OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [libiberty/] [regex.c] - Blame information for rev 1767

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* Extended regular expression matching and search library,
2
   version 0.12.
3
   (Implements POSIX draft P1003.2/D11.2, except for some of the
4
   internationalization features.)
5
   Copyright (C) 1993-1999, 2000, 2001, 2002 Free Software Foundation, Inc.
6
   This file is part of the GNU C Library.
7
 
8
   The GNU C Library is free software; you can redistribute it and/or
9
   modify it under the terms of the GNU Lesser General Public
10
   License as published by the Free Software Foundation; either
11
   version 2.1 of the License, or (at your option) any later version.
12
 
13
   The GNU C Library is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
   Lesser General Public License for more details.
17
 
18
   You should have received a copy of the GNU Lesser General Public
19
   License along with the GNU C Library; if not, write to the Free
20
   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
21
   02111-1307 USA.  */
22
 
23
/* This file has been modified for usage in libiberty.  It includes "xregex.h"
24
   instead of <regex.h>.  The "xregex.h" header file renames all external
25
   routines with an "x" prefix so they do not collide with the native regex
26
   routines or with other components regex routines. */
27
/* AIX requires this to be the first thing in the file. */
28
#if defined _AIX && !defined REGEX_MALLOC
29
  #pragma alloca
30
#endif
31
 
32
#undef  _GNU_SOURCE
33
#define _GNU_SOURCE
34
 
35
#ifdef HAVE_CONFIG_H
36
# include <config.h>
37
#endif
38
 
39
#ifndef PARAMS
40
# if defined __GNUC__ || (defined __STDC__ && __STDC__)
41
#  define PARAMS(args) args
42
# else
43
#  define PARAMS(args) ()
44
# endif  /* GCC.  */
45
#endif  /* Not PARAMS.  */
46
 
47
#ifndef INSIDE_RECURSION
48
 
49
# if defined STDC_HEADERS && !defined emacs
50
#  include <stddef.h>
51
# else
52
/* We need this for `regex.h', and perhaps for the Emacs include files.  */
53
#  include <sys/types.h>
54
# endif
55
 
56
# define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
57
 
58
/* For platform which support the ISO C amendement 1 functionality we
59
   support user defined character classes.  */
60
# if defined _LIBC || WIDE_CHAR_SUPPORT
61
/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
62
#  include <wchar.h>
63
#  include <wctype.h>
64
# endif
65
 
66
# ifdef _LIBC
67
/* We have to keep the namespace clean.  */
68
#  define regfree(preg) __regfree (preg)
69
#  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70
#  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71
#  define regerror(errcode, preg, errbuf, errbuf_size) \
72
        __regerror(errcode, preg, errbuf, errbuf_size)
73
#  define re_set_registers(bu, re, nu, st, en) \
74
        __re_set_registers (bu, re, nu, st, en)
75
#  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76
        __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77
#  define re_match(bufp, string, size, pos, regs) \
78
        __re_match (bufp, string, size, pos, regs)
79
#  define re_search(bufp, string, size, startpos, range, regs) \
80
        __re_search (bufp, string, size, startpos, range, regs)
81
#  define re_compile_pattern(pattern, length, bufp) \
82
        __re_compile_pattern (pattern, length, bufp)
83
#  define re_set_syntax(syntax) __re_set_syntax (syntax)
84
#  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85
        __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86
#  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87
 
88
#  define btowc __btowc
89
 
90
/* We are also using some library internals.  */
91
#  include <locale/localeinfo.h>
92
#  include <locale/elem-hash.h>
93
#  include <langinfo.h>
94
#  include <locale/coll-lookup.h>
95
# endif
96
 
97
/* This is for other GNU distributions with internationalized messages.  */
98
# if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
99
#  include <libintl.h>
100
#  ifdef _LIBC
101
#   undef gettext
102
#   define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
103
#  endif
104
# else
105
#  define gettext(msgid) (msgid)
106
# endif
107
 
108
# ifndef gettext_noop
109
/* This define is so xgettext can find the internationalizable
110
   strings.  */
111
#  define gettext_noop(String) String
112
# endif
113
 
114
/* The `emacs' switch turns on certain matching commands
115
   that make sense only in Emacs. */
116
# ifdef emacs
117
 
118
#  include "lisp.h"
119
#  include "buffer.h"
120
#  include "syntax.h"
121
 
122
# else  /* not emacs */
123
 
124
/* If we are not linking with Emacs proper,
125
   we can't use the relocating allocator
126
   even if config.h says that we can.  */
127
#  undef REL_ALLOC
128
 
129
#  if defined STDC_HEADERS || defined _LIBC
130
#   include <stdlib.h>
131
#  else
132
char *malloc ();
133
char *realloc ();
134
#  endif
135
 
136
/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
137
   If nothing else has been done, use the method below.  */
138
#  ifdef INHIBIT_STRING_HEADER
139
#   if !(defined HAVE_BZERO && defined HAVE_BCOPY)
140
#    if !defined bzero && !defined bcopy
141
#     undef INHIBIT_STRING_HEADER
142
#    endif
143
#   endif
144
#  endif
145
 
146
/* This is the normal way of making sure we have a bcopy and a bzero.
147
   This is used in most programs--a few other programs avoid this
148
   by defining INHIBIT_STRING_HEADER.  */
149
#  ifndef INHIBIT_STRING_HEADER
150
#   if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
151
#    include <string.h>
152
#    ifndef bzero
153
#     ifndef _LIBC
154
#      define bzero(s, n)       (memset (s, '\0', n), (s))
155
#     else
156
#      define bzero(s, n)       __bzero (s, n)
157
#     endif
158
#    endif
159
#   else
160
#    include <strings.h>
161
#    ifndef memcmp
162
#     define memcmp(s1, s2, n)  bcmp (s1, s2, n)
163
#    endif
164
#    ifndef memcpy
165
#     define memcpy(d, s, n)    (bcopy (s, d, n), (d))
166
#    endif
167
#   endif
168
#  endif
169
 
170
/* Define the syntax stuff for \<, \>, etc.  */
171
 
172
/* This must be nonzero for the wordchar and notwordchar pattern
173
   commands in re_match_2.  */
174
#  ifndef Sword
175
#   define Sword 1
176
#  endif
177
 
178
#  ifdef SWITCH_ENUM_BUG
179
#   define SWITCH_ENUM_CAST(x) ((int)(x))
180
#  else
181
#   define SWITCH_ENUM_CAST(x) (x)
182
#  endif
183
 
184
# endif /* not emacs */
185
 
186
# if defined _LIBC || HAVE_LIMITS_H
187
#  include <limits.h>
188
# endif
189
 
190
# ifndef MB_LEN_MAX
191
#  define MB_LEN_MAX 1
192
# endif
193
 
194
/* Get the interface, including the syntax bits.  */
195
# include "xregex.h"  /* change for libiberty */
196
 
197
/* isalpha etc. are used for the character classes.  */
198
# include <ctype.h>
199
 
200
/* Jim Meyering writes:
201
 
202
   "... Some ctype macros are valid only for character codes that
203
   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
204
   using /bin/cc or gcc but without giving an ansi option).  So, all
205
   ctype uses should be through macros like ISPRINT...  If
206
   STDC_HEADERS is defined, then autoconf has verified that the ctype
207
   macros don't need to be guarded with references to isascii. ...
208
   Defining isascii to 1 should let any compiler worth its salt
209
   eliminate the && through constant folding."
210
   Solaris defines some of these symbols so we must undefine them first.  */
211
 
212
# undef ISASCII
213
# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
214
#  define ISASCII(c) 1
215
# else
216
#  define ISASCII(c) isascii(c)
217
# endif
218
 
219
# ifdef isblank
220
#  define ISBLANK(c) (ISASCII (c) && isblank (c))
221
# else
222
#  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
223
# endif
224
# ifdef isgraph
225
#  define ISGRAPH(c) (ISASCII (c) && isgraph (c))
226
# else
227
#  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
228
# endif
229
 
230
# undef ISPRINT
231
# define ISPRINT(c) (ISASCII (c) && isprint (c))
232
# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
233
# define ISALNUM(c) (ISASCII (c) && isalnum (c))
234
# define ISALPHA(c) (ISASCII (c) && isalpha (c))
235
# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
236
# define ISLOWER(c) (ISASCII (c) && islower (c))
237
# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
238
# define ISSPACE(c) (ISASCII (c) && isspace (c))
239
# define ISUPPER(c) (ISASCII (c) && isupper (c))
240
# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
241
 
242
# ifdef _tolower
243
#  define TOLOWER(c) _tolower(c)
244
# else
245
#  define TOLOWER(c) tolower(c)
246
# endif
247
 
248
# ifndef NULL
249
#  define NULL (void *)0
250
# endif
251
 
252
/* We remove any previous definition of `SIGN_EXTEND_CHAR',
253
   since ours (we hope) works properly with all combinations of
254
   machines, compilers, `char' and `unsigned char' argument types.
255
   (Per Bothner suggested the basic approach.)  */
256
# undef SIGN_EXTEND_CHAR
257
# if __STDC__
258
#  define SIGN_EXTEND_CHAR(c) ((signed char) (c))
259
# else  /* not __STDC__ */
260
/* As in Harbison and Steele.  */
261
#  define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
262
# endif
263
 
264
# ifndef emacs
265
/* How many characters in the character set.  */
266
#  define CHAR_SET_SIZE 256
267
 
268
#  ifdef SYNTAX_TABLE
269
 
270
extern char *re_syntax_table;
271
 
272
#  else /* not SYNTAX_TABLE */
273
 
274
static char re_syntax_table[CHAR_SET_SIZE];
275
 
276
static void init_syntax_once PARAMS ((void));
277
 
278
static void
279
init_syntax_once ()
280
{
281
   register int c;
282
   static int done = 0;
283
 
284
   if (done)
285
     return;
286
   bzero (re_syntax_table, sizeof re_syntax_table);
287
 
288
   for (c = 0; c < CHAR_SET_SIZE; ++c)
289
     if (ISALNUM (c))
290
        re_syntax_table[c] = Sword;
291
 
292
   re_syntax_table['_'] = Sword;
293
 
294
   done = 1;
295
}
296
 
297
#  endif /* not SYNTAX_TABLE */
298
 
299
#  define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
300
 
301
# endif /* emacs */
302
 
303
/* Integer type for pointers.  */
304
# if !defined _LIBC && !defined HAVE_UINTPTR_T
305
typedef unsigned long int uintptr_t;
306
# endif
307
 
308
/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
309
   use `alloca' instead of `malloc'.  This is because using malloc in
310
   re_search* or re_match* could cause memory leaks when C-g is used in
311
   Emacs; also, malloc is slower and causes storage fragmentation.  On
312
   the other hand, malloc is more portable, and easier to debug.
313
 
314
   Because we sometimes use alloca, some routines have to be macros,
315
   not functions -- `alloca'-allocated space disappears at the end of the
316
   function it is called in.  */
317
 
318
# ifdef REGEX_MALLOC
319
 
320
#  define REGEX_ALLOCATE malloc
321
#  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
322
#  define REGEX_FREE free
323
 
324
# else /* not REGEX_MALLOC  */
325
 
326
/* Emacs already defines alloca, sometimes.  */
327
#  ifndef alloca
328
 
329
/* Make alloca work the best possible way.  */
330
#   ifdef __GNUC__
331
#    define alloca __builtin_alloca
332
#   else /* not __GNUC__ */
333
#    if HAVE_ALLOCA_H
334
#     include <alloca.h>
335
#    endif /* HAVE_ALLOCA_H */
336
#   endif /* not __GNUC__ */
337
 
338
#  endif /* not alloca */
339
 
340
#  define REGEX_ALLOCATE alloca
341
 
342
/* Assumes a `char *destination' variable.  */
343
#  define REGEX_REALLOCATE(source, osize, nsize)                        \
344
  (destination = (char *) alloca (nsize),                               \
345
   memcpy (destination, source, osize))
346
 
347
/* No need to do anything to free, after alloca.  */
348
#  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
349
 
350
# endif /* not REGEX_MALLOC */
351
 
352
/* Define how to allocate the failure stack.  */
353
 
354
# if defined REL_ALLOC && defined REGEX_MALLOC
355
 
356
#  define REGEX_ALLOCATE_STACK(size)                            \
357
  r_alloc (&failure_stack_ptr, (size))
358
#  define REGEX_REALLOCATE_STACK(source, osize, nsize)          \
359
  r_re_alloc (&failure_stack_ptr, (nsize))
360
#  define REGEX_FREE_STACK(ptr)                                 \
361
  r_alloc_free (&failure_stack_ptr)
362
 
363
# else /* not using relocating allocator */
364
 
365
#  ifdef REGEX_MALLOC
366
 
367
#   define REGEX_ALLOCATE_STACK malloc
368
#   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
369
#   define REGEX_FREE_STACK free
370
 
371
#  else /* not REGEX_MALLOC */
372
 
373
#   define REGEX_ALLOCATE_STACK alloca
374
 
375
#   define REGEX_REALLOCATE_STACK(source, osize, nsize)                 \
376
   REGEX_REALLOCATE (source, osize, nsize)
377
/* No need to explicitly free anything.  */
378
#   define REGEX_FREE_STACK(arg)
379
 
380
#  endif /* not REGEX_MALLOC */
381
# endif /* not using relocating allocator */
382
 
383
 
384
/* True if `size1' is non-NULL and PTR is pointing anywhere inside
385
   `string1' or just past its end.  This works if PTR is NULL, which is
386
   a good thing.  */
387
# define FIRST_STRING_P(ptr)                                    \
388
  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
389
 
390
/* (Re)Allocate N items of type T using malloc, or fail.  */
391
# define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
392
# define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
393
# define RETALLOC_IF(addr, n, t) \
394
  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
395
# define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
396
 
397
# define BYTEWIDTH 8 /* In bits.  */
398
 
399
# define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
400
 
401
# undef MAX
402
# undef MIN
403
# define MAX(a, b) ((a) > (b) ? (a) : (b))
404
# define MIN(a, b) ((a) < (b) ? (a) : (b))
405
 
406
typedef char boolean;
407
# define false 0
408
# define true 1
409
 
410
static reg_errcode_t byte_regex_compile _RE_ARGS ((const char *pattern, size_t size,
411
                                                   reg_syntax_t syntax,
412
                                                   struct re_pattern_buffer *bufp));
413
 
414
static int byte_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
415
                                             const char *string1, int size1,
416
                                             const char *string2, int size2,
417
                                             int pos,
418
                                             struct re_registers *regs,
419
                                             int stop));
420
static int byte_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
421
                                     const char *string1, int size1,
422
                                     const char *string2, int size2,
423
                                     int startpos, int range,
424
                                     struct re_registers *regs, int stop));
425
static int byte_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
426
 
427
#ifdef MBS_SUPPORT
428
static reg_errcode_t wcs_regex_compile _RE_ARGS ((const char *pattern, size_t size,
429
                                                   reg_syntax_t syntax,
430
                                                   struct re_pattern_buffer *bufp));
431
 
432
 
433
static int wcs_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
434
                                            const char *cstring1, int csize1,
435
                                            const char *cstring2, int csize2,
436
                                            int pos,
437
                                            struct re_registers *regs,
438
                                            int stop,
439
                                            wchar_t *string1, int size1,
440
                                            wchar_t *string2, int size2,
441
                                            int *mbs_offset1, int *mbs_offset2));
442
static int wcs_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
443
                                    const char *string1, int size1,
444
                                    const char *string2, int size2,
445
                                    int startpos, int range,
446
                                    struct re_registers *regs, int stop));
447
static int wcs_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
448
#endif
449
 
450
/* These are the command codes that appear in compiled regular
451
   expressions.  Some opcodes are followed by argument bytes.  A
452
   command code can specify any interpretation whatsoever for its
453
   arguments.  Zero bytes may appear in the compiled regular expression.  */
454
 
455
typedef enum
456
{
457
  no_op = 0,
458
 
459
  /* Succeed right away--no more backtracking.  */
460
  succeed,
461
 
462
        /* Followed by one byte giving n, then by n literal bytes.  */
463
  exactn,
464
 
465
# ifdef MBS_SUPPORT
466
        /* Same as exactn, but contains binary data.  */
467
  exactn_bin,
468
# endif
469
 
470
        /* Matches any (more or less) character.  */
471
  anychar,
472
 
473
        /* Matches any one char belonging to specified set.  First
474
           following byte is number of bitmap bytes.  Then come bytes
475
           for a bitmap saying which chars are in.  Bits in each byte
476
           are ordered low-bit-first.  A character is in the set if its
477
           bit is 1.  A character too large to have a bit in the map is
478
           automatically not in the set.  */
479
        /* ifdef MBS_SUPPORT, following element is length of character
480
           classes, length of collating symbols, length of equivalence
481
           classes, length of character ranges, and length of characters.
482
           Next, character class element, collating symbols elements,
483
           equivalence class elements, range elements, and character
484
           elements follow.
485
           See regex_compile function.  */
486
  charset,
487
 
488
        /* Same parameters as charset, but match any character that is
489
           not one of those specified.  */
490
  charset_not,
491
 
492
        /* Start remembering the text that is matched, for storing in a
493
           register.  Followed by one byte with the register number, in
494
           the range 0 to one less than the pattern buffer's re_nsub
495
           field.  Then followed by one byte with the number of groups
496
           inner to this one.  (This last has to be part of the
497
           start_memory only because we need it in the on_failure_jump
498
           of re_match_2.)  */
499
  start_memory,
500
 
501
        /* Stop remembering the text that is matched and store it in a
502
           memory register.  Followed by one byte with the register
503
           number, in the range 0 to one less than `re_nsub' in the
504
           pattern buffer, and one byte with the number of inner groups,
505
           just like `start_memory'.  (We need the number of inner
506
           groups here because we don't have any easy way of finding the
507
           corresponding start_memory when we're at a stop_memory.)  */
508
  stop_memory,
509
 
510
        /* Match a duplicate of something remembered. Followed by one
511
           byte containing the register number.  */
512
  duplicate,
513
 
514
        /* Fail unless at beginning of line.  */
515
  begline,
516
 
517
        /* Fail unless at end of line.  */
518
  endline,
519
 
520
        /* Succeeds if at beginning of buffer (if emacs) or at beginning
521
           of string to be matched (if not).  */
522
  begbuf,
523
 
524
        /* Analogously, for end of buffer/string.  */
525
  endbuf,
526
 
527
        /* Followed by two byte relative address to which to jump.  */
528
  jump,
529
 
530
        /* Same as jump, but marks the end of an alternative.  */
531
  jump_past_alt,
532
 
533
        /* Followed by two-byte relative address of place to resume at
534
           in case of failure.  */
535
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
536
  on_failure_jump,
537
 
538
        /* Like on_failure_jump, but pushes a placeholder instead of the
539
           current string position when executed.  */
540
  on_failure_keep_string_jump,
541
 
542
        /* Throw away latest failure point and then jump to following
543
           two-byte relative address.  */
544
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
545
  pop_failure_jump,
546
 
547
        /* Change to pop_failure_jump if know won't have to backtrack to
548
           match; otherwise change to jump.  This is used to jump
549
           back to the beginning of a repeat.  If what follows this jump
550
           clearly won't match what the repeat does, such that we can be
551
           sure that there is no use backtracking out of repetitions
552
           already matched, then we change it to a pop_failure_jump.
553
           Followed by two-byte address.  */
554
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
555
  maybe_pop_jump,
556
 
557
        /* Jump to following two-byte address, and push a dummy failure
558
           point. This failure point will be thrown away if an attempt
559
           is made to use it for a failure.  A `+' construct makes this
560
           before the first repeat.  Also used as an intermediary kind
561
           of jump when compiling an alternative.  */
562
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
563
  dummy_failure_jump,
564
 
565
        /* Push a dummy failure point and continue.  Used at the end of
566
           alternatives.  */
567
  push_dummy_failure,
568
 
569
        /* Followed by two-byte relative address and two-byte number n.
570
           After matching N times, jump to the address upon failure.  */
571
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
572
  succeed_n,
573
 
574
        /* Followed by two-byte relative address, and two-byte number n.
575
           Jump to the address N times, then fail.  */
576
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
577
  jump_n,
578
 
579
        /* Set the following two-byte relative address to the
580
           subsequent two-byte number.  The address *includes* the two
581
           bytes of number.  */
582
        /* ifdef MBS_SUPPORT, the size of address is 1.  */
583
  set_number_at,
584
 
585
  wordchar,     /* Matches any word-constituent character.  */
586
  notwordchar,  /* Matches any char that is not a word-constituent.  */
587
 
588
  wordbeg,      /* Succeeds if at word beginning.  */
589
  wordend,      /* Succeeds if at word end.  */
590
 
591
  wordbound,    /* Succeeds if at a word boundary.  */
592
  notwordbound  /* Succeeds if not at a word boundary.  */
593
 
594
# ifdef emacs
595
  ,before_dot,  /* Succeeds if before point.  */
596
  at_dot,       /* Succeeds if at point.  */
597
  after_dot,    /* Succeeds if after point.  */
598
 
599
        /* Matches any character whose syntax is specified.  Followed by
600
           a byte which contains a syntax code, e.g., Sword.  */
601
  syntaxspec,
602
 
603
        /* Matches any character whose syntax is not that specified.  */
604
  notsyntaxspec
605
# endif /* emacs */
606
} re_opcode_t;
607
#endif /* not INSIDE_RECURSION */
608
 
609
 
610
#ifdef BYTE
611
# define CHAR_T char
612
# define UCHAR_T unsigned char
613
# define COMPILED_BUFFER_VAR bufp->buffer
614
# define OFFSET_ADDRESS_SIZE 2
615
# if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE)
616
#  define PREFIX(name) byte_##name
617
# else
618
#  define PREFIX(name) byte_/**/name
619
# endif
620
# define ARG_PREFIX(name) name
621
# define PUT_CHAR(c) putchar (c)
622
#else
623
# ifdef WCHAR
624
#  define CHAR_T wchar_t
625
#  define UCHAR_T wchar_t
626
#  define COMPILED_BUFFER_VAR wc_buffer
627
#  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
628
#  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
629
#  if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE)
630
#   define PREFIX(name) wcs_##name
631
#   define ARG_PREFIX(name) c##name
632
#  else
633
#   define PREFIX(name) wcs_/**/name
634
#   define ARG_PREFIX(name) c/**/name
635
#  endif
636
/* Should we use wide stream??  */
637
#  define PUT_CHAR(c) printf ("%C", c);
638
#  define TRUE 1
639
#  define FALSE 0
640
# else
641
#  ifdef MBS_SUPPORT
642
#   define WCHAR
643
#   define INSIDE_RECURSION
644
#   include "regex.c"
645
#   undef INSIDE_RECURSION
646
#  endif
647
#  define BYTE
648
#  define INSIDE_RECURSION
649
#  include "regex.c"
650
#  undef INSIDE_RECURSION
651
# endif
652
#endif
653
 
654
#ifdef INSIDE_RECURSION
655
/* Common operations on the compiled pattern.  */
656
 
657
/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
658
/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
659
 
660
# ifdef WCHAR
661
#  define STORE_NUMBER(destination, number)                             \
662
  do {                                                                  \
663
    *(destination) = (UCHAR_T)(number);                         \
664
  } while (0)
665
# else /* BYTE */
666
#  define STORE_NUMBER(destination, number)                             \
667
  do {                                                                  \
668
    (destination)[0] = (number) & 0377;                                  \
669
    (destination)[1] = (number) >> 8;                                   \
670
  } while (0)
671
# endif /* WCHAR */
672
 
673
/* Same as STORE_NUMBER, except increment DESTINATION to
674
   the byte after where the number is stored.  Therefore, DESTINATION
675
   must be an lvalue.  */
676
/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
677
 
678
# define STORE_NUMBER_AND_INCR(destination, number)                     \
679
  do {                                                                  \
680
    STORE_NUMBER (destination, number);                                 \
681
    (destination) += OFFSET_ADDRESS_SIZE;                               \
682
  } while (0)
683
 
684
/* Put into DESTINATION a number stored in two contiguous bytes starting
685
   at SOURCE.  */
686
/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
687
 
688
# ifdef WCHAR
689
#  define EXTRACT_NUMBER(destination, source)                           \
690
  do {                                                                  \
691
    (destination) = *(source);                                          \
692
  } while (0)
693
# else /* BYTE */
694
#  define EXTRACT_NUMBER(destination, source)                           \
695
  do {                                                                  \
696
    (destination) = *(source) & 0377;                                   \
697
    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;           \
698
  } while (0)
699
# endif
700
 
701
# ifdef DEBUG
702
static void PREFIX(extract_number) _RE_ARGS ((int *dest, UCHAR_T *source));
703
static void
704
PREFIX(extract_number) (dest, source)
705
    int *dest;
706
    UCHAR_T *source;
707
{
708
#  ifdef WCHAR
709
  *dest = *source;
710
#  else /* BYTE */
711
  int temp = SIGN_EXTEND_CHAR (*(source + 1));
712
  *dest = *source & 0377;
713
  *dest += temp << 8;
714
#  endif
715
}
716
 
