OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [gdb/] [valprint.c] - Blame information for rev 1181

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* Print values for GDB, the GNU debugger.
2
 
3
   Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4
   1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation,
5
   Inc.
6
 
7
   This file is part of GDB.
8
 
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 2 of the License, or
12
   (at your option) any later version.
13
 
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with this program; if not, write to the Free Software
21
   Foundation, Inc., 59 Temple Place - Suite 330,
22
   Boston, MA 02111-1307, USA.  */
23
 
24
#include "defs.h"
25
#include "gdb_string.h"
26
#include "symtab.h"
27
#include "gdbtypes.h"
28
#include "value.h"
29
#include "gdbcore.h"
30
#include "gdbcmd.h"
31
#include "target.h"
32
#include "language.h"
33
#include "annotate.h"
34
#include "valprint.h"
35
#include "floatformat.h"
36
#include "doublest.h"
37
 
38
#include <errno.h>
39
 
40
/* Prototypes for local functions */
41
 
42
static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
43
                                int len, int *errnoptr);
44
 
45
static void print_hex_chars (struct ui_file *, unsigned char *,
46
                             unsigned int);
47
 
48
static void show_print (char *, int);
49
 
50
static void set_print (char *, int);
51
 
52
static void set_radix (char *, int);
53
 
54
static void show_radix (char *, int);
55
 
56
static void set_input_radix (char *, int, struct cmd_list_element *);
57
 
58
static void set_input_radix_1 (int, unsigned);
59
 
60
static void set_output_radix (char *, int, struct cmd_list_element *);
61
 
62
static void set_output_radix_1 (int, unsigned);
63
 
64
void _initialize_valprint (void);
65
 
66
/* Maximum number of chars to print for a string pointer value or vector
67
   contents, or UINT_MAX for no limit.  Note that "set print elements 0"
68
   stores UINT_MAX in print_max, which displays in a show command as
69
   "unlimited". */
70
 
71
unsigned int print_max;
72
#define PRINT_MAX_DEFAULT 200   /* Start print_max off at this value. */
73
 
74
/* Default input and output radixes, and output format letter.  */
75
 
76
unsigned input_radix = 10;
77
unsigned output_radix = 10;
78
int output_format = 0;
79
 
80
/* Print repeat counts if there are more than this many repetitions of an
81
   element in an array.  Referenced by the low level language dependent
82
   print routines. */
83
 
84
unsigned int repeat_count_threshold = 10;
85
 
86
/* If nonzero, stops printing of char arrays at first null. */
87
 
88
int stop_print_at_null;
89
 
90
/* Controls pretty printing of structures. */
91
 
92
int prettyprint_structs;
93
 
94
/* Controls pretty printing of arrays.  */
95
 
96
int prettyprint_arrays;
97
 
98
/* If nonzero, causes unions inside structures or other unions to be
99
   printed. */
100
 
101
int unionprint;                 /* Controls printing of nested unions.  */
102
 
103
/* If nonzero, causes machine addresses to be printed in certain contexts. */
104
 
105
int addressprint;               /* Controls printing of machine addresses */
106
 
107
 
108
/* Print data of type TYPE located at VALADDR (within GDB), which came from
109
   the inferior at address ADDRESS, onto stdio stream STREAM according to
110
   FORMAT (a letter, or 0 for natural format using TYPE).
111
 
112
   If DEREF_REF is nonzero, then dereference references, otherwise just print
113
   them like pointers.
114
 
115
   The PRETTY parameter controls prettyprinting.
116
 
117
   If the data are a string pointer, returns the number of string characters
118
   printed.
119
 
120
   FIXME:  The data at VALADDR is in target byte order.  If gdb is ever
121
   enhanced to be able to debug more than the single target it was compiled
122
   for (specific CPU type and thus specific target byte ordering), then
123
   either the print routines are going to have to take this into account,
124
   or the data is going to have to be passed into here already converted
125
   to the host byte ordering, whichever is more convenient. */
126
 
127
 
128
int
129
val_print (struct type *type, char *valaddr, int embedded_offset,
130
           CORE_ADDR address, struct ui_file *stream, int format, int deref_ref,
131
           int recurse, enum val_prettyprint pretty)
132
{
133
  struct type *real_type = check_typedef (type);
134
  if (pretty == Val_pretty_default)
135
    {
136
      pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
137
    }
138
 
139
  QUIT;
140
 
141
  /* Ensure that the type is complete and not just a stub.  If the type is
142
     only a stub and we can't find and substitute its complete type, then
143
     print appropriate string and return.  */
144
 
145
  if (TYPE_STUB (real_type))
146
    {
147
      fprintf_filtered (stream, "<incomplete type>");
148
      gdb_flush (stream);
149
      return (0);
150
    }
151
 
152
  return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
153
                        stream, format, deref_ref, recurse, pretty));
154
}
155
 
156
/* Print the value VAL in C-ish syntax on stream STREAM.
157
   FORMAT is a format-letter, or 0 for print in natural format of data type.
158
   If the object printed is a string pointer, returns
159
   the number of string bytes printed.  */
160
 
161
int
162
value_print (struct value *val, struct ui_file *stream, int format,
163
             enum val_prettyprint pretty)
164
{
165
  if (val == 0)
166
    {
167
      printf_filtered ("<address of value unknown>");
168
      return 0;
169
    }
170
  if (VALUE_OPTIMIZED_OUT (val))
171
    {
172
      printf_filtered ("<value optimized out>");
173
      return 0;
174
    }
175
  return LA_VALUE_PRINT (val, stream, format, pretty);
176
}
177
 
178
/* Called by various <lang>_val_print routines to print
179
   TYPE_CODE_INT's.  TYPE is the type.  VALADDR is the address of the
180
   value.  STREAM is where to print the value.  */
181
 
182
void
183
val_print_type_code_int (struct type *type, char *valaddr,
184
                         struct ui_file *stream)
185
{
186
  if (TYPE_LENGTH (type) > sizeof (LONGEST))
187
    {
188
      LONGEST val;
189
 
