1 |
1181 |
sfurman |
/* IEEE floating point support routines, for GDB, the GNU Debugger.
|
2 |
|
|
Copyright (C) 1991, 1994, 1999, 2000 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of GDB.
|
5 |
|
|
|
6 |
|
|
This program is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
9 |
|
|
(at your option) any later version.
|
10 |
|
|
|
11 |
|
|
This program is distributed in the hope that it will be useful,
|
12 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
|
|
GNU General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with this program; if not, write to the Free Software
|
18 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
19 |
|
|
|
20 |
|
|
#include "floatformat.h"
|
21 |
|
|
#include <math.h> /* ldexp */
|
22 |
|
|
#ifdef __STDC__
|
23 |
|
|
#include <stddef.h>
|
24 |
|
|
extern void *memcpy (void *s1, const void *s2, size_t n);
|
25 |
|
|
extern void *memset (void *s, int c, size_t n);
|
26 |
|
|
#else
|
27 |
|
|
extern char *memcpy ();
|
28 |
|
|
extern char *memset ();
|
29 |
|
|
#endif
|
30 |
|
|
|
31 |
|
|
/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
|
32 |
|
|
going to bother with trying to muck around with whether it is defined in
|
33 |
|
|
a system header, what we do if not, etc. */
|
34 |
|
|
#define FLOATFORMAT_CHAR_BIT 8
|
35 |
|
|
|
36 |
|
|
/* floatformats for IEEE single and double, big and little endian. */
|
37 |
|
|
const struct floatformat floatformat_ieee_single_big =
|
38 |
|
|
{
|
39 |
|
|
floatformat_big, 32, 0, 1, 8, 127, 255, 9, 23,
|
40 |
|
|
floatformat_intbit_no,
|
41 |
|
|
"floatformat_ieee_single_big"
|
42 |
|
|
};
|
43 |
|
|
const struct floatformat floatformat_ieee_single_little =
|
44 |
|
|
{
|
45 |
|
|
floatformat_little, 32, 0, 1, 8, 127, 255, 9, 23,
|
46 |
|
|
floatformat_intbit_no,
|
47 |
|
|
"floatformat_ieee_single_little"
|
48 |
|
|
};
|
49 |
|
|
const struct floatformat floatformat_ieee_double_big =
|
50 |
|
|
{
|
51 |
|
|
floatformat_big, 64, 0, 1, 11, 1023, 2047, 12, 52,
|
52 |
|
|
floatformat_intbit_no,
|
53 |
|
|
"floatformat_ieee_double_big"
|
54 |
|
|
};
|
55 |
|
|
const struct floatformat floatformat_ieee_double_little =
|
56 |
|
|
{
|
57 |
|
|
floatformat_little, 64, 0, 1, 11, 1023, 2047, 12, 52,
|
58 |
|
|
floatformat_intbit_no,
|
59 |
|
|
"floatformat_ieee_double_little"
|
60 |
|
|
};
|
61 |
|
|
|
62 |
|
|
/* floatformat for IEEE double, little endian byte order, with big endian word
|
63 |
|
|
ordering, as on the ARM. */
|
64 |
|
|
|
65 |
|
|
const struct floatformat floatformat_ieee_double_littlebyte_bigword =
|
66 |
|
|
{
|
67 |
|
|
floatformat_littlebyte_bigword, 64, 0, 1, 11, 1023, 2047, 12, 52,
|
68 |
|
|
floatformat_intbit_no,
|
69 |
|
|
"floatformat_ieee_double_littlebyte_bigword"
|
70 |
|
|
};
|
71 |
|
|
|
72 |
|
|
const struct floatformat floatformat_i387_ext =
|
73 |
|
|
{
|
74 |
|
|
floatformat_little, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
|
75 |
|
|
floatformat_intbit_yes,
|
76 |
|
|
"floatformat_i387_ext"
|
77 |
|
|
};
|
78 |
|
|
const struct floatformat floatformat_m68881_ext =
|
79 |
|
|
{
|
80 |
|
|
/* Note that the bits from 16 to 31 are unused. */
|
81 |
|
|
floatformat_big, 96, 0, 1, 15, 0x3fff, 0x7fff, 32, 64,
|
82 |
|
|
floatformat_intbit_yes,
|
83 |
|
|
"floatformat_m68881_ext"
|
84 |
|
|
};
|
85 |
|
|
const struct floatformat floatformat_i960_ext =
|
86 |
|
|
{
|
87 |
|
|
/* Note that the bits from 0 to 15 are unused. */
|
88 |
|
|
floatformat_little, 96, 16, 17, 15, 0x3fff, 0x7fff, 32, 64,
|
89 |
|
|
floatformat_intbit_yes,
|
90 |
|
|
"floatformat_i960_ext"
|
91 |
|
|
};
|
92 |
|
|
const struct floatformat floatformat_m88110_ext =
|
93 |
|
|
{
|
94 |
|
|
floatformat_big, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