717
#  ifndef EXTRACT_MACROS /* To debug the macros.  */
718
#   undef EXTRACT_NUMBER
719
#   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
720
#  endif /* not EXTRACT_MACROS */
721
 
722
# endif /* DEBUG */
723
 
724
/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
725
   SOURCE must be an lvalue.  */
726
 
727
# define EXTRACT_NUMBER_AND_INCR(destination, source)                   \
728
  do {                                                                  \
729
    EXTRACT_NUMBER (destination, source);                               \
730
    (source) += OFFSET_ADDRESS_SIZE;                                    \
731
  } while (0)
732
 
733
# ifdef DEBUG
734
static void PREFIX(extract_number_and_incr) _RE_ARGS ((int *destination,
735
                                                       UCHAR_T **source));
736
static void
737
PREFIX(extract_number_and_incr) (destination, source)
738
    int *destination;
739
    UCHAR_T **source;
740
{
741
  PREFIX(extract_number) (destination, *source);
742
  *source += OFFSET_ADDRESS_SIZE;
743
}
744
 
745
#  ifndef EXTRACT_MACROS
746
#   undef EXTRACT_NUMBER_AND_INCR
747
#   define EXTRACT_NUMBER_AND_INCR(dest, src) \
748
  PREFIX(extract_number_and_incr) (&dest, &src)
749
#  endif /* not EXTRACT_MACROS */
750
 
751
# endif /* DEBUG */
752
 
753
 
754
 
755
/* If DEBUG is defined, Regex prints many voluminous messages about what
756
   it is doing (if the variable `debug' is nonzero).  If linked with the
757
   main program in `iregex.c', you can enter patterns and strings
758
   interactively.  And if linked with the main program in `main.c' and
759
   the other test files, you can run the already-written tests.  */
760
 
761
# ifdef DEBUG
762
 
763
#  ifndef DEFINED_ONCE
764
 
765
/* We use standard I/O for debugging.  */
766
#   include <stdio.h>
767
 
768
/* It is useful to test things that ``must'' be true when debugging.  */
769
#   include <assert.h>
770
 
771
static int debug;
772
 
773
#   define DEBUG_STATEMENT(e) e
774
#   define DEBUG_PRINT1(x) if (debug) printf (x)
775
#   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
776
#   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
777
#   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
778
#  endif /* not DEFINED_ONCE */
779
 
780
#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)                         \
781
  if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
782
#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)                \
783
  if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
784
 
785
 
786
/* Print the fastmap in human-readable form.  */
787
 
788
#  ifndef DEFINED_ONCE
789
void
790
print_fastmap (fastmap)
791
    char *fastmap;
792
{
793
  unsigned was_a_range = 0;
794
  unsigned i = 0;
795
 
796
  while (i < (1 << BYTEWIDTH))
797
    {
798
      if (fastmap[i++])
799
        {
800
          was_a_range = 0;
801
          putchar (i - 1);
802
          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
803
            {
804
              was_a_range = 1;
805
              i++;
806
            }
807
          if (was_a_range)
808
            {
809
              printf ("-");
810
              putchar (i - 1);
811
            }
812
        }
813
    }
814
  putchar ('\n');
815
}
816
#  endif /* not DEFINED_ONCE */
817
 
818
 
819
/* Print a compiled pattern string in human-readable form, starting at
820
   the START pointer into it and ending just before the pointer END.  */
821
 
822
void
823
PREFIX(print_partial_compiled_pattern) (start, end)
824
    UCHAR_T *start;
825
    UCHAR_T *end;
826
{
827
  int mcnt, mcnt2;
828
  UCHAR_T *p1;
829
  UCHAR_T *p = start;
830
  UCHAR_T *pend = end;
831
 
832
  if (start == NULL)
833
    {
834
      printf ("(null)\n");
835
      return;
836
    }
837
 
838
  /* Loop over pattern commands.  */
839
  while (p < pend)
840
    {
841
#  ifdef _LIBC
842
      printf ("%td:\t", p - start);
843
#  else
844
      printf ("%ld:\t", (long int) (p - start));
845
#  endif
846
 
847
      switch ((re_opcode_t) *p++)
848
        {
849
        case no_op:
850
          printf ("/no_op");
851
          break;
852
 
853
        case exactn:
854
          mcnt = *p++;
855
          printf ("/exactn/%d", mcnt);
856
          do
857
            {
858
              putchar ('/');
859
              PUT_CHAR (*p++);
860
            }
861
          while (--mcnt);
862
          break;
863
 
864
#  ifdef MBS_SUPPORT
865
        case exactn_bin:
866
          mcnt = *p++;
867
          printf ("/exactn_bin/%d", mcnt);
868
          do
869
            {
870
              printf("/%lx", (long int) *p++);
871
            }
872
          while (--mcnt);
873
          break;
874
#  endif /* MBS_SUPPORT */
875
 
876
        case start_memory:
877
          mcnt = *p++;
878
          printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
879
          break;
880
 
881
        case stop_memory:
882
          mcnt = *p++;
883
          printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
884
          break;
885
 
886
        case duplicate:
887
          printf ("/duplicate/%ld", (long int) *p++);
888
          break;
889
 
890
        case anychar:
891
          printf ("/anychar");
892
          break;
893
 
894
        case charset:
895
        case charset_not:
896
          {
897
#  ifdef WCHAR
898
            int i, length;
899
            wchar_t *workp = p;
900
            printf ("/charset [%s",
901
                    (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
902
            p += 5;
903
            length = *workp++; /* the length of char_classes */
904
            for (i=0 ; i<length ; i++)
905
              printf("[:%lx:]", (long int) *p++);
906
            length = *workp++; /* the length of collating_symbol */
907
            for (i=0 ; i<length ;)
908
              {
909
                printf("[.");
910
                while(*p != 0)
911
                  PUT_CHAR((i++,*p++));
912
                i++,p++;
913
                printf(".]");
914
              }
915
            length = *workp++; /* the length of equivalence_class */
916
            for (i=0 ; i<length ;)
917
              {
918
                printf("[=");
919
                while(*p != 0)
920
                  PUT_CHAR((i++,*p++));
921
                i++,p++;
922
                printf("=]");
923
              }
924
            length = *workp++; /* the length of char_range */
925
            for (i=0 ; i<length ; i++)
926
              {
927
                wchar_t range_start = *p++;
928
                wchar_t range_end = *p++;
929
                printf("%C-%C", range_start, range_end);
930
              }
931
            length = *workp++; /* the length of char */
932
            for (i=0 ; i<length ; i++)
933
              printf("%C", *p++);
934
            putchar (']');
935
#  else
936
            register int c, last = -100;
937
            register int in_range = 0;
938
 
939
            printf ("/charset [%s",
940
                    (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
941
 
942
            assert (p + *p < pend);
943
 
944
            for (c = 0; c < 256; c++)
945
              if (c / 8 < *p
946
                  && (p[1 + (c/8)] & (1 << (c % 8))))
947
                {
948
                  /* Are we starting a range?  */
949
                  if (last + 1 == c && ! in_range)
950
                    {
951
                      putchar ('-');
952
                      in_range = 1;
953
                    }
954
                  /* Have we broken a range?  */
955
                  else if (last + 1 != c && in_range)
956
              {
957
                      putchar (last);
958
                      in_range = 0;
959
                    }
960
 
961
                  if (! in_range)
962
                    putchar (c);
963
 
964
                  last = c;
965
              }
966
 
967
            if (in_range)
968
              putchar (last);
969
 
970
            putchar (']');
971
 
972
            p += 1 + *p;
973
#  endif /* WCHAR */
974
          }
975
          break;
976
 
977
        case begline:
978
          printf ("/begline");
979
          break;
980
 
981
        case endline:
982
          printf ("/endline");
983
          break;
984
 
985
        case on_failure_jump:
986
          PREFIX(extract_number_and_incr) (&mcnt, &p);
987
#  ifdef _LIBC
988
          printf ("/on_failure_jump to %td", p + mcnt - start);
989
#  else
990
          printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
991
#  endif
992
          break;
993
 
994
        case on_failure_keep_string_jump:
995
          PREFIX(extract_number_and_incr) (&mcnt, &p);
996
#  ifdef _LIBC
997
          printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
998
#  else
999
          printf ("/on_failure_keep_string_jump to %ld",
1000
                  (long int) (p + mcnt - start));
1001
#  endif
1002
          break;
1003
 
1004
        case dummy_failure_jump:
1005
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1006
#  ifdef _LIBC
1007
          printf ("/dummy_failure_jump to %td", p + mcnt - start);
1008
#  else
1009
          printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
1010
#  endif
1011
          break;
1012
 
1013
        case push_dummy_failure:
1014
          printf ("/push_dummy_failure");
1015
          break;
1016
 
1017
        case maybe_pop_jump:
1018
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1019
#  ifdef _LIBC
1020
          printf ("/maybe_pop_jump to %td", p + mcnt - start);
1021
#  else
1022
          printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1023
#  endif
1024
          break;
1025
 
1026
        case pop_failure_jump:
1027
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1028
#  ifdef _LIBC
1029
          printf ("/pop_failure_jump to %td", p + mcnt - start);
1030
#  else
1031
          printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1032
#  endif
1033
          break;
1034
 
1035
        case jump_past_alt:
1036
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1037
#  ifdef _LIBC
1038
          printf ("/jump_past_alt to %td", p + mcnt - start);
1039
#  else
1040
          printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1041
#  endif
1042
          break;
1043
 
1044
        case jump:
1045
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1046
#  ifdef _LIBC
1047
          printf ("/jump to %td", p + mcnt - start);
1048
#  else
1049
          printf ("/jump to %ld", (long int) (p + mcnt - start));
1050
#  endif
1051
          break;
1052
 
1053
        case succeed_n:
1054
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1055
          p1 = p + mcnt;
1056
          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1057
#  ifdef _LIBC
1058
          printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1059
#  else
1060
          printf ("/succeed_n to %ld, %d times",
1061
                  (long int) (p1 - start), mcnt2);
1062
#  endif
1063
          break;
1064
 
1065
        case jump_n:
1066
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1067
          p1 = p + mcnt;
1068
          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1069
          printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1070
          break;
1071
 
1072
        case set_number_at:
1073
          PREFIX(extract_number_and_incr) (&mcnt, &p);
1074
          p1 = p + mcnt;
1075
          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1076
#  ifdef _LIBC
1077
          printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1078
#  else
1079
          printf ("/set_number_at location %ld to %d",
1080
                  (long int) (p1 - start), mcnt2);
1081
#  endif
1082
          break;
1083
 
1084
        case wordbound:
1085
          printf ("/wordbound");
1086
          break;
1087
 
1088
        case notwordbound:
1089
          printf ("/notwordbound");
1090
          break;
1091
 
1092
        case wordbeg:
1093
          printf ("/wordbeg");
1094
          break;
1095
 
1096
        case wordend:
1097
          printf ("/wordend");
1098
          break;
1099
 
1100
#  ifdef emacs
1101
        case before_dot:
1102
          printf ("/before_dot");
1103
          break;
1104
 
1105
        case at_dot:
1106
          printf ("/at_dot");
1107
          break;
1108
 
1109
        case after_dot:
1110
          printf ("/after_dot");
1111
          break;
1112
 
1113
        case syntaxspec:
1114
          printf ("/syntaxspec");
1115
          mcnt = *p++;
1116
          printf ("/%d", mcnt);
1117
          break;
1118
 
1119
        case notsyntaxspec:
1120
          printf ("/notsyntaxspec");
1121
          mcnt = *p++;
1122
          printf ("/%d", mcnt);
1123
          break;
1124
#  endif /* emacs */
1125
 
1126
        case wordchar:
1127
          printf ("/wordchar");
1128
          break;
1129
 
1130
        case notwordchar:
1131
          printf ("/notwordchar");
1132
          break;
1133
 
1134
        case begbuf:
1135
          printf ("/begbuf");
1136
          break;
1137
 
1138
        case endbuf:
1139
          printf ("/endbuf");
1140
          break;
1141
 
1142
        default:
1143
          printf ("?%ld", (long int) *(p-1));
1144
        }
1145
 
1146
      putchar ('\n');
1147
    }
1148
 
1149
#  ifdef _LIBC
1150
  printf ("%td:\tend of pattern.\n", p - start);
1151
#  else
1152
  printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1153
#  endif
1154
}
1155
 
1156
 
1157
void
1158
PREFIX(print_compiled_pattern) (bufp)
1159
    struct re_pattern_buffer *bufp;
1160
{
1161
  UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1162
 
1163
  PREFIX(print_partial_compiled_pattern) (buffer, buffer
1164
                                  + bufp->used / sizeof(UCHAR_T));
1165
  printf ("%ld bytes used/%ld bytes allocated.\n",
1166
          bufp->used, bufp->allocated);
1167
 
1168
  if (bufp->fastmap_accurate && bufp->fastmap)
1169
    {
1170
      printf ("fastmap: ");
1171
      print_fastmap (bufp->fastmap);
1172
    }
1173
 
1174
#  ifdef _LIBC
1175
  printf ("re_nsub: %Zd\t", bufp->re_nsub);
1176
#  else
1177
  printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1178
#  endif
1179
  printf ("regs_alloc: %d\t", bufp->regs_allocated);
1180
  printf ("can_be_null: %d\t", bufp->can_be_null);
1181
  printf ("newline_anchor: %d\n", bufp->newline_anchor);
1182
  printf ("no_sub: %d\t", bufp->no_sub);
1183
  printf ("not_bol: %d\t", bufp->not_bol);
1184
  printf ("not_eol: %d\t", bufp->not_eol);
1185
  printf ("syntax: %lx\n", bufp->syntax);
1186
  /* Perhaps we should print the translate table?  */
1187
}
1188
 
1189
 
1190
void
1191
PREFIX(print_double_string) (where, string1, size1, string2, size2)
1192
    const CHAR_T *where;
1193
    const CHAR_T *string1;
1194
    const CHAR_T *string2;
1195
    int size1;
1196
    int size2;
1197
{
1198
  int this_char;
1199
 
1200
  if (where == NULL)
1201
    printf ("(null)");
1202
  else
1203
    {
1204
      int cnt;
1205
 
1206
      if (FIRST_STRING_P (where))
1207
        {
1208
          for (this_char = where - string1; this_char < size1; this_char++)
1209
            PUT_CHAR (string1[this_char]);
1210
 
1211
          where = string2;
1212
        }
1213
 
1214
      cnt = 0;
1215
      for (this_char = where - string2; this_char < size2; this_char++)
1216
        {
1217
          PUT_CHAR (string2[this_char]);
1218
          if (++cnt > 100)
1219
            {
1220
              fputs ("...", stdout);
1221
              break;
1222
            }
1223
        }
1224
    }
1225
}
1226
 
1227
#  ifndef DEFINED_ONCE
1228
void
1229
printchar (c)
1230
     int c;
1231
{
1232
  putc (c, stderr);
1233
}
1234
#  endif
1235
 
1236
# else /* not DEBUG */
1237
 
1238
#  ifndef DEFINED_ONCE
1239
#   undef assert
1240
#   define assert(e)
1241
 
1242
#   define DEBUG_STATEMENT(e)
1243
#   define DEBUG_PRINT1(x)
1244
#   define DEBUG_PRINT2(x1, x2)
1245
#   define DEBUG_PRINT3(x1, x2, x3)
1246
#   define DEBUG_PRINT4(x1, x2, x3, x4)
1247
#  endif /* not DEFINED_ONCE */
1248
#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1249
#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1250
 
1251
# endif /* not DEBUG */
1252
 
1253
 
1254
 
1255
# ifdef WCHAR
1256
/* This  convert a multibyte string to a wide character string.
1257
   And write their correspondances to offset_buffer(see below)
1258
   and write whether each wchar_t is binary data to is_binary.
1259
   This assume invalid multibyte sequences as binary data.
1260
   We assume offset_buffer and is_binary is already allocated
1261
   enough space.  */
1262
 
1263
static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1264
                                  size_t len, int *offset_buffer,
1265
                                  char *is_binary);
1266
static size_t
1267
convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary)
1268
     CHAR_T *dest;
1269
     const unsigned char* src;
1270
     size_t len; /* the length of multibyte string.  */
1271
 
1272
     /* It hold correspondances between src(char string) and
1273
        dest(wchar_t string) for optimization.
1274
        e.g. src  = "xxxyzz"
1275
             dest = {'X', 'Y', 'Z'}
1276
              (each "xxx", "y" and "zz" represent one multibyte character
1277
               corresponding to 'X', 'Y' and 'Z'.)
1278
          offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1279
                        = {0, 3, 4, 6}
1280
     */
1281
     int *offset_buffer;
1282
     char *is_binary;
1283
{
1284
  wchar_t *pdest = dest;
1285
  const unsigned char *psrc = src;
1286
  size_t wc_count = 0;
1287
 
1288
  mbstate_t mbs;
1289
  int i, consumed;
1290
  size_t mb_remain = len;
1291
  size_t mb_count = 0;
1292
 
1293
  /* Initialize the conversion state.  */
1294
  memset (&mbs, 0, sizeof (mbstate_t));
1295
 
1296
  offset_buffer[0] = 0;
1297
  for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1298
         psrc += consumed)
1299
    {
1300
#ifdef _LIBC
1301
      consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1302
#else
1303
      consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1304
#endif
1305
 
1306
      if (consumed <= 0)
1307
        /* failed to convert. maybe src contains binary data.
1308
           So we consume 1 byte manualy.  */
1309
        {
1310
          *pdest = *psrc;
1311
          consumed = 1;
1312
          is_binary[wc_count] = TRUE;
1313
        }
1314
      else
1315
        is_binary[wc_count] = FALSE;
1316
      /* In sjis encoding, we use yen sign as escape character in
1317
         place of reverse solidus. So we convert 0x5c(yen sign in
1318
         sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1319
         solidus in UCS2).  */
1320
      if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1321
        *pdest = (wchar_t) *psrc;
1322
 
1323
      offset_buffer[wc_count + 1] = mb_count += consumed;
1324
    }
1325
 
1326
  /* Fill remain of the buffer with sentinel.  */
1327
  for (i = wc_count + 1 ; i <= len ; i++)
1328
    offset_buffer[i] = mb_count + 1;
1329
 
1330
  return wc_count;
1331
}
1332
 
1333
# endif /* WCHAR */
1334
 
1335
#else /* not INSIDE_RECURSION */
1336
 
1337
/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1338
   also be assigned to arbitrarily: each pattern buffer stores its own
1339
   syntax, so it can be changed between regex compilations.  */
1340
/* This has no initializer because initialized variables in Emacs
1341
   become read-only after dumping.  */
1342
reg_syntax_t re_syntax_options;
1343
 
1344
 
1345
/* Specify the precise syntax of regexps for compilation.  This provides
1346
   for compatibility for various utilities which historically have
1347
   different, incompatible syntaxes.
1348
 
1349
   The argument SYNTAX is a bit mask comprised of the various bits
1350
   defined in regex.h.  We return the old syntax.  */
1351
 
1352
reg_syntax_t
1353
re_set_syntax (syntax)
1354
    reg_syntax_t syntax;
1355
{
1356
  reg_syntax_t ret = re_syntax_options;
1357
 
1358
  re_syntax_options = syntax;
1359
# ifdef DEBUG
1360
  if (syntax & RE_DEBUG)
1361
    debug = 1;
1362
  else if (debug) /* was on but now is not */
1363
    debug = 0;
1364
# endif /* DEBUG */
1365
  return ret;
1366
}
1367
# ifdef _LIBC
1368
weak_alias (__re_set_syntax, re_set_syntax)
1369
# endif
1370
 
1371
/* This table gives an error message for each of the error codes listed
1372
   in regex.h.  Obviously the order here has to be same as there.
1373
   POSIX doesn't require that we do anything for REG_NOERROR,
1374
   but why not be nice?  */
1375
 
1376
static const char *re_error_msgid[] =
1377
  {
1378
    gettext_noop ("Success"),   /* REG_NOERROR */
1379
    gettext_noop ("No match"),  /* REG_NOMATCH */
1380
    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1381
    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1382
    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1383
    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1384
    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1385
    gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1386
    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1387
    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1388
    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1389
    gettext_noop ("Invalid range end"), /* REG_ERANGE */
1390
    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1391
    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1392
    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1393
    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1394
    gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1395
  };
1396
 
1397
#endif /* INSIDE_RECURSION */
1398
 
1399
#ifndef DEFINED_ONCE
1400
/* Avoiding alloca during matching, to placate r_alloc.  */
1401
 
1402
/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1403
   searching and matching functions should not call alloca.  On some
1404
   systems, alloca is implemented in terms of malloc, and if we're
1405
   using the relocating allocator routines, then malloc could cause a
1406
   relocation, which might (if the strings being searched are in the
1407
   ralloc heap) shift the data out from underneath the regexp
1408
   routines.
1409
 
1410
   Here's another reason to avoid allocation: Emacs
1411
   processes input from X in a signal handler; processing X input may
1412
   call malloc; if input arrives while a matching routine is calling
1413
   malloc, then we're scrod.  But Emacs can't just block input while
1414
   calling matching routines; then we don't notice interrupts when
1415
   they come in.  So, Emacs blocks input around all regexp calls
1416
   except the matching calls, which it leaves unprotected, in the
1417
   faith that they will not malloc.  */
1418
 
1419
/* Normally, this is fine.  */
1420
# define MATCH_MAY_ALLOCATE
1421
 
1422
/* When using GNU C, we are not REALLY using the C alloca, no matter
1423
   what config.h may say.  So don't take precautions for it.  */
1424
# ifdef __GNUC__
1425
#  undef C_ALLOCA
1426
# endif
1427
 
1428
/* The match routines may not allocate if (1) they would do it with malloc
1429
   and (2) it's not safe for them to use malloc.
1430
   Note that if REL_ALLOC is defined, matching would not use malloc for the
1431
   failure stack, but we would still use it for the register vectors;
1432
   so REL_ALLOC should not affect this.  */
1433
# if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1434
#  undef MATCH_MAY_ALLOCATE
1435
# endif
1436
#endif /* not DEFINED_ONCE */
1437
 
1438
#ifdef INSIDE_RECURSION
1439
/* Failure stack declarations and macros; both re_compile_fastmap and
1440
   re_match_2 use a failure stack.  These have to be macros because of
1441
   REGEX_ALLOCATE_STACK.  */
1442
 
1443
 
1444
/* Number of failure points for which to initially allocate space
1445
   when matching.  If this number is exceeded, we allocate more
1446
   space, so it is not a hard limit.  */
1447
# ifndef INIT_FAILURE_ALLOC
1448
#  define INIT_FAILURE_ALLOC 5
1449
# endif
1450
 
1451
/* Roughly the maximum number of failure points on the stack.  Would be
1452
   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1453
   This is a variable only so users of regex can assign to it; we never
1454
   change it ourselves.  */
1455
 
1456
# ifdef INT_IS_16BIT
1457
 
1458
#  ifndef DEFINED_ONCE
1459
#   if defined MATCH_MAY_ALLOCATE
1460
/* 4400 was enough to cause a crash on Alpha OSF/1,
1461
   whose default stack limit is 2mb.  */
1462
long int re_max_failures = 4000;
1463
#   else
1464
long int re_max_failures = 2000;
1465
#   endif
1466
#  endif
1467
 
1468
union PREFIX(fail_stack_elt)
1469
{
1470
  UCHAR_T *pointer;
1471
  long int integer;
1472
};
1473
 
1474
typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1475
 
1476
typedef struct
1477
{
1478
  PREFIX(fail_stack_elt_t) *stack;
1479
  unsigned long int size;
1480
  unsigned long int avail;              /* Offset of next open position.  */
1481
} PREFIX(fail_stack_type);
1482
 
1483
# else /* not INT_IS_16BIT */
1484
 
1485
#  ifndef DEFINED_ONCE
1486
#   if defined MATCH_MAY_ALLOCATE
1487
/* 4400 was enough to cause a crash on Alpha OSF/1,
1488
   whose default stack limit is 2mb.  */
1489
int re_max_failures = 4000;
1490
#   else
1491
int re_max_failures = 2000;
1492
#   endif
1493
#  endif
1494
 
1495
union PREFIX(fail_stack_elt)
1496
{
1497
  UCHAR_T *pointer;
1498
  int integer;
1499
};
1500
 
1501
typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1502
 
1503
typedef struct
1504
{
1505
  PREFIX(fail_stack_elt_t) *stack;
1506
  unsigned size;
1507
  unsigned avail;                       /* Offset of next open position.  */
1508
} PREFIX(fail_stack_type);
1509
 
1510
# endif /* INT_IS_16BIT */
1511
 
1512
# ifndef DEFINED_ONCE
1513
#  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1514
#  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1515
#  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1516
# endif
1517
 
1518
 
1519
/* Define macros to initialize and free the failure stack.
1520
   Do `return -2' if the alloc fails.  */
1521
 