190
      if (TYPE_UNSIGNED (type)
191
          && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
192
                                            &val))
193
        {
194
          print_longest (stream, 'u', 0, val);
195
        }
196
      else
197
        {
198
          /* Signed, or we couldn't turn an unsigned value into a
199
             LONGEST.  For signed values, one could assume two's
200
             complement (a reasonable assumption, I think) and do
201
             better than this.  */
202
          print_hex_chars (stream, (unsigned char *) valaddr,
203
                           TYPE_LENGTH (type));
204
        }
205
    }
206
  else
207
    {
208
#ifdef PRINT_TYPELESS_INTEGER
209
      PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
210
#else
211
      print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
212
                     unpack_long (type, valaddr));
213
#endif
214
    }
215
}
216
 
217
/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
218
   The raison d'etre of this function is to consolidate printing of
219
   LONG_LONG's into this one function.  Some platforms have long longs but
220
   don't have a printf() that supports "ll" in the format string.  We handle
221
   these by seeing if the number is representable as either a signed or
222
   unsigned long, depending upon what format is desired, and if not we just
223
   bail out and print the number in hex.
224
 
225
   The format chars b,h,w,g are from print_scalar_formatted().  If USE_LOCAL,
226
   format it according to the current language (this should be used for most
227
   integers which GDB prints, the exception is things like protocols where
228
   the format of the integer is a protocol thing, not a user-visible thing).
229
 */
230
 
231
#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
232
static void print_decimal (struct ui_file * stream, char *sign,
233
                           int use_local, ULONGEST val_ulong);
234
static void
235
print_decimal (struct ui_file *stream, char *sign, int use_local,
236
               ULONGEST val_ulong)
237
{
238
  unsigned long temp[3];
239
  int i = 0;
240
  do
241
    {
242
      temp[i] = val_ulong % (1000 * 1000 * 1000);
243
      val_ulong /= (1000 * 1000 * 1000);
244
      i++;
245
    }
246
  while (val_ulong != 0 && i < (sizeof (temp) / sizeof (temp[0])));
247
  switch (i)
248
    {
249
    case 1:
250
      fprintf_filtered (stream, "%s%lu",
251
                        sign, temp[0]);
252
      break;
253
    case 2:
254
      fprintf_filtered (stream, "%s%lu%09lu",
255
                        sign, temp[1], temp[0]);
256
      break;
257
    case 3:
258
      fprintf_filtered (stream, "%s%lu%09lu%09lu",
259
                        sign, temp[2], temp[1], temp[0]);
260
      break;
261
    default:
262
      internal_error (__FILE__, __LINE__, "failed internal consistency check");
263
    }
264
  return;
265
}
266
#endif
267
 
268
void
269
print_longest (struct ui_file *stream, int format, int use_local,
270
               LONGEST val_long)
271
{
272
#if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
273
  if (sizeof (long) < sizeof (LONGEST))
274
    {
275
      switch (format)
276
        {
277
        case 'd':
278
          {
279
            /* Print a signed value, that doesn't fit in a long */
280
            if ((long) val_long != val_long)
281
              {
282
                if (val_long < 0)
283
                  print_decimal (stream, "-", use_local, -val_long);
284
                else
285
                  print_decimal (stream, "", use_local, val_long);
286
                return;
287
              }
288
            break;
289
          }
290
        case 'u':
291
          {
292
            /* Print an unsigned value, that doesn't fit in a long */
293
            if ((unsigned long) val_long != (ULONGEST) val_long)
294
              {
295
                print_decimal (stream, "", use_local, val_long);
296
                return;
297
              }
298
            break;
299
          }
300
        case 'x':
301
        case 'o':
302
        case 'b':
303
        case 'h':
304
        case 'w':
305
        case 'g':
306
          /* Print as unsigned value, must fit completely in unsigned long */
307
          {
308
            unsigned long temp = val_long;
309
            if (temp != val_long)
310
              {
311
                /* Urk, can't represent value in long so print in hex.
312
                   Do shift in two operations so that if sizeof (long)
313
                   == sizeof (LONGEST) we can avoid warnings from
314
                   picky compilers about shifts >= the size of the
315
                   shiftee in bits */
316
                unsigned long vbot = (unsigned long) val_long;
317
                LONGEST temp = (val_long >> (sizeof (long) * HOST_CHAR_BIT - 1));
318
                unsigned long vtop = temp >> 1;
319
                fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
320
                return;
321
              }
322
            break;
323
          }
324
        }
325
    }
326
#endif
327
 
328
#if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
329
  switch (format)
330
    {
331
    case 'd':
332
      fprintf_filtered (stream,
333
                        use_local ? local_decimal_format_custom ("ll")
334
                        : "%lld",
335
                        (long long) val_long);
336
      break;
337
    case 'u':
338
      fprintf_filtered (stream, "%llu", (long long) val_long);
339
      break;
340
    case 'x':
341
      fprintf_filtered (stream,
342
                        use_local ? local_hex_format_custom ("ll")
343
                        : "%llx",
344
                        (unsigned long long) val_long);
345
      break;
346
    case 'o':
347
      fprintf_filtered (stream,
348
                        use_local ? local_octal_format_custom ("ll")
349
                        : "%llo",
350
                        (unsigned long long) val_long);
351
      break;
352
    case 'b':
353
      fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
354
      break;
355
    case 'h':
356
      fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
357
      break;
358
    case 'w':
359
      fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
360
      break;
361
    case 'g':
362
      fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
363
      break;
364
    default:
365
      internal_error (__FILE__, __LINE__, "failed internal consistency check");
366
    }
367
#else /* !CC_HAS_LONG_LONG || !PRINTF_HAS_LONG_LONG */
368
  /* In the following it is important to coerce (val_long) to a long. It does
369
     nothing if !LONG_LONG, but it will chop off the top half (which we know
370
     we can ignore) if the host supports long longs.  */
371
 