|
95 |
|
|
floatformat_intbit_yes,
|
96 |
|
|
"floatformat_m88110_ext"
|
97 |
|
|
};
|
98 |
|
|
const struct floatformat floatformat_m88110_harris_ext =
|
99 |
|
|
{
|
100 |
|
|
/* Harris uses raw format 128 bytes long, but the number is just an ieee
|
101 |
|
|
double, and the last 64 bits are wasted. */
|
102 |
|
|
floatformat_big,128, 0, 1, 11, 0x3ff, 0x7ff, 12, 52,
|
103 |
|
|
floatformat_intbit_no,
|
104 |
|
|
"floatformat_m88110_ext_harris"
|
105 |
|
|
};
|
106 |
|
|
const struct floatformat floatformat_arm_ext_big =
|
107 |
|
|
{
|
108 |
|
|
/* Bits 1 to 16 are unused. */
|
109 |
|
|
floatformat_big, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
|
110 |
|
|
floatformat_intbit_yes,
|
111 |
|
|
"floatformat_arm_ext_big"
|
112 |
|
|
};
|
113 |
|
|
const struct floatformat floatformat_arm_ext_littlebyte_bigword =
|
114 |
|
|
{
|
115 |
|
|
/* Bits 1 to 16 are unused. */
|
116 |
|
|
floatformat_littlebyte_bigword, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
|
117 |
|
|
floatformat_intbit_yes,
|
118 |
|
|
"floatformat_arm_ext_littlebyte_bigword"
|
119 |
|
|
};
|
120 |
|
|
const struct floatformat floatformat_ia64_spill_big =
|
121 |
|
|
{
|
122 |
|
|
floatformat_big, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
|
123 |
|
|
floatformat_intbit_yes,
|
124 |
|
|
"floatformat_ia64_spill_big"
|
125 |
|
|
};
|
126 |
|
|
const struct floatformat floatformat_ia64_spill_little =
|
127 |
|
|
{
|
128 |
|
|
floatformat_little, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
|
129 |
|
|
floatformat_intbit_yes,
|
130 |
|
|
"floatformat_ia64_spill_little"
|
131 |
|
|
};
|
132 |
|
|
const struct floatformat floatformat_ia64_quad_big =
|
133 |
|
|
{
|
134 |
|
|
floatformat_big, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
|
135 |
|
|
floatformat_intbit_no,
|
136 |
|
|
"floatformat_ia64_quad_big"
|
137 |
|
|
};
|
138 |
|
|
const struct floatformat floatformat_ia64_quad_little =
|
139 |
|
|
{
|
140 |
|
|
floatformat_little, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
|
141 |
|
|
floatformat_intbit_no,
|
142 |
|
|
"floatformat_ia64_quad_little"
|
143 |
|
|
};
|
144 |
|
|
|
145 |
|
|
static unsigned long get_field PARAMS ((unsigned char *,
|
146 |
|
|
enum floatformat_byteorders,
|
147 |
|
|
unsigned int,
|
148 |
|
|
unsigned int,
|
149 |
|
|
unsigned int));
|
150 |
|
|
|
151 |
|
|
/* Extract a field which starts at START and is LEN bytes long. DATA and
|
152 |
|
|
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
153 |
|
|
static unsigned long
|
154 |
|
|
get_field (data, order, total_len, start, len)
|
155 |
|
|
unsigned char *data;
|
156 |
|
|
enum floatformat_byteorders order;
|
157 |
|
|
unsigned int total_len;
|
158 |
|
|
unsigned int start;
|
159 |
|
|
unsigned int len;
|
160 |
|
|
{
|
161 |
|
|
unsigned long result;
|
162 |
|
|
unsigned int cur_byte;
|
163 |
|
|
int cur_bitshift;
|
164 |
|
|
|
165 |
|
|
/* Start at the least significant part of the field. */
|
166 |
|
|
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
|
167 |
|
|
if (order == floatformat_little)
|
168 |
|
|
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - cur_byte - 1;
|
169 |
|
|
cur_bitshift =
|
170 |
|
|
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
|
171 |
|
|
result = *(data + cur_byte) >> (-cur_bitshift);
|
172 |
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
173 |
|
|
if (order == floatformat_little)
|
174 |
|
|
++cur_byte;
|
175 |
|
|
else
|
176 |
|
|
--cur_byte;
|
177 |
|
|
|
178 |
|
|
/* Move towards the most significant part of the field. */
|
179 |
|
|
while ((unsigned int) cur_bitshift < len)
|
180 |
|
|
{
|
181 |
|
|
if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
|
182 |
|
|