1522
# ifdef MATCH_MAY_ALLOCATE
1523
#  define INIT_FAIL_STACK()                                             \
1524
  do {                                                                  \
1525
    fail_stack.stack = (PREFIX(fail_stack_elt_t) *)             \
1526
      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1527
                                                                        \
1528
    if (fail_stack.stack == NULL)                               \
1529
      return -2;                                                        \
1530
                                                                        \
1531
    fail_stack.size = INIT_FAILURE_ALLOC;                       \
1532
    fail_stack.avail = 0;                                        \
1533
  } while (0)
1534
 
1535
#  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1536
# else
1537
#  define INIT_FAIL_STACK()                                             \
1538
  do {                                                                  \
1539
    fail_stack.avail = 0;                                        \
1540
  } while (0)
1541
 
1542
#  define RESET_FAIL_STACK()
1543
# endif
1544
 
1545
 
1546
/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1547
 
1548
   Return 1 if succeeds, and 0 if either ran out of memory
1549
   allocating space for it or it was already too large.
1550
 
1551
   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1552
 
1553
# define DOUBLE_FAIL_STACK(fail_stack)                                  \
1554
  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1555
   ? 0                                                                   \
1556
   : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)                 \
1557
        REGEX_REALLOCATE_STACK ((fail_stack).stack,                     \
1558
          (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),        \
1559
          ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1560
                                                                        \
1561
      (fail_stack).stack == NULL                                        \
1562
      ? 0                                                                \
1563
      : ((fail_stack).size <<= 1,                                       \
1564
         1)))
1565
 
1566
 
1567
/* Push pointer POINTER on FAIL_STACK.
1568
   Return 1 if was able to do so and 0 if ran out of memory allocating
1569
   space to do so.  */
1570
# define PUSH_PATTERN_OP(POINTER, FAIL_STACK)                           \
1571
  ((FAIL_STACK_FULL ()                                                  \
1572
    && !DOUBLE_FAIL_STACK (FAIL_STACK))                                 \
1573
   ? 0                                                                   \
1574
   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,       \
1575
      1))
1576
 
1577
/* Push a pointer value onto the failure stack.
1578
   Assumes the variable `fail_stack'.  Probably should only
1579
   be called from within `PUSH_FAILURE_POINT'.  */
1580
# define PUSH_FAILURE_POINTER(item)                                     \
1581
  fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1582
 
1583
/* This pushes an integer-valued item onto the failure stack.
1584
   Assumes the variable `fail_stack'.  Probably should only
1585
   be called from within `PUSH_FAILURE_POINT'.  */
1586
# define PUSH_FAILURE_INT(item)                                 \
1587
  fail_stack.stack[fail_stack.avail++].integer = (item)
1588
 
1589
/* Push a fail_stack_elt_t value onto the failure stack.
1590
   Assumes the variable `fail_stack'.  Probably should only
1591
   be called from within `PUSH_FAILURE_POINT'.  */
1592
# define PUSH_FAILURE_ELT(item)                                 \
1593
  fail_stack.stack[fail_stack.avail++] =  (item)
1594
 
1595
/* These three POP... operations complement the three PUSH... operations.
1596
   All assume that `fail_stack' is nonempty.  */
1597
# define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1598
# define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1599
# define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1600
 
1601
/* Used to omit pushing failure point id's when we're not debugging.  */
1602
# ifdef DEBUG
1603
#  define DEBUG_PUSH PUSH_FAILURE_INT
1604
#  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1605
# else
1606
#  define DEBUG_PUSH(item)
1607
#  define DEBUG_POP(item_addr)
1608
# endif
1609
 
1610
 
1611
/* Push the information about the state we will need
1612
   if we ever fail back to it.
1613
 
1614
   Requires variables fail_stack, regstart, regend, reg_info, and
1615
   num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1616
   be declared.
1617
 
1618
   Does `return FAILURE_CODE' if runs out of memory.  */
1619
 
1620
# define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)  \
1621
  do {                                                                  \
1622
    char *destination;                                                  \
1623
    /* Must be int, so when we don't save any registers, the arithmetic \
1624
       of 0 + -1 isn't done as unsigned.  */                            \
1625
    /* Can't be int, since there is not a shred of a guarantee that int \
1626
       is wide enough to hold a value of something to which pointer can \
1627
       be assigned */                                                   \
1628
    active_reg_t this_reg;                                              \
1629
                                                                        \
1630
    DEBUG_STATEMENT (failure_id++);                                     \
1631
    DEBUG_STATEMENT (nfailure_points_pushed++);                         \
1632
    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);           \
1633
    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1634
    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1635
                                                                        \
1636
    DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);          \
1637
    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);       \
1638
                                                                        \
1639
    /* Ensure we have enough space allocated for what we will push.  */ \
1640
    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)                   \
1641
      {                                                                 \
1642
        if (!DOUBLE_FAIL_STACK (fail_stack))                            \
1643
          return failure_code;                                          \
1644
                                                                        \
1645
        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",              \
1646
                       (fail_stack).size);                              \
1647
        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1648
      }                                                                 \
1649
                                                                        \
1650
    /* Push the info, starting with the registers.  */                  \
1651
    DEBUG_PRINT1 ("\n");                                                \
1652
                                                                        \
1653
    if (1)                                                              \
1654
      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1655
           this_reg++)                                                  \
1656
        {                                                               \
1657
          DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);              \
1658
          DEBUG_STATEMENT (num_regs_pushed++);                          \
1659
                                                                        \
1660
          DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);         \
1661
          PUSH_FAILURE_POINTER (regstart[this_reg]);                    \
1662
                                                                        \
1663
          DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);             \
1664
          PUSH_FAILURE_POINTER (regend[this_reg]);                      \
1665
                                                                        \
1666
          DEBUG_PRINT2 ("    info: %p\n      ",                         \
1667
                        reg_info[this_reg].word.pointer);               \
1668
          DEBUG_PRINT2 (" match_null=%d",                               \
1669
                        REG_MATCH_NULL_STRING_P (reg_info[this_reg]));  \
1670
          DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));  \
1671
          DEBUG_PRINT2 (" matched_something=%d",                        \
1672
                        MATCHED_SOMETHING (reg_info[this_reg]));        \
1673
          DEBUG_PRINT2 (" ever_matched=%d",                             \
1674
                        EVER_MATCHED_SOMETHING (reg_info[this_reg]));   \
1675
          DEBUG_PRINT1 ("\n");                                          \
1676
          PUSH_FAILURE_ELT (reg_info[this_reg].word);                   \
1677
        }                                                               \
1678
                                                                        \
1679
    DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1680
    PUSH_FAILURE_INT (lowest_active_reg);                               \
1681
                                                                        \
1682
    DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1683
    PUSH_FAILURE_INT (highest_active_reg);                              \
1684
                                                                        \
1685
    DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);            \
1686
    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);           \
1687
    PUSH_FAILURE_POINTER (pattern_place);                               \
1688
                                                                        \
1689
    DEBUG_PRINT2 ("  Pushing string %p: `", string_place);              \
1690
    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1691
                                 size2);                                \
1692
    DEBUG_PRINT1 ("'\n");                                               \
1693
    PUSH_FAILURE_POINTER (string_place);                                \
1694
                                                                        \
1695
    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);            \
1696
    DEBUG_PUSH (failure_id);                                            \
1697
  } while (0)
1698
 
1699
# ifndef DEFINED_ONCE
1700
/* This is the number of items that are pushed and popped on the stack
1701
   for each register.  */
1702
#  define NUM_REG_ITEMS  3
1703
 
1704
/* Individual items aside from the registers.  */
1705
#  ifdef DEBUG
1706
#   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1707
#  else
1708
#   define NUM_NONREG_ITEMS 4
1709
#  endif
1710
 
1711
/* We push at most this many items on the stack.  */
1712
/* We used to use (num_regs - 1), which is the number of registers
1713
   this regexp will save; but that was changed to 5
1714
   to avoid stack overflow for a regexp with lots of parens.  */
1715
#  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1716
 
1717
/* We actually push this many items.  */
1718
#  define NUM_FAILURE_ITEMS                             \
1719
  (((0                                                   \
1720
     ? 0 : highest_active_reg - lowest_active_reg + 1)   \
1721
    * NUM_REG_ITEMS)                                    \
1722
   + NUM_NONREG_ITEMS)
1723
 
1724
/* How many items can still be added to the stack without overflowing it.  */
1725
#  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1726
# endif /* not DEFINED_ONCE */
1727
 
1728
 
1729
/* Pops what PUSH_FAIL_STACK pushes.
1730
 
1731
   We restore into the parameters, all of which should be lvalues:
1732
     STR -- the saved data position.
1733
     PAT -- the saved pattern position.
1734
     LOW_REG, HIGH_REG -- the highest and lowest active registers.
1735
     REGSTART, REGEND -- arrays of string positions.
1736
     REG_INFO -- array of information about each subexpression.
1737
 
1738
   Also assumes the variables `fail_stack' and (if debugging), `bufp',
1739
   `pend', `string1', `size1', `string2', and `size2'.  */
1740
# define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1741
{                                                                       \
1742
  DEBUG_STATEMENT (unsigned failure_id;)                                \
1743
  active_reg_t this_reg;                                                \
1744
  const UCHAR_T *string_temp;                                           \
1745
                                                                        \
1746
  assert (!FAIL_STACK_EMPTY ());                                        \
1747
                                                                        \
1748
  /* Remove failure points and point to how many regs pushed.  */       \
1749
  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");                                \
1750
  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);    \
1751
  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);     \
1752
                                                                        \
1753
  assert (fail_stack.avail >= NUM_NONREG_ITEMS);                        \
1754
                                                                        \
1755
  DEBUG_POP (&failure_id);                                              \
1756
  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);              \
1757
                                                                        \
1758
  /* If the saved string location is NULL, it came from an              \
1759
     on_failure_keep_string_jump opcode, and we want to throw away the  \
1760
     saved NULL, thus retaining our current position in the string.  */ \
1761
  string_temp = POP_FAILURE_POINTER ();                                 \
1762
  if (string_temp != NULL)                                              \
1763
    str = (const CHAR_T *) string_temp;                                 \
1764
                                                                        \
1765
  DEBUG_PRINT2 ("  Popping string %p: `", str);                         \
1766
  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);      \
1767
  DEBUG_PRINT1 ("'\n");                                                 \
1768
                                                                        \
1769
  pat = (UCHAR_T *) POP_FAILURE_POINTER ();                             \
1770
  DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);                        \
1771
  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);                       \
1772
                                                                        \
1773
  /* Restore register info.  */                                         \
1774
  high_reg = (active_reg_t) POP_FAILURE_INT ();                         \
1775
  DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);          \
1776
                                                                        \
1777
  low_reg = (active_reg_t) POP_FAILURE_INT ();                          \
1778
  DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);           \
1779
                                                                        \
1780
  if (1)                                                                \
1781
    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)          \
1782
      {                                                                 \
1783
        DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);              \
1784
                                                                        \
1785
        reg_info[this_reg].word = POP_FAILURE_ELT ();                   \
1786
        DEBUG_PRINT2 ("      info: %p\n",                               \
1787
                      reg_info[this_reg].word.pointer);                 \
1788
                                                                        \
1789
        regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();     \
1790
        DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);             \
1791
                                                                        \
1792
        regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();   \
1793
        DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);         \
1794
      }                                                                 \
1795
  else                                                                  \
1796
    {                                                                   \
1797
      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1798
        {                                                               \
1799
          reg_info[this_reg].word.integer = 0;                           \
1800
          regend[this_reg] = 0;                                          \
1801
          regstart[this_reg] = 0;                                        \
1802
        }                                                               \
1803
      highest_active_reg = high_reg;                                    \
1804
    }                                                                   \
1805
                                                                        \
1806
  set_regs_matched_done = 0;                                             \
1807
  DEBUG_STATEMENT (nfailure_points_popped++);                           \
1808
} /* POP_FAILURE_POINT */
1809
 
1810
/* Structure for per-register (a.k.a. per-group) information.
1811
   Other register information, such as the
1812
   starting and ending positions (which are addresses), and the list of
1813
   inner groups (which is a bits list) are maintained in separate
1814
   variables.
1815
 
1816
   We are making a (strictly speaking) nonportable assumption here: that
1817
   the compiler will pack our bit fields into something that fits into
1818
   the type of `word', i.e., is something that fits into one item on the
1819
   failure stack.  */
1820
 
1821
 
1822
/* Declarations and macros for re_match_2.  */
1823
 
1824
typedef union
1825
{
1826
  PREFIX(fail_stack_elt_t) word;
1827
  struct
1828
  {
1829
      /* This field is one if this group can match the empty string,
1830
         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1831
# define MATCH_NULL_UNSET_VALUE 3
1832
    unsigned match_null_string_p : 2;
1833
    unsigned is_active : 1;
1834
    unsigned matched_something : 1;
1835
    unsigned ever_matched_something : 1;
1836
  } bits;
1837
} PREFIX(register_info_type);
1838
 
1839
# ifndef DEFINED_ONCE
1840
#  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1841
#  define IS_ACTIVE(R)  ((R).bits.is_active)
1842
#  define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1843
#  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1844
 
1845
 
1846
/* Call this when have matched a real character; it sets `matched' flags
1847
   for the subexpressions which we are currently inside.  Also records
1848
   that those subexprs have matched.  */
1849
#  define SET_REGS_MATCHED()                                            \
1850
  do                                                                    \
1851
    {                                                                   \
1852
      if (!set_regs_matched_done)                                       \
1853
        {                                                               \
1854
          active_reg_t r;                                               \
1855
          set_regs_matched_done = 1;                                    \
1856
          for (r = lowest_active_reg; r <= highest_active_reg; r++)     \
1857
            {                                                           \
1858
              MATCHED_SOMETHING (reg_info[r])                           \
1859
                = EVER_MATCHED_SOMETHING (reg_info[r])                  \
1860
                = 1;                                                    \
1861
            }                                                           \
1862
        }                                                               \
1863
    }                                                                   \
1864
  while (0)
1865
# endif /* not DEFINED_ONCE */
1866
 
1867
/* Registers are set to a sentinel when they haven't yet matched.  */
1868
static CHAR_T PREFIX(reg_unset_dummy);
1869
# define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1870
# define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1871
 
1872
/* Subroutine declarations and macros for regex_compile.  */
1873
static void PREFIX(store_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc, int arg));
1874
static void PREFIX(store_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1875
                                 int arg1, int arg2));
1876
static void PREFIX(insert_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1877
                                  int arg, UCHAR_T *end));
1878
static void PREFIX(insert_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1879
                                  int arg1, int arg2, UCHAR_T *end));
1880
static boolean PREFIX(at_begline_loc_p) _RE_ARGS ((const CHAR_T *pattern,
1881
                                           const CHAR_T *p,
1882
                                           reg_syntax_t syntax));
1883
static boolean PREFIX(at_endline_loc_p) _RE_ARGS ((const CHAR_T *p,
1884
                                           const CHAR_T *pend,
1885
                                           reg_syntax_t syntax));
1886
# ifdef WCHAR
1887
static reg_errcode_t wcs_compile_range _RE_ARGS ((CHAR_T range_start,
1888
                                                  const CHAR_T **p_ptr,
1889
                                                  const CHAR_T *pend,
1890
                                                  char *translate,
1891
                                                  reg_syntax_t syntax,
1892
                                                  UCHAR_T *b,
1893
                                                  CHAR_T *char_set));
1894
static void insert_space _RE_ARGS ((int num, CHAR_T *loc, CHAR_T *end));
1895
# else /* BYTE */
1896
static reg_errcode_t byte_compile_range _RE_ARGS ((unsigned int range_start,
1897
                                                   const char **p_ptr,
1898
                                                   const char *pend,
1899
                                                   char *translate,
1900
                                                   reg_syntax_t syntax,
1901
                                                   unsigned char *b));
1902
# endif /* WCHAR */
1903
 
1904
/* Fetch the next character in the uncompiled pattern---translating it
1905
   if necessary.  Also cast from a signed character in the constant
1906
   string passed to us by the user to an unsigned char that we can use
1907
   as an array index (in, e.g., `translate').  */
1908
/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1909
   because it is impossible to allocate 4GB array for some encodings
1910
   which have 4 byte character_set like UCS4.  */
1911
# ifndef PATFETCH
1912
#  ifdef WCHAR
1913
#   define PATFETCH(c)                                                  \
1914
  do {if (p == pend) return REG_EEND;                                   \
1915
    c = (UCHAR_T) *p++;                                                 \
1916
    if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];           \
1917
  } while (0)
1918
#  else /* BYTE */
1919
#   define PATFETCH(c)                                                  \
1920
  do {if (p == pend) return REG_EEND;                                   \
1921
    c = (unsigned char) *p++;                                           \
1922
    if (translate) c = (unsigned char) translate[c];                    \
1923
  } while (0)
1924
#  endif /* WCHAR */
1925
# endif
1926
 
1927
/* Fetch the next character in the uncompiled pattern, with no
1928
   translation.  */
1929
# define PATFETCH_RAW(c)                                                \
1930
  do {if (p == pend) return REG_EEND;                                   \
1931
    c = (UCHAR_T) *p++;                                                 \
1932
  } while (0)
1933
 
1934
/* Go backwards one character in the pattern.  */
1935
# define PATUNFETCH p--
1936
 
1937
 
1938
/* If `translate' is non-null, return translate[D], else just D.  We
1939
   cast the subscript to translate because some data is declared as
1940
   `char *', to avoid warnings when a string constant is passed.  But
1941
   when we use a character as a subscript we must make it unsigned.  */
1942
/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1943
   because it is impossible to allocate 4GB array for some encodings
1944
   which have 4 byte character_set like UCS4.  */
1945
 
1946
# ifndef TRANSLATE
1947
#  ifdef WCHAR
1948
#   define TRANSLATE(d) \
1949
  ((translate && ((UCHAR_T) (d)) <= 0xff) \
1950
   ? (char) translate[(unsigned char) (d)] : (d))
1951
# else /* BYTE */
1952
#   define TRANSLATE(d) \
1953
  (translate ? (char) translate[(unsigned char) (d)] : (d))
1954
#  endif /* WCHAR */
1955
# endif
1956
 
1957
 
1958
/* Macros for outputting the compiled pattern into `buffer'.  */
1959
 
1960
/* If the buffer isn't allocated when it comes in, use this.  */
1961
# define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T))
1962
 
1963
/* Make sure we have at least N more bytes of space in buffer.  */
1964
# ifdef WCHAR
1965
#  define GET_BUFFER_SPACE(n)                                           \
1966
    while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR       \
1967
            + (n)*sizeof(CHAR_T)) > bufp->allocated)                    \
1968
      EXTEND_BUFFER ()
1969
# else /* BYTE */
1970
#  define GET_BUFFER_SPACE(n)                                           \
1971
    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)  \
1972
      EXTEND_BUFFER ()
1973
# endif /* WCHAR */
1974
 
1975
/* Make sure we have one more byte of buffer space and then add C to it.  */
1976
# define BUF_PUSH(c)                                                    \
1977
  do {                                                                  \
1978
    GET_BUFFER_SPACE (1);                                               \
1979
    *b++ = (UCHAR_T) (c);                                               \
1980
  } while (0)
1981
 
1982
 
1983
/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1984
# define BUF_PUSH_2(c1, c2)                                             \
1985
  do {                                                                  \
1986
    GET_BUFFER_SPACE (2);                                               \
1987
    *b++ = (UCHAR_T) (c1);                                              \
1988
    *b++ = (UCHAR_T) (c2);                                              \
1989
  } while (0)
1990
 
1991
 
1992
/* As with BUF_PUSH_2, except for three bytes.  */
1993
# define BUF_PUSH_3(c1, c2, c3)                                         \
1994
  do {                                                                  \
1995
    GET_BUFFER_SPACE (3);                                               \
1996
    *b++ = (UCHAR_T) (c1);                                              \
1997
    *b++ = (UCHAR_T) (c2);                                              \
1998
    *b++ = (UCHAR_T) (c3);                                              \
1999
  } while (0)
2000
 
2001
/* Store a jump with opcode OP at LOC to location TO.  We store a
2002
   relative address offset by the three bytes the jump itself occupies.  */
2003
# define STORE_JUMP(op, loc, to) \
2004
 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
2005
 
2006
/* Likewise, for a two-argument jump.  */
2007
# define STORE_JUMP2(op, loc, to, arg) \
2008
  PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
2009
 
2010
/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
2011
# define INSERT_JUMP(op, loc, to) \
2012
  PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
2013
 
2014
/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
2015
# define INSERT_JUMP2(op, loc, to, arg) \
2016
  PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
2017
              arg, b)
2018
 
2019
/* This is not an arbitrary limit: the arguments which represent offsets
2020
   into the pattern are two bytes long.  So if 2^16 bytes turns out to
2021
   be too small, many things would have to change.  */
2022
/* Any other compiler which, like MSC, has allocation limit below 2^16
2023
   bytes will have to use approach similar to what was done below for
2024
   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
2025
   reallocating to 0 bytes.  Such thing is not going to work too well.
2026
   You have been warned!!  */
2027
# ifndef DEFINED_ONCE
2028
#  if defined _MSC_VER  && !defined WIN32
2029
/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2030
   The REALLOC define eliminates a flurry of conversion warnings,
2031
   but is not required. */
2032
#   define MAX_BUF_SIZE  65500L
2033
#   define REALLOC(p,s) realloc ((p), (size_t) (s))
2034
#  else
2035
#   define MAX_BUF_SIZE (1L << 16)
2036
#   define REALLOC(p,s) realloc ((p), (s))
2037
#  endif
2038
 
2039
/* Extend the buffer by twice its current size via realloc and
2040
   reset the pointers that pointed into the old block to point to the
2041
   correct places in the new one.  If extending the buffer results in it
2042
   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2043
#  if __BOUNDED_POINTERS__
2044
#   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2045
#   define MOVE_BUFFER_POINTER(P) \
2046
  (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2047
#   define ELSE_EXTEND_BUFFER_HIGH_BOUND        \
2048
  else                                          \
2049
    {                                           \
2050
      SET_HIGH_BOUND (b);                       \
2051
      SET_HIGH_BOUND (begalt);                  \
2052
      if (fixup_alt_jump)                       \
2053
        SET_HIGH_BOUND (fixup_alt_jump);        \
2054
      if (laststart)                            \
2055
        SET_HIGH_BOUND (laststart);             \
2056
      if (pending_exact)                        \
2057
        SET_HIGH_BOUND (pending_exact);         \
2058
    }
2059
#  else
2060
#   define MOVE_BUFFER_POINTER(P) (P) += incr
2061
#   define ELSE_EXTEND_BUFFER_HIGH_BOUND
2062
#  endif
2063
# endif /* not DEFINED_ONCE */
2064
 
2065
# ifdef WCHAR
2066
#  define EXTEND_BUFFER()                                               \
2067
  do {                                                                  \
2068
    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;                          \
2069
    int wchar_count;                                                    \
2070
    if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)               \
2071
      return REG_ESIZE;                                                 \
2072
    bufp->allocated <<= 1;                                              \
2073
    if (bufp->allocated > MAX_BUF_SIZE)                                 \
2074
      bufp->allocated = MAX_BUF_SIZE;                                   \
2075
    /* How many characters the new buffer can have?  */                 \
2076
    wchar_count = bufp->allocated / sizeof(UCHAR_T);                    \
2077
    if (wchar_count == 0) wchar_count = 1;                               \
2078
    /* Truncate the buffer to CHAR_T align.  */                 \
2079
    bufp->allocated = wchar_count * sizeof(UCHAR_T);                    \
2080
    RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);               \
2081
    bufp->buffer = (char*)COMPILED_BUFFER_VAR;                          \
2082
    if (COMPILED_BUFFER_VAR == NULL)                                    \
2083
      return REG_ESPACE;                                                \
2084
    /* If the buffer moved, move all the pointers into it.  */          \
2085
    if (old_buffer != COMPILED_BUFFER_VAR)                              \
2086
      {                                                                 \
2087
        int incr = COMPILED_BUFFER_VAR - old_buffer;                    \
2088
        MOVE_BUFFER_POINTER (b);                                        \
2089
        MOVE_BUFFER_POINTER (begalt);                                   \
2090
        if (fixup_alt_jump)                                             \
2091
          MOVE_BUFFER_POINTER (fixup_alt_jump);                         \
2092
        if (laststart)                                                  \
2093
          MOVE_BUFFER_POINTER (laststart);                              \
2094
        if (pending_exact)                                              \
2095
          MOVE_BUFFER_POINTER (pending_exact);                          \
2096
      }                                                                 \
2097
    ELSE_EXTEND_BUFFER_HIGH_BOUND                                       \
2098
  } while (0)
2099
# else /* BYTE */
2100
#  define EXTEND_BUFFER()                                               \
2101
  do {                                                                  \
2102
    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;                          \
2103
    if (bufp->allocated == MAX_BUF_SIZE)                                \
2104
      return REG_ESIZE;                                                 \
2105
    bufp->allocated <<= 1;                                              \
2106
    if (bufp->allocated > MAX_BUF_SIZE)                                 \
2107
      bufp->allocated = MAX_BUF_SIZE;                                   \
2108
    bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR,            \
2109
                                                bufp->allocated);       \
2110
    if (COMPILED_BUFFER_VAR == NULL)                                    \
2111
      return REG_ESPACE;                                                \
2112
    /* If the buffer moved, move all the pointers into it.  */          \
2113
    if (old_buffer != COMPILED_BUFFER_VAR)                              \
2114
      {                                                                 \
2115
        int incr = COMPILED_BUFFER_VAR - old_buffer;                    \
2116
        MOVE_BUFFER_POINTER (b);                                        \
2117
        MOVE_BUFFER_POINTER (begalt);                                   \
2118
        if (fixup_alt_jump)                                             \
2119
          MOVE_BUFFER_POINTER (fixup_alt_jump);                         \
2120
        if (laststart)                                                  \
2121
          MOVE_BUFFER_POINTER (laststart);                              \
2122
        if (pending_exact)                                              \
2123
          MOVE_BUFFER_POINTER (pending_exact);                          \
2124
      }                                                                 \
2125
    ELSE_EXTEND_BUFFER_HIGH_BOUND                                       \
2126
  } while (0)
2127
# endif /* WCHAR */
2128
 
