found as a data field, then try to
|
2466 |
|
|
return it as a pointer to a method. */
|
2467 |
|
|
|
2468 |
|
|
if (destructor_name_p (name, t))
|
2469 |
|
|
error ("Cannot get value of destructor");
|
2470 |
|
|
|
2471 |
|
|
v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
|
2472 |
|
|
|
2473 |
|
|
if (v == (struct value *) - 1)
|
2474 |
|
|
error ("Cannot take address of a method");
|
2475 |
|
|
else if (v == 0)
|
2476 |
|
|
{
|
2477 |
|
|
if (TYPE_NFN_FIELDS (t))
|
2478 |
|
|
error ("There is no member or method named %s.", name);
|
2479 |
|
|
else
|
2480 |
|
|
error ("There is no member named %s.", name);
|
2481 |
|
|
}
|
2482 |
|
|
return v;
|
2483 |
|
|
}
|
2484 |
|
|
|
2485 |
|
|
if (destructor_name_p (name, t))
|
2486 |
|
|
{
|
2487 |
|
|
if (!args[1])
|
2488 |
|
|
{
|
2489 |
|
|
/* Destructors are a special case. */
|
2490 |
|
|
int m_index, f_index;
|
2491 |
|
|
|
2492 |
|
|
v = NULL;
|
2493 |
|
|
if (get_destructor_fn_field (t, &m_index, &f_index))
|
2494 |
|
|
{
|
2495 |
|
|
v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
|
2496 |
|
|
f_index, NULL, 0);
|
2497 |
|
|
}
|
2498 |
|
|
if (v == NULL)
|
2499 |
|
|
error ("could not find destructor function named %s.", name);
|
2500 |
|
|
else
|
2501 |
|
|
return v;
|
2502 |
|
|
}
|
2503 |
|
|
else
|
2504 |
|
|
{
|
2505 |
|
|
error ("destructor should not have any argument");
|
2506 |
|
|
}
|
2507 |
|
|
}
|
2508 |
|
|
else
|
2509 |
|
|
v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
|
2510 |
|
|
|
2511 |
|
|
if (v == (struct value *) - 1)
|
2512 |
|
|
{
|
2513 |
|
|
error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
|
2514 |
|
|
}
|
2515 |
|
|
else if (v == 0)
|
2516 |
|
|
{
|
2517 |
|
|
/* See if user tried to invoke data as function. If so,
|
2518 |
|
|
hand it back. If it's not callable (i.e., a pointer to function),
|
2519 |
|
|
gdb should give an error. */
|
2520 |
|
|
v = search_struct_field (name, *argp, 0, t, 0);
|
2521 |
|
|
}
|
2522 |
|
|
|
2523 |
|
|
if (!v)
|
2524 |
|
|
error ("Structure has no component named %s.", name);
|
2525 |
|
|
return v;
|
2526 |
|
|
}
|
2527 |
|
|
|
2528 |
|
|
/* Search through the methods of an object (and its bases)
|
2529 |
|
|
* to find a specified method. Return the pointer to the
|
2530 |
|
|
* fn_field list of overloaded instances.
|
2531 |
|
|
* Helper function for value_find_oload_list.
|
2532 |
|
|
* ARGP is a pointer to a pointer to a value (the object)
|
2533 |
|
|
* METHOD is a string containing the method name
|
2534 |
|
|
* OFFSET is the offset within the value
|
2535 |
|
|
* TYPE is the assumed type of the object
|
2536 |
|
|
* NUM_FNS is the number of overloaded instances
|
2537 |
|
|
* BASETYPE is set to the actual type of the subobject where the method is found
|
2538 |
|
|
* BOFFSET is the offset of the base subobject where the method is found */
|
2539 |
|
|
|
2540 |
|
|
static struct fn_field *
|
2541 |
|
|
find_method_list (struct value **argp, char *method, int offset,
|
2542 |
|
|
struct type *type, int *num_fns,
|
2543 |
|
|
struct type **basetype, int *boffset)
|
2544 |
|
|
{
|
2545 |
|
|
int i;
|
2546 |
|
|
struct fn_field *f;
|
2547 |
|
|
CHECK_TYPEDEF (type);
|
2548 |
|
|
|
2549 |
|
|
*num_fns = 0;
|
2550 |
|
|
|
2551 |
|
|
/* First check in object itself */
|
2552 |
|
|
for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
|
2553 |
|
|
{
|
2554 |
|
|
/* pai: FIXME What about operators and type conversions? */
|
2555 |
|
|
char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
|
2556 |
|
|
if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
|
2557 |
|
|
{
|
2558 |
|
|
/* Resolve any stub methods. */
|
2559 |
|
|
int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
|
2560 |
|
|
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
|
2561 |
|
|
int j;
|
2562 |
|
|
|
2563 |
|
|
*num_fns = len;
|
2564 |
|
|
*basetype = type;
|
2565 |
|
|
*boffset = offset;
|
2566 |
|
|
|
2567 |
|
|
for (j = 0; j < len; j++)
|
2568 |
|
|
{
|
2569 |
|
|
if (TYPE_FN_FIELD_STUB (f, j))
|
2570 |
|
|
check_stub_method (type, i, j);
|
2571 |
|
|
}
|
2572 |
|
|
|
2573 |
|
|
return f;
|
2574 |
|
|
}
|
2575 |
|
|
}
|
2576 |
|
|
|
2577 |
|
|
/* Not found in object, check in base subobjects */
|
2578 |
|
|
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
2579 |
|
|
{
|
2580 |
|
|
int base_offset;
|
2581 |
|
|
if (BASETYPE_VIA_VIRTUAL (type, i))
|
2582 |
|
|
{
|
2583 |
|
|
if (TYPE_HAS_VTABLE (type))
|
2584 |
|
|
{
|
2585 |
|
|
/* HP aCC compiled type, search for virtual base offset
|
2586 |
|
|
* according to HP/Taligent runtime spec. */
|
2587 |
|
|
int skip;
|
2588 |
|
|
find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
|
2589 |
|
|
VALUE_CONTENTS_ALL (*argp),
|
2590 |
|
|
offset + VALUE_EMBEDDED_OFFSET (*argp),
|
2591 |
|
|
&base_offset, &skip);
|
2592 |
|
|
if (skip >= 0)
|
2593 |
|
|
error ("Virtual base class offset not found in vtable");
|
2594 |
|
|
}
|
2595 |
|
|
else
|
2596 |
|
|
{
|
2597 |
|
|
/* probably g++ runtime model */
|
2598 |
|
|
base_offset = VALUE_OFFSET (*argp) + offset;
|
2599 |
|
|
base_offset =
|
2600 |
|
|
baseclass_offset (type, i,
|
2601 |
|
|
VALUE_CONTENTS (*argp) + base_offset,
|
2602 |
|
|
VALUE_ADDRESS (*argp) + base_offset);
|
2603 |
|
|
if (base_offset == -1)
|
2604 |
|
|
error ("virtual baseclass botch");
|
2605 |
|
|
}
|
2606 |
|
|
}
|
2607 |
|
|
else
|
2608 |
|
|
/* non-virtual base, simply use bit position from debug info */
|
2609 |
|
|
{
|
2610 |
|
|
base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
|
2611 |
|
|
}
|
2612 |
|
|
f = find_method_list (argp, method, base_offset + offset,
|
2613 |
|
|
TYPE_BASECLASS (type, i), num_fns, basetype,
|
2614 |
|
|
boffset);
|
2615 |
|
|
if (f)
|
2616 |
|
|
return f;
|
2617 |
|
|
}
|
2618 |
|
|
return NULL;
|
2619 |
|
|
}
|
2620 |
|
|
|
2621 |
|
|
/* Return the list of overloaded methods of a specified name.