372
  switch (format)
373
    {
374
    case 'd':
375
      fprintf_filtered (stream,
376
                        use_local ? local_decimal_format_custom ("l")
377
                        : "%ld",
378
                        (long) val_long);
379
      break;
380
    case 'u':
381
      fprintf_filtered (stream, "%lu", (unsigned long) val_long);
382
      break;
383
    case 'x':
384
      fprintf_filtered (stream,
385
                        use_local ? local_hex_format_custom ("l")
386
                        : "%lx",
387
                        (unsigned long) val_long);
388
      break;
389
    case 'o':
390
      fprintf_filtered (stream,
391
                        use_local ? local_octal_format_custom ("l")
392
                        : "%lo",
393
                        (unsigned long) val_long);
394
      break;
395
    case 'b':
396
      fprintf_filtered (stream, local_hex_format_custom ("02l"),
397
                        (unsigned long) val_long);
398
      break;
399
    case 'h':
400
      fprintf_filtered (stream, local_hex_format_custom ("04l"),
401
                        (unsigned long) val_long);
402
      break;
403
    case 'w':
404
      fprintf_filtered (stream, local_hex_format_custom ("08l"),
405
                        (unsigned long) val_long);
406
      break;
407
    case 'g':
408
      fprintf_filtered (stream, local_hex_format_custom ("016l"),
409
                        (unsigned long) val_long);
410
      break;
411
    default:
412
      internal_error (__FILE__, __LINE__, "failed internal consistency check");
413
    }
414
#endif /* CC_HAS_LONG_LONG || PRINTF_HAS_LONG_LONG */
415
}
416
 
417
/* This used to be a macro, but I don't think it is called often enough
418
   to merit such treatment.  */
419
/* Convert a LONGEST to an int.  This is used in contexts (e.g. number of
420
   arguments to a function, number in a value history, register number, etc.)
421
   where the value must not be larger than can fit in an int.  */
422
 
423
int
424
longest_to_int (LONGEST arg)
425
{
426
  /* Let the compiler do the work */
427
  int rtnval = (int) arg;
428
 
429
  /* Check for overflows or underflows */
430
  if (sizeof (LONGEST) > sizeof (int))
431
    {
432
      if (rtnval != arg)
433
        {
434
          error ("Value out of range.");
435
        }
436
    }
437
  return (rtnval);
438
}
439
 
440
/* Print a floating point value of type TYPE (not always a
441
   TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM.  */
442
 
443
void
444
print_floating (char *valaddr, struct type *type, struct ui_file *stream)
445
{
446
  DOUBLEST doub;
447
  int inv;
448
  const struct floatformat *fmt = NULL;
449
  unsigned len = TYPE_LENGTH (type);
450
 
451
  /* If it is a floating-point, check for obvious problems.  */
452
  if (TYPE_CODE (type) == TYPE_CODE_FLT)
453
    fmt = floatformat_from_type (type);
454
  if (fmt != NULL && floatformat_is_nan (fmt, valaddr))
455
    {
456
      if (floatformat_is_negative (fmt, valaddr))
457
        fprintf_filtered (stream, "-");
458
      fprintf_filtered (stream, "nan(");
459
      fprintf_filtered (stream, local_hex_format_prefix ());
460
      fprintf_filtered (stream, floatformat_mantissa (fmt, valaddr));
461
      fprintf_filtered (stream, local_hex_format_suffix ());
462
      fprintf_filtered (stream, ")");
463
      return;
464
    }
465
 
466
  /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating()
467
     isn't necessarily a TYPE_CODE_FLT.  Consequently, unpack_double
468
     needs to be used as that takes care of any necessary type
469
     conversions.  Such conversions are of course direct to DOUBLEST
470
     and disregard any possible target floating point limitations.
471
     For instance, a u64 would be converted and displayed exactly on a
472
     host with 80 bit DOUBLEST but with loss of information on a host
473
     with 64 bit DOUBLEST.  */
474
 
475
  doub = unpack_double (type, valaddr, &inv);
476
  if (inv)
477
    {
478
      fprintf_filtered (stream, "<invalid float value>");
479
      return;
480
    }
481
 
482
  /* FIXME: kettenis/2001-01-20: The following code makes too much
483
     assumptions about the host and target floating point format.  */
484
 
485
  /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may
486
     not necessarially be a TYPE_CODE_FLT, the below ignores that and
487
     instead uses the type's length to determine the precision of the
488
     floating-point value being printed.  */
489
 
490
  if (len < sizeof (double))
491
      fprintf_filtered (stream, "%.9g", (double) doub);
492
  else if (len == sizeof (double))
493
      fprintf_filtered (stream, "%.17g", (double) doub);
494
  else
495
#ifdef PRINTF_HAS_LONG_DOUBLE
496
    fprintf_filtered (stream, "%.35Lg", doub);
497
#else
498
    /* This at least wins with values that are representable as
499
       doubles.  */
500
    fprintf_filtered (stream, "%.17g", (double) doub);
501
#endif
502
}
503
 
504
void
505
print_binary_chars (struct ui_file *stream, unsigned char *valaddr,
506
                    unsigned len)
507
{
508
 
509
#define BITS_IN_BYTES 8
510
 
511
  unsigned char *p;
512
  unsigned int i;
513
  int b;
514
 
515
  /* Declared "int" so it will be signed.
516
   * This ensures that right shift will shift in zeros.
517
   */
518
  const int mask = 0x080;
519
 
520
  /* FIXME: We should be not printing leading zeroes in most cases.  */
521
 
522
  fprintf_filtered (stream, local_binary_format_prefix ());
523
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
524
    {
525
      for (p = valaddr;
526
           p < valaddr + len;
527
           p++)
528
        {
529
          /* Every byte has 8 binary characters; peel off
530
           * and print from the MSB end.
531
           */
532
          for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
533
            {
534
              if (*p & (mask >> i))
535
                b = 1;
536
              else
537
                b = 0;
538
 
539
              fprintf_filtered (stream, "%1d", b);
540
            }
541
        }
542
    }
543
  else
544
    {
545
      for (p = valaddr + len - 1;
546
           p >= valaddr;
547
           p--)
548
        {
549
          for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
550
            {
551
              if (*p & (mask >> i))
552
                b = 1;
553
              else
554
                b = 0;
555
 
556
              fprintf_filtered (stream, "%1d", b);
557
            }
558
        }
559
    }
560
  fprintf_filtered (stream, local_binary_format_suffix ());
561
}
562
 