2129
# ifndef DEFINED_ONCE
2130
/* Since we have one byte reserved for the register number argument to
2131
   {start,stop}_memory, the maximum number of groups we can report
2132
   things about is what fits in that byte.  */
2133
#  define MAX_REGNUM 255
2134
 
2135
/* But patterns can have more than `MAX_REGNUM' registers.  We just
2136
   ignore the excess.  */
2137
typedef unsigned regnum_t;
2138
 
2139
 
2140
/* Macros for the compile stack.  */
2141
 
2142
/* Since offsets can go either forwards or backwards, this type needs to
2143
   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2144
/* int may be not enough when sizeof(int) == 2.  */
2145
typedef long pattern_offset_t;
2146
 
2147
typedef struct
2148
{
2149
  pattern_offset_t begalt_offset;
2150
  pattern_offset_t fixup_alt_jump;
2151
  pattern_offset_t inner_group_offset;
2152
  pattern_offset_t laststart_offset;
2153
  regnum_t regnum;
2154
} compile_stack_elt_t;
2155
 
2156
 
2157
typedef struct
2158
{
2159
  compile_stack_elt_t *stack;
2160
  unsigned size;
2161
  unsigned avail;                       /* Offset of next open position.  */
2162
} compile_stack_type;
2163
 
2164
 
2165
#  define INIT_COMPILE_STACK_SIZE 32
2166
 
2167
#  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2168
#  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2169
 
2170
/* The next available element.  */
2171
#  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2172
 
2173
# endif /* not DEFINED_ONCE */
2174
 
2175
/* Set the bit for character C in a list.  */
2176
# ifndef DEFINED_ONCE
2177
#  define SET_LIST_BIT(c)                               \
2178
  (b[((unsigned char) (c)) / BYTEWIDTH]               \
2179
   |= 1 << (((unsigned char) c) % BYTEWIDTH))
2180
# endif /* DEFINED_ONCE */
2181
 
2182
/* Get the next unsigned number in the uncompiled pattern.  */
2183
# define GET_UNSIGNED_NUMBER(num) \
2184
  {                                                                     \
2185
    while (p != pend)                                                   \
2186
      {                                                                 \
2187
        PATFETCH (c);                                                   \
2188
        if (c < '0' || c > '9')                                         \
2189
          break;                                                        \
2190
        if (num <= RE_DUP_MAX)                                          \
2191
          {                                                             \
2192
            if (num < 0)                                         \
2193
              num = 0;                                                   \
2194
            num = num * 10 + c - '0';                                   \
2195
          }                                                             \
2196
      }                                                                 \
2197
  }
2198
 
2199
# ifndef DEFINED_ONCE
2200
#  if defined _LIBC || WIDE_CHAR_SUPPORT
2201
/* The GNU C library provides support for user-defined character classes
2202
   and the functions from ISO C amendement 1.  */
2203
#   ifdef CHARCLASS_NAME_MAX
2204
#    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2205
#   else
2206
/* This shouldn't happen but some implementation might still have this
2207
   problem.  Use a reasonable default value.  */
2208
#    define CHAR_CLASS_MAX_LENGTH 256
2209
#   endif
2210
 
2211
#   ifdef _LIBC
2212
#    define IS_CHAR_CLASS(string) __wctype (string)
2213
#   else
2214
#    define IS_CHAR_CLASS(string) wctype (string)
2215
#   endif
2216
#  else
2217
#   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2218
 
2219
#   define IS_CHAR_CLASS(string)                                        \
2220
   (STREQ (string, "alpha") || STREQ (string, "upper")                  \
2221
    || STREQ (string, "lower") || STREQ (string, "digit")               \
2222
    || STREQ (string, "alnum") || STREQ (string, "xdigit")              \
2223
    || STREQ (string, "space") || STREQ (string, "print")               \
2224
    || STREQ (string, "punct") || STREQ (string, "graph")               \
2225
    || STREQ (string, "cntrl") || STREQ (string, "blank"))
2226
#  endif
2227
# endif /* DEFINED_ONCE */
2228
 
2229
# ifndef MATCH_MAY_ALLOCATE
2230
 
2231
/* If we cannot allocate large objects within re_match_2_internal,
2232
   we make the fail stack and register vectors global.
2233
   The fail stack, we grow to the maximum size when a regexp
2234
   is compiled.
2235
   The register vectors, we adjust in size each time we
2236
   compile a regexp, according to the number of registers it needs.  */
2237
 
2238
static PREFIX(fail_stack_type) fail_stack;
2239
 
2240
/* Size with which the following vectors are currently allocated.
2241
   That is so we can make them bigger as needed,
2242
   but never make them smaller.  */
2243
#  ifdef DEFINED_ONCE
2244
static int regs_allocated_size;
2245
 
2246
static const char **     regstart, **     regend;
2247
static const char ** old_regstart, ** old_regend;
2248
static const char **best_regstart, **best_regend;
2249
static const char **reg_dummy;
2250
#  endif /* DEFINED_ONCE */
2251
 
2252
static PREFIX(register_info_type) *PREFIX(reg_info);
2253
static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2254
 
2255
/* Make the register vectors big enough for NUM_REGS registers,
2256
   but don't make them smaller.  */
2257
 
2258
static void
2259
PREFIX(regex_grow_registers) (num_regs)
2260
     int num_regs;
2261
{
2262
  if (num_regs > regs_allocated_size)
2263
    {
2264
      RETALLOC_IF (regstart,     num_regs, const char *);
2265
      RETALLOC_IF (regend,       num_regs, const char *);
2266
      RETALLOC_IF (old_regstart, num_regs, const char *);
2267
      RETALLOC_IF (old_regend,   num_regs, const char *);
2268
      RETALLOC_IF (best_regstart, num_regs, const char *);
2269
      RETALLOC_IF (best_regend,  num_regs, const char *);
2270
      RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2271
      RETALLOC_IF (reg_dummy,    num_regs, const char *);
2272
      RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2273
 
2274
      regs_allocated_size = num_regs;
2275
    }
2276
}
2277
 
2278
# endif /* not MATCH_MAY_ALLOCATE */
2279
 
2280
# ifndef DEFINED_ONCE
2281
static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2282
                                                 compile_stack,
2283
                                                 regnum_t regnum));
2284
# endif /* not DEFINED_ONCE */
2285
 
2286
/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2287
   Returns one of error codes defined in `regex.h', or zero for success.
2288
 
2289
   Assumes the `allocated' (and perhaps `buffer') and `translate'
2290
   fields are set in BUFP on entry.
2291
 
2292
   If it succeeds, results are put in BUFP (if it returns an error, the
2293
   contents of BUFP are undefined):
2294
     `buffer' is the compiled pattern;
2295
     `syntax' is set to SYNTAX;
2296
     `used' is set to the length of the compiled pattern;
2297
     `fastmap_accurate' is zero;
2298
     `re_nsub' is the number of subexpressions in PATTERN;
2299
     `not_bol' and `not_eol' are zero;
2300
 
2301
   The `fastmap' and `newline_anchor' fields are neither
2302
   examined nor set.  */
2303
 
2304
/* Return, freeing storage we allocated.  */
2305
# ifdef WCHAR
2306
#  define FREE_STACK_RETURN(value)              \
2307
  return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2308
# else
2309
#  define FREE_STACK_RETURN(value)              \
2310
  return (free (compile_stack.stack), value)
2311
# endif /* WCHAR */
2312
 
2313
static reg_errcode_t
2314
PREFIX(regex_compile) (ARG_PREFIX(pattern), ARG_PREFIX(size), syntax, bufp)
2315
     const char *ARG_PREFIX(pattern);
2316
     size_t ARG_PREFIX(size);
2317
     reg_syntax_t syntax;
2318
     struct re_pattern_buffer *bufp;
2319
{
2320
  /* We fetch characters from PATTERN here.  Even though PATTERN is
2321
     `char *' (i.e., signed), we declare these variables as unsigned, so
2322
     they can be reliably used as array indices.  */
2323
  register UCHAR_T c, c1;
2324
 
2325
#ifdef WCHAR
2326
  /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2327
  CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2328
  size_t size;
2329
  /* offset buffer for optimization. See convert_mbs_to_wc.  */
2330
  int *mbs_offset = NULL;
2331
  /* It hold whether each wchar_t is binary data or not.  */
2332
  char *is_binary = NULL;
2333
  /* A flag whether exactn is handling binary data or not.  */
2334
  char is_exactn_bin = FALSE;
2335
#endif /* WCHAR */
2336
 
2337
  /* A random temporary spot in PATTERN.  */
2338
  const CHAR_T *p1;
2339
 
2340
  /* Points to the end of the buffer, where we should append.  */
2341
  register UCHAR_T *b;
2342
 
2343
  /* Keeps track of unclosed groups.  */
2344
  compile_stack_type compile_stack;
2345
 
2346
  /* Points to the current (ending) position in the pattern.  */
2347
#ifdef WCHAR
2348
  const CHAR_T *p;
2349
  const CHAR_T *pend;
2350
#else /* BYTE */
2351
  const CHAR_T *p = pattern;
2352
  const CHAR_T *pend = pattern + size;
2353
#endif /* WCHAR */
2354
 
2355
  /* How to translate the characters in the pattern.  */
2356
  RE_TRANSLATE_TYPE translate = bufp->translate;
2357
 
2358
  /* Address of the count-byte of the most recently inserted `exactn'
2359
     command.  This makes it possible to tell if a new exact-match
2360
     character can be added to that command or if the character requires
2361
     a new `exactn' command.  */
2362
  UCHAR_T *pending_exact = 0;
2363
 
2364
  /* Address of start of the most recently finished expression.
2365
     This tells, e.g., postfix * where to find the start of its
2366
     operand.  Reset at the beginning of groups and alternatives.  */
2367
  UCHAR_T *laststart = 0;
2368
 
2369
  /* Address of beginning of regexp, or inside of last group.  */
2370
  UCHAR_T *begalt;
2371
 
2372
  /* Address of the place where a forward jump should go to the end of
2373
     the containing expression.  Each alternative of an `or' -- except the
2374
     last -- ends with a forward jump of this sort.  */
2375
  UCHAR_T *fixup_alt_jump = 0;
2376
 
2377
  /* Counts open-groups as they are encountered.  Remembered for the
2378
     matching close-group on the compile stack, so the same register
2379
     number is put in the stop_memory as the start_memory.  */
2380
  regnum_t regnum = 0;
2381
 
2382
#ifdef WCHAR
2383
  /* Initialize the wchar_t PATTERN and offset_buffer.  */
2384
  p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2385
  mbs_offset = TALLOC(csize + 1, int);
2386
  is_binary = TALLOC(csize + 1, char);
2387
  if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2388
    {
2389
      free(pattern);
2390
      free(mbs_offset);
2391
      free(is_binary);
2392
      return REG_ESPACE;
2393
    }
2394
  pattern[csize] = L'\0';       /* sentinel */
2395
  size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2396
  pend = p + size;
2397
  if (size < 0)
2398
    {
2399
      free(pattern);
2400
      free(mbs_offset);
2401
      free(is_binary);
2402
      return REG_BADPAT;
2403
    }
2404
#endif
2405
 
2406
#ifdef DEBUG
2407
  DEBUG_PRINT1 ("\nCompiling pattern: ");
2408
  if (debug)
2409
    {
2410
      unsigned debug_count;
2411
 
2412
      for (debug_count = 0; debug_count < size; debug_count++)
2413
        PUT_CHAR (pattern[debug_count]);
2414
      putchar ('\n');
2415
    }
2416
#endif /* DEBUG */
2417
 
2418
  /* Initialize the compile stack.  */
2419
  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2420
  if (compile_stack.stack == NULL)
2421
    {
2422
#ifdef WCHAR
2423
      free(pattern);
2424
      free(mbs_offset);
2425
      free(is_binary);
2426
#endif
2427
      return REG_ESPACE;
2428
    }
2429
 
2430
  compile_stack.size = INIT_COMPILE_STACK_SIZE;
2431
  compile_stack.avail = 0;
2432
 
2433
  /* Initialize the pattern buffer.  */
2434
  bufp->syntax = syntax;
2435
  bufp->fastmap_accurate = 0;
2436
  bufp->not_bol = bufp->not_eol = 0;
2437
 
2438
  /* Set `used' to zero, so that if we return an error, the pattern
2439
     printer (for debugging) will think there's no pattern.  We reset it
2440
     at the end.  */
2441
  bufp->used = 0;
2442
 
2443
  /* Always count groups, whether or not bufp->no_sub is set.  */
2444
  bufp->re_nsub = 0;
2445
 
2446
#if !defined emacs && !defined SYNTAX_TABLE
2447
  /* Initialize the syntax table.  */
2448
   init_syntax_once ();
2449
#endif
2450
 
2451
  if (bufp->allocated == 0)
2452
    {
2453
      if (bufp->buffer)
2454
        { /* If zero allocated, but buffer is non-null, try to realloc
2455
             enough space.  This loses if buffer's address is bogus, but
2456
             that is the user's responsibility.  */
2457
#ifdef WCHAR
2458
          /* Free bufp->buffer and allocate an array for wchar_t pattern
2459
             buffer.  */
2460
          free(bufp->buffer);
2461
          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2462
                                        UCHAR_T);
2463
#else
2464
          RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2465
#endif /* WCHAR */
2466
        }
2467
      else
2468
        { /* Caller did not allocate a buffer.  Do it for them.  */
2469
          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2470
                                        UCHAR_T);
2471
        }
2472
 
2473
      if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2474
#ifdef WCHAR
2475
      bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2476
#endif /* WCHAR */
2477
      bufp->allocated = INIT_BUF_SIZE;
2478
    }
2479
#ifdef WCHAR
2480
  else
2481
    COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2482
#endif
2483
 
2484
  begalt = b = COMPILED_BUFFER_VAR;
2485
 
2486
  /* Loop through the uncompiled pattern until we're at the end.  */
2487
  while (p != pend)
2488
    {
2489
      PATFETCH (c);
2490
 
2491
      switch (c)
2492
        {
2493
        case '^':
2494
          {
2495
            if (   /* If at start of pattern, it's an operator.  */
2496
                   p == pattern + 1
2497
                   /* If context independent, it's an operator.  */
2498
                || syntax & RE_CONTEXT_INDEP_ANCHORS
2499
                   /* Otherwise, depends on what's come before.  */
2500
                || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2501
              BUF_PUSH (begline);
2502
            else
2503
              goto normal_char;
2504
          }
2505
          break;
2506
 
2507
 
2508
        case '$':
2509
          {
2510
            if (   /* If at end of pattern, it's an operator.  */
2511
                   p == pend
2512
                   /* If context independent, it's an operator.  */
2513
                || syntax & RE_CONTEXT_INDEP_ANCHORS
2514
                   /* Otherwise, depends on what's next.  */
2515
                || PREFIX(at_endline_loc_p) (p, pend, syntax))
2516
               BUF_PUSH (endline);
2517
             else
2518
               goto normal_char;
2519
           }
2520
           break;
2521
 
2522
 
2523
        case '+':
2524
        case '?':
2525
          if ((syntax & RE_BK_PLUS_QM)
2526
              || (syntax & RE_LIMITED_OPS))
2527
            goto normal_char;
2528
        handle_plus:
2529
        case '*':
2530
          /* If there is no previous pattern... */
2531
          if (!laststart)
2532
            {
2533
              if (syntax & RE_CONTEXT_INVALID_OPS)
2534
                FREE_STACK_RETURN (REG_BADRPT);
2535
              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2536
                goto normal_char;
2537
            }
2538
 
2539
          {
2540
            /* Are we optimizing this jump?  */
2541
            boolean keep_string_p = false;
2542
 
2543
            /* 1 means zero (many) matches is allowed.  */
2544
            char zero_times_ok = 0, many_times_ok = 0;
2545
 
2546
            /* If there is a sequence of repetition chars, collapse it
2547
               down to just one (the right one).  We can't combine
2548
               interval operators with these because of, e.g., `a{2}*',
2549
               which should only match an even number of `a's.  */
2550
 
2551
            for (;;)
2552
              {
2553
                zero_times_ok |= c != '+';
2554
                many_times_ok |= c != '?';
2555
 
2556
                if (p == pend)
2557
                  break;
2558
 
2559
                PATFETCH (c);
2560
 
2561
                if (c == '*'
2562
                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2563
                  ;
2564
 
2565
                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2566
                  {
2567
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2568
 
2569
                    PATFETCH (c1);
2570
                    if (!(c1 == '+' || c1 == '?'))
2571
                      {
2572
                        PATUNFETCH;
2573
                        PATUNFETCH;
2574
                        break;
2575
                      }
2576
 
2577
                    c = c1;
2578
                  }
2579
                else
2580
                  {
2581
                    PATUNFETCH;
2582
                    break;
2583
                  }
2584
 
2585
                /* If we get here, we found another repeat character.  */
2586
               }
2587
 
2588
            /* Star, etc. applied to an empty pattern is equivalent
2589
               to an empty pattern.  */
2590
            if (!laststart)
2591
              break;
2592
 
2593
            /* Now we know whether or not zero matches is allowed
2594
               and also whether or not two or more matches is allowed.  */
2595
            if (many_times_ok)
2596
              { /* More than one repetition is allowed, so put in at the
2597
                   end a backward relative jump from `b' to before the next
2598
                   jump we're going to put in below (which jumps from
2599
                   laststart to after this jump).
2600
 
2601
                   But if we are at the `*' in the exact sequence `.*\n',
2602
                   insert an unconditional jump backwards to the .,
2603
                   instead of the beginning of the loop.  This way we only
2604
                   push a failure point once, instead of every time
2605
                   through the loop.  */
2606
                assert (p - 1 > pattern);
2607
 
2608
                /* Allocate the space for the jump.  */
2609
                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2610
 
2611
                /* We know we are not at the first character of the pattern,
2612
                   because laststart was nonzero.  And we've already
2613
                   incremented `p', by the way, to be the character after
2614
                   the `*'.  Do we have to do something analogous here
2615
                   for null bytes, because of RE_DOT_NOT_NULL?  */
2616
                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2617
                    && zero_times_ok
2618
                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2619
                    && !(syntax & RE_DOT_NEWLINE))
2620
                  { /* We have .*\n.  */
2621
                    STORE_JUMP (jump, b, laststart);
2622
                    keep_string_p = true;
2623
                  }
2624
                else
2625
                  /* Anything else.  */
2626
                  STORE_JUMP (maybe_pop_jump, b, laststart -
2627
                              (1 + OFFSET_ADDRESS_SIZE));
2628
 
2629
                /* We've added more stuff to the buffer.  */
2630
                b += 1 + OFFSET_ADDRESS_SIZE;
2631
              }
2632
 
2633
            /* On failure, jump from laststart to b + 3, which will be the
2634
               end of the buffer after this jump is inserted.  */
2635
            /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2636
               'b + 3'.  */
2637
            GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2638
            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2639
                                       : on_failure_jump,
2640
                         laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2641
            pending_exact = 0;
2642
            b += 1 + OFFSET_ADDRESS_SIZE;
2643
 
2644
            if (!zero_times_ok)
2645
              {
2646
                /* At least one repetition is required, so insert a
2647
                   `dummy_failure_jump' before the initial
2648
                   `on_failure_jump' instruction of the loop. This
2649
                   effects a skip over that instruction the first time
2650
                   we hit that loop.  */
2651
                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2652
                INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2653
                             2 + 2 * OFFSET_ADDRESS_SIZE);
2654
                b += 1 + OFFSET_ADDRESS_SIZE;
2655
              }
2656
            }
2657
          break;
2658
 
2659
 
2660
        case '.':
2661
          laststart = b;
2662
          BUF_PUSH (anychar);
2663
          break;
2664
 
2665
 
2666
        case '[':
2667
          {
2668
            boolean had_char_class = false;
2669
#ifdef WCHAR
2670
            CHAR_T range_start = 0xffffffff;
2671
#else
2672
            unsigned int range_start = 0xffffffff;
2673
#endif
2674
            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2675
 
2676
#ifdef WCHAR
2677
            /* We assume a charset(_not) structure as a wchar_t array.
2678
               charset[0] = (re_opcode_t) charset(_not)
2679
               charset[1] = l (= length of char_classes)
2680
               charset[2] = m (= length of collating_symbols)
2681
               charset[3] = n (= length of equivalence_classes)
2682
               charset[4] = o (= length of char_ranges)
2683
               charset[5] = p (= length of chars)
2684
 
2685
               charset[6] = char_class (wctype_t)
2686
               charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2687
                         ...
2688
               charset[l+5]  = char_class (wctype_t)
2689
 
2690
               charset[l+6]  = collating_symbol (wchar_t)
2691
                            ...
2692
               charset[l+m+5]  = collating_symbol (wchar_t)
2693
                                        ifdef _LIBC we use the index if
2694
                                        _NL_COLLATE_SYMB_EXTRAMB instead of
2695
                                        wchar_t string.
2696
 
2697
               charset[l+m+6]  = equivalence_classes (wchar_t)
2698
                              ...
2699
               charset[l+m+n+5]  = equivalence_classes (wchar_t)
2700
                                        ifdef _LIBC we use the index in
2701
                                        _NL_COLLATE_WEIGHT instead of
2702
                                        wchar_t string.
2703
 
2704
               charset[l+m+n+6] = range_start
2705
               charset[l+m+n+7] = range_end
2706
                               ...
2707
               charset[l+m+n+2o+4] = range_start
2708
               charset[l+m+n+2o+5] = range_end
2709
                                        ifdef _LIBC we use the value looked up
2710
                                        in _NL_COLLATE_COLLSEQ instead of
2711
                                        wchar_t character.
2712
 
2713
               charset[l+m+n+2o+6] = char
2714
                                  ...
2715
               charset[l+m+n+2o+p+5] = char
2716
 
2717
             */
2718
 
2719
            /* We need at least 6 spaces: the opcode, the length of
2720
               char_classes, the length of collating_symbols, the length of
2721
               equivalence_classes, the length of char_ranges, the length of
2722
               chars.  */
2723
            GET_BUFFER_SPACE (6);
2724
 
2725
            /* Save b as laststart. And We use laststart as the pointer
2726
               to the first element of the charset here.
2727
               In other words, laststart[i] indicates charset[i].  */
2728
            laststart = b;
2729
 
2730
            /* We test `*p == '^' twice, instead of using an if
2731
               statement, so we only need one BUF_PUSH.  */
2732
            BUF_PUSH (*p == '^' ? charset_not : charset);
2733
            if (*p == '^')
2734
              p++;
2735
 
2736
            /* Push the length of char_classes, the length of
2737
               collating_symbols, the length of equivalence_classes, the
2738
               length of char_ranges and the length of chars.  */
2739
            BUF_PUSH_3 (0, 0, 0);
2740
            BUF_PUSH_2 (0, 0);
2741
 
2742
            /* Remember the first position in the bracket expression.  */
2743
            p1 = p;
2744
 
2745
            /* charset_not matches newline according to a syntax bit.  */
2746
            if ((re_opcode_t) b[-6] == charset_not
2747
                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2748
              {
2749
                BUF_PUSH('\n');
2750
                laststart[5]++; /* Update the length of characters  */
2751
              }
2752
 
2753
            /* Read in characters and ranges, setting map bits.  */
2754
            for (;;)
2755
              {
2756
                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2757
 
2758
                PATFETCH (c);
2759
 
2760
                /* \ might escape characters inside [...] and [^...].  */
2761
                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2762
                  {
2763
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2764
 
2765
                    PATFETCH (c1);
2766
                    BUF_PUSH(c1);
2767
                    laststart[5]++; /* Update the length of chars  */
2768
                    range_start = c1;
2769
                    continue;
2770
                  }
2771
 
2772
                /* Could be the end of the bracket expression.  If it's
2773
                   not (i.e., when the bracket expression is `[]' so
2774
                   far), the ']' character bit gets set way below.  */
2775
                if (c == ']' && p != p1 + 1)
2776
                  break;
2777
 