/* This is the last byte; zero out the bits which are not part of
|
183 |
|
|
this field. */
|
184 |
|
|
result |=
|
185 |
|
|
(*(data + cur_byte) & ((1 << (len - cur_bitshift)) - 1))
|
186 |
|
|
<< cur_bitshift;
|
187 |
|
|
else
|
188 |
|
|
result |= *(data + cur_byte) << cur_bitshift;
|
189 |
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
190 |
|
|
if (order == floatformat_little)
|
191 |
|
|
++cur_byte;
|
192 |
|
|
else
|
193 |
|
|
--cur_byte;
|
194 |
|
|
}
|
195 |
|
|
return result;
|
196 |
|
|
}
|
197 |
|
|
|
198 |
|
|
#ifndef min
|
199 |
|
|
#define min(a, b) ((a) < (b) ? (a) : (b))
|
200 |
|
|
#endif
|
201 |
|
|
|
202 |
|
|
/* Convert from FMT to a double.
|
203 |
|
|
FROM is the address of the extended float.
|
204 |
|
|
Store the double in *TO. */
|
205 |
|
|
|
206 |
|
|
void
|
207 |
|
|
floatformat_to_double (fmt, from, to)
|
208 |
|
|
const struct floatformat *fmt;
|
209 |
|
|
char *from;
|
210 |
|
|
double *to;
|
211 |
|
|
{
|
212 |
|
|
unsigned char *ufrom = (unsigned char *)from;
|
213 |
|
|
double dto;
|
214 |
|
|
long exponent;
|
215 |
|
|
unsigned long mant;
|
216 |
|
|
unsigned int mant_bits, mant_off;
|
217 |
|
|
int mant_bits_left;
|
218 |
|
|
int special_exponent; /* It's a NaN, denorm or zero */
|
219 |
|
|
|
220 |
|
|
exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
|
221 |
|
|
fmt->exp_start, fmt->exp_len);
|
222 |
|
|
/* Note that if exponent indicates a NaN, we can't really do anything useful
|
223 |
|
|
(not knowing if the host has NaN's, or how to build one). So it will
|
224 |
|
|
end up as an infinity or something close; that is OK. */
|
225 |
|
|
|
226 |
|
|
mant_bits_left = fmt->man_len;
|
227 |
|
|
mant_off = fmt->man_start;
|
228 |
|
|
dto = 0.0;
|
229 |
|
|
|
230 |
|
|
special_exponent = exponent == 0 || (unsigned long) exponent == fmt->exp_nan;
|
231 |
|
|
|
232 |
|
|
/* Don't bias zero's, denorms or NaNs. */
|
233 |
|
|
if (!special_exponent)
|
234 |
|
|
exponent -= fmt->exp_bias;
|
235 |
|
|
|
236 |
|
|
/* Build the result algebraically. Might go infinite, underflow, etc;
|
237 |
|
|
who cares. */
|
238 |
|
|
|
239 |
|
|
/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
|
240 |
|
|
increment the exponent by one to account for the integer bit. */
|
241 |
|
|
|
242 |
|
|
if (!special_exponent)
|
243 |
|
|
{
|
244 |
|
|
if (fmt->intbit == floatformat_intbit_no)
|
245 |
|
|
dto = ldexp (1.0, exponent);
|
246 |
|
|
else
|
247 |
|
|
exponent++;
|
248 |
|
|
}
|
249 |
|
|
|
250 |
|
|
while (mant_bits_left > 0)
|
251 |
|
|
{
|
252 |
|
|
mant_bits = min (mant_bits_left, 32);
|
253 |
|
|
|
254 |
|
|
mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
|
255 |
|
|
mant_off, mant_bits);
|
256 |
|
|
|
257 |
|
|
dto += ldexp ((double)mant, exponent - mant_bits);
|
258 |
|
|
exponent -= mant_bits;
|
259 |
|
|
mant_off += mant_bits;
|
260 |
|
|
mant_bits_left -= mant_bits;
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
/* Negate it if negative. */
|
264 |
|
|
if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
|
265 |
|
|
dto = -dto;
|
266 |
|
|
*to = dto;
|
267 |
|
|
}
|
268 |
|
|
|
269 |
|
|
static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
|
270 |
|
|
unsigned int,
|
271 |
|
|
unsigned int,
|
272 |
|
|
unsigned int,
|
273 |
|
|
unsigned long));
|
274 |
|
|
|
275 |
|
|
/* Set a field which starts at START and is LEN bytes long. DATA and
|
276 |
|
|
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
277 |
|
|
static void
|
278 |
|
|
put_field (data, order, total_len, start, len, stuff_to_put)
|
279 |
|
|
unsigned char *data;
|
280 |
|
|
enum floatformat_byteorders order;
|
281 |
|
|
unsigned int total_len;
|
282 |
|
|
unsigned int start;
|
283 |
|
|
unsigned int len;
|
284 |
|
|
unsigned long stuff_to_put;