563
/* VALADDR points to an integer of LEN bytes.
564
 * Print it in octal on stream or format it in buf.
565
 */
566
void
567
print_octal_chars (struct ui_file *stream, unsigned char *valaddr, unsigned len)
568
{
569
  unsigned char *p;
570
  unsigned char octa1, octa2, octa3, carry;
571
  int cycle;
572
 
573
  /* FIXME: We should be not printing leading zeroes in most cases.  */
574
 
575
 
576
  /* Octal is 3 bits, which doesn't fit.  Yuk.  So we have to track
577
   * the extra bits, which cycle every three bytes:
578
   *
579
   * Byte side:       0            1             2          3
580
   *                         |             |            |            |
581
   * bit number   123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
582
   *
583
   * Octal side:   0   1   carry  3   4  carry ...
584
   *
585
   * Cycle number:    0             1            2
586
   *
587
   * But of course we are printing from the high side, so we have to
588
   * figure out where in the cycle we are so that we end up with no
589
   * left over bits at the end.
590
   */
591
#define BITS_IN_OCTAL 3
592
#define HIGH_ZERO     0340
593
#define LOW_ZERO      0016
594
#define CARRY_ZERO    0003
595
#define HIGH_ONE      0200
596
#define MID_ONE       0160
597
#define LOW_ONE       0016
598
#define CARRY_ONE     0001
599
#define HIGH_TWO      0300
600
#define MID_TWO       0070
601
#define LOW_TWO       0007
602
 
603
  /* For 32 we start in cycle 2, with two bits and one bit carry;
604
   * for 64 in cycle in cycle 1, with one bit and a two bit carry.
605
   */
606
  cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
607
  carry = 0;
608
 
609
  fprintf_filtered (stream, local_octal_format_prefix ());
610
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
611
    {
612
      for (p = valaddr;
613
           p < valaddr + len;
614
           p++)
615
        {
616
          switch (cycle)
617
            {
618
            case 0:
619
              /* No carry in, carry out two bits.
620
               */
621
              octa1 = (HIGH_ZERO & *p) >> 5;
622
              octa2 = (LOW_ZERO & *p) >> 2;
623
              carry = (CARRY_ZERO & *p);
624
              fprintf_filtered (stream, "%o", octa1);
625
              fprintf_filtered (stream, "%o", octa2);
626
              break;
627
 
628
            case 1:
629
              /* Carry in two bits, carry out one bit.
630
               */
631
              octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
632
              octa2 = (MID_ONE & *p) >> 4;
633
              octa3 = (LOW_ONE & *p) >> 1;
634
              carry = (CARRY_ONE & *p);
635
              fprintf_filtered (stream, "%o", octa1);
636
              fprintf_filtered (stream, "%o", octa2);
637
              fprintf_filtered (stream, "%o", octa3);
638
              break;
639
 
640
            case 2:
641
              /* Carry in one bit, no carry out.
642
               */
643
              octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
644
              octa2 = (MID_TWO & *p) >> 3;
645
              octa3 = (LOW_TWO & *p);
646
              carry = 0;
647
              fprintf_filtered (stream, "%o", octa1);
648
              fprintf_filtered (stream, "%o", octa2);
649
              fprintf_filtered (stream, "%o", octa3);
650
              break;
651
 
652
            default:
653
              error ("Internal error in octal conversion;");
654
            }
655
 
656
          cycle++;
657
          cycle = cycle % BITS_IN_OCTAL;
658
        }
659
    }
660
  else
661
    {
662
      for (p = valaddr + len - 1;
663
           p >= valaddr;
664
           p--)
665
        {
666
          switch (cycle)
667
            {
668
            case 0:
669
              /* Carry out, no carry in */
670
              octa1 = (HIGH_ZERO & *p) >> 5;
671
              octa2 = (LOW_ZERO & *p) >> 2;
672
              carry = (CARRY_ZERO & *p);
673
              fprintf_filtered (stream, "%o", octa1);
674
              fprintf_filtered (stream, "%o", octa2);
675
              break;
676
 
677
            case 1:
678
              /* Carry in, carry out */
679
              octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
680
              octa2 = (MID_ONE & *p) >> 4;
681
              octa3 = (LOW_ONE & *p) >> 1;
682
              carry = (CARRY_ONE & *p);
683
              fprintf_filtered (stream, "%o", octa1);
684
              fprintf_filtered (stream, "%o", octa2);
685
              fprintf_filtered (stream, "%o", octa3);
686
              break;
687
 
688
            case 2:
689
              /* Carry in, no carry out */
690
              octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
691
              octa2 = (MID_TWO & *p) >> 3;
692
              octa3 = (LOW_TWO & *p);
693
              carry = 0;
694
              fprintf_filtered (stream, "%o", octa1);
695
              fprintf_filtered (stream, "%o", octa2);
696
              fprintf_filtered (stream, "%o", octa3);
697
              break;
698
 
699
            default:
700
              error ("Internal error in octal conversion;");
701
            }
702
 
703
          cycle++;
704
          cycle = cycle % BITS_IN_OCTAL;
705
        }
706
    }
707
 
708
  fprintf_filtered (stream, local_octal_format_suffix ());
709
}
710
 
711
/* VALADDR points to an integer of LEN bytes.
712
 * Print it in decimal on stream or format it in buf.
713
 */
714
void
715
print_decimal_chars (struct ui_file *stream, unsigned char *valaddr,
716
                     unsigned len)
717
{
718
#define TEN             10
719
#define TWO_TO_FOURTH   16
720
#define CARRY_OUT(  x ) ((x) / TEN)     /* extend char to int */
721
#define CARRY_LEFT( x ) ((x) % TEN)
722
#define SHIFT( x )      ((x) << 4)
723
#define START_P \
724
        ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1)
725
#define NOT_END_P \
726
        ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
727
#define NEXT_P \
728
        ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? p++ : p-- )
729
#define LOW_NIBBLE(  x ) ( (x) & 0x00F)
730
#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
731
 