2778
                /* Look ahead to see if it's a range when the last thing
2779
                   was a character class.  */
2780
                if (had_char_class && c == '-' && *p != ']')
2781
                  FREE_STACK_RETURN (REG_ERANGE);
2782
 
2783
                /* Look ahead to see if it's a range when the last thing
2784
                   was a character: if this is a hyphen not at the
2785
                   beginning or the end of a list, then it's the range
2786
                   operator.  */
2787
                if (c == '-'
2788
                    && !(p - 2 >= pattern && p[-2] == '[')
2789
                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2790
                    && *p != ']')
2791
                  {
2792
                    reg_errcode_t ret;
2793
                    /* Allocate the space for range_start and range_end.  */
2794
                    GET_BUFFER_SPACE (2);
2795
                    /* Update the pointer to indicate end of buffer.  */
2796
                    b += 2;
2797
                    ret = wcs_compile_range (range_start, &p, pend, translate,
2798
                                         syntax, b, laststart);
2799
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2800
                    range_start = 0xffffffff;
2801
                  }
2802
                else if (p[0] == '-' && p[1] != ']')
2803
                  { /* This handles ranges made up of characters only.  */
2804
                    reg_errcode_t ret;
2805
 
2806
                    /* Move past the `-'.  */
2807
                    PATFETCH (c1);
2808
                    /* Allocate the space for range_start and range_end.  */
2809
                    GET_BUFFER_SPACE (2);
2810
                    /* Update the pointer to indicate end of buffer.  */
2811
                    b += 2;
2812
                    ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2813
                                         laststart);
2814
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2815
                    range_start = 0xffffffff;
2816
                  }
2817
 
2818
                /* See if we're at the beginning of a possible character
2819
                   class.  */
2820
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2821
                  { /* Leave room for the null.  */
2822
                    char str[CHAR_CLASS_MAX_LENGTH + 1];
2823
 
2824
                    PATFETCH (c);
2825
                    c1 = 0;
2826
 
2827
                    /* If pattern is `[[:'.  */
2828
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2829
 
2830
                    for (;;)
2831
                      {
2832
                        PATFETCH (c);
2833
                        if ((c == ':' && *p == ']') || p == pend)
2834
                          break;
2835
                        if (c1 < CHAR_CLASS_MAX_LENGTH)
2836
                          str[c1++] = c;
2837
                        else
2838
                          /* This is in any case an invalid class name.  */
2839
                          str[0] = '\0';
2840
                      }
2841
                    str[c1] = '\0';
2842
 
2843
                    /* If isn't a word bracketed by `[:' and `:]':
2844
                       undo the ending character, the letters, and leave
2845
                       the leading `:' and `[' (but store them as character).  */
2846
                    if (c == ':' && *p == ']')
2847
                      {
2848
                        wctype_t wt;
2849
                        uintptr_t alignedp;
2850
 
2851
                        /* Query the character class as wctype_t.  */
2852
                        wt = IS_CHAR_CLASS (str);
2853
                        if (wt == 0)
2854
                          FREE_STACK_RETURN (REG_ECTYPE);
2855
 
2856
                        /* Throw away the ] at the end of the character
2857
                           class.  */
2858
                        PATFETCH (c);
2859
 
2860
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2861
 
2862
                        /* Allocate the space for character class.  */
2863
                        GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2864
                        /* Update the pointer to indicate end of buffer.  */
2865
                        b += CHAR_CLASS_SIZE;
2866
                        /* Move data which follow character classes
2867
                            not to violate the data.  */
2868
                        insert_space(CHAR_CLASS_SIZE,
2869
                                     laststart + 6 + laststart[1],
2870
                                     b - 1);
2871
                        alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2872
                                    + __alignof__(wctype_t) - 1)
2873
                                    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2874
                        /* Store the character class.  */
2875
                        *((wctype_t*)alignedp) = wt;
2876
                        /* Update length of char_classes */
2877
                        laststart[1] += CHAR_CLASS_SIZE;
2878
 
2879
                        had_char_class = true;
2880
                      }
2881
                    else
2882
                      {
2883
                        c1++;
2884
                        while (c1--)
2885
                          PATUNFETCH;
2886
                        BUF_PUSH ('[');
2887
                        BUF_PUSH (':');
2888
                        laststart[5] += 2; /* Update the length of characters  */
2889
                        range_start = ':';
2890
                        had_char_class = false;
2891
                      }
2892
                  }
2893
                else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2894
                                                          || *p == '.'))
2895
                  {
2896
                    CHAR_T str[128];    /* Should be large enough.  */
2897
                    CHAR_T delim = *p; /* '=' or '.'  */
2898
# ifdef _LIBC
2899
                    uint32_t nrules =
2900
                      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2901
# endif
2902
                    PATFETCH (c);
2903
                    c1 = 0;
2904
 
2905
                    /* If pattern is `[[=' or '[[.'.  */
2906
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2907
 
2908
                    for (;;)
2909
                      {
2910
                        PATFETCH (c);
2911
                        if ((c == delim && *p == ']') || p == pend)
2912
                          break;
2913
                        if (c1 < sizeof (str) - 1)
2914
                          str[c1++] = c;
2915
                        else
2916
                          /* This is in any case an invalid class name.  */
2917
                          str[0] = '\0';
2918
                      }
2919
                    str[c1] = '\0';
2920
 
2921
                    if (c == delim && *p == ']' && str[0] != '\0')
2922
                      {
2923
                        unsigned int i, offset;
2924
                        /* If we have no collation data we use the default
2925
                           collation in which each character is in a class
2926
                           by itself.  It also means that ASCII is the
2927
                           character set and therefore we cannot have character
2928
                           with more than one byte in the multibyte
2929
                           representation.  */
2930
 
2931
                        /* If not defined _LIBC, we push the name and
2932
                           `\0' for the sake of matching performance.  */
2933
                        int datasize = c1 + 1;
2934
 
2935
# ifdef _LIBC
2936
                        int32_t idx = 0;
2937
                        if (nrules == 0)
2938
# endif
2939
                          {
2940
                            if (c1 != 1)
2941
                              FREE_STACK_RETURN (REG_ECOLLATE);
2942
                          }
2943
# ifdef _LIBC
2944
                        else
2945
                          {
2946
                            const int32_t *table;
2947
                            const int32_t *weights;
2948
                            const int32_t *extra;
2949
                            const int32_t *indirect;
2950
                            wint_t *cp;
2951
 
2952
                            /* This #include defines a local function!  */
2953
#  include <locale/weightwc.h>
2954
 
2955
                            if(delim == '=')
2956
                              {
2957
                                /* We push the index for equivalence class.  */
2958
                                cp = (wint_t*)str;
2959
 
2960
                                table = (const int32_t *)
2961
                                  _NL_CURRENT (LC_COLLATE,
2962
                                               _NL_COLLATE_TABLEWC);
2963
                                weights = (const int32_t *)
2964
                                  _NL_CURRENT (LC_COLLATE,
2965
                                               _NL_COLLATE_WEIGHTWC);
2966
                                extra = (const int32_t *)
2967
                                  _NL_CURRENT (LC_COLLATE,
2968
                                               _NL_COLLATE_EXTRAWC);
2969
                                indirect = (const int32_t *)
2970
                                  _NL_CURRENT (LC_COLLATE,
2971
                                               _NL_COLLATE_INDIRECTWC);
2972
 
2973
                                idx = findidx ((const wint_t**)&cp);
2974
                                if (idx == 0 || cp < (wint_t*) str + c1)
2975
                                  /* This is no valid character.  */
2976
                                  FREE_STACK_RETURN (REG_ECOLLATE);
2977
 
2978
                                str[0] = (wchar_t)idx;
2979
                              }
2980
                            else /* delim == '.' */
2981
                              {
2982
                                /* We push collation sequence value
2983
                                   for collating symbol.  */
2984
                                int32_t table_size;
2985
                                const int32_t *symb_table;
2986
                                const unsigned char *extra;
2987
                                int32_t idx;
2988
                                int32_t elem;
2989
                                int32_t second;
2990
                                int32_t hash;
2991
                                char char_str[c1];
2992
 
2993
                                /* We have to convert the name to a single-byte
2994
                                   string.  This is possible since the names
2995
                                   consist of ASCII characters and the internal
2996
                                   representation is UCS4.  */
2997
                                for (i = 0; i < c1; ++i)
2998
                                  char_str[i] = str[i];
2999
 
3000
                                table_size =
3001
                                  _NL_CURRENT_WORD (LC_COLLATE,
3002
                                                    _NL_COLLATE_SYMB_HASH_SIZEMB);
3003
                                symb_table = (const int32_t *)
3004
                                  _NL_CURRENT (LC_COLLATE,
3005
                                               _NL_COLLATE_SYMB_TABLEMB);
3006
                                extra = (const unsigned char *)
3007
                                  _NL_CURRENT (LC_COLLATE,
3008
                                               _NL_COLLATE_SYMB_EXTRAMB);
3009
 
3010
                                /* Locate the character in the hashing table.  */
3011
                                hash = elem_hash (char_str, c1);
3012
 
3013
                                idx = 0;
3014
                                elem = hash % table_size;
3015
                                second = hash % (table_size - 2);
3016
                                while (symb_table[2 * elem] != 0)
3017
                                  {
3018
                                    /* First compare the hashing value.  */
3019
                                    if (symb_table[2 * elem] == hash
3020
                                        && c1 == extra[symb_table[2 * elem + 1]]
3021
                                        && memcmp (char_str,
3022
                                                   &extra[symb_table[2 * elem + 1]
3023
                                                         + 1], c1) == 0)
3024
                                      {
3025
                                        /* Yep, this is the entry.  */
3026
                                        idx = symb_table[2 * elem + 1];
3027
                                        idx += 1 + extra[idx];
3028
                                        break;
3029
                                      }
3030
 
3031
                                    /* Next entry.  */
3032
                                    elem += second;
3033
                                  }
3034
 
3035
                                if (symb_table[2 * elem] != 0)
3036
                                  {
3037
                                    /* Compute the index of the byte sequence
3038
                                       in the table.  */
3039
                                    idx += 1 + extra[idx];
3040
                                    /* Adjust for the alignment.  */
3041
                                    idx = (idx + 3) & ~3;
3042
 
3043
                                    str[0] = (wchar_t) idx + 4;
3044
                                  }
3045
                                else if (symb_table[2 * elem] == 0 && c1 == 1)
3046
                                  {
3047
                                    /* No valid character.  Match it as a
3048
                                       single byte character.  */
3049
                                    had_char_class = false;
3050
                                    BUF_PUSH(str[0]);
3051
                                    /* Update the length of characters  */
3052
                                    laststart[5]++;
3053
                                    range_start = str[0];
3054
 
3055
                                    /* Throw away the ] at the end of the
3056
                                       collating symbol.  */
3057
                                    PATFETCH (c);
3058
                                    /* exit from the switch block.  */
3059
                                    continue;
3060
                                  }
3061
                                else
3062
                                  FREE_STACK_RETURN (REG_ECOLLATE);
3063
                              }
3064
                            datasize = 1;
3065
                          }
3066
# endif
3067
                        /* Throw away the ] at the end of the equivalence
3068
                           class (or collating symbol).  */
3069
                        PATFETCH (c);
3070
 
3071
                        /* Allocate the space for the equivalence class
3072
                           (or collating symbol) (and '\0' if needed).  */
3073
                        GET_BUFFER_SPACE(datasize);
3074
                        /* Update the pointer to indicate end of buffer.  */
3075
                        b += datasize;
3076
 
3077
                        if (delim == '=')
3078
                          { /* equivalence class  */
3079
                            /* Calculate the offset of char_ranges,
3080
                               which is next to equivalence_classes.  */
3081
                            offset = laststart[1] + laststart[2]
3082
                              + laststart[3] +6;
3083
                            /* Insert space.  */
3084
                            insert_space(datasize, laststart + offset, b - 1);
3085
 
3086
                            /* Write the equivalence_class and \0.  */
3087
                            for (i = 0 ; i < datasize ; i++)
3088
                              laststart[offset + i] = str[i];
3089
 
3090
                            /* Update the length of equivalence_classes.  */
3091
                            laststart[3] += datasize;
3092
                            had_char_class = true;
3093
                          }
3094
                        else /* delim == '.' */
3095
                          { /* collating symbol  */
3096
                            /* Calculate the offset of the equivalence_classes,
3097
                               which is next to collating_symbols.  */
3098
                            offset = laststart[1] + laststart[2] + 6;
3099
                            /* Insert space and write the collationg_symbol
3100
                               and \0.  */
3101
                            insert_space(datasize, laststart + offset, b-1);
3102
                            for (i = 0 ; i < datasize ; i++)
3103
                              laststart[offset + i] = str[i];
3104
 
3105
                            /* In re_match_2_internal if range_start < -1, we
3106
                               assume -range_start is the offset of the
3107
                               collating symbol which is specified as
3108
                               the character of the range start.  So we assign
3109
                               -(laststart[1] + laststart[2] + 6) to
3110
                               range_start.  */
3111
                            range_start = -(laststart[1] + laststart[2] + 6);
3112
                            /* Update the length of collating_symbol.  */
3113
                            laststart[2] += datasize;
3114
                            had_char_class = false;
3115
                          }
3116
                      }
3117
                    else
3118
                      {
3119
                        c1++;
3120
                        while (c1--)
3121
                          PATUNFETCH;
3122
                        BUF_PUSH ('[');
3123
                        BUF_PUSH (delim);
3124
                        laststart[5] += 2; /* Update the length of characters  */
3125
                        range_start = delim;
3126
                        had_char_class = false;
3127
                      }
3128
                  }
3129
                else
3130
                  {
3131
                    had_char_class = false;
3132
                    BUF_PUSH(c);
3133
                    laststart[5]++;  /* Update the length of characters  */
3134
                    range_start = c;
3135
                  }
3136
              }
3137
 
3138
#else /* BYTE */
3139
            /* Ensure that we have enough space to push a charset: the
3140
               opcode, the length count, and the bitset; 34 bytes in all.  */
3141
            GET_BUFFER_SPACE (34);
3142
 
3143
            laststart = b;
3144
 
3145
            /* We test `*p == '^' twice, instead of using an if
3146
               statement, so we only need one BUF_PUSH.  */
3147
            BUF_PUSH (*p == '^' ? charset_not : charset);
3148
            if (*p == '^')
3149
              p++;
3150
 
3151
            /* Remember the first position in the bracket expression.  */
3152
            p1 = p;
3153
 
3154
            /* Push the number of bytes in the bitmap.  */
3155
            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3156
 
3157
            /* Clear the whole map.  */
3158
            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3159
 
3160
            /* charset_not matches newline according to a syntax bit.  */
3161
            if ((re_opcode_t) b[-2] == charset_not
3162
                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3163
              SET_LIST_BIT ('\n');
3164
 
3165
            /* Read in characters and ranges, setting map bits.  */
3166
            for (;;)
3167
              {
3168
                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3169
 
3170
                PATFETCH (c);
3171
 
3172
                /* \ might escape characters inside [...] and [^...].  */
3173
                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3174
                  {
3175
                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3176
 
3177
                    PATFETCH (c1);
3178
                    SET_LIST_BIT (c1);
3179
                    range_start = c1;
3180
                    continue;
3181
                  }
3182
 
3183
                /* Could be the end of the bracket expression.  If it's
3184
                   not (i.e., when the bracket expression is `[]' so
3185
                   far), the ']' character bit gets set way below.  */
3186
                if (c == ']' && p != p1 + 1)
3187
                  break;
3188
 
3189
                /* Look ahead to see if it's a range when the last thing
3190
                   was a character class.  */
3191
                if (had_char_class && c == '-' && *p != ']')
3192
                  FREE_STACK_RETURN (REG_ERANGE);
3193
 
3194
                /* Look ahead to see if it's a range when the last thing
3195
                   was a character: if this is a hyphen not at the
3196
                   beginning or the end of a list, then it's the range
3197
                   operator.  */
3198
                if (c == '-'
3199
                    && !(p - 2 >= pattern && p[-2] == '[')
3200
                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3201
                    && *p != ']')
3202
                  {
3203
                    reg_errcode_t ret
3204
                      = byte_compile_range (range_start, &p, pend, translate,
3205
                                            syntax, b);
3206
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3207
                    range_start = 0xffffffff;
3208
                  }
3209
 
3210
                else if (p[0] == '-' && p[1] != ']')
3211
                  { /* This handles ranges made up of characters only.  */
3212
                    reg_errcode_t ret;
3213
 
3214
                    /* Move past the `-'.  */
3215
                    PATFETCH (c1);
3216
 
3217
                    ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3218
                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3219
                    range_start = 0xffffffff;
3220
                  }
3221
 
3222
                /* See if we're at the beginning of a possible character
3223
                   class.  */
3224
 
3225
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3226
                  { /* Leave room for the null.  */
3227
                    char str[CHAR_CLASS_MAX_LENGTH + 1];
3228
 
3229
                    PATFETCH (c);
3230
                    c1 = 0;
3231
 
3232
                    /* If pattern is `[[:'.  */
3233
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3234
 
3235
                    for (;;)
3236
                      {
3237
                        PATFETCH (c);
3238
                        if ((c == ':' && *p == ']') || p == pend)
3239
                          break;
3240
                        if (c1 < CHAR_CLASS_MAX_LENGTH)
3241
                          str[c1++] = c;
3242
                        else
3243
                          /* This is in any case an invalid class name.  */
3244
                          str[0] = '\0';
3245
                      }
3246
                    str[c1] = '\0';
3247
 
3248
                    /* If isn't a word bracketed by `[:' and `:]':
3249
                       undo the ending character, the letters, and leave
3250
                       the leading `:' and `[' (but set bits for them).  */
3251
                    if (c == ':' && *p == ']')
3252
                      {
3253
# if defined _LIBC || WIDE_CHAR_SUPPORT
3254
                        boolean is_lower = STREQ (str, "lower");
3255
                        boolean is_upper = STREQ (str, "upper");
3256
                        wctype_t wt;
3257
                        int ch;
3258
 
3259
                        wt = IS_CHAR_CLASS (str);
3260
                        if (wt == 0)
3261
                          FREE_STACK_RETURN (REG_ECTYPE);
3262
 
3263
                        /* Throw away the ] at the end of the character
3264
                           class.  */
3265
                        PATFETCH (c);
3266
 
3267
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3268
 
3269
                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3270
                          {
3271
#  ifdef _LIBC
3272
                            if (__iswctype (__btowc (ch), wt))
3273
                              SET_LIST_BIT (ch);
3274
#  else
3275
                            if (iswctype (btowc (ch), wt))
3276
                              SET_LIST_BIT (ch);
3277
#  endif
3278
 
3279
                            if (translate && (is_upper || is_lower)
3280
                                && (ISUPPER (ch) || ISLOWER (ch)))
3281
                              SET_LIST_BIT (ch);
3282
                          }
3283
 
3284
                        had_char_class = true;
3285
# else
3286
                        int ch;
3287
                        boolean is_alnum = STREQ (str, "alnum");
3288
                        boolean is_alpha = STREQ (str, "alpha");
3289
                        boolean is_blank = STREQ (str, "blank");
3290
                        boolean is_cntrl = STREQ (str, "cntrl");
3291
                        boolean is_digit = STREQ (str, "digit");
3292
                        boolean is_graph = STREQ (str, "graph");
3293
                        boolean is_lower = STREQ (str, "lower");
3294
                        boolean is_print = STREQ (str, "print");
3295
                        boolean is_punct = STREQ (str, "punct");
3296
                        boolean is_space = STREQ (str, "space");
3297
                        boolean is_upper = STREQ (str, "upper");
3298
                        boolean is_xdigit = STREQ (str, "xdigit");
3299
 
3300
                        if (!IS_CHAR_CLASS (str))
3301
                          FREE_STACK_RETURN (REG_ECTYPE);
3302
 
3303
                        /* Throw away the ] at the end of the character
3304
                           class.  */
3305
                        PATFETCH (c);
3306
 
3307
                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3308
 
3309
                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3310
                          {
3311
                            /* This was split into 3 if's to
3312
                               avoid an arbitrary limit in some compiler.  */
3313
                            if (   (is_alnum  && ISALNUM (ch))
3314
                                || (is_alpha  && ISALPHA (ch))
3315
                                || (is_blank  && ISBLANK (ch))
3316
                                || (is_cntrl  && ISCNTRL (ch)))
3317
                              SET_LIST_BIT (ch);
3318
                            if (   (is_digit  && ISDIGIT (ch))
3319
                                || (is_graph  && ISGRAPH (ch))
3320
                                || (is_lower  && ISLOWER (ch))
3321
                                || (is_print  && ISPRINT (ch)))
3322
                              SET_LIST_BIT (ch);
3323
                            if (   (is_punct  && ISPUNCT (ch))
3324
                                || (is_space  && ISSPACE (ch))
3325
                                || (is_upper  && ISUPPER (ch))
3326
                                || (is_xdigit && ISXDIGIT (ch)))
3327
                              SET_LIST_BIT (ch);
3328
                            if (   translate && (is_upper || is_lower)
3329
                                && (ISUPPER (ch) || ISLOWER (ch)))
3330
                              SET_LIST_BIT (ch);
3331
                          }
3332
                        had_char_class = true;
3333
# endif /* libc || wctype.h */
3334
                      }
3335
                    else
3336
                      {
3337
                        c1++;
3338
                        while (c1--)
3339
                          PATUNFETCH;
3340
                        SET_LIST_BIT ('[');
3341
                        SET_LIST_BIT (':');
3342
                        range_start = ':';
3343
                        had_char_class = false;
3344
                      }
3345
                  }
3346
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3347
                  {
3348
                    unsigned char str[MB_LEN_MAX + 1];
3349
# ifdef _LIBC
3350
                    uint32_t nrules =
3351
                      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3352
# endif
3353
 
3354
                    PATFETCH (c);
3355
                    c1 = 0;
3356
 
3357
                    /* If pattern is `[[='.  */
3358
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3359
 
3360
                    for (;;)
3361
                      {
3362
                        PATFETCH (c);
3363
                        if ((c == '=' && *p == ']') || p == pend)
3364
                          break;
3365
                        if (c1 < MB_LEN_MAX)
3366
                          str[c1++] = c;
3367
                        else
3368
                          /* This is in any case an invalid class name.  */
3369
                          str[0] = '\0';
3370
                      }
3371
                    str[c1] = '\0';
3372
 
3373
                    if (c == '=' && *p == ']' && str[0] != '\0')
3374
                      {
3375
                        /* If we have no collation data we use the default
3376
                           collation in which each character is in a class
3377
                           by itself.  It also means that ASCII is the
3378
                           character set and therefore we cannot have character
3379
                           with more than one byte in the multibyte
3380
                           representation.  */
3381
# ifdef _LIBC
3382
                        if (nrules == 0)
3383
# endif
3384
                          {
3385
                            if (c1 != 1)
3386
                              FREE_STACK_RETURN (REG_ECOLLATE);
3387
 
3388
                            /* Throw away the ] at the end of the equivalence
3389
                               class.  */
3390
                            PATFETCH (c);
3391
 
3392
                            /* Set the bit for the character.  */
3393
                            SET_LIST_BIT (str[0]);
3394
                          }
3395
# ifdef _LIBC
3396
                        else
3397
                          {
3398
                            /* Try to match the byte sequence in `str' against
3399
                               those known to the collate implementation.
3400
                               First find out whether the bytes in `str' are
3401
                               actually from exactly one character.  */
3402
                            const int32_t *table;
3403
                            const unsigned char *weights;
3404
                            const unsigned char *extra;
3405
                            const int32_t *indirect;
3406
                            int32_t idx;
3407
                            const unsigned char *cp = str;
3408
                            int ch;
3409
 
3410
                            /* This #include defines a local function!  */
3411
#  include <locale/weight.h>
3412
 
3413
                            table = (const int32_t *)
3414
                              _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3415
                            weights = (const unsigned char *)
3416
                              _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3417
                            extra = (const unsigned char *)
3418
                              _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3419
                            indirect = (const int32_t *)
3420
                              _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3421
 
3422
                            idx = findidx (&cp);
3423
                            if (idx == 0 || cp < str + c1)
3424
                              /* This is no valid character.  */
3425
                              FREE_STACK_RETURN (REG_ECOLLATE);
3426
 
3427
                            /* Throw away the ] at the end of the equivalence
3428
                               class.  */
3429
                            PATFETCH (c);
3430
 
3431
                            /* Now we have to go throught the whole table
3432
                               and find all characters which have the same
3433
                               first level weight.
3434
 
3435
                               XXX Note that this is not entirely correct.
3436
                               we would have to match multibyte sequences
3437
                               but this is not possible with the current
3438
                               implementation.  */
3439
                            for (ch = 1; ch < 256; ++ch)
3440
                              /* XXX This test would have to be changed if we
3441
                                 would allow matching multibyte sequences.  */
3442
                              if (table[ch] > 0)
3443
                                {
3444
                                  int32_t idx2 = table[ch];
3445
                                  size_t len = weights[idx2];
3446
 