|
2622 |
|
|
* ARGP is a pointer to a pointer to a value (the object)
|
2623 |
|
|
* METHOD is the method name
|
2624 |
|
|
* OFFSET is the offset within the value contents
|
2625 |
|
|
* NUM_FNS is the number of overloaded instances
|
2626 |
|
|
* BASETYPE is set to the type of the base subobject that defines the method
|
2627 |
|
|
* BOFFSET is the offset of the base subobject which defines the method */
|
2628 |
|
|
|
2629 |
|
|
struct fn_field *
|
2630 |
|
|
value_find_oload_method_list (struct value **argp, char *method, int offset,
|
2631 |
|
|
int *num_fns, struct type **basetype,
|
2632 |
|
|
int *boffset)
|
2633 |
|
|
{
|
2634 |
|
|
struct type *t;
|
2635 |
|
|
|
2636 |
|
|
t = check_typedef (VALUE_TYPE (*argp));
|
2637 |
|
|
|
2638 |
|
|
/* code snarfed from value_struct_elt */
|
2639 |
|
|
while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
|
2640 |
|
|
{
|
2641 |
|
|
*argp = value_ind (*argp);
|
2642 |
|
|
/* Don't coerce fn pointer to fn and then back again! */
|
2643 |
|
|
if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
|
2644 |
|
|
COERCE_ARRAY (*argp);
|
2645 |
|
|
t = check_typedef (VALUE_TYPE (*argp));
|
2646 |
|
|
}
|
2647 |
|
|
|
2648 |
|
|
if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
|
2649 |
|
|
error ("Not implemented: member type in value_find_oload_lis");
|
2650 |
|
|
|
2651 |
|
|
if (TYPE_CODE (t) != TYPE_CODE_STRUCT
|
2652 |
|
|
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
2653 |
|
|
error ("Attempt to extract a component of a value that is not a struct or union");
|
2654 |
|
|
|
2655 |
|
|
return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
|
2656 |
|
|
}
|
2657 |
|
|
|
2658 |
|
|
/* Given an array of argument types (ARGTYPES) (which includes an
|
2659 |
|
|
entry for "this" in the case of C++ methods), the number of
|
2660 |
|
|
arguments NARGS, the NAME of a function whether it's a method or
|
2661 |
|
|
not (METHOD), and the degree of laxness (LAX) in conforming to
|
2662 |
|
|
overload resolution rules in ANSI C++, find the best function that
|
2663 |
|
|
matches on the argument types according to the overload resolution
|
2664 |
|
|
rules.
|
2665 |
|
|
|
2666 |
|
|
In the case of class methods, the parameter OBJ is an object value
|
2667 |
|
|
in which to search for overloaded methods.
|
2668 |
|
|
|
2669 |
|
|
In the case of non-method functions, the parameter FSYM is a symbol
|
2670 |
|
|
corresponding to one of the overloaded functions.
|
2671 |
|
|
|
2672 |
|
|
Return value is an integer: 0 -> good match, 10 -> debugger applied
|
2673 |
|
|
non-standard coercions, 100 -> incompatible.
|
2674 |
|
|
|
2675 |
|
|
If a method is being searched for, VALP will hold the value.
|
2676 |
|
|
If a non-method is being searched for, SYMP will hold the symbol for it.
|
2677 |
|
|
|
2678 |
|
|
If a method is being searched for, and it is a static method,
|
2679 |
|
|
then STATICP will point to a non-zero value.
|
2680 |
|
|
|
2681 |
|
|
Note: This function does *not* check the value of
|
2682 |
|
|
overload_resolution. Caller must check it to see whether overload
|
2683 |
|
|
resolution is permitted.