732
  unsigned char *p;
733
  unsigned char *digits;
734
  int carry;
735
  int decimal_len;
736
  int i, j, decimal_digits;
737
  int dummy;
738
  int flip;
739
 
740
  /* Base-ten number is less than twice as many digits
741
   * as the base 16 number, which is 2 digits per byte.
742
   */
743
  decimal_len = len * 2 * 2;
744
  digits = xmalloc (decimal_len);
745
 
746
  for (i = 0; i < decimal_len; i++)
747
    {
748
      digits[i] = 0;
749
    }
750
 
751
  fprintf_filtered (stream, local_decimal_format_prefix ());
752
 
753
  /* Ok, we have an unknown number of bytes of data to be printed in
754
   * decimal.
755
   *
756
   * Given a hex number (in nibbles) as XYZ, we start by taking X and
757
   * decemalizing it as "x1 x2" in two decimal nibbles.  Then we multiply
758
   * the nibbles by 16, add Y and re-decimalize.  Repeat with Z.
759
   *
760
   * The trick is that "digits" holds a base-10 number, but sometimes
761
   * the individual digits are > 10.
762
   *
763
   * Outer loop is per nibble (hex digit) of input, from MSD end to
764
   * LSD end.
765
   */
766
  decimal_digits = 0;            /* Number of decimal digits so far */
767
  p = START_P;
768
  flip = 0;
769
  while (NOT_END_P)
770
    {
771
      /*
772
       * Multiply current base-ten number by 16 in place.
773
       * Each digit was between 0 and 9, now is between
774
       * 0 and 144.
775
       */
776
      for (j = 0; j < decimal_digits; j++)
777
        {
778
          digits[j] = SHIFT (digits[j]);
779
        }
780
 
781
      /* Take the next nibble off the input and add it to what
782
       * we've got in the LSB position.  Bottom 'digit' is now
783
       * between 0 and 159.
784
       *
785
       * "flip" is used to run this loop twice for each byte.
786
       */
787
      if (flip == 0)
788
        {
789
          /* Take top nibble.
790
           */
791
          digits[0] += HIGH_NIBBLE (*p);
792
          flip = 1;
793
        }
794
      else
795
        {
796
          /* Take low nibble and bump our pointer "p".
797
           */
798
          digits[0] += LOW_NIBBLE (*p);
799
          NEXT_P;
800
          flip = 0;
801
        }
802
 
803
      /* Re-decimalize.  We have to do this often enough
804
       * that we don't overflow, but once per nibble is
805
       * overkill.  Easier this way, though.  Note that the
806
       * carry is often larger than 10 (e.g. max initial
807
       * carry out of lowest nibble is 15, could bubble all
808
       * the way up greater than 10).  So we have to do
809
       * the carrying beyond the last current digit.
810
       */
811
      carry = 0;
812
      for (j = 0; j < decimal_len - 1; j++)
813
        {
814
          digits[j] += carry;
815
 
816
          /* "/" won't handle an unsigned char with
817
           * a value that if signed would be negative.
818
           * So extend to longword int via "dummy".
819
           */
820
          dummy = digits[j];
821
          carry = CARRY_OUT (dummy);
822
          digits[j] = CARRY_LEFT (dummy);
823
 
824
          if (j >= decimal_digits && carry == 0)
825
            {
826
              /*
827
               * All higher digits are 0 and we
828
               * no longer have a carry.
829
               *
830
               * Note: "j" is 0-based, "decimal_digits" is
831
               *       1-based.
832
               */
833
              decimal_digits = j + 1;
834
              break;
835
            }
836
        }
837
    }
838
 
839
  /* Ok, now "digits" is the decimal representation, with
840
   * the "decimal_digits" actual digits.  Print!
841
   */
842
  for (i = decimal_digits - 1; i >= 0; i--)
843
    {
844
      fprintf_filtered (stream, "%1d", digits[i]);
845
    }
846
  xfree (digits);
847
 
848
  fprintf_filtered (stream, local_decimal_format_suffix ());
849
}
850
 
851
/* VALADDR points to an integer of LEN bytes.  Print it in hex on stream.  */
852
 
853
static void
854
print_hex_chars (struct ui_file *stream, unsigned char *valaddr, unsigned len)
855
{
856
  unsigned char *p;
857
 
858
  /* FIXME: We should be not printing leading zeroes in most cases.  */
859
 
860
  fprintf_filtered (stream, local_hex_format_prefix ());
861
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
862
    {
863
      for (p = valaddr;
864
           p < valaddr + len;
865
           p++)
866
        {
867
          fprintf_filtered (stream, "%02x", *p);
868
        }
869
    }
870
  else
871
    {
872
      for (p = valaddr + len - 1;
873
           p >= valaddr;
874
           p--)
875
        {
876
          fprintf_filtered (stream, "%02x", *p);
877
        }
878
    }
879
  fprintf_filtered (stream, local_hex_format_suffix ());
880
}
881
 
882
/*  Called by various <lang>_val_print routines to print elements of an
883
   array in the form "<elem1>, <elem2>, <elem3>, ...".
884
 
885
   (FIXME?)  Assumes array element separator is a comma, which is correct
886
   for all languages currently handled.
887
   (FIXME?)  Some languages have a notation for repeated array elements,
888
   perhaps we should try to use that notation when appropriate.
889
 */
890
 
891
void
892
val_print_array_elements (struct type *type, char *valaddr, CORE_ADDR address,
893
                          struct ui_file *stream, int format, int deref_ref,
894
                          int recurse, enum val_prettyprint pretty,
895
                          unsigned int i)
896
{
897
  unsigned int things_printed = 0;
898
  unsigned len;
899
  struct type *elttype;
900
  unsigned eltlen;
901
  /* Position of the array element we are examining to see
902
     whether it is repeated.  */
903
  unsigned int rep1;
904
  /* Number of repetitions we have detected so far.  */
905
  unsigned int reps;
906
 
907
  elttype = TYPE_TARGET_TYPE (type);
908
  eltlen = TYPE_LENGTH (check_typedef (elttype));
909
  len = TYPE_LENGTH (type) / eltlen;
910
 