3447
                                  /* Test whether the lenghts match.  */
3448
                                  if (weights[idx] == len)
3449
                                    {
3450
                                      /* They do.  New compare the bytes of
3451
                                         the weight.  */
3452
                                      size_t cnt = 0;
3453
 
3454
                                      while (cnt < len
3455
                                             && (weights[idx + 1 + cnt]
3456
                                                 == weights[idx2 + 1 + cnt]))
3457
                                        ++cnt;
3458
 
3459
                                      if (cnt == len)
3460
                                        /* They match.  Mark the character as
3461
                                           acceptable.  */
3462
                                        SET_LIST_BIT (ch);
3463
                                    }
3464
                                }
3465
                          }
3466
# endif
3467
                        had_char_class = true;
3468
                      }
3469
                    else
3470
                      {
3471
                        c1++;
3472
                        while (c1--)
3473
                          PATUNFETCH;
3474
                        SET_LIST_BIT ('[');
3475
                        SET_LIST_BIT ('=');
3476
                        range_start = '=';
3477
                        had_char_class = false;
3478
                      }
3479
                  }
3480
                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3481
                  {
3482
                    unsigned char str[128];     /* Should be large enough.  */
3483
# ifdef _LIBC
3484
                    uint32_t nrules =
3485
                      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3486
# endif
3487
 
3488
                    PATFETCH (c);
3489
                    c1 = 0;
3490
 
3491
                    /* If pattern is `[[.'.  */
3492
                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3493
 
3494
                    for (;;)
3495
                      {
3496
                        PATFETCH (c);
3497
                        if ((c == '.' && *p == ']') || p == pend)
3498
                          break;
3499
                        if (c1 < sizeof (str))
3500
                          str[c1++] = c;
3501
                        else
3502
                          /* This is in any case an invalid class name.  */
3503
                          str[0] = '\0';
3504
                      }
3505
                    str[c1] = '\0';
3506
 
3507
                    if (c == '.' && *p == ']' && str[0] != '\0')
3508
                      {
3509
                        /* If we have no collation data we use the default
3510
                           collation in which each character is the name
3511
                           for its own class which contains only the one
3512
                           character.  It also means that ASCII is the
3513
                           character set and therefore we cannot have character
3514
                           with more than one byte in the multibyte
3515
                           representation.  */
3516
# ifdef _LIBC
3517
                        if (nrules == 0)
3518
# endif
3519
                          {
3520
                            if (c1 != 1)
3521
                              FREE_STACK_RETURN (REG_ECOLLATE);
3522
 
3523
                            /* Throw away the ] at the end of the equivalence
3524
                               class.  */
3525
                            PATFETCH (c);
3526
 
3527
                            /* Set the bit for the character.  */
3528
                            SET_LIST_BIT (str[0]);
3529
                            range_start = ((const unsigned char *) str)[0];
3530
                          }
3531
# ifdef _LIBC
3532
                        else
3533
                          {
3534
                            /* Try to match the byte sequence in `str' against
3535
                               those known to the collate implementation.
3536
                               First find out whether the bytes in `str' are
3537
                               actually from exactly one character.  */
3538
                            int32_t table_size;
3539
                            const int32_t *symb_table;
3540
                            const unsigned char *extra;
3541
                            int32_t idx;
3542
                            int32_t elem;
3543
                            int32_t second;
3544
                            int32_t hash;
3545
 
3546
                            table_size =
3547
                              _NL_CURRENT_WORD (LC_COLLATE,
3548
                                                _NL_COLLATE_SYMB_HASH_SIZEMB);
3549
                            symb_table = (const int32_t *)
3550
                              _NL_CURRENT (LC_COLLATE,
3551
                                           _NL_COLLATE_SYMB_TABLEMB);
3552
                            extra = (const unsigned char *)
3553
                              _NL_CURRENT (LC_COLLATE,
3554
                                           _NL_COLLATE_SYMB_EXTRAMB);
3555
 
3556
                            /* Locate the character in the hashing table.  */
3557
                            hash = elem_hash (str, c1);
3558
 
3559
                            idx = 0;
3560
                            elem = hash % table_size;
3561
                            second = hash % (table_size - 2);
3562
                            while (symb_table[2 * elem] != 0)
3563
                              {
3564
                                /* First compare the hashing value.  */
3565
                                if (symb_table[2 * elem] == hash
3566
                                    && c1 == extra[symb_table[2 * elem + 1]]
3567
                                    && memcmp (str,
3568
                                               &extra[symb_table[2 * elem + 1]
3569
                                                     + 1],
3570
                                               c1) == 0)
3571
                                  {
3572
                                    /* Yep, this is the entry.  */
3573
                                    idx = symb_table[2 * elem + 1];
3574
                                    idx += 1 + extra[idx];
3575
                                    break;
3576
                                  }
3577
 
3578
                                /* Next entry.  */
3579
                                elem += second;
3580
                              }
3581
 
3582
                            if (symb_table[2 * elem] == 0)
3583
                              /* This is no valid character.  */
3584
                              FREE_STACK_RETURN (REG_ECOLLATE);
3585
 
3586
                            /* Throw away the ] at the end of the equivalence
3587
                               class.  */
3588
                            PATFETCH (c);
3589
 
3590
                            /* Now add the multibyte character(s) we found
3591
                               to the accept list.
3592
 
3593
                               XXX Note that this is not entirely correct.
3594
                               we would have to match multibyte sequences
3595
                               but this is not possible with the current
3596
                               implementation.  Also, we have to match
3597
                               collating symbols, which expand to more than
3598
                               one file, as a whole and not allow the
3599
                               individual bytes.  */
3600
                            c1 = extra[idx++];
3601
                            if (c1 == 1)
3602
                              range_start = extra[idx];
3603
                            while (c1-- > 0)
3604
                              {
3605
                                SET_LIST_BIT (extra[idx]);
3606
                                ++idx;
3607
                              }
3608
                          }
3609
# endif
3610
                        had_char_class = false;
3611
                      }
3612
                    else
3613
                      {
3614
                        c1++;
3615
                        while (c1--)
3616
                          PATUNFETCH;
3617
                        SET_LIST_BIT ('[');
3618
                        SET_LIST_BIT ('.');
3619
                        range_start = '.';
3620
                        had_char_class = false;
3621
                      }
3622
                  }
3623
                else
3624
                  {
3625
                    had_char_class = false;
3626
                    SET_LIST_BIT (c);
3627
                    range_start = c;
3628
                  }
3629
              }
3630
 
3631
            /* Discard any (non)matching list bytes that are all 0 at the
3632
               end of the map.  Decrease the map-length byte too.  */
3633
            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3634
              b[-1]--;
3635
            b += b[-1];
3636
#endif /* WCHAR */
3637
          }
3638
          break;
3639
 
3640
 
3641
        case '(':
3642
          if (syntax & RE_NO_BK_PARENS)
3643
            goto handle_open;
3644
          else
3645
            goto normal_char;
3646
 
3647
 
3648
        case ')':
3649
          if (syntax & RE_NO_BK_PARENS)
3650
            goto handle_close;
3651
          else
3652
            goto normal_char;
3653
 
3654
 
3655
        case '\n':
3656
          if (syntax & RE_NEWLINE_ALT)
3657
            goto handle_alt;
3658
          else
3659
            goto normal_char;
3660
 
3661
 
3662
        case '|':
3663
          if (syntax & RE_NO_BK_VBAR)
3664
            goto handle_alt;
3665
          else
3666
            goto normal_char;
3667
 
3668
 
3669
        case '{':
3670
           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3671
             goto handle_interval;
3672
           else
3673
             goto normal_char;
3674
 
3675
 
3676
        case '\\':
3677
          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3678
 
3679
          /* Do not translate the character after the \, so that we can
3680
             distinguish, e.g., \B from \b, even if we normally would
3681
             translate, e.g., B to b.  */
3682
          PATFETCH_RAW (c);
3683
 
3684
          switch (c)
3685
            {
3686
            case '(':
3687
              if (syntax & RE_NO_BK_PARENS)
3688
                goto normal_backslash;
3689
 
3690
            handle_open:
3691
              bufp->re_nsub++;
3692
              regnum++;
3693
 
3694
              if (COMPILE_STACK_FULL)
3695
                {
3696
                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
3697
                            compile_stack_elt_t);
3698
                  if (compile_stack.stack == NULL) return REG_ESPACE;
3699
 
3700
                  compile_stack.size <<= 1;
3701
                }
3702
 
3703
              /* These are the values to restore when we hit end of this
3704
                 group.  They are all relative offsets, so that if the
3705
                 whole pattern moves because of realloc, they will still
3706
                 be valid.  */
3707
              COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3708
              COMPILE_STACK_TOP.fixup_alt_jump
3709
                = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3710
              COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3711
              COMPILE_STACK_TOP.regnum = regnum;
3712
 
3713
              /* We will eventually replace the 0 with the number of
3714
                 groups inner to this one.  But do not push a
3715
                 start_memory for groups beyond the last one we can
3716
                 represent in the compiled pattern.  */
3717
              if (regnum <= MAX_REGNUM)
3718
                {
3719
                  COMPILE_STACK_TOP.inner_group_offset = b
3720
                    - COMPILED_BUFFER_VAR + 2;
3721
                  BUF_PUSH_3 (start_memory, regnum, 0);
3722
                }
3723
 
3724
              compile_stack.avail++;
3725
 
3726
              fixup_alt_jump = 0;
3727
              laststart = 0;
3728
              begalt = b;
3729
              /* If we've reached MAX_REGNUM groups, then this open
3730
                 won't actually generate any code, so we'll have to
3731
                 clear pending_exact explicitly.  */
3732
              pending_exact = 0;
3733
              break;
3734
 
3735
 
3736
            case ')':
3737
              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3738
 
3739
              if (COMPILE_STACK_EMPTY)
3740
                {
3741
                  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3742
                    goto normal_backslash;
3743
                  else
3744
                    FREE_STACK_RETURN (REG_ERPAREN);
3745
                }
3746
 
3747
            handle_close:
3748
              if (fixup_alt_jump)
3749
                { /* Push a dummy failure point at the end of the
3750
                     alternative for a possible future
3751
                     `pop_failure_jump' to pop.  See comments at
3752
                     `push_dummy_failure' in `re_match_2'.  */
3753
                  BUF_PUSH (push_dummy_failure);
3754
 
3755
                  /* We allocated space for this jump when we assigned
3756
                     to `fixup_alt_jump', in the `handle_alt' case below.  */
3757
                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3758
                }
3759
 
3760
              /* See similar code for backslashed left paren above.  */
3761
              if (COMPILE_STACK_EMPTY)
3762
                {
3763
                  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3764
                    goto normal_char;
3765
                  else
3766
                    FREE_STACK_RETURN (REG_ERPAREN);
3767
                }
3768
 
3769
              /* Since we just checked for an empty stack above, this
3770
                 ``can't happen''.  */
3771
              assert (compile_stack.avail != 0);
3772
              {
3773
                /* We don't just want to restore into `regnum', because
3774
                   later groups should continue to be numbered higher,
3775
                   as in `(ab)c(de)' -- the second group is #2.  */
3776
                regnum_t this_group_regnum;
3777
 
3778
                compile_stack.avail--;
3779
                begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3780
                fixup_alt_jump
3781
                  = COMPILE_STACK_TOP.fixup_alt_jump
3782
                    ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3783
                    : 0;
3784
                laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3785
                this_group_regnum = COMPILE_STACK_TOP.regnum;
3786
                /* If we've reached MAX_REGNUM groups, then this open
3787
                   won't actually generate any code, so we'll have to
3788
                   clear pending_exact explicitly.  */
3789
                pending_exact = 0;
3790
 
3791
                /* We're at the end of the group, so now we know how many
3792
                   groups were inside this one.  */
3793
                if (this_group_regnum <= MAX_REGNUM)
3794
                  {
3795
                    UCHAR_T *inner_group_loc
3796
                      = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3797
 
3798
                    *inner_group_loc = regnum - this_group_regnum;
3799
                    BUF_PUSH_3 (stop_memory, this_group_regnum,
3800
                                regnum - this_group_regnum);
3801
                  }
3802
              }
3803
              break;
3804
 
3805
 
3806
            case '|':                                   /* `\|'.  */
3807
              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3808
                goto normal_backslash;
3809
            handle_alt:
3810
              if (syntax & RE_LIMITED_OPS)
3811
                goto normal_char;
3812
 
3813
              /* Insert before the previous alternative a jump which
3814
                 jumps to this alternative if the former fails.  */
3815
              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3816
              INSERT_JUMP (on_failure_jump, begalt,
3817
                           b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3818
              pending_exact = 0;
3819
              b += 1 + OFFSET_ADDRESS_SIZE;
3820
 
3821
              /* The alternative before this one has a jump after it
3822
                 which gets executed if it gets matched.  Adjust that
3823
                 jump so it will jump to this alternative's analogous
3824
                 jump (put in below, which in turn will jump to the next
3825
                 (if any) alternative's such jump, etc.).  The last such
3826
                 jump jumps to the correct final destination.  A picture:
3827
                          _____ _____
3828
                          |   | |   |
3829
                          |   v |   v
3830
                         a | b   | c
3831
 
3832
                 If we are at `b', then fixup_alt_jump right now points to a
3833
                 three-byte space after `a'.  We'll put in the jump, set
3834
                 fixup_alt_jump to right after `b', and leave behind three
3835
                 bytes which we'll fill in when we get to after `c'.  */
3836
 
3837
              if (fixup_alt_jump)
3838
                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3839
 
3840
              /* Mark and leave space for a jump after this alternative,
3841
                 to be filled in later either by next alternative or
3842
                 when know we're at the end of a series of alternatives.  */
3843
              fixup_alt_jump = b;
3844
              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3845
              b += 1 + OFFSET_ADDRESS_SIZE;
3846
 
3847
              laststart = 0;
3848
              begalt = b;
3849
              break;
3850
 
3851
 
3852
            case '{':
3853
              /* If \{ is a literal.  */
3854
              if (!(syntax & RE_INTERVALS)
3855
                     /* If we're at `\{' and it's not the open-interval
3856
                        operator.  */
3857
                  || (syntax & RE_NO_BK_BRACES))
3858
                goto normal_backslash;
3859
 
3860
            handle_interval:
3861
              {
3862
                /* If got here, then the syntax allows intervals.  */
3863
 
3864
                /* At least (most) this many matches must be made.  */
3865
                int lower_bound = -1, upper_bound = -1;
3866
 
3867
                /* Place in the uncompiled pattern (i.e., just after
3868
                   the '{') to go back to if the interval is invalid.  */
3869
                const CHAR_T *beg_interval = p;
3870
 
3871
                if (p == pend)
3872
                  goto invalid_interval;
3873
 
3874
                GET_UNSIGNED_NUMBER (lower_bound);
3875
 
3876
                if (c == ',')
3877
                  {
3878
                    GET_UNSIGNED_NUMBER (upper_bound);
3879
                    if (upper_bound < 0)
3880
                      upper_bound = RE_DUP_MAX;
3881
                  }
3882
                else
3883
                  /* Interval such as `{1}' => match exactly once. */
3884
                  upper_bound = lower_bound;
3885
 
3886
                if (! (0 <= lower_bound && lower_bound <= upper_bound))
3887
                  goto invalid_interval;
3888
 
3889
                if (!(syntax & RE_NO_BK_BRACES))
3890
                  {
3891
                    if (c != '\\' || p == pend)
3892
                      goto invalid_interval;
3893
                    PATFETCH (c);
3894
                  }
3895
 
3896
                if (c != '}')
3897
                  goto invalid_interval;
3898
 
3899
                /* If it's invalid to have no preceding re.  */
3900
                if (!laststart)
3901
                  {
3902
                    if (syntax & RE_CONTEXT_INVALID_OPS
3903
                        && !(syntax & RE_INVALID_INTERVAL_ORD))
3904
                      FREE_STACK_RETURN (REG_BADRPT);
3905
                    else if (syntax & RE_CONTEXT_INDEP_OPS)
3906
                      laststart = b;
3907
                    else
3908
                      goto unfetch_interval;
3909
                  }
3910
 
3911
                /* We just parsed a valid interval.  */
3912
 
3913
                if (RE_DUP_MAX < upper_bound)
3914
                  FREE_STACK_RETURN (REG_BADBR);
3915
 
3916
                /* If the upper bound is zero, don't want to succeed at
3917
                   all; jump from `laststart' to `b + 3', which will be
3918
                   the end of the buffer after we insert the jump.  */
3919
                /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3920
                   instead of 'b + 3'.  */
3921
                 if (upper_bound == 0)
3922
                   {
3923
                     GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3924
                     INSERT_JUMP (jump, laststart, b + 1
3925
                                  + OFFSET_ADDRESS_SIZE);
3926
                     b += 1 + OFFSET_ADDRESS_SIZE;
3927
                   }
3928
 
3929
                 /* Otherwise, we have a nontrivial interval.  When
3930
                    we're all done, the pattern will look like:
3931
                      set_number_at <jump count> <upper bound>
3932
                      set_number_at <succeed_n count> <lower bound>
3933
                      succeed_n <after jump addr> <succeed_n count>
3934
                      <body of loop>
3935
                      jump_n <succeed_n addr> <jump count>
3936
                    (The upper bound and `jump_n' are omitted if
3937
                    `upper_bound' is 1, though.)  */
3938
                 else
3939
                   { /* If the upper bound is > 1, we need to insert
3940
                        more at the end of the loop.  */
3941
                     unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3942
                       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3943
 
3944
                     GET_BUFFER_SPACE (nbytes);
3945
 
3946
                     /* Initialize lower bound of the `succeed_n', even
3947
                        though it will be set during matching by its
3948
                        attendant `set_number_at' (inserted next),
3949
                        because `re_compile_fastmap' needs to know.
3950
                        Jump to the `jump_n' we might insert below.  */
3951
                     INSERT_JUMP2 (succeed_n, laststart,
3952
                                   b + 1 + 2 * OFFSET_ADDRESS_SIZE
3953
                                   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3954
                                   , lower_bound);
3955
                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3956
 
3957
                     /* Code to initialize the lower bound.  Insert
3958
                        before the `succeed_n'.  The `5' is the last two
3959
                        bytes of this `set_number_at', plus 3 bytes of
3960
                        the following `succeed_n'.  */
3961
                     /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3962
                        is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3963
                        of the following `succeed_n'.  */
3964
                     PREFIX(insert_op2) (set_number_at, laststart, 1
3965
                                 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3966
                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3967
 
3968
                     if (upper_bound > 1)
3969
                       { /* More than one repetition is allowed, so
3970
                            append a backward jump to the `succeed_n'
3971
                            that starts this interval.
3972
 
3973
                            When we've reached this during matching,
3974
                            we'll have matched the interval once, so
3975
                            jump back only `upper_bound - 1' times.  */
3976
                         STORE_JUMP2 (jump_n, b, laststart
3977
                                      + 2 * OFFSET_ADDRESS_SIZE + 1,
3978
                                      upper_bound - 1);
3979
                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3980
 
3981
                         /* The location we want to set is the second
3982
                            parameter of the `jump_n'; that is `b-2' as
3983
                            an absolute address.  `laststart' will be
3984
                            the `set_number_at' we're about to insert;
3985
                            `laststart+3' the number to set, the source
3986
                            for the relative address.  But we are
3987
                            inserting into the middle of the pattern --
3988
                            so everything is getting moved up by 5.
3989
                            Conclusion: (b - 2) - (laststart + 3) + 5,
3990
                            i.e., b - laststart.
3991
 
3992
                            We insert this at the beginning of the loop
3993
                            so that if we fail during matching, we'll
3994
                            reinitialize the bounds.  */
3995
                         PREFIX(insert_op2) (set_number_at, laststart,
3996
                                             b - laststart,
3997
                                             upper_bound - 1, b);
3998
                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3999
                       }
4000
                   }
4001
                pending_exact = 0;
4002
                break;
4003
 
4004
              invalid_interval:
4005
                if (!(syntax & RE_INVALID_INTERVAL_ORD))
4006
                  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
4007
              unfetch_interval:
4008
                /* Match the characters as literals.  */
4009
                p = beg_interval;
4010
                c = '{';
4011
                if (syntax & RE_NO_BK_BRACES)
4012
                  goto normal_char;
4013
                else
4014
                  goto normal_backslash;
4015
              }
4016
 
4017
#ifdef emacs
4018
            /* There is no way to specify the before_dot and after_dot
4019
               operators.  rms says this is ok.  --karl  */
4020
            case '=':
4021
              BUF_PUSH (at_dot);
4022
              break;
4023
 
4024
            case 's':
4025
              laststart = b;
4026
              PATFETCH (c);
4027
              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
4028
              break;
4029
 
4030
            case 'S':
4031
              laststart = b;
4032
              PATFETCH (c);
4033
              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4034
              break;
4035
#endif /* emacs */
4036
 
4037
 
4038
            case 'w':
4039
              if (syntax & RE_NO_GNU_OPS)
4040
                goto normal_char;
4041
              laststart = b;
4042
              BUF_PUSH (wordchar);
4043
              break;
4044
 
4045
 
4046
            case 'W':
4047
              if (syntax & RE_NO_GNU_OPS)
4048
                goto normal_char;
4049
              laststart = b;
4050
              BUF_PUSH (notwordchar);
4051
              break;
4052
 
4053
 
4054
            case '<':
4055
              if (syntax & RE_NO_GNU_OPS)
4056
                goto normal_char;
4057
              BUF_PUSH (wordbeg);
4058
              break;
4059
 
4060
            case '>':
4061
              if (syntax & RE_NO_GNU_OPS)
4062
                goto normal_char;
4063
              BUF_PUSH (wordend);
4064
              break;
4065
 
4066
            case 'b':
4067
              if (syntax & RE_NO_GNU_OPS)
4068
                goto normal_char;
4069
              BUF_PUSH (wordbound);
4070
              break;
4071
 
4072
            case 'B':
4073
              if (syntax & RE_NO_GNU_OPS)
4074
                goto normal_char;
4075
              BUF_PUSH (notwordbound);
4076
              break;
4077
 
4078
            case '`':
4079
              if (syntax & RE_NO_GNU_OPS)
4080
                goto normal_char;
4081
              BUF_PUSH (begbuf);
4082
              break;
4083
 
4084
            case '\'':
4085
              if (syntax & RE_NO_GNU_OPS)
4086
                goto normal_char;
4087
              BUF_PUSH (endbuf);
4088
              break;
4089
 
4090
            case '1': case '2': case '3': case '4': case '5':
4091
            case '6': case '7': case '8': case '9':
4092
              if (syntax & RE_NO_BK_REFS)
4093
                goto normal_char;
4094
 
4095
              c1 = c - '0';
4096
 
4097
              if (c1 > regnum)
4098
                FREE_STACK_RETURN (REG_ESUBREG);
4099
 
4100
              /* Can't back reference to a subexpression if inside of it.  */
4101
              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4102
                goto normal_char;
4103
 
4104
              laststart = b;
4105
              BUF_PUSH_2 (duplicate, c1);
4106
              break;
4107
 
4108
 
4109
            case '+':
4110
            case '?':
4111
              if (syntax & RE_BK_PLUS_QM)
4112
                goto handle_plus;
4113
              else
4114
                goto normal_backslash;
4115
 
4116
            default:
4117
            normal_backslash:
4118
              /* You might think it would be useful for \ to mean
4119
                 not to translate; but if we don't translate it
4120
                 it will never match anything.  */
4121
              c = TRANSLATE (c);
4122
              goto normal_char;
4123
            }
4124
          break;
4125
 
4126
 
4127
        default:
4128
        /* Expects the character in `c'.  */
4129
        normal_char:
4130
              /* If no exactn currently being built.  */
4131
          if (!pending_exact
4132
#ifdef WCHAR
4133
              /* If last exactn handle binary(or character) and
4134
                 new exactn handle character(or binary).  */
4135
              || is_exactn_bin != is_binary[p - 1 - pattern]
4136
#endif /* WCHAR */
4137
 
4138
              /* If last exactn not at current position.  */
4139
              || pending_exact + *pending_exact + 1 != b
4140
 
4141
              /* We have only one byte following the exactn for the count.  */
4142
              || *pending_exact == (1 << BYTEWIDTH) - 1
4143
 
4144
              /* If followed by a repetition operator.  */
4145
              || *p == '*' || *p == '^'
4146
              || ((syntax & RE_BK_PLUS_QM)
4147
                  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4148
                  : (*p == '+' || *p == '?'))
4149
              || ((syntax & RE_INTERVALS)
4150
                  && ((syntax & RE_NO_BK_BRACES)
4151
                      ? *p == '{'
4152
                      : (p[0] == '\\' && p[1] == '{'))))
4153
            {
4154
              /* Start building a new exactn.  */
4155
 