|
2684 |
|
|
*/
|
2685 |
|
|
|
2686 |
|
|
int
|
2687 |
|
|
find_overload_match (struct type **arg_types, int nargs, char *name, int method,
|
2688 |
|
|
int lax, struct value **objp, struct symbol *fsym,
|
2689 |
|
|
struct value **valp, struct symbol **symp, int *staticp)
|
2690 |
|
|
{
|
2691 |
|
|
int nparms;
|
2692 |
|
|
struct type **parm_types;
|
2693 |
|
|
int champ_nparms = 0;
|
2694 |
|
|
struct value *obj = (objp ? *objp : NULL);
|
2695 |
|
|
|
2696 |
|
|
short oload_champ = -1; /* Index of best overloaded function */
|
2697 |
|
|
short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
|
2698 |
|
|
/* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
|
2699 |
|
|
short oload_ambig_champ = -1; /* 2nd contender for best match */
|
2700 |
|
|
short oload_non_standard = 0; /* did we have to use non-standard conversions? */
|
2701 |
|
|
short oload_incompatible = 0; /* are args supplied incompatible with any function? */
|
2702 |
|
|
|
2703 |
|
|
struct badness_vector *bv; /* A measure of how good an overloaded instance is */
|
2704 |
|
|
struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
|
2705 |
|
|
|
2706 |
|
|
struct value *temp = obj;
|
2707 |
|
|
struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
|
2708 |
|
|
struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
|
2709 |
|
|
int num_fns = 0; /* Number of overloaded instances being considered */
|
2710 |
|
|
struct type *basetype = NULL;
|
2711 |
|
|
int boffset;
|
2712 |
|
|
register int jj;
|
2713 |
|
|
register int ix;
|
2714 |
|
|
int static_offset;
|
2715 |
|
|
struct cleanup *cleanups = NULL;
|
2716 |
|
|
|
2717 |
|
|
char *obj_type_name = NULL;
|
2718 |
|
|
char *func_name = NULL;
|
2719 |
|
|
|
2720 |
|
|
/* Get the list of overloaded methods or functions */
|
2721 |
|
|
if (method)
|
2722 |
|
|
{
|
2723 |
|
|
obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
|
2724 |
|
|
/* Hack: evaluate_subexp_standard often passes in a pointer
|
2725 |
|
|
value rather than the object itself, so try again */
|
2726 |
|
|
if ((!obj_type_name || !*obj_type_name) &&
|
2727 |
|
|
(TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
|
2728 |
|
|
obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
|
2729 |
|
|
|
2730 |
|
|
fns_ptr = value_find_oload_method_list (&temp, name, 0,
|
2731 |
|
|
&num_fns,
|
2732 |
|
|
&basetype, &boffset);
|
2733 |
|
|
if (!fns_ptr || !num_fns)
|
2734 |
|
|
error ("Couldn't find method %s%s%s",
|
2735 |
|
|
obj_type_name,
|
2736 |
|
|
(obj_type_name && *obj_type_name) ? "::" : "",
|
2737 |
|
|
name);
|
2738 |
|
|
/* If we are dealing with stub method types, they should have
|
2739 |
|
|
been resolved by find_method_list via value_find_oload_method_list
|
2740 |
|
|
above. */
|
2741 |
|
|
gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
|
2742 |
|
|
}
|
2743 |
|
|
else
|
2744 |
|
|
{
|
2745 |
|
|
int i = -1;
|
2746 |
|
|
func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
|
2747 |
|
|
|
2748 |
|
|
/* If the name is NULL this must be a C-style function.
|
2749 |
|
|
Just return the same symbol. */
|
2750 |
|
|
if (!func_name)
|
2751 |
|
|
{
|
2752 |
|
|
*symp = fsym;
|
2753 |
|
|
return 0;
|
2754 |
|
|
}
|
2755 |
|
|
|
2756 |
|
|
oload_syms = make_symbol_overload_list (fsym);
|
2757 |
|
|
cleanups = make_cleanup (xfree, oload_syms);
|
2758 |
|
|
while (oload_syms[++i])
|
2759 |
|
|
num_fns++;
|
2760 |
|
|
if (!num_fns)
|
2761 |
|
|
error ("Couldn't find function %s", func_name);
|
2762 |
|
|
}
|
2763 |
|
|
|
2764 |
|
|
oload_champ_bv = NULL;
|
2765 |
|
|
|
2766 |
|
|
/* Consider each candidate in turn */
|
2767 |
|
|
for (ix = 0; ix < num_fns; ix++)
|
2768 |
|
|
{
|
2769 |
|
|
static_offset = 0;
|
2770 |
|
|
if (method)
|
2771 |
|
|
{
|
2772 |
|
|
if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
|
2773 |
|
|
static_offset = 1;
|
2774 |
|
|
nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
|
2775 |
|
|
}
|
2776 |
|
|
else
|
2777 |
|
|
{
|
2778 |
|
|
/* If it's not a method, this is the proper place */
|
2779 |
|
|
nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
|
2780 |
|
|
}
|
2781 |
|
|
|
2782 |
|
|
/* Prepare array of parameter types */
|
2783 |
|
|
parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
|
2784 |
|
|
for (jj = 0; jj < nparms; jj++)
|
2785 |
|
|
parm_types[jj] = (method
|
2786 |
|
|
? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
|
2787 |
|
|
: TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
|
2788 |
|
|
|
2789 |
|
|
/* Compare parameter types to supplied argument types. Skip THIS for
|
2790 |
|
|
static methods. */
|
2791 |
|
|
bv = rank_function (parm_types, nparms, arg_types + static_offset,
|
2792 |
|
|
nargs - static_offset);
|
2793 |
|
|
|
2794 |
|
|
if (!oload_champ_bv)
|
2795 |
|
|
{
|
2796 |
|
|
oload_champ_bv = bv;
|
2797 |
|
|
oload_champ = 0;
|
2798 |
|
|
champ_nparms = nparms;
|
2799 |
|
|
}
|
2800 |
|
|
else
|
2801 |
|
|
/* See whether current candidate is better or worse than previous best */
|
2802 |
|
|
switch (compare_badness (bv, oload_champ_bv))
|
2803 |
|
|
{
|
2804 |
|
|
case 0:
|
2805 |
|
|
oload_ambiguous = 1; /* top two contenders are equally good */
|
2806 |
|
|
oload_ambig_champ = ix;
|
2807 |
|
|
break;
|
2808 |
|
|
case 1:
|
2809 |
|
|
oload_ambiguous = 2; /* incomparable top contenders */
|
2810 |
|
|
oload_ambig_champ = ix;
|
2811 |
|
|
break;
|
2812 |
|
|
case 2:
|
2813 |
|
|