911
  annotate_array_section_begin (i, elttype);
912
 
913
  for (; i < len && things_printed < print_max; i++)
914
    {
915
      if (i != 0)
916
        {
917
          if (prettyprint_arrays)
918
            {
919
              fprintf_filtered (stream, ",\n");
920
              print_spaces_filtered (2 + 2 * recurse, stream);
921
            }
922
          else
923
            {
924
              fprintf_filtered (stream, ", ");
925
            }
926
        }
927
      wrap_here (n_spaces (2 + 2 * recurse));
928
 
929
      rep1 = i + 1;
930
      reps = 1;
931
      while ((rep1 < len) &&
932
             !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
933
        {
934
          ++reps;
935
          ++rep1;
936
        }
937
 
938
      if (reps > repeat_count_threshold)
939
        {
940
          val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
941
                     deref_ref, recurse + 1, pretty);
942
          annotate_elt_rep (reps);
943
          fprintf_filtered (stream, " <repeats %u times>", reps);
944
          annotate_elt_rep_end ();
945
 
946
          i = rep1 - 1;
947
          things_printed += repeat_count_threshold;
948
        }
949
      else
950
        {
951
          val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
952
                     deref_ref, recurse + 1, pretty);
953
          annotate_elt ();
954
          things_printed++;
955
        }
956
    }
957
  annotate_array_section_end ();
958
  if (i < len)
959
    {
960
      fprintf_filtered (stream, "...");
961
    }
962
}
963
 
964
/* Read LEN bytes of target memory at address MEMADDR, placing the
965
   results in GDB's memory at MYADDR.  Returns a count of the bytes
966
   actually read, and optionally an errno value in the location
967
   pointed to by ERRNOPTR if ERRNOPTR is non-null. */
968
 
969
/* FIXME: cagney/1999-10-14: Only used by val_print_string.  Can this
970
   function be eliminated.  */
971
 
972
static int
973
partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
974
{
975
  int nread;                    /* Number of bytes actually read. */
976
  int errcode;                  /* Error from last read. */
977
 
978
  /* First try a complete read. */
979
  errcode = target_read_memory (memaddr, myaddr, len);
980
  if (errcode == 0)
981
    {
982
      /* Got it all. */
983
      nread = len;
984
    }
985
  else
986
    {
987
      /* Loop, reading one byte at a time until we get as much as we can. */
988
      for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
989
        {
990
          errcode = target_read_memory (memaddr++, myaddr++, 1);
991
        }
992
      /* If an error, the last read was unsuccessful, so adjust count. */
993
      if (errcode != 0)
994
        {
995
          nread--;
996
        }
997
    }
998
  if (errnoptr != NULL)
999
    {
1000
      *errnoptr = errcode;
1001
    }
1002
  return (nread);
1003
}
1004
 
1005
/*  Print a string from the inferior, starting at ADDR and printing up to LEN
1006
   characters, of WIDTH bytes a piece, to STREAM.  If LEN is -1, printing
1007
   stops at the first null byte, otherwise printing proceeds (including null
1008
   bytes) until either print_max or LEN characters have been printed,
1009
   whichever is smaller. */
1010
 
1011
/* FIXME: Use target_read_string.  */
1012
 
1013
int
1014
val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
1015
{
1016
  int force_ellipsis = 0;        /* Force ellipsis to be printed if nonzero. */
1017
  int errcode;                  /* Errno returned from bad reads. */
1018
  unsigned int fetchlimit;      /* Maximum number of chars to print. */
1019
  unsigned int nfetch;          /* Chars to fetch / chars fetched. */
1020
  unsigned int chunksize;       /* Size of each fetch, in chars. */
1021
  char *buffer = NULL;          /* Dynamically growable fetch buffer. */
1022
  char *bufptr;                 /* Pointer to next available byte in buffer. */
1023
  char *limit;                  /* First location past end of fetch buffer. */
1024
  struct cleanup *old_chain = NULL;     /* Top of the old cleanup chain. */
1025
  int found_nul;                /* Non-zero if we found the nul char */
1026
 
1027
  /* First we need to figure out the limit on the number of characters we are
1028
     going to attempt to fetch and print.  This is actually pretty simple.  If
1029
     LEN >= zero, then the limit is the minimum of LEN and print_max.  If
1030
     LEN is -1, then the limit is print_max.  This is true regardless of
1031
     whether print_max is zero, UINT_MAX (unlimited), or something in between,
1032
     because finding the null byte (or available memory) is what actually
1033
     limits the fetch. */
1034
 
1035
  fetchlimit = (len == -1 ? print_max : min (len, print_max));
1036
 
1037
  /* Now decide how large of chunks to try to read in one operation.  This
1038
     is also pretty simple.  If LEN >= zero, then we want fetchlimit chars,
1039
     so we might as well read them all in one operation.  If LEN is -1, we
1040
     are looking for a null terminator to end the fetching, so we might as
1041
     well read in blocks that are large enough to be efficient, but not so
1042
     large as to be slow if fetchlimit happens to be large.  So we choose the
1043
     minimum of 8 and fetchlimit.  We used to use 200 instead of 8 but
1044
     200 is way too big for remote debugging over a serial line.  */
1045
 
1046
  chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1047
 
1048
  /* Loop until we either have all the characters to print, or we encounter
1049
     some error, such as bumping into the end of the address space. */
1050
 
1051
  found_nul = 0;
1052
  old_chain = make_cleanup (null_cleanup, 0);
1053
 
1054
  if (len > 0)
1055
    {
1056
      buffer = (char *) xmalloc (len * width);
1057
      bufptr = buffer;
1058
      old_chain = make_cleanup (xfree, buffer);
1059
 
1060
      nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1061
        / width;
1062
      addr += nfetch * width;
1063
      bufptr += nfetch * width;
1064
    }
1065
  else if (len == -1)
1066
    {
1067
      unsigned long bufsize = 0;
1068
      do
1069
        {
1070
          QUIT;
1071
          nfetch = min (chunksize, fetchlimit - bufsize);
1072
 