4156
              laststart = b;
4157
 
4158
#ifdef WCHAR
4159
              /* Is this exactn binary data or character? */
4160
              is_exactn_bin = is_binary[p - 1 - pattern];
4161
              if (is_exactn_bin)
4162
                  BUF_PUSH_2 (exactn_bin, 0);
4163
              else
4164
                  BUF_PUSH_2 (exactn, 0);
4165
#else
4166
              BUF_PUSH_2 (exactn, 0);
4167
#endif /* WCHAR */
4168
              pending_exact = b - 1;
4169
            }
4170
 
4171
          BUF_PUSH (c);
4172
          (*pending_exact)++;
4173
          break;
4174
        } /* switch (c) */
4175
    } /* while p != pend */
4176
 
4177
 
4178
  /* Through the pattern now.  */
4179
 
4180
  if (fixup_alt_jump)
4181
    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4182
 
4183
  if (!COMPILE_STACK_EMPTY)
4184
    FREE_STACK_RETURN (REG_EPAREN);
4185
 
4186
  /* If we don't want backtracking, force success
4187
     the first time we reach the end of the compiled pattern.  */
4188
  if (syntax & RE_NO_POSIX_BACKTRACKING)
4189
    BUF_PUSH (succeed);
4190
 
4191
#ifdef WCHAR
4192
  free (pattern);
4193
  free (mbs_offset);
4194
  free (is_binary);
4195
#endif
4196
  free (compile_stack.stack);
4197
 
4198
  /* We have succeeded; set the length of the buffer.  */
4199
#ifdef WCHAR
4200
  bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4201
#else
4202
  bufp->used = b - bufp->buffer;
4203
#endif
4204
 
4205
#ifdef DEBUG
4206
  if (debug)
4207
    {
4208
      DEBUG_PRINT1 ("\nCompiled pattern: \n");
4209
      PREFIX(print_compiled_pattern) (bufp);
4210
    }
4211
#endif /* DEBUG */
4212
 
4213
#ifndef MATCH_MAY_ALLOCATE
4214
  /* Initialize the failure stack to the largest possible stack.  This
4215
     isn't necessary unless we're trying to avoid calling alloca in
4216
     the search and match routines.  */
4217
  {
4218
    int num_regs = bufp->re_nsub + 1;
4219
 
4220
    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4221
       is strictly greater than re_max_failures, the largest possible stack
4222
       is 2 * re_max_failures failure points.  */
4223
    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4224
      {
4225
        fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4226
 
4227
# ifdef emacs
4228
        if (! fail_stack.stack)
4229
          fail_stack.stack
4230
            = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4231
                                    * sizeof (PREFIX(fail_stack_elt_t)));
4232
        else
4233
          fail_stack.stack
4234
            = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4235
                                     (fail_stack.size
4236
                                      * sizeof (PREFIX(fail_stack_elt_t))));
4237
# else /* not emacs */
4238
        if (! fail_stack.stack)
4239
          fail_stack.stack
4240
            = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4241
                                   * sizeof (PREFIX(fail_stack_elt_t)));
4242
        else
4243
          fail_stack.stack
4244
            = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4245
                                            (fail_stack.size
4246
                                     * sizeof (PREFIX(fail_stack_elt_t))));
4247
# endif /* not emacs */
4248
      }
4249
 
4250
   PREFIX(regex_grow_registers) (num_regs);
4251
  }
4252
#endif /* not MATCH_MAY_ALLOCATE */
4253
 
4254
  return REG_NOERROR;
4255
} /* regex_compile */
4256
 
4257
/* Subroutines for `regex_compile'.  */
4258
 
4259
/* Store OP at LOC followed by two-byte integer parameter ARG.  */
4260
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4261
 
4262
static void
4263
PREFIX(store_op1) (op, loc, arg)
4264
    re_opcode_t op;
4265
    UCHAR_T *loc;
4266
    int arg;
4267
{
4268
  *loc = (UCHAR_T) op;
4269
  STORE_NUMBER (loc + 1, arg);
4270
}
4271
 
4272
 
4273
/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4274
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4275
 
4276
static void
4277
PREFIX(store_op2) (op, loc, arg1, arg2)
4278
    re_opcode_t op;
4279
    UCHAR_T *loc;
4280
    int arg1, arg2;
4281
{
4282
  *loc = (UCHAR_T) op;
4283
  STORE_NUMBER (loc + 1, arg1);
4284
  STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4285
}
4286
 
4287
 
4288
/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4289
   for OP followed by two-byte integer parameter ARG.  */
4290
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4291
 
4292
static void
4293
PREFIX(insert_op1) (op, loc, arg, end)
4294
    re_opcode_t op;
4295
    UCHAR_T *loc;
4296
    int arg;
4297
    UCHAR_T *end;
4298
{
4299
  register UCHAR_T *pfrom = end;
4300
  register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4301
 
4302
  while (pfrom != loc)
4303
    *--pto = *--pfrom;
4304
 
4305
  PREFIX(store_op1) (op, loc, arg);
4306
}
4307
 
4308
 
4309
/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4310
/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4311
 
4312
static void
4313
PREFIX(insert_op2) (op, loc, arg1, arg2, end)
4314
    re_opcode_t op;
4315
    UCHAR_T *loc;
4316
    int arg1, arg2;
4317
    UCHAR_T *end;
4318
{
4319
  register UCHAR_T *pfrom = end;
4320
  register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4321
 
4322
  while (pfrom != loc)
4323
    *--pto = *--pfrom;
4324
 
4325
  PREFIX(store_op2) (op, loc, arg1, arg2);
4326
}
4327
 
4328
 
4329
/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4330
   after an alternative or a begin-subexpression.  We assume there is at
4331
   least one character before the ^.  */
4332
 
4333
static boolean
4334
PREFIX(at_begline_loc_p) (pattern, p, syntax)
4335
    const CHAR_T *pattern, *p;
4336
    reg_syntax_t syntax;
4337
{
4338
  const CHAR_T *prev = p - 2;
4339
  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4340
 
4341
  return
4342
       /* After a subexpression?  */
4343
       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4344
       /* After an alternative?  */
4345
    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4346
}
4347
 
4348
 
4349
/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4350
   at least one character after the $, i.e., `P < PEND'.  */
4351
 
4352
static boolean
4353
PREFIX(at_endline_loc_p) (p, pend, syntax)
4354
    const CHAR_T *p, *pend;
4355
    reg_syntax_t syntax;
4356
{
4357
  const CHAR_T *next = p;
4358
  boolean next_backslash = *next == '\\';
4359
  const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4360
 
4361
  return
4362
       /* Before a subexpression?  */
4363
       (syntax & RE_NO_BK_PARENS ? *next == ')'
4364
        : next_backslash && next_next && *next_next == ')')
4365
       /* Before an alternative?  */
4366
    || (syntax & RE_NO_BK_VBAR ? *next == '|'
4367
        : next_backslash && next_next && *next_next == '|');
4368
}
4369
 
4370
#else /* not INSIDE_RECURSION */
4371
 
4372
/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4373
   false if it's not.  */
4374
 
4375
static boolean
4376
group_in_compile_stack (compile_stack, regnum)
4377
    compile_stack_type compile_stack;
4378
    regnum_t regnum;
4379
{
4380
  int this_element;
4381
 
4382
  for (this_element = compile_stack.avail - 1;
4383
       this_element >= 0;
4384
       this_element--)
4385
    if (compile_stack.stack[this_element].regnum == regnum)
4386
      return true;
4387
 
4388
  return false;
4389
}
4390
#endif /* not INSIDE_RECURSION */
4391
 
4392
#ifdef INSIDE_RECURSION
4393
 
4394
#ifdef WCHAR
4395
/* This insert space, which size is "num", into the pattern at "loc".
4396
   "end" must point the end of the allocated buffer.  */
4397
static void
4398
insert_space (num, loc, end)
4399
     int num;
4400
     CHAR_T *loc;
4401
     CHAR_T *end;
4402
{
4403
  register CHAR_T *pto = end;
4404
  register CHAR_T *pfrom = end - num;
4405
 
4406
  while (pfrom >= loc)
4407
    *pto-- = *pfrom--;
4408
}
4409
#endif /* WCHAR */
4410
 
4411
#ifdef WCHAR
4412
static reg_errcode_t
4413
wcs_compile_range (range_start_char, p_ptr, pend, translate, syntax, b,
4414
                   char_set)
4415
     CHAR_T range_start_char;
4416
     const CHAR_T **p_ptr, *pend;
4417
     CHAR_T *char_set, *b;
4418
     RE_TRANSLATE_TYPE translate;
4419
     reg_syntax_t syntax;
4420
{
4421
  const CHAR_T *p = *p_ptr;
4422
  CHAR_T range_start, range_end;
4423
  reg_errcode_t ret;
4424
# ifdef _LIBC
4425
  uint32_t nrules;
4426
  uint32_t start_val, end_val;
4427
# endif
4428
  if (p == pend)
4429
    return REG_ERANGE;
4430
 
4431
# ifdef _LIBC
4432
  nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4433
  if (nrules != 0)
4434
    {
4435
      const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4436
                                                       _NL_COLLATE_COLLSEQWC);
4437
      const unsigned char *extra = (const unsigned char *)
4438
        _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4439
 
4440
      if (range_start_char < -1)
4441
        {
4442
          /* range_start is a collating symbol.  */
4443
          int32_t *wextra;
4444
          /* Retreive the index and get collation sequence value.  */
4445
          wextra = (int32_t*)(extra + char_set[-range_start_char]);
4446
          start_val = wextra[1 + *wextra];
4447
        }
4448
      else
4449
        start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4450
 
4451
      end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4452
 
4453
      /* Report an error if the range is empty and the syntax prohibits
4454
         this.  */
4455
      ret = ((syntax & RE_NO_EMPTY_RANGES)
4456
             && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4457
 
4458
      /* Insert space to the end of the char_ranges.  */
4459
      insert_space(2, b - char_set[5] - 2, b - 1);
4460
      *(b - char_set[5] - 2) = (wchar_t)start_val;
4461
      *(b - char_set[5] - 1) = (wchar_t)end_val;
4462
      char_set[4]++; /* ranges_index */
4463
    }
4464
  else
4465
# endif
4466
    {
4467
      range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4468
        range_start_char;
4469
      range_end = TRANSLATE (p[0]);
4470
      /* Report an error if the range is empty and the syntax prohibits
4471
         this.  */
4472
      ret = ((syntax & RE_NO_EMPTY_RANGES)
4473
             && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4474
 
4475
      /* Insert space to the end of the char_ranges.  */
4476
      insert_space(2, b - char_set[5] - 2, b - 1);
4477
      *(b - char_set[5] - 2) = range_start;
4478
      *(b - char_set[5] - 1) = range_end;
4479
      char_set[4]++; /* ranges_index */
4480
    }
4481
  /* Have to increment the pointer into the pattern string, so the
4482
     caller isn't still at the ending character.  */
4483
  (*p_ptr)++;
4484
 
4485
  return ret;
4486
}
4487
#else /* BYTE */
4488
/* Read the ending character of a range (in a bracket expression) from the
4489
   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4490
   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4491
   Then we set the translation of all bits between the starting and
4492
   ending characters (inclusive) in the compiled pattern B.
4493
 
4494
   Return an error code.
4495
 
4496
   We use these short variable names so we can use the same macros as
4497
   `regex_compile' itself.  */
4498
 
4499
static reg_errcode_t
4500
byte_compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
4501
     unsigned int range_start_char;
4502
     const char **p_ptr, *pend;
4503
     RE_TRANSLATE_TYPE translate;
4504
     reg_syntax_t syntax;
4505
     unsigned char *b;
4506
{
4507
  unsigned this_char;
4508
  const char *p = *p_ptr;
4509
  reg_errcode_t ret;
4510
# if _LIBC
4511
  const unsigned char *collseq;
4512
  unsigned int start_colseq;
4513
  unsigned int end_colseq;
4514
# else
4515
  unsigned end_char;
4516
# endif
4517
 
4518
  if (p == pend)
4519
    return REG_ERANGE;
4520
 
4521
  /* Have to increment the pointer into the pattern string, so the
4522
     caller isn't still at the ending character.  */
4523
  (*p_ptr)++;
4524
 
4525
  /* Report an error if the range is empty and the syntax prohibits this.  */
4526
  ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4527
 
4528
# if _LIBC
4529
  collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4530
                                                 _NL_COLLATE_COLLSEQMB);
4531
 
4532
  start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4533
  end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4534
  for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4535
    {
4536
      unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4537
 
4538
      if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4539
        {
4540
          SET_LIST_BIT (TRANSLATE (this_char));
4541
          ret = REG_NOERROR;
4542
        }
4543
    }
4544
# else
4545
  /* Here we see why `this_char' has to be larger than an `unsigned
4546
     char' -- we would otherwise go into an infinite loop, since all
4547
     characters <= 0xff.  */
4548
  range_start_char = TRANSLATE (range_start_char);
4549
  /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4550
     and some compilers cast it to int implicitly, so following for_loop
4551
     may fall to (almost) infinite loop.
4552
     e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4553
     To avoid this, we cast p[0] to unsigned int and truncate it.  */
4554
  end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4555
 
4556
  for (this_char = range_start_char; this_char <= end_char; ++this_char)
4557
    {
4558
      SET_LIST_BIT (TRANSLATE (this_char));
4559
      ret = REG_NOERROR;
4560
    }
4561
# endif
4562
 
4563
  return ret;
4564
}
4565
#endif /* WCHAR */
4566
 
4567
/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4568
   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4569
   characters can start a string that matches the pattern.  This fastmap
4570
   is used by re_search to skip quickly over impossible starting points.
4571
 
4572
   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4573
   area as BUFP->fastmap.
4574
 
4575
   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4576
   the pattern buffer.
4577
 
4578
   Returns 0 if we succeed, -2 if an internal error.   */
4579
 
4580
#ifdef WCHAR
4581
/* local function for re_compile_fastmap.
4582
   truncate wchar_t character to char.  */
4583
static unsigned char truncate_wchar (CHAR_T c);
4584
 
4585
static unsigned char
4586
truncate_wchar (c)
4587
     CHAR_T c;
4588
{
4589
  unsigned char buf[MB_CUR_MAX];
4590
  mbstate_t state;
4591
  int retval;
4592
  memset (&state, '\0', sizeof (state));
4593
# ifdef _LIBC
4594
  retval = __wcrtomb (buf, c, &state);
4595
# else
4596
  retval = wcrtomb (buf, c, &state);
4597
# endif
4598
  return retval > 0 ? buf[0] : (unsigned char) c;
4599
}
4600
#endif /* WCHAR */
4601
 
4602
static int
4603
PREFIX(re_compile_fastmap) (bufp)
4604
     struct re_pattern_buffer *bufp;
4605
{
4606
  int j, k;
4607
#ifdef MATCH_MAY_ALLOCATE
4608
  PREFIX(fail_stack_type) fail_stack;
4609
#endif
4610
#ifndef REGEX_MALLOC
4611
  char *destination;
4612
#endif
4613
 
4614
  register char *fastmap = bufp->fastmap;
4615
 
4616
#ifdef WCHAR
4617
  /* We need to cast pattern to (wchar_t*), because we casted this compiled
4618
     pattern to (char*) in regex_compile.  */
4619
  UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4620
  register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4621
#else /* BYTE */
4622
  UCHAR_T *pattern = bufp->buffer;
4623
  register UCHAR_T *pend = pattern + bufp->used;
4624
#endif /* WCHAR */
4625
  UCHAR_T *p = pattern;
4626
 
4627
#ifdef REL_ALLOC
4628
  /* This holds the pointer to the failure stack, when
4629
     it is allocated relocatably.  */
4630
  fail_stack_elt_t *failure_stack_ptr;
4631
#endif
4632
 
4633
  /* Assume that each path through the pattern can be null until
4634
     proven otherwise.  We set this false at the bottom of switch
4635
     statement, to which we get only if a particular path doesn't
4636
     match the empty string.  */
4637
  boolean path_can_be_null = true;
4638
 
4639
  /* We aren't doing a `succeed_n' to begin with.  */
4640
  boolean succeed_n_p = false;
4641
 
4642
  assert (fastmap != NULL && p != NULL);
4643
 
4644
  INIT_FAIL_STACK ();
4645
  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4646
  bufp->fastmap_accurate = 1;       /* It will be when we're done.  */
4647
  bufp->can_be_null = 0;
4648
 
4649
  while (1)
4650
    {
4651
      if (p == pend || *p == succeed)
4652
        {
4653
          /* We have reached the (effective) end of pattern.  */
4654
          if (!FAIL_STACK_EMPTY ())
4655
            {
4656
              bufp->can_be_null |= path_can_be_null;
4657
 
4658
              /* Reset for next path.  */
4659
              path_can_be_null = true;
4660
 
4661
              p = fail_stack.stack[--fail_stack.avail].pointer;
4662
 
4663
              continue;
4664
            }
4665
          else
4666
            break;
4667
        }
4668
 
4669
      /* We should never be about to go beyond the end of the pattern.  */
4670
      assert (p < pend);
4671
 
4672
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4673
        {
4674
 
4675
        /* I guess the idea here is to simply not bother with a fastmap
4676
           if a backreference is used, since it's too hard to figure out
4677
           the fastmap for the corresponding group.  Setting
4678
           `can_be_null' stops `re_search_2' from using the fastmap, so
4679
           that is all we do.  */
4680
        case duplicate:
4681
          bufp->can_be_null = 1;
4682
          goto done;
4683
 
4684
 
4685
      /* Following are the cases which match a character.  These end
4686
         with `break'.  */
4687
 
4688
#ifdef WCHAR
4689
        case exactn:
4690
          fastmap[truncate_wchar(p[1])] = 1;
4691
          break;
4692
#else /* BYTE */
4693
        case exactn:
4694
          fastmap[p[1]] = 1;
4695
          break;
4696
#endif /* WCHAR */
4697
#ifdef MBS_SUPPORT
4698
        case exactn_bin:
4699
          fastmap[p[1]] = 1;
4700
          break;
4701
#endif
4702
 
4703
#ifdef WCHAR
4704
        /* It is hard to distinguish fastmap from (multi byte) characters
4705
           which depends on current locale.  */
4706
        case charset:
4707
        case charset_not:
4708
        case wordchar:
4709
        case notwordchar:
4710
          bufp->can_be_null = 1;
4711
          goto done;
4712
#else /* BYTE */
4713
        case charset:
4714
          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4715
            if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4716
              fastmap[j] = 1;
4717
          break;
4718
 
4719
 
4720
        case charset_not:
4721
          /* Chars beyond end of map must be allowed.  */
4722
          for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4723
            fastmap[j] = 1;
4724
 
4725
          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4726
            if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4727
              fastmap[j] = 1;
4728
          break;
4729
 
4730
 
4731
        case wordchar:
4732
          for (j = 0; j < (1 << BYTEWIDTH); j++)
4733
            if (SYNTAX (j) == Sword)
4734
              fastmap[j] = 1;
4735
          break;
4736
 
4737
 
4738
        case notwordchar:
4739
          for (j = 0; j < (1 << BYTEWIDTH); j++)
4740
            if (SYNTAX (j) != Sword)
4741
              fastmap[j] = 1;
4742
          break;
4743
#endif /* WCHAR */
4744
 
4745
        case anychar:
4746
          {
4747
            int fastmap_newline = fastmap['\n'];
4748
 
4749
            /* `.' matches anything ...  */
4750
            for (j = 0; j < (1 << BYTEWIDTH); j++)
4751
              fastmap[j] = 1;
4752
 
4753
            /* ... except perhaps newline.  */
4754
            if (!(bufp->syntax & RE_DOT_NEWLINE))
4755
              fastmap['\n'] = fastmap_newline;
4756
 
4757
            /* Return if we have already set `can_be_null'; if we have,
4758
               then the fastmap is irrelevant.  Something's wrong here.  */
4759
            else if (bufp->can_be_null)
4760
              goto done;
4761
 
4762
            /* Otherwise, have to check alternative paths.  */
4763
            break;
4764
          }
4765
 
4766
#ifdef emacs
4767
        case syntaxspec:
4768
          k = *p++;
4769
          for (j = 0; j < (1 << BYTEWIDTH); j++)
4770
            if (SYNTAX (j) == (enum syntaxcode) k)
4771
              fastmap[j] = 1;
4772
          break;
4773
 
4774
 
4775
        case notsyntaxspec:
4776
          k = *p++;
4777
          for (j = 0; j < (1 << BYTEWIDTH); j++)
4778
            if (SYNTAX (j) != (enum syntaxcode) k)
4779
              fastmap[j] = 1;
4780
          break;
4781
 
4782
 
4783
      /* All cases after this match the empty string.  These end with
4784
         `continue'.  */
4785
 
4786
 
4787
        case before_dot:
4788
        case at_dot:
4789
        case after_dot:
4790
          continue;
4791
#endif /* emacs */
4792
 
4793
 
4794
        case no_op:
4795
        case begline:
4796
        case endline:
4797
        case begbuf:
4798
        case endbuf:
4799
        case wordbound:
4800
        case notwordbound:
4801
        case wordbeg:
4802
        case wordend:
4803
        case push_dummy_failure:
4804
          continue;
4805
 
4806
 
4807
        case jump_n:
4808
        case pop_failure_jump:
4809
        case maybe_pop_jump:
4810
        case jump:
4811
        case jump_past_alt:
4812
        case dummy_failure_jump:
4813
          EXTRACT_NUMBER_AND_INCR (j, p);
4814
          p += j;
4815
          if (j > 0)
4816
            continue;
4817
 
4818
          /* Jump backward implies we just went through the body of a
4819
             loop and matched nothing.  Opcode jumped to should be
4820
             `on_failure_jump' or `succeed_n'.  Just treat it like an
4821
             ordinary jump.  For a * loop, it has pushed its failure
4822
             point already; if so, discard that as redundant.  */
4823
          if ((re_opcode_t) *p != on_failure_jump
4824
              && (re_opcode_t) *p != succeed_n)
4825
            continue;
4826
 
4827
          p++;
4828
          EXTRACT_NUMBER_AND_INCR (j, p);
4829
          p += j;
4830
 
4831
          /* If what's on the stack is where we are now, pop it.  */
4832
          if (!FAIL_STACK_EMPTY ()
4833
              && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4834
            fail_stack.avail--;
4835
 
4836
          continue;
4837
 
4838
 
4839
        case on_failure_jump:
4840
        case on_failure_keep_string_jump:
4841
        handle_on_failure_jump:
4842
          EXTRACT_NUMBER_AND_INCR (j, p);
4843
 
4844
          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4845
             end of the pattern.  We don't want to push such a point,
4846
             since when we restore it above, entering the switch will
4847
             increment `p' past the end of the pattern.  We don't need
4848
             to push such a point since we obviously won't find any more
4849
             fastmap entries beyond `pend'.  Such a pattern can match
4850
             the null string, though.  */
4851
          if (p + j < pend)
4852
            {
4853
              if (!PUSH_PATTERN_OP (p + j, fail_stack))
4854
                {
4855
                  RESET_FAIL_STACK ();
4856
                  return -2;
4857
                }
4858
            }
4859
          else
4860
            bufp->can_be_null = 1;
4861
 
4862
          if (succeed_n_p)
4863
            {
4864
              EXTRACT_NUMBER_AND_INCR (k, p);   /* Skip the n.  */
4865
              succeed_n_p = false;
4866
            }
4867
 
4868
          continue;
4869
 
4870
 
4871
        case succeed_n:
4872
          /* Get to the number of times to succeed.  */
4873
          p += OFFSET_ADDRESS_SIZE;
4874
 
4875
          /* Increment p past the n for when k != 0.  */
4876
          EXTRACT_NUMBER_AND_INCR (k, p);
4877
          if (k == 0)
4878
            {
4879
              p -= 2 * OFFSET_ADDRESS_SIZE;
4880
              succeed_n_p = true;  /* Spaghetti code alert.  */
4881
              goto handle_on_failure_jump;
4882
            }
4883
          continue;
4884
 
4885
 
4886
        case set_number_at:
4887
          p += 2 * OFFSET_ADDRESS_SIZE;
4888
          continue;
4889
 
4890
 
4891
        case start_memory:
4892
        case stop_memory:
4893
          p += 2;
4894
          continue;
4895
 
4896
 
4897
        default:
4898
          abort (); /* We have listed all the cases.  */
4899
        } /* switch *p++ */
4900
 
4901
      /* Getting here means we have found the possible starting
4902
         characters for one path of the pattern -- and that the empty
4903
         string does not match.  We need not follow this path further.
4904
         Instead, look at the next alternative (remembered on the
4905
         stack), or quit if no more.  The test at the top of the loop
4906
         does these things.  */
4907
      path_can_be_null = false;
4908
      p = pend;
4909
    } /* while p */
4910
 
4911
  /* Set `can_be_null' for the last path (also the first path, if the
4912
     pattern is empty).  */
4913
  bufp->can_be_null |= path_can_be_null;
4914
 