oload_champ_bv = bv; /* new champion, record details */
|
2814 |
|
|
oload_ambiguous = 0;
|
2815 |
|
|
oload_champ = ix;
|
2816 |
|
|
oload_ambig_champ = -1;
|
2817 |
|
|
champ_nparms = nparms;
|
2818 |
|
|
break;
|
2819 |
|
|
case 3:
|
2820 |
|
|
default:
|
2821 |
|
|
break;
|
2822 |
|
|
}
|
2823 |
|
|
xfree (parm_types);
|
2824 |
|
|
if (overload_debug)
|
2825 |
|
|
{
|
2826 |
|
|
if (method)
|
2827 |
|
|
fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
|
2828 |
|
|
else
|
2829 |
|
|
fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
|
2830 |
|
|
for (jj = 0; jj < nargs - static_offset; jj++)
|
2831 |
|
|
fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
|
2832 |
|
|
fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
|
2833 |
|
|
}
|
2834 |
|
|
} /* end loop over all candidates */
|
2835 |
|
|
/* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
|
2836 |
|
|
if they have the exact same goodness. This is because there is no
|
2837 |
|
|
way to differentiate based on return type, which we need to in
|
2838 |
|
|
cases like overloads of .begin() <It's both const and non-const> */
|
2839 |
|
|
#if 0
|
2840 |
|
|
if (oload_ambiguous)
|
2841 |
|
|
{
|
2842 |
|
|
if (method)
|
2843 |
|
|
error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
|
2844 |
|
|
obj_type_name,
|
2845 |
|
|
(obj_type_name && *obj_type_name) ? "::" : "",
|
2846 |
|
|
name);
|
2847 |
|
|
else
|
2848 |
|
|
error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
|
2849 |
|
|
func_name);
|
2850 |
|
|
}
|
2851 |
|
|
#endif
|
2852 |
|
|
|
2853 |
|
|
/* Check how bad the best match is. */
|
2854 |
|
|
static_offset = 0;
|
2855 |
|
|
if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
|
2856 |
|
|
static_offset = 1;
|
2857 |
|
|
for (ix = 1; ix <= nargs - static_offset; ix++)
|
2858 |
|
|
{
|
2859 |
|
|
if (oload_champ_bv->rank[ix] >= 100)
|
2860 |
|
|
oload_incompatible = 1; /* truly mismatched types */
|
2861 |
|
|
|
2862 |
|
|
else if (oload_champ_bv->rank[ix] >= 10)
|
2863 |
|
|
oload_non_standard = 1; /* non-standard type conversions needed */
|
2864 |
|
|
}
|
2865 |
|
|
if (oload_incompatible)
|
2866 |
|
|
{
|
2867 |
|
|
if (method)
|
2868 |
|
|
error ("Cannot resolve method %s%s%s to any overloaded instance",
|
2869 |
|
|
obj_type_name,
|
2870 |
|
|
(obj_type_name && *obj_type_name) ? "::" : "",
|
2871 |
|
|
name);
|
2872 |
|
|
else
|
2873 |
|
|
error ("Cannot resolve function %s to any overloaded instance",
|
2874 |
|
|
func_name);
|
2875 |
|
|
}
|
2876 |
|
|
else if (oload_non_standard)
|
2877 |
|
|
{
|
2878 |
|
|
if (method)
|
2879 |
|
|
warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
|
2880 |
|
|
obj_type_name,
|
2881 |
|
|
(obj_type_name && *obj_type_name) ? "::" : "",
|
2882 |
|
|
name);
|
2883 |
|
|
else
|
2884 |
|
|
warning ("Using non-standard conversion to match function %s to supplied arguments",
|
2885 |
|
|
func_name);
|
2886 |
|
|
}
|
2887 |
|
|
|
2888 |
|
|
if (method)
|
2889 |
|
|
{
|
2890 |
|
|
if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
|
2891 |
|
|
*staticp = 1;
|
2892 |
|
|
else if (staticp)
|
2893 |
|
|
*staticp = 0;
|
2894 |
|
|
if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
|
2895 |
|
|
*valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
|
2896 |
|
|
else
|
2897 |
|
|
*valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
|
2898 |
|
|
}
|
2899 |
|
|
else
|
2900 |
|
|
{
|
2901 |
|
|
*symp = oload_syms[oload_champ];
|
2902 |
|
|
xfree (func_name);
|
2903 |
|
|
}
|
2904 |
|
|
|
2905 |
|
|
if (objp)
|
2906 |
|
|
{
|
2907 |
|
|
if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
|
2908 |
|
|
&& TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
|
2909 |
|
|
{
|
2910 |
|
|
temp = value_addr (temp);
|
2911 |
|
|
}
|
2912 |
|
|
*objp = temp;
|
2913 |
|
|
}
|
2914 |
|
|
if (cleanups != NULL)
|
2915 |
|
|
do_cleanups (cleanups);
|
2916 |
|
|
|
2917 |
|
|
return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
|
2918 |
|
|
}
|
2919 |
|
|
|
2920 |
|
|
/* C++: return 1 is NAME is a legitimate name for the destructor
|
2921 |
|
|
of type TYPE. If TYPE does not have a destructor, or
|
2922 |
|
|
if NAME is inappropriate for TYPE, an error is signaled. */
|
2923 |
|
|
int
|
2924 |
|
|
destructor_name_p (const char *name, const struct type *type)
|
2925 |
|
|
{
|
2926 |
|
|
/* destructors are a special case. */
|
2927 |
|
|
|
2928 |
|
|
if (name[0] == '~')
|
2929 |
|
|
{
|
2930 |
|
|
char *dname = type_name_no_tag (type);
|
2931 |
|
|
char *cp = strchr (dname, '<');
|
2932 |
|
|
unsigned int len;
|
2933 |
|
|
|
2934 |
|
|
/* Do not compare the template part for template classes. */
|
2935 |
|
|
if (cp == NULL)
|
2936 |
|
|
len = strlen (dname);
|
2937 |
|
|
else
|
2938 |
|
|
len = cp - dname;
|
2939 |
|
|
if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
|
2940 |
|
|
error ("name of destructor must equal name of class");
|
2941 |
|
|
else
|
2942 |
|
|
return 1;
|
2943 |
|
|
}
|
2944 |
|
|
return 0;
|
2945 |
|
|
}
|
2946 |
|
|
|
2947 |
|
|
/* Helper function for check_field: Given TYPE, a structure/union,
|
2948 |
|
|
return 1 if the component named NAME from the ultimate
|
2949 |
|
|
target structure/union is defined, otherwise, return 0. */
|
2950 |
|
|
|
2951 |
|
|
static int
|
2952 |
|
|
check_field_in (register struct type *type, const char *name)
|
2953 |
|
|
{
|
2954 |
|
|
register int i;
|
2955 |
|
|
|
2956 |
|
|
for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