1073
          if (buffer == NULL)
1074
            buffer = (char *) xmalloc (nfetch * width);
1075
          else
1076
            {
1077
              discard_cleanups (old_chain);
1078
              buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
1079
            }
1080
 
1081
          old_chain = make_cleanup (xfree, buffer);
1082
          bufptr = buffer + bufsize * width;
1083
          bufsize += nfetch;
1084
 
1085
          /* Read as much as we can. */
1086
          nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1087
            / width;
1088
 
1089
          /* Scan this chunk for the null byte that terminates the string
1090
             to print.  If found, we don't need to fetch any more.  Note
1091
             that bufptr is explicitly left pointing at the next character
1092
             after the null byte, or at the next character after the end of
1093
             the buffer. */
1094
 
1095
          limit = bufptr + nfetch * width;
1096
          while (bufptr < limit)
1097
            {
1098
              unsigned long c;
1099
 
1100
              c = extract_unsigned_integer (bufptr, width);
1101
              addr += width;
1102
              bufptr += width;
1103
              if (c == 0)
1104
                {
1105
                  /* We don't care about any error which happened after
1106
                     the NULL terminator.  */
1107
                  errcode = 0;
1108
                  found_nul = 1;
1109
                  break;
1110
                }
1111
            }
1112
        }
1113
      while (errcode == 0        /* no error */
1114
             && bufptr - buffer < fetchlimit * width    /* no overrun */
1115
             && !found_nul);    /* haven't found nul yet */
1116
    }
1117
  else
1118
    {                           /* length of string is really 0! */
1119
      buffer = bufptr = NULL;
1120
      errcode = 0;
1121
    }
1122
 
1123
  /* bufptr and addr now point immediately beyond the last byte which we
1124
     consider part of the string (including a '\0' which ends the string).  */
1125
 
1126
  /* We now have either successfully filled the buffer to fetchlimit, or
1127
     terminated early due to an error or finding a null char when LEN is -1. */
1128
 
1129
  if (len == -1 && !found_nul)
1130
    {
1131
      char *peekbuf;
1132
 
1133
      /* We didn't find a null terminator we were looking for.  Attempt
1134
         to peek at the next character.  If not successful, or it is not
1135
         a null byte, then force ellipsis to be printed.  */
1136
 
1137
      peekbuf = (char *) alloca (width);
1138
 
1139
      if (target_read_memory (addr, peekbuf, width) == 0
1140
          && extract_unsigned_integer (peekbuf, width) != 0)
1141
        force_ellipsis = 1;
1142
    }
1143
  else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1144
    {
1145
      /* Getting an error when we have a requested length, or fetching less
1146
         than the number of characters actually requested, always make us
1147
         print ellipsis. */
1148
      force_ellipsis = 1;
1149
    }
1150
 
1151
  QUIT;
1152
 
1153
  /* If we get an error before fetching anything, don't print a string.
1154
     But if we fetch something and then get an error, print the string
1155
     and then the error message.  */
1156
  if (errcode == 0 || bufptr > buffer)
1157
    {
1158
      if (addressprint)
1159
        {
1160
          fputs_filtered (" ", stream);
1161
        }
1162
      LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1163
    }
1164
 
1165
  if (errcode != 0)
1166
    {
1167
      if (errcode == EIO)
1168
        {
1169
          fprintf_filtered (stream, " <Address ");
1170
          print_address_numeric (addr, 1, stream);
1171
          fprintf_filtered (stream, " out of bounds>");
1172
        }
1173
      else
1174
        {
1175
          fprintf_filtered (stream, " <Error reading address ");
1176
          print_address_numeric (addr, 1, stream);
1177
          fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1178
        }
1179
    }
1180
  gdb_flush (stream);
1181
  do_cleanups (old_chain);
1182
  return ((bufptr - buffer) / width);
1183
}
1184
 
1185
 
1186
/* Validate an input or output radix setting, and make sure the user
1187
   knows what they really did here.  Radix setting is confusing, e.g.
1188
   setting the input radix to "10" never changes it!  */
1189
 
1190
/* ARGSUSED */
1191
static void
1192
set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1193
{
1194
  set_input_radix_1 (from_tty, input_radix);
1195
}
1196
 
1197
/* ARGSUSED */
1198
static void
1199
set_input_radix_1 (int from_tty, unsigned radix)
1200
{
1201
  /* We don't currently disallow any input radix except 0 or 1, which don't
1202
     make any mathematical sense.  In theory, we can deal with any input
1203
     radix greater than 1, even if we don't have unique digits for every
1204
     value from 0 to radix-1, but in practice we lose on large radix values.
1205
     We should either fix the lossage or restrict the radix range more.
1206
     (FIXME). */
1207
 
1208
  if (radix < 2)
1209
    {
1210
      /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1211
         value.  */
1212
      error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
1213
             radix);
1214
    }
1215
  input_radix = radix;
1216
  if (from_tty)
1217
    {
1218
      printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
1219
                       radix, radix, radix);
1220
    }
1221
}
1222
 
1223
/* ARGSUSED */
1224
static void
1225
set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1226
{
1227
  set_output_radix_1 (from_tty, output_radix);
1228
}
1229
 
1230
static void
1231
set_output_radix_1 (int from_tty, unsigned radix)
1232
{
1233
  /* Validate the radix and disallow ones that we aren't prepared to
1234
     handle correctly, leaving the radix unchanged. */
1235
  switch (radix)
1236
    {
1237
    case 16:
1238
      output_format = 'x';      /* hex */
1239
      break;
1240
    case 10:
1241
      output_format = 0; /* decimal */
1242
      break;
1243
    case 8:
1244
      output_format = 'o';      /* octal */
1245
      break;
1246
    default:
1247
      /* FIXME: cagney/2002-03-17: This needs to revert the bad radix
1248
         value.  */
1249
      error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
1250
             radix);
1251
    }
1252
  output_radix = radix;
1253
  if (from_tty)
1254
    {
1255
      printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
1256
                       radix, radix, radix);
1257
    }
1258
}
1259
 
1260
/* Set both the input and output radix at once.  Try to set the output radix
1261
   first, since it has the most restrictive range.  An radix that is valid as
1262
   an output radix is also valid as an input radix.
1263
 