|
285 |
|
|
{
|
286 |
|
|
unsigned int cur_byte;
|
287 |
|
|
int cur_bitshift;
|
288 |
|
|
|
289 |
|
|
/* Start at the least significant part of the field. */
|
290 |
|
|
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
|
291 |
|
|
if (order == floatformat_little)
|
292 |
|
|
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - cur_byte - 1;
|
293 |
|
|
cur_bitshift =
|
294 |
|
|
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
|
295 |
|
|
*(data + cur_byte) &=
|
296 |
|
|
~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) << (-cur_bitshift));
|
297 |
|
|
*(data + cur_byte) |=
|
298 |
|
|
(stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
|
299 |
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
300 |
|
|
if (order == floatformat_little)
|
301 |
|
|
++cur_byte;
|
302 |
|
|
else
|
303 |
|
|
--cur_byte;
|
304 |
|
|
|
305 |
|
|
/* Move towards the most significant part of the field. */
|
306 |
|
|
while ((unsigned int) cur_bitshift < len)
|
307 |
|
|
{
|
308 |
|
|
if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
|
309 |
|
|
{
|
310 |
|
|
/* This is the last byte. */
|
311 |
|
|
*(data + cur_byte) &=
|
312 |
|
|
~((1 << (len - cur_bitshift)) - 1);
|
313 |
|
|
*(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
|
314 |
|
|
}
|
315 |
|
|
else
|
316 |
|
|
*(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
|
317 |
|
|
& ((1 << FLOATFORMAT_CHAR_BIT) - 1));
|
318 |
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
319 |
|
|
if (order == floatformat_little)
|
320 |
|
|
++cur_byte;
|
321 |
|
|
else
|
322 |
|
|
--cur_byte;
|
323 |
|
|
}
|
324 |
|
|
}
|
325 |
|
|
|
326 |
|
|
/* The converse: convert the double *FROM to an extended float
|
327 |
|
|
and store where TO points. Neither FROM nor TO have any alignment
|
328 |
|
|
restrictions. */
|
329 |
|
|
|
330 |
|
|
void
|
331 |
|
|
floatformat_from_double (fmt, from, to)
|
332 |
|
|
const struct floatformat *fmt;
|
333 |
|
|
double *from;
|
334 |
|
|
char *to;
|
335 |
|
|
{
|
336 |
|
|
double dfrom;
|
337 |
|
|
int exponent;
|
338 |
|
|
double mant;
|
339 |
|
|
unsigned int mant_bits, mant_off;
|
340 |
|
|
int mant_bits_left;
|
341 |
|
|
unsigned char *uto = (unsigned char *)to;
|
342 |
|
|
|
343 |
|
|
memcpy (&dfrom, from, sizeof (dfrom));
|
344 |
|
|
memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
|
345 |
|
|
if (dfrom == 0)
|
346 |
|
|
return; /* Result is zero */
|
347 |
|
|
if (dfrom != dfrom)
|
348 |
|
|
{
|
349 |
|
|
/* From is NaN */
|
350 |
|
|
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
|
351 |
|
|
fmt->exp_len, fmt->exp_nan);
|
352 |
|
|
/* Be sure it's not infinity, but NaN value is irrel */
|
353 |
|
|
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
|
354 |
|
|
32, 1);
|
355 |
|
|
return;
|
356 |
|
|
}
|
357 |
|
|
|
358 |
|
|
/* If negative, set the sign bit. */
|
359 |
|
|
if (dfrom < 0)
|
360 |
|
|
{
|
361 |
|
|
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
|
362 |
|
|
dfrom = -dfrom;
|
363 |
|
|
}
|
364 |
|
|
|
365 |
|
|
/* How to tell an infinity from an ordinary number? FIXME-someday */
|
366 |
|
|
|
367 |
|
|
mant = frexp (dfrom, &exponent);
|
368 |
|
|
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
|
369 |
|
|
exponent + fmt->exp_bias - 1);
|
370 |
|
|
|
371 |
|
|
mant_bits_left = fmt->man_len;
|
372 |
|
|
mant_off = fmt->man_start;
|
373 |
|
|
while (mant_bits_left > 0)
|
374 |
|
|
{
|
375 |
|
|
unsigned long mant_long;
|
376 |
|
|
mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
|
377 |
|
|
|
378 |
|
|
mant *= 4294967296.0;
|
379 |
|
|
mant_long = (unsigned long)mant;
|
380 |
|
|
mant -= mant_long;
|
381 |
|
|
|
382 |
|
|
/* If the integer bit is implicit, then we need to discard it.