|
2957 |
|
|
{
|
2958 |
|
|
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
2959 |
|
|
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
|
2960 |
|
|
return 1;
|
2961 |
|
|
}
|
2962 |
|
|
|
2963 |
|
|
/* C++: If it was not found as a data field, then try to
|
2964 |
|
|
return it as a pointer to a method. */
|
2965 |
|
|
|
2966 |
|
|
/* Destructors are a special case. */
|
2967 |
|
|
if (destructor_name_p (name, type))
|
2968 |
|
|
{
|
2969 |
|
|
int m_index, f_index;
|
2970 |
|
|
|
2971 |
|
|
return get_destructor_fn_field (type, &m_index, &f_index);
|
2972 |
|
|
}
|
2973 |
|
|
|
2974 |
|
|
for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
|
2975 |
|
|
{
|
2976 |
|
|
if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
|
2977 |
|
|
return 1;
|
2978 |
|
|
}
|
2979 |
|
|
|
2980 |
|
|
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
2981 |
|
|
if (check_field_in (TYPE_BASECLASS (type, i), name))
|
2982 |
|
|
return 1;
|
2983 |
|
|
|
2984 |
|
|
return 0;
|
2985 |
|
|
}
|
2986 |
|
|
|
2987 |
|
|
|
2988 |
|
|
/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
|
2989 |
|
|
return 1 if the component named NAME from the ultimate
|
2990 |
|
|
target structure/union is defined, otherwise, return 0. */
|
2991 |
|
|
|
2992 |
|
|
int
|
2993 |
|
|
check_field (struct value *arg1, const char *name)
|
2994 |
|
|
{
|
2995 |
|
|
register struct type *t;
|
2996 |
|
|
|
2997 |
|
|
COERCE_ARRAY (arg1);
|
2998 |
|
|
|
2999 |
|
|
t = VALUE_TYPE (arg1);
|
3000 |
|
|
|
3001 |
|
|
/* Follow pointers until we get to a non-pointer. */
|
3002 |
|
|
|
3003 |
|
|
for (;;)
|
3004 |
|
|
{
|
3005 |
|
|
CHECK_TYPEDEF (t);
|
3006 |
|
|
if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
|
3007 |
|
|
break;
|
3008 |
|
|
t = TYPE_TARGET_TYPE (t);
|
3009 |
|
|
}
|
3010 |
|
|
|
3011 |
|
|
if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
|
3012 |
|
|
error ("not implemented: member type in check_field");
|
3013 |
|
|
|
3014 |
|
|
if (TYPE_CODE (t) != TYPE_CODE_STRUCT
|
3015 |
|
|
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
3016 |
|
|
error ("Internal error: `this' is not an aggregate");
|
3017 |
|
|
|
3018 |
|
|
return check_field_in (t, name);
|
3019 |
|
|
}
|
3020 |
|
|
|
3021 |
|
|
/* C++: Given an aggregate type CURTYPE, and a member name NAME,
|
3022 |
|
|
return the address of this member as a "pointer to member"
|
3023 |
|
|
type. If INTYPE is non-null, then it will be the type
|
3024 |
|
|
of the member we are looking for. This will help us resolve
|
3025 |
|
|
"pointers to member functions". This function is used
|
3026 |
|
|
to resolve user expressions of the form "DOMAIN::NAME". */
|
3027 |
|
|
|
3028 |
|
|
struct value *
|
3029 |
|
|
value_struct_elt_for_reference (struct type *domain, int offset,
|
3030 |
|
|
struct type *curtype, char *name,
|
3031 |
|
|
struct type *intype)
|
3032 |
|
|
{
|
3033 |
|
|
register struct type *t = curtype;
|
3034 |
|
|
register int i;
|
3035 |
|
|
struct value *v;
|
3036 |
|
|
|
3037 |
|
|
if (TYPE_CODE (t) != TYPE_CODE_STRUCT
|
3038 |
|
|
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
3039 |
|
|
error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
|
3040 |
|
|
|
3041 |
|
|
for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
|
3042 |
|
|
{
|
3043 |
|
|
char *t_field_name = TYPE_FIELD_NAME (t, i);
|
3044 |
|
|
|
3045 |
|
|
if (t_field_name && STREQ (t_field_name, name))
|
3046 |
|
|
{
|
3047 |
|
|
if (TYPE_FIELD_STATIC (t, i))
|
3048 |
|
|
{
|
3049 |
|
|
v = value_static_field (t, i);
|
3050 |
|
|
if (v == NULL)
|
3051 |
|
|
error ("static field %s has been optimized out",
|
3052 |
|
|
name);
|
3053 |
|
|
return v;
|
3054 |
|
|
}
|
3055 |
|
|
if (TYPE_FIELD_PACKED (t, i))
|
3056 |
|
|
error ("pointers to bitfield members not allowed");
|
3057 |
|
|
|
3058 |
|
|
return value_from_longest
|
3059 |
|
|
(lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
|
3060 |
|
|
domain)),
|
3061 |
|
|
offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
|
3062 |
|
|
}
|
3063 |
|
|
}
|
3064 |
|
|
|
3065 |
|
|
/* C++: If it was not found as a data field, then try to
|
3066 |
|
|
return it as a pointer to a method. */
|
3067 |
|
|
|
3068 |
|
|
/* Destructors are a special case. */
|
3069 |
|
|
if (destructor_name_p (name, t))
|
3070 |
|
|
{
|
3071 |
|
|
error ("member pointers to destructors not implemented yet");
|
3072 |
|
|
}
|
3073 |
|
|
|
3074 |
|
|
/* Perform all necessary dereferencing. */
|
3075 |
|
|
while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
|
3076 |
|
|
intype = TYPE_TARGET_TYPE (intype);
|
3077 |
|
|
|
3078 |
|
|
for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
|
3079 |
|
|
{
|
3080 |
|
|
char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
|
3081 |
|
|
char dem_opname[64];
|
3082 |
|
|
|
3083 |
|
|
if (strncmp (t_field_name, "__", 2) == 0 ||
|
3084 |
|
|
strncmp (t_field_name, "op", 2) == 0 ||
|
3085 |
|
|
strncmp (t_field_name, "type", 4) == 0)
|
3086 |
|
|
{
|
3087 |
|
|
if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
|
3088 |
|
|
t_field_name = dem_opname;
|
3089 |
|
|
else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
|
3090 |
|
|
t_field_name = dem_opname;
|
3091 |
|
|
}
|
3092 |
|
|
if (t_field_name && STREQ (t_field_name, name))
|
3093 |
|
|
{
|
3094 |
|
|
int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
|
3095 |
|
|
struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