1264
   It may be useful to have an unusual input radix.  If the user wishes to
1265
   set an input radix that is not valid as an output radix, he needs to use
1266
   the 'set input-radix' command. */
1267
 
1268
static void
1269
set_radix (char *arg, int from_tty)
1270
{
1271
  unsigned radix;
1272
 
1273
  radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1274
  set_output_radix_1 (0, radix);
1275
  set_input_radix_1 (0, radix);
1276
  if (from_tty)
1277
    {
1278
      printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
1279
                       radix, radix, radix);
1280
    }
1281
}
1282
 
1283
/* Show both the input and output radices. */
1284
 
1285
/*ARGSUSED */
1286
static void
1287
show_radix (char *arg, int from_tty)
1288
{
1289
  if (from_tty)
1290
    {
1291
      if (input_radix == output_radix)
1292
        {
1293
          printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
1294
                           input_radix, input_radix, input_radix);
1295
        }
1296
      else
1297
        {
1298
          printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
1299
                           input_radix, input_radix, input_radix);
1300
          printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
1301
                           output_radix, output_radix, output_radix);
1302
        }
1303
    }
1304
}
1305
 
1306
 
1307
/*ARGSUSED */
1308
static void
1309
set_print (char *arg, int from_tty)
1310
{
1311
  printf_unfiltered (
1312
     "\"set print\" must be followed by the name of a print subcommand.\n");
1313
  help_list (setprintlist, "set print ", -1, gdb_stdout);
1314
}
1315
 
1316
/*ARGSUSED */
1317
static void
1318
show_print (char *args, int from_tty)
1319
{
1320
  cmd_show_list (showprintlist, from_tty, "");
1321
}
1322
 
1323
void
1324
_initialize_valprint (void)
1325
{
1326
  struct cmd_list_element *c;
1327
 
1328
  add_prefix_cmd ("print", no_class, set_print,
1329
                  "Generic command for setting how things print.",
1330
                  &setprintlist, "set print ", 0, &setlist);
1331
  add_alias_cmd ("p", "print", no_class, 1, &setlist);
1332
  /* prefer set print to set prompt */
1333
  add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1334
 
1335
  add_prefix_cmd ("print", no_class, show_print,
1336
                  "Generic command for showing print settings.",
1337
                  &showprintlist, "show print ", 0, &showlist);
1338
  add_alias_cmd ("p", "print", no_class, 1, &showlist);
1339
  add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1340
 
1341
  add_show_from_set
1342
    (add_set_cmd ("elements", no_class, var_uinteger, (char *) &print_max,
1343
                  "Set limit on string chars or array elements to print.\n\
1344
\"set print elements 0\" causes there to be no limit.",
1345
                  &setprintlist),
1346
     &showprintlist);
1347
 
1348
  add_show_from_set
1349
    (add_set_cmd ("null-stop", no_class, var_boolean,
1350
                  (char *) &stop_print_at_null,
1351
                  "Set printing of char arrays to stop at first null char.",
1352
                  &setprintlist),
1353
     &showprintlist);
1354
 
1355
  add_show_from_set
1356
    (add_set_cmd ("repeats", no_class, var_uinteger,
1357
                  (char *) &repeat_count_threshold,
1358
                  "Set threshold for repeated print elements.\n\
1359
\"set print repeats 0\" causes all elements to be individually printed.",
1360
                  &setprintlist),
1361
     &showprintlist);
1362
 
1363
  add_show_from_set
1364
    (add_set_cmd ("pretty", class_support, var_boolean,
1365
                  (char *) &prettyprint_structs,
1366
                  "Set prettyprinting of structures.",
1367
                  &setprintlist),
1368
     &showprintlist);
1369
 
1370
  add_show_from_set
1371
    (add_set_cmd ("union", class_support, var_boolean, (char *) &unionprint,
1372
                  "Set printing of unions interior to structures.",
1373
                  &setprintlist),
1374
     &showprintlist);
1375
 
1376
  add_show_from_set
1377
    (add_set_cmd ("array", class_support, var_boolean,
1378
                  (char *) &prettyprint_arrays,
1379
                  "Set prettyprinting of arrays.",
1380
                  &setprintlist),
1381
     &showprintlist);
1382
 
1383
  add_show_from_set
1384
    (add_set_cmd ("address", class_support, var_boolean, (char *) &addressprint,
1385
                  "Set printing of addresses.",
1386
                  &setprintlist),
1387
     &showprintlist);
1388
 
1389
  c = add_set_cmd ("input-radix", class_support, var_uinteger,
1390
                   (char *) &input_radix,
1391
                   "Set default input radix for entering numbers.",
1392
                   &setlist);
1393
  add_show_from_set (c, &showlist);
1394
  set_cmd_sfunc (c, set_input_radix);
1395
 
1396
  c = add_set_cmd ("output-radix", class_support, var_uinteger,
1397
                   (char *) &output_radix,
1398
                   "Set default output radix for printing of values.",
1399
                   &setlist);
1400
  add_show_from_set (c, &showlist);
1401
  set_cmd_sfunc (c, set_output_radix);
1402
 
1403
  /* The "set radix" and "show radix" commands are special in that they are
1404
     like normal set and show commands but allow two normally independent
1405
     variables to be either set or shown with a single command.  So the
1406
     usual add_set_cmd() and add_show_from_set() commands aren't really
1407
     appropriate. */
1408
  add_cmd ("radix", class_support, set_radix,
1409
           "Set default input and output number radices.\n\
1410
Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1411
Without an argument, sets both radices back to the default value of 10.",
1412
           &setlist);
1413
  add_cmd ("radix", class_support, show_radix,
1414
           "Show the default input and output number radices.\n\
1415
Use 'show input-radix' or 'show output-radix' to independently show each.",
1416
           &showlist);
1417
 
1418
  /* Give people the defaults which they are used to.  */
1419
  prettyprint_structs = 0;
1420
  prettyprint_arrays = 0;
1421
  unionprint = 1;
1422
  addressprint = 1;
1423
  print_max = PRINT_MAX_DEFAULT;
1424
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.