|
383 |
|
|
If we are discarding a zero, we should be (but are not) creating
|
384 |
|
|
a denormalized number which means adjusting the exponent
|
385 |
|
|
(I think). */
|
386 |
|
|
if ((unsigned int) mant_bits_left == fmt->man_len
|
387 |
|
|
&& fmt->intbit == floatformat_intbit_no)
|
388 |
|
|
{
|
389 |
|
|
mant_long &= 0x7fffffff;
|
390 |
|
|
mant_bits -= 1;
|
391 |
|
|
}
|
392 |
|
|
else if (mant_bits < 32)
|
393 |
|
|
{
|
394 |
|
|
/* The bits we want are in the most significant MANT_BITS bits of
|
395 |
|
|
mant_long. Move them to the least significant. */
|
396 |
|
|
mant_long >>= 32 - mant_bits;
|
397 |
|
|
}
|
398 |
|
|
|
399 |
|
|
put_field (uto, fmt->byteorder, fmt->totalsize,
|
400 |
|
|
mant_off, mant_bits, mant_long);
|
401 |
|
|
mant_off += mant_bits;
|
402 |
|
|
mant_bits_left -= mant_bits;
|
403 |
|
|
}
|
404 |
|
|
}
|
405 |
|
|
|
406 |
|
|
|
407 |
|
|
#ifdef IEEE_DEBUG
|
408 |
|
|
|
409 |
|
|
/* This is to be run on a host which uses IEEE floating point. */
|
410 |
|
|
|
411 |
|
|
void
|
412 |
|
|
ieee_test (n)
|
413 |
|
|
double n;
|
414 |
|
|
{
|
415 |
|
|
double result;
|
416 |
|
|
char exten[16];
|
417 |
|
|
|
418 |
|
|
floatformat_to_double (&floatformat_ieee_double_big, &n, &result);
|
419 |
|
|
if (n != result)
|
420 |
|
|
printf ("Differ(to): %.20g -> %.20g\n", n, result);
|
421 |
|
|
floatformat_from_double (&floatformat_ieee_double_big, &n, &result);
|
422 |
|
|
if (n != result)
|
423 |
|
|
printf ("Differ(from): %.20g -> %.20g\n", n, result);
|
424 |
|
|
|
425 |
|
|
floatformat_from_double (&floatformat_m68881_ext, &n, exten);
|
426 |
|
|
floatformat_to_double (&floatformat_m68881_ext, exten, &result);
|
427 |
|
|
if (n != result)
|
428 |
|
|
printf ("Differ(to+from): %.20g -> %.20g\n", n, result);
|
429 |
|
|
|
430 |
|
|
#if IEEE_DEBUG > 1
|
431 |
|
|
/* This is to be run on a host which uses 68881 format. */
|
432 |
|
|
{
|
433 |
|
|
long double ex = *(long double *)exten;
|
434 |
|
|
if (ex != n)
|
435 |
|
|
printf ("Differ(from vs. extended): %.20g\n", n);
|
436 |
|
|
}
|
437 |
|
|
#endif
|
438 |
|
|
}
|
439 |
|
|
|
440 |
|
|
int
|
441 |
|
|
main ()
|
442 |
|
|
{
|
443 |
|
|
ieee_test (0.5);
|
444 |
|
|
ieee_test (256.0);
|
445 |
|
|
ieee_test (0.12345);
|
446 |
|
|
ieee_test (234235.78907234);
|
447 |
|
|
ieee_test (-512.0);
|
448 |
|
|
ieee_test (-0.004321);
|
449 |
|
|
return 0;
|
450 |
|
|
}
|
451 |
|
|
#endif
|