|
3096 |
|
|
|
3097 |
|
|
if (intype == 0 && j > 1)
|
3098 |
|
|
error ("non-unique member `%s' requires type instantiation", name);
|
3099 |
|
|
if (intype)
|
3100 |
|
|
{
|
3101 |
|
|
while (j--)
|
3102 |
|
|
if (TYPE_FN_FIELD_TYPE (f, j) == intype)
|
3103 |
|
|
break;
|
3104 |
|
|
if (j < 0)
|
3105 |
|
|
error ("no member function matches that type instantiation");
|
3106 |
|
|
}
|
3107 |
|
|
else
|
3108 |
|
|
j = 0;
|
3109 |
|
|
|
3110 |
|
|
if (TYPE_FN_FIELD_STUB (f, j))
|
3111 |
|
|
check_stub_method (t, i, j);
|
3112 |
|
|
if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
|
3113 |
|
|
{
|
3114 |
|
|
return value_from_longest
|
3115 |
|
|
(lookup_reference_type
|
3116 |
|
|
(lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
|
3117 |
|
|
domain)),
|
3118 |
|
|
(LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
|
3119 |
|
|
}
|
3120 |
|
|
else
|
3121 |
|
|
{
|
3122 |
|
|
struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
|
3123 |
|
|
0, VAR_NAMESPACE, 0, NULL);
|
3124 |
|
|
if (s == NULL)
|
3125 |
|
|
{
|
3126 |
|
|
v = 0;
|
3127 |
|
|
}
|
3128 |
|
|
else
|
3129 |
|
|
{
|
3130 |
|
|
v = read_var_value (s, 0);
|
3131 |
|
|
#if 0
|
3132 |
|
|
VALUE_TYPE (v) = lookup_reference_type
|
3133 |
|
|
(lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
|
3134 |
|
|
domain));
|
3135 |
|
|
#endif
|
3136 |
|
|
}
|
3137 |
|
|
return v;
|
3138 |
|
|
}
|
3139 |
|
|
}
|
3140 |
|
|
}
|
3141 |
|
|
for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
|
3142 |
|
|
{
|
3143 |
|
|
struct value *v;
|
3144 |
|
|
int base_offset;
|
3145 |
|
|
|
3146 |
|
|
if (BASETYPE_VIA_VIRTUAL (t, i))
|
3147 |
|
|
base_offset = 0;
|
3148 |
|
|
else
|
3149 |
|
|
base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
|
3150 |
|
|
v = value_struct_elt_for_reference (domain,
|
3151 |
|
|
offset + base_offset,
|
3152 |
|
|
TYPE_BASECLASS (t, i),
|
3153 |
|
|
name,
|
3154 |
|
|
intype);
|
3155 |
|
|
if (v)
|
3156 |
|
|
return v;
|
3157 |
|
|
}
|
3158 |
|
|
return 0;
|
3159 |
|
|
}
|
3160 |
|
|
|
3161 |
|
|
|
3162 |
|
|
/* Given a pointer value V, find the real (RTTI) type
|
3163 |
|
|
of the object it points to.
|
3164 |
|
|
Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
|
3165 |
|
|
and refer to the values computed for the object pointed to. */
|
3166 |
|
|
|
3167 |
|
|
struct type *
|
3168 |
|
|
value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
|
3169 |
|
|
{
|
3170 |
|
|
struct value *target;
|
3171 |
|
|
|
3172 |
|
|
target = value_ind (v);
|
3173 |
|
|
|
3174 |
|
|
return value_rtti_type (target, full, top, using_enc);
|
3175 |
|
|
}
|
3176 |
|
|
|
3177 |
|
|
/* Given a value pointed to by ARGP, check its real run-time type, and
|
3178 |
|
|
if that is different from the enclosing type, create a new value
|
3179 |
|
|
using the real run-time type as the enclosing type (and of the same
|
3180 |
|
|
type as ARGP) and return it, with the embedded offset adjusted to
|
3181 |
|
|
be the correct offset to the enclosed object
|
3182 |
|
|
RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
|
3183 |
|
|
parameters, computed by value_rtti_type(). If these are available,
|
3184 |
|
|
they can be supplied and a second call to value_rtti_type() is avoided.
|
3185 |
|
|
(Pass RTYPE == NULL if they're not available */
|
3186 |
|
|
|
3187 |
|
|
struct value *
|
3188 |
|
|
value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
|
3189 |
|
|
int xusing_enc)
|
3190 |
|
|
{
|
3191 |
|
|
struct type *real_type;
|
3192 |
|
|
int full = 0;
|
3193 |
|
|
int top = -1;
|
3194 |
|
|
int using_enc = 0;
|
3195 |
|
|
struct value *new_val;
|
3196 |
|
|
|
3197 |
|
|
if (rtype)
|
3198 |
|
|
{
|
3199 |
|
|
real_type = rtype;
|
3200 |
|
|
full = xfull;
|
3201 |
|
|
top = xtop;
|
3202 |
|
|
using_enc = xusing_enc;
|
3203 |
|
|
}
|
3204 |
|
|
else
|
3205 |
|
|
real_type = value_rtti_type (argp, &full, &top, &using_enc);
|
3206 |
|
|
|
3207 |
|
|
/* If no RTTI data, or if object is already complete, do nothing */
|
3208 |
|
|
if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
|
3209 |
|
|
return argp;
|
3210 |
|
|
|
3211 |
|
|
/* If we have the full object, but for some reason the enclosing
|
3212 |
|
|
type is wrong, set it *//* pai: FIXME -- sounds iffy */
|
3213 |
|
|
if (full)
|
3214 |
|
|
{
|
3215 |
|
|
argp = value_change_enclosing_type (argp, real_type);
|
3216 |
|
|
return argp;
|
3217 |
|
|
}
|
3218 |
|
|
|
3219 |
|
|
/* Check if object is in memory */
|
3220 |
|
|
if (VALUE_LVAL (argp) != lval_memory)
|
3221 |
|
|
{
|
3222 |
|
|
warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
|
3223 |
|
|
|
3224 |
|
|
return argp;
|
3225 |
|
|
}
|
3226 |
|
|
|
3227 |
|
|
/* All other cases -- retrieve the complete object */
|
3228 |
|
|
/* Go back by the computed top_offset from the beginning of the object,
|
3229 |
|
|
adjusting for the embedded offset of argp if that's what value_rtti_type
|
3230 |
|
|
used for its computation. */
|
3231 |
|
|
new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
|
3232 |
|
|
(using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
|
3233 |
|
|
VALUE_BFD_SECTION (argp));
|
3234 |
|
|
VALUE_TYPE (new_val) = VALUE_TYPE (argp);
|
3235 |
|
|
VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
|
3236 |
|
|
return new_val;
|
3237 |
|
|
}
|
3238 |
|
|
|
3239 |
|
|
|
3240 |
|
|
|
3241 |
|
|
|
3242 |
|
|
/* C++: return the value of the class instance variable, if one exists.
|
3243 |
|
|
Flag COMPLAIN signals an error if the request is made in an
|
3244 |
|
|
inappropriate context. */
|
3245 |
|
|
|
3246 |
|
|
struct value *
|
3247 |
|
|
value_of_this (int complain)
|
3248 |
|
|
{
|
3249 |
|
|
struct symbol *func, *sym;
|
3250 |
|
|
struct block *b;
|
3251 |
|
|
int i;
|
3252 |
|
|
static const char funny_this[] = "this";
|
3253 |
|
|
struct value *this;
|
3254 |
|
|
|
3255 |
|
|
if (selected_frame == 0)
|
3256 |
|
|
{
|
3257 |
|
|
if (complain)
|
3258 |
|
|
error ("no frame selected");
|
3259 |
|
|
else
|
3260 |
|
|
return 0;
|
3261 |
|
|
}
|
3262 |
|
|
|
3263 |
|
|
func = get_frame_function (selected_frame);
|
3264 |
|
|
if (!func)
|
3265 |
|
|
{
|
3266 |
|
|
if (complain)
|
3267 |
|
|
error ("no `this' in nameless context");
|
3268 |
|
|
else
|
3269 |
|
|
return 0;
|
3270 |
|
|
}
|
3271 |
|
|
|
3272 |
|
|
b = SYMBOL_BLOCK_VALUE (func);
|
3273 |
|
|
i = BLOCK_NSYMS (b);
|
3274 |
|
|
if (i <= 0)
|
3275 |
|
|
{
|
3276 |
|
|
if (complain)
|
3277 |
|
|
error ("no args, no `this'");
|
3278 |
|
|
else
|
3279 |
|
|
return 0;
|
3280 |
|
|
}
|
3281 |
|
|
|
3282 |
|
|
/* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
|
3283 |
|
|
symbol instead of the LOC_ARG one (if both exist). */
|
3284 |
|
|
sym = lookup_block_symbol (b, funny_this, NULL, VAR_NAMESPACE);
|
3285 |
|
|
if (sym == NULL)
|
3286 |
|
|
{
|
3287 |
|
|
if (complain)
|
3288 |
|
|
error ("current stack frame not in method");
|
3289 |
|
|
else
|
3290 |
|
|
return NULL;
|
3291 |
|
|
}
|
3292 |
|
|
|
3293 |
|
|
this = read_var_value (sym, selected_frame);
|
3294 |
|
|
if (this == 0 && complain)
|
3295 |
|
|
error ("`this' argument at unknown address");
|
3296 |
|
|
return this;
|
3297 |
|
|
}
|
3298 |
|
|
|
3299 |
|
|
/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
|
3300 |
|
|
long, starting at LOWBOUND. The result has the same lower bound as
|
3301 |
|
|
the original ARRAY. */
|
3302 |
|
|
|
3303 |
|
|
struct value *
|
3304 |
|
|
value_slice (struct value *array, int lowbound, int length)
|
3305 |
|
|
{
|
3306 |
|
|
struct type *slice_range_type, *slice_type, *range_type;
|
3307 |
|
|
LONGEST lowerbound, upperbound, offset;
|
3308 |
|
|
struct value *slice;
|
3309 |
|
|
struct type *array_type;
|
3310 |
|
|
array_type = check_typedef (VALUE_TYPE (array));
|
3311 |
|
|
COERCE_VARYING_ARRAY (array, array_type);
|
3312 |
|
|
if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
|
3313 |
|
|
&& TYPE_CODE (array_type) != TYPE_CODE_STRING
|
3314 |
|
|
&& TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
|
3315 |
|
|
error ("cannot take slice of non-array");
|
3316 |
|
|
range_type = TYPE_INDEX_TYPE (array_type);
|
3317 |
|
|
if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
|
3318 |
|
|
error ("slice from bad array or bitstring");
|
3319 |
|
|
if (lowbound < lowerbound || length < 0
|
3320 |
|
|
|| lowbound + length - 1 > upperbound)
|
3321 |
|
|
/* OBSOLETE Chill allows zero-length strings but not arrays. */
|
3322 |
|
|
/* OBSOLETE || (current_language->la_language == language_chill */
|
3323 |
|
|
/* OBSOLETE && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY)) */
|
3324 |
|
|
error ("slice out of range");
|
3325 |
|
|
/* FIXME-type-allocation: need a way to free this type when we are
|
3326 |
|
|
done with it. */
|
3327 |
|
|
slice_range_type = create_range_type ((struct type *) NULL,
|
3328 |
|
|
TYPE_TARGET_TYPE (range_type),
|
3329 |
|
|
lowbound, lowbound + length - 1);
|
3330 |
|
|
if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
|
3331 |
|
|
{
|
3332 |
|
|
int i;
|
3333 |
|
|
slice_type = create_set_type ((struct type *) NULL, slice_range_type);
|
3334 |
|
|
TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
|
3335 |
|
|
slice = value_zero (slice_type, not_lval);
|
3336 |
|
|
for (i = 0; i < length; i++)
|
3337 |
|
|
{
|
3338 |
|
|
int element = value_bit_index (array_type,
|
3339 |
|
|
VALUE_CONTENTS (array),
|
3340 |
|
|
lowbound + i);
|
3341 |
|
|
if (element < 0)
|
3342 |
|
|
error ("internal error accessing bitstring");
|
3343 |
|
|
else if (element > 0)
|
3344 |
|
|
{
|
3345 |
|
|
int j = i % TARGET_CHAR_BIT;
|
3346 |
|
|
if (BITS_BIG_ENDIAN)
|
3347 |
|
|
j = TARGET_CHAR_BIT - 1 - j;
|
3348 |
|
|
VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
|
3349 |
|
|
}
|
3350 |
|
|
}
|
3351 |
|
|
/* We should set the address, bitssize, and bitspos, so the clice
|
3352 |
|
|
can be used on the LHS, but that may require extensions to
|
3353 |
|
|
value_assign. For now, just leave as a non_lval. FIXME. */
|
3354 |
|
|
}
|
3355 |
|
|
else
|
3356 |
|
|
{
|
3357 |
|
|
struct type *element_type = TYPE_TARGET_TYPE (array_type);
|
3358 |
|
|
offset
|
3359 |
|
|
= (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
|
3360 |
|
|
slice_type = create_array_type ((struct type *) NULL, element_type,
|
3361 |
|
|
slice_range_type);
|
3362 |
|
|
TYPE_CODE (slice_type) = TYPE_CODE (array_type);
|
3363 |
|
|
slice = allocate_value (slice_type);
|
3364 |
|
|
if (VALUE_LAZY (array))
|
3365 |
|
|
VALUE_LAZY (slice) = 1;
|
3366 |
|
|
else
|
3367 |
|
|
memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
|
3368 |
|
|
TYPE_LENGTH (slice_type));
|
3369 |
|
|
if (VALUE_LVAL (array) == lval_internalvar)
|
3370 |
|
|
VALUE_LVAL (slice) = lval_internalvar_component;
|
3371 |
|
|
else
|
3372 |
|
|
VALUE_LVAL (slice) = VALUE_LVAL (array);
|
3373 |
|
|
VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
|
3374 |
|
|
VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
|
3375 |
|
|
}
|
3376 |
|
|
return slice;
|
3377 |
|
|
}
|
3378 |
|
|
|
3379 |
|
|
/* Assuming OBSOLETE chill_varying_type (VARRAY) is true, return an
|
3380 |
|
|
equivalent value as a fixed-length array. */
|
3381 |
|
|
|
3382 |
|
|
struct value *
|
3383 |
|
|
varying_to_slice (struct value *varray)
|
3384 |
|
|
{
|
3385 |
|
|
struct type *vtype = check_typedef (VALUE_TYPE (varray));
|
3386 |
|
|
LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
|
3387 |
|
|
VALUE_CONTENTS (varray)
|
3388 |
|
|
+ TYPE_FIELD_BITPOS (vtype, 0) / 8);
|
3389 |
|
|
return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
|
3390 |
|
|
}
|
3391 |
|
|
|
3392 |
|
|
/* Create a value for a FORTRAN complex number. Currently most of
|
3393 |
|
|
the time values are coerced to COMPLEX*16 (i.e. a complex number
|
3394 |
|
|
composed of 2 doubles. This really should be a smarter routine
|
3395 |
|
|
that figures out precision inteligently as opposed to assuming
|
3396 |
|
|
doubles. FIXME: fmb */
|
3397 |
|
|
|
3398 |
|
|
struct value *
|
3399 |
|
|
value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
|
3400 |
|
|
{
|
3401 |
|
|
struct value *val;
|
3402 |
|
|
struct type *real_type = TYPE_TARGET_TYPE (type);
|
3403 |
|
|
|
3404 |
|
|
val = allocate_value (type);
|
3405 |
|
|
arg1 = value_cast (real_type, arg1);
|
3406 |
|
|
arg2 = value_cast (real_type, arg2);
|
3407 |
|
|
|
3408 |
|
|
memcpy (VALUE_CONTENTS_RAW (val),
|
3409 |
|
|
VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
|
3410 |
|
|
memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
|
3411 |
|
|
VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
|
3412 |
|
|
return val;
|
3413 |
|
|
}
|
3414 |
|
|
|
3415 |
|
|
/* Cast a value into the appropriate complex data type. */
|
3416 |
|
|
|
3417 |
|
|
static struct value *
|
3418 |
|
|
cast_into_complex (struct type *type, struct value *val)
|
3419 |
|
|
{
|
3420 |
|
|
struct type *real_type = TYPE_TARGET_TYPE (type);
|
3421 |
|
|
if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
|
3422 |
|
|
{
|
3423 |
|
|
struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
|
3424 |
|
|
struct value *re_val = allocate_value (val_real_type);
|
3425 |
|
|
struct value *im_val = allocate_value (val_real_type);
|
3426 |
|
|
|
3427 |
|
|
memcpy (VALUE_CONTENTS_RAW (re_val),
|
3428 |
|
|
VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
|
3429 |
|
|
memcpy (VALUE_CONTENTS_RAW (im_val),
|
3430 |
|
|
VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
|
3431 |
|
|
TYPE_LENGTH (val_real_type));
|
3432 |
|
|
|
3433 |
|
|
return value_literal_complex (re_val, im_val, type);
|
3434 |
|
|
}
|
3435 |
|
|
else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
|
3436 |
|
|
|| TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
|
3437 |
|
|
return value_literal_complex (val, value_zero (real_type, not_lval), type);
|
3438 |
|
|
else
|
3439 |
|
|
error ("cannot cast non-number to complex");
|
3440 |
|
|
}
|
3441 |
|
|
|
3442 |
|
|
void
|
3443 |
|
|
_initialize_valops (void)
|
3444 |
|
|
{
|
3445 |
|
|
#if 0
|
3446 |
|
|
add_show_from_set
|
3447 |
|
|
(add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
|
3448 |
|
|
"Set automatic abandonment of expressions upon failure.",
|
3449 |
|
|
&setlist),
|
3450 |
|
|
&showlist);
|
3451 |
|
|
#endif
|
3452 |
|
|
|
3453 |
|
|
add_show_from_set
|
3454 |
|
|
(add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
|
3455 |
|
|
"Set overload resolution in evaluating C++ functions.",
|
3456 |
|
|
&setlist),
|
3457 |
|
|
&showlist);
|
3458 |
|
|
overload_resolution = 1;
|
3459 |
|
|
|
3460 |
|
|
add_show_from_set (
|
3461 |
|
|
add_set_cmd ("unwindonsignal", no_class, var_boolean,
|
3462 |
|
|
(char *) &unwind_on_signal_p,
|
3463 |
|
|
"Set unwinding of stack if a signal is received while in a call dummy.\n\
|
3464 |
|
|
The unwindonsignal lets the user determine what gdb should do if a signal\n\
|
3465 |
|
|
is received while in a function called from gdb (call dummy). If set, gdb\n\
|
3466 |
|
|
unwinds the stack and restore the context to what as it was before the call.\n\
|
3467 |
|
|
The default is to stop in the frame where the signal was received.", &setlist),
|
3468 |
|
|
&showlist);
|
3469 |
|
|
}
|