4915
 done:
4916
  RESET_FAIL_STACK ();
4917
  return 0;
4918
}
4919
 
4920
#else /* not INSIDE_RECURSION */
4921
 
4922
int
4923
re_compile_fastmap (bufp)
4924
     struct re_pattern_buffer *bufp;
4925
{
4926
# ifdef MBS_SUPPORT
4927
  if (MB_CUR_MAX != 1)
4928
    return wcs_re_compile_fastmap(bufp);
4929
  else
4930
# endif
4931
    return byte_re_compile_fastmap(bufp);
4932
} /* re_compile_fastmap */
4933
#ifdef _LIBC
4934
weak_alias (__re_compile_fastmap, re_compile_fastmap)
4935
#endif
4936
 
4937
 
4938
/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4939
   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4940
   this memory for recording register information.  STARTS and ENDS
4941
   must be allocated using the malloc library routine, and must each
4942
   be at least NUM_REGS * sizeof (regoff_t) bytes long.
4943
 
4944
   If NUM_REGS == 0, then subsequent matches should allocate their own
4945
   register data.
4946
 
4947
   Unless this function is called, the first search or match using
4948
   PATTERN_BUFFER will allocate its own register data, without
4949
   freeing the old data.  */
4950
 
4951
void
4952
re_set_registers (bufp, regs, num_regs, starts, ends)
4953
    struct re_pattern_buffer *bufp;
4954
    struct re_registers *regs;
4955
    unsigned num_regs;
4956
    regoff_t *starts, *ends;
4957
{
4958
  if (num_regs)
4959
    {
4960
      bufp->regs_allocated = REGS_REALLOCATE;
4961
      regs->num_regs = num_regs;
4962
      regs->start = starts;
4963
      regs->end = ends;
4964
    }
4965
  else
4966
    {
4967
      bufp->regs_allocated = REGS_UNALLOCATED;
4968
      regs->num_regs = 0;
4969
      regs->start = regs->end = (regoff_t *) 0;
4970
    }
4971
}
4972
#ifdef _LIBC
4973
weak_alias (__re_set_registers, re_set_registers)
4974
#endif
4975
 
4976
/* Searching routines.  */
4977
 
4978
/* Like re_search_2, below, but only one string is specified, and
4979
   doesn't let you say where to stop matching.  */
4980
 
4981
int
4982
re_search (bufp, string, size, startpos, range, regs)
4983
     struct re_pattern_buffer *bufp;
4984
     const char *string;
4985
     int size, startpos, range;
4986
     struct re_registers *regs;
4987
{
4988
  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4989
                      regs, size);
4990
}
4991
#ifdef _LIBC
4992
weak_alias (__re_search, re_search)
4993
#endif
4994
 
4995
 
4996
/* Using the compiled pattern in BUFP->buffer, first tries to match the
4997
   virtual concatenation of STRING1 and STRING2, starting first at index
4998
   STARTPOS, then at STARTPOS + 1, and so on.
4999
 
5000
   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5001
 
5002
   RANGE is how far to scan while trying to match.  RANGE = 0 means try
5003
   only at STARTPOS; in general, the last start tried is STARTPOS +
5004
   RANGE.
5005
 
5006
   In REGS, return the indices of the virtual concatenation of STRING1
5007
   and STRING2 that matched the entire BUFP->buffer and its contained
5008
   subexpressions.
5009
 
5010
   Do not consider matching one past the index STOP in the virtual
5011
   concatenation of STRING1 and STRING2.
5012
 
5013
   We return either the position in the strings at which the match was
5014
   found, -1 if no match, or -2 if error (such as failure
5015
   stack overflow).  */
5016
 
5017
int
5018
re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
5019
     struct re_pattern_buffer *bufp;
5020
     const char *string1, *string2;
5021
     int size1, size2;
5022
     int startpos;
5023
     int range;
5024
     struct re_registers *regs;
5025
     int stop;
5026
{
5027
# ifdef MBS_SUPPORT
5028
  if (MB_CUR_MAX != 1)
5029
    return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5030
                            range, regs, stop);
5031
  else
5032
# endif
5033
    return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5034
                             range, regs, stop);
5035
} /* re_search_2 */
5036
#ifdef _LIBC
5037
weak_alias (__re_search_2, re_search_2)
5038
#endif
5039
 
5040
#endif /* not INSIDE_RECURSION */
5041
 
5042
#ifdef INSIDE_RECURSION
5043
 
5044
#ifdef MATCH_MAY_ALLOCATE
5045
# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5046
#else
5047
# define FREE_VAR(var) if (var) free (var); var = NULL
5048
#endif
5049
 
5050
#ifdef WCHAR
5051
# define MAX_ALLOCA_SIZE        2000
5052
 
5053
# define FREE_WCS_BUFFERS() \
5054
  do {                                                                        \
5055
    if (size1 > MAX_ALLOCA_SIZE)                                              \
5056
      {                                                                       \
5057
        free (wcs_string1);                                                   \
5058
        free (mbs_offset1);                                                   \
5059
      }                                                                       \
5060
    else                                                                      \
5061
      {                                                                       \
5062
        FREE_VAR (wcs_string1);                                               \
5063
        FREE_VAR (mbs_offset1);                                               \
5064
      }                                                                       \
5065
    if (size2 > MAX_ALLOCA_SIZE)                                              \
5066
      {                                                                       \
5067
        free (wcs_string2);                                                   \
5068
        free (mbs_offset2);                                                   \
5069
      }                                                                       \
5070
    else                                                                      \
5071
      {                                                                       \
5072
        FREE_VAR (wcs_string2);                                               \
5073
        FREE_VAR (mbs_offset2);                                               \
5074
      }                                                                       \
5075
  } while (0)
5076
 
5077
#endif
5078
 
5079
 
5080
static int
5081
PREFIX(re_search_2) (bufp, string1, size1, string2, size2, startpos, range,
5082
                     regs, stop)
5083
     struct re_pattern_buffer *bufp;
5084
     const char *string1, *string2;
5085
     int size1, size2;
5086
     int startpos;
5087
     int range;
5088
     struct re_registers *regs;
5089
     int stop;
5090
{
5091
  int val;
5092
  register char *fastmap = bufp->fastmap;
5093
  register RE_TRANSLATE_TYPE translate = bufp->translate;
5094
  int total_size = size1 + size2;
5095
  int endpos = startpos + range;
5096
#ifdef WCHAR
5097
  /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5098
  wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5099
  /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5100
  int wcs_size1 = 0, wcs_size2 = 0;
5101
  /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5102
  int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5103
  /* They hold whether each wchar_t is binary data or not.  */
5104
  char *is_binary = NULL;
5105
#endif /* WCHAR */
5106
 
5107
  /* Check for out-of-range STARTPOS.  */
5108
  if (startpos < 0 || startpos > total_size)
5109
    return -1;
5110
 
5111
  /* Fix up RANGE if it might eventually take us outside
5112
     the virtual concatenation of STRING1 and STRING2.
5113
     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
5114
  if (endpos < 0)
5115
    range = 0 - startpos;
5116
  else if (endpos > total_size)
5117
    range = total_size - startpos;
5118
 
5119
  /* If the search isn't to be a backwards one, don't waste time in a
5120
     search for a pattern that must be anchored.  */
5121
  if (bufp->used > 0 && range > 0
5122
      && ((re_opcode_t) bufp->buffer[0] == begbuf
5123
          /* `begline' is like `begbuf' if it cannot match at newlines.  */
5124
          || ((re_opcode_t) bufp->buffer[0] == begline
5125
              && !bufp->newline_anchor)))
5126
    {
5127
      if (startpos > 0)
5128
        return -1;
5129
      else
5130
        range = 1;
5131
    }
5132
 
5133
#ifdef emacs
5134
  /* In a forward search for something that starts with \=.
5135
     don't keep searching past point.  */
5136
  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5137
    {
5138
      range = PT - startpos;
5139
      if (range <= 0)
5140
        return -1;
5141
    }
5142
#endif /* emacs */
5143
 
5144
  /* Update the fastmap now if not correct already.  */
5145
  if (fastmap && !bufp->fastmap_accurate)
5146
    if (re_compile_fastmap (bufp) == -2)
5147
      return -2;
5148
 
5149
#ifdef WCHAR
5150
  /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5151
     fill them with converted string.  */
5152
  if (size1 != 0)
5153
    {
5154
      if (size1 > MAX_ALLOCA_SIZE)
5155
        {
5156
          wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5157
          mbs_offset1 = TALLOC (size1 + 1, int);
5158
          is_binary = TALLOC (size1 + 1, char);
5159
        }
5160
      else
5161
        {
5162
          wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5163
          mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5164
          is_binary = REGEX_TALLOC (size1 + 1, char);
5165
        }
5166
      if (!wcs_string1 || !mbs_offset1 || !is_binary)
5167
        {
5168
          if (size1 > MAX_ALLOCA_SIZE)
5169
            {
5170
              free (wcs_string1);
5171
              free (mbs_offset1);
5172
              free (is_binary);
5173
            }
5174
          else
5175
            {
5176
              FREE_VAR (wcs_string1);
5177
              FREE_VAR (mbs_offset1);
5178
              FREE_VAR (is_binary);
5179
            }
5180
          return -2;
5181
        }
5182
      wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5183
                                     mbs_offset1, is_binary);
5184
      wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */
5185
      if (size1 > MAX_ALLOCA_SIZE)
5186
        free (is_binary);
5187
      else
5188
        FREE_VAR (is_binary);
5189
    }
5190
  if (size2 != 0)
5191
    {
5192
      if (size2 > MAX_ALLOCA_SIZE)
5193
        {
5194
          wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5195
          mbs_offset2 = TALLOC (size2 + 1, int);
5196
          is_binary = TALLOC (size2 + 1, char);
5197
        }
5198
      else
5199
        {
5200
          wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5201
          mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5202
          is_binary = REGEX_TALLOC (size2 + 1, char);
5203
        }
5204
      if (!wcs_string2 || !mbs_offset2 || !is_binary)
5205
        {
5206
          FREE_WCS_BUFFERS ();
5207
          if (size2 > MAX_ALLOCA_SIZE)
5208
            free (is_binary);
5209
          else
5210
            FREE_VAR (is_binary);
5211
          return -2;
5212
        }
5213
      wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5214
                                     mbs_offset2, is_binary);
5215
      wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */
5216
      if (size2 > MAX_ALLOCA_SIZE)
5217
        free (is_binary);
5218
      else
5219
        FREE_VAR (is_binary);
5220
    }
5221
#endif /* WCHAR */
5222
 
5223
 
5224
  /* Loop through the string, looking for a place to start matching.  */
5225
  for (;;)
5226
    {
5227
      /* If a fastmap is supplied, skip quickly over characters that
5228
         cannot be the start of a match.  If the pattern can match the
5229
         null string, however, we don't need to skip characters; we want
5230
         the first null string.  */
5231
      if (fastmap && startpos < total_size && !bufp->can_be_null)
5232
        {
5233
          if (range > 0) /* Searching forwards.  */
5234
            {
5235
              register const char *d;
5236
              register int lim = 0;
5237
              int irange = range;
5238
 
5239
              if (startpos < size1 && startpos + range >= size1)
5240
                lim = range - (size1 - startpos);
5241
 
5242
              d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5243
 
5244
              /* Written out as an if-else to avoid testing `translate'
5245
                 inside the loop.  */
5246
              if (translate)
5247
                while (range > lim
5248
                       && !fastmap[(unsigned char)
5249
                                   translate[(unsigned char) *d++]])
5250
                  range--;
5251
              else
5252
                while (range > lim && !fastmap[(unsigned char) *d++])
5253
                  range--;
5254
 
5255
              startpos += irange - range;
5256
            }
5257
          else                          /* Searching backwards.  */
5258
            {
5259
              register CHAR_T c = (size1 == 0 || startpos >= size1
5260
                                      ? string2[startpos - size1]
5261
                                      : string1[startpos]);
5262
 
5263
              if (!fastmap[(unsigned char) TRANSLATE (c)])
5264
                goto advance;
5265
            }
5266
        }
5267
 
5268
      /* If can't match the null string, and that's all we have left, fail.  */
5269
      if (range >= 0 && startpos == total_size && fastmap
5270
          && !bufp->can_be_null)
5271
       {
5272
#ifdef WCHAR
5273
         FREE_WCS_BUFFERS ();
5274
#endif
5275
         return -1;
5276
       }
5277
 
5278
#ifdef WCHAR
5279
      val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5280
                                     size2, startpos, regs, stop,
5281
                                     wcs_string1, wcs_size1,
5282
                                     wcs_string2, wcs_size2,
5283
                                     mbs_offset1, mbs_offset2);
5284
#else /* BYTE */
5285
      val = byte_re_match_2_internal (bufp, string1, size1, string2,
5286
                                      size2, startpos, regs, stop);
5287
#endif /* BYTE */
5288
 
5289
#ifndef REGEX_MALLOC
5290
# ifdef C_ALLOCA
5291
      alloca (0);
5292
# endif
5293
#endif
5294
 
5295
      if (val >= 0)
5296
        {
5297
#ifdef WCHAR
5298
          FREE_WCS_BUFFERS ();
5299
#endif
5300
          return startpos;
5301
        }
5302
 
5303
      if (val == -2)
5304
        {
5305
#ifdef WCHAR
5306
          FREE_WCS_BUFFERS ();
5307
#endif
5308
          return -2;
5309
        }
5310
 
5311
    advance:
5312
      if (!range)
5313
        break;
5314
      else if (range > 0)
5315
        {
5316
          range--;
5317
          startpos++;
5318
        }
5319
      else
5320
        {
5321
          range++;
5322
          startpos--;
5323
        }
5324
    }
5325
#ifdef WCHAR
5326
  FREE_WCS_BUFFERS ();
5327
#endif
5328
  return -1;
5329
}
5330
 
5331
#ifdef WCHAR
5332
/* This converts PTR, a pointer into one of the search wchar_t strings
5333
   `string1' and `string2' into an multibyte string offset from the
5334
   beginning of that string. We use mbs_offset to optimize.
5335
   See convert_mbs_to_wcs.  */
5336
# define POINTER_TO_OFFSET(ptr)                                         \
5337
  (FIRST_STRING_P (ptr)                                                 \
5338
   ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))   \
5339
   : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)   \
5340
                 + csize1)))
5341
#else /* BYTE */
5342
/* This converts PTR, a pointer into one of the search strings `string1'
5343
   and `string2' into an offset from the beginning of that string.  */
5344
# define POINTER_TO_OFFSET(ptr)                 \
5345
  (FIRST_STRING_P (ptr)                         \
5346
   ? ((regoff_t) ((ptr) - string1))             \
5347
   : ((regoff_t) ((ptr) - string2 + size1)))
5348
#endif /* WCHAR */
5349
 
5350
/* Macros for dealing with the split strings in re_match_2.  */
5351
 
5352
#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5353
 
5354
/* Call before fetching a character with *d.  This switches over to
5355
   string2 if necessary.  */
5356
#define PREFETCH()                                                      \
5357
  while (d == dend)                                                     \
5358
    {                                                                   \
5359
      /* End of string2 => fail.  */                                    \
5360
      if (dend == end_match_2)                                          \
5361
        goto fail;                                                      \
5362
      /* End of string1 => advance to string2.  */                      \
5363
      d = string2;                                                      \
5364
      dend = end_match_2;                                               \
5365
    }
5366
 
5367
/* Test if at very beginning or at very end of the virtual concatenation
5368
   of `string1' and `string2'.  If only one string, it's `string2'.  */
5369
#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5370
#define AT_STRINGS_END(d) ((d) == end2)
5371
 
5372
 
5373
/* Test if D points to a character which is word-constituent.  We have
5374
   two special cases to check for: if past the end of string1, look at
5375
   the first character in string2; and if before the beginning of
5376
   string2, look at the last character in string1.  */
5377
#ifdef WCHAR
5378
/* Use internationalized API instead of SYNTAX.  */
5379
# define WORDCHAR_P(d)                                                  \
5380
  (iswalnum ((wint_t)((d) == end1 ? *string2                            \
5381
           : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0              \
5382
   || ((d) == end1 ? *string2                                           \
5383
       : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5384
#else /* BYTE */
5385
# define WORDCHAR_P(d)                                                  \
5386
  (SYNTAX ((d) == end1 ? *string2                                       \
5387
           : (d) == string2 - 1 ? *(end1 - 1) : *(d))                   \
5388
   == Sword)
5389
#endif /* WCHAR */
5390
 
5391
/* Disabled due to a compiler bug -- see comment at case wordbound */
5392
#if 0
5393
/* Test if the character before D and the one at D differ with respect
5394
   to being word-constituent.  */
5395
#define AT_WORD_BOUNDARY(d)                                             \
5396
  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)                             \
5397
   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5398
#endif
5399
 
5400
/* Free everything we malloc.  */
5401
#ifdef MATCH_MAY_ALLOCATE
5402
# ifdef WCHAR
5403
#  define FREE_VARIABLES()                                              \
5404
  do {                                                                  \
5405
    REGEX_FREE_STACK (fail_stack.stack);                                \
5406
    FREE_VAR (regstart);                                                \
5407
    FREE_VAR (regend);                                                  \
5408
    FREE_VAR (old_regstart);                                            \
5409
    FREE_VAR (old_regend);                                              \
5410
    FREE_VAR (best_regstart);                                           \
5411
    FREE_VAR (best_regend);                                             \
5412
    FREE_VAR (reg_info);                                                \
5413
    FREE_VAR (reg_dummy);                                               \
5414
    FREE_VAR (reg_info_dummy);                                          \
5415
    if (!cant_free_wcs_buf)                                             \
5416
      {                                                                 \
5417
        FREE_VAR (string1);                                             \
5418
        FREE_VAR (string2);                                             \
5419
        FREE_VAR (mbs_offset1);                                         \
5420
        FREE_VAR (mbs_offset2);                                         \
5421
      }                                                                 \
5422
  } while (0)
5423
# else /* BYTE */
5424
#  define FREE_VARIABLES()                                              \
5425
  do {                                                                  \
5426
    REGEX_FREE_STACK (fail_stack.stack);                                \
5427
    FREE_VAR (regstart);                                                \
5428
    FREE_VAR (regend);                                                  \
5429
    FREE_VAR (old_regstart);                                            \
5430
    FREE_VAR (old_regend);                                              \
5431
    FREE_VAR (best_regstart);                                           \
5432
    FREE_VAR (best_regend);                                             \
5433
    FREE_VAR (reg_info);                                                \
5434
    FREE_VAR (reg_dummy);                                               \
5435
    FREE_VAR (reg_info_dummy);                                          \
5436
  } while (0)
5437
# endif /* WCHAR */
5438
#else
5439
# ifdef WCHAR
5440
#  define FREE_VARIABLES()                                              \
5441
  do {                                                                  \
5442
    if (!cant_free_wcs_buf)                                             \
5443
      {                                                                 \
5444
        FREE_VAR (string1);                                             \
5445
        FREE_VAR (string2);                                             \
5446
        FREE_VAR (mbs_offset1);                                         \
5447
        FREE_VAR (mbs_offset2);                                         \
5448
      }                                                                 \
5449
  } while (0)
5450
# else /* BYTE */
5451
#  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5452
# endif /* WCHAR */
5453
#endif /* not MATCH_MAY_ALLOCATE */
5454
 
5455
/* These values must meet several constraints.  They must not be valid
5456
   register values; since we have a limit of 255 registers (because
5457
   we use only one byte in the pattern for the register number), we can
5458
   use numbers larger than 255.  They must differ by 1, because of
5459
   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5460
   be larger than the value for the highest register, so we do not try
5461
   to actually save any registers when none are active.  */
5462
#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5463
#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5464
 
5465
#else /* not INSIDE_RECURSION */
5466
/* Matching routines.  */
5467
 
5468
#ifndef emacs   /* Emacs never uses this.  */
5469
/* re_match is like re_match_2 except it takes only a single string.  */
5470
 
5471
int
5472
re_match (bufp, string, size, pos, regs)
5473
     struct re_pattern_buffer *bufp;
5474
     const char *string;
5475
     int size, pos;
5476
     struct re_registers *regs;
5477
{
5478
  int result;
5479
# ifdef MBS_SUPPORT
5480
  if (MB_CUR_MAX != 1)
5481
    result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5482
                                      pos, regs, size,
5483
                                      NULL, 0, NULL, 0, NULL, NULL);
5484
  else
5485
# endif
5486
    result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5487
                                  pos, regs, size);
5488
# ifndef REGEX_MALLOC
5489
#  ifdef C_ALLOCA
5490
  alloca (0);
5491
#  endif
5492
# endif
5493
  return result;
5494
}
5495
# ifdef _LIBC
5496
weak_alias (__re_match, re_match)
5497
# endif
5498
#endif /* not emacs */
5499
 
5500
#endif /* not INSIDE_RECURSION */
5501
 
5502
#ifdef INSIDE_RECURSION
5503
static boolean PREFIX(group_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5504
                                                    UCHAR_T *end,
5505
                                        PREFIX(register_info_type) *reg_info));
5506
static boolean PREFIX(alt_match_null_string_p) _RE_ARGS ((UCHAR_T *p,
5507
                                                  UCHAR_T *end,
5508
                                        PREFIX(register_info_type) *reg_info));
5509
static boolean PREFIX(common_op_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5510
                                                        UCHAR_T *end,
5511
                                        PREFIX(register_info_type) *reg_info));
5512
static int PREFIX(bcmp_translate) _RE_ARGS ((const CHAR_T *s1, const CHAR_T *s2,
5513
                                     int len, char *translate));
5514
#else /* not INSIDE_RECURSION */
5515
 
5516
/* re_match_2 matches the compiled pattern in BUFP against the
5517
   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5518
   and SIZE2, respectively).  We start matching at POS, and stop
5519
   matching at STOP.
5520
 
5521
   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5522
   store offsets for the substring each group matched in REGS.  See the
5523
   documentation for exactly how many groups we fill.
5524
 
5525
   We return -1 if no match, -2 if an internal error (such as the
5526
   failure stack overflowing).  Otherwise, we return the length of the
5527
   matched substring.  */
5528
 
5529
int
5530
re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5531
     struct re_pattern_buffer *bufp;
5532
     const char *string1, *string2;
5533
     int size1, size2;
5534
     int pos;
5535
     struct re_registers *regs;
5536
     int stop;
5537
{
5538
  int result;
5539
# ifdef MBS_SUPPORT
5540
  if (MB_CUR_MAX != 1)
5541
    result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5542
                                      pos, regs, stop,
5543
                                      NULL, 0, NULL, 0, NULL, NULL);
5544
  else
5545
# endif
5546
    result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5547
                                  pos, regs, stop);
5548
 
5549
#ifndef REGEX_MALLOC
5550
# ifdef C_ALLOCA
5551
  alloca (0);
5552
# endif
5553
#endif
5554
  return result;
5555
}
5556
#ifdef _LIBC
5557
weak_alias (__re_match_2, re_match_2)
5558
#endif
5559
 
5560
#endif /* not INSIDE_RECURSION */
5561
 
5562
#ifdef INSIDE_RECURSION
5563
 
5564
#ifdef WCHAR
5565
static int count_mbs_length PARAMS ((int *, int));
5566
 
5567
/* This check the substring (from 0, to length) of the multibyte string,
5568
   to which offset_buffer correspond. And count how many wchar_t_characters
5569
   the substring occupy. We use offset_buffer to optimization.
5570
   See convert_mbs_to_wcs.  */
5571
 
5572
static int
5573
count_mbs_length(offset_buffer, length)
5574
     int *offset_buffer;
5575
     int length;
5576
{
5577
  int upper, lower;
5578
 
5579
  /* Check whether the size is valid.  */
5580
  if (length < 0)
5581
    return -1;
5582
 
5583
  if (offset_buffer == NULL)
5584
    return 0;
5585
 
5586
  /* If there are no multibyte character, offset_buffer[i] == i.
5587
   Optmize for this case.  */
5588
  if (offset_buffer[length] == length)
5589
    return length;
5590
 
5591
  /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */
5592
  upper = length;
5593
  lower = 0;
5594
 
5595
  while (true)
5596
    {
5597
      int middle = (lower + upper) / 2;
5598
      if (middle == lower || middle == upper)
5599
        break;
5600
      if (offset_buffer[middle] > length)
5601
        upper = middle;
5602
      else if (offset_buffer[middle] < length)
5603
        lower = middle;
5604
      else
5605
        return middle;
5606
    }
5607
 
5608
  return -1;
5609
}
5610
#endif /* WCHAR */
5611
 
5612
/* This is a separate function so that we can force an alloca cleanup
5613
   afterwards.  */
5614
#ifdef WCHAR
5615
static int
5616
wcs_re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos,
5617
                         regs, stop, string1, size1, string2, size2,
5618
                         mbs_offset1, mbs_offset2)
5619
     struct re_pattern_buffer *bufp;
5620
     const char *cstring1, *cstring2;
5621
     int csize1, csize2;
5622
     int pos;
5623
     struct re_registers *regs;
5624
     int stop;
5625
     /* string1 == string2 == NULL means string1/2, size1/2 and
5626
        mbs_offset1/2 need seting up in this function.  */
5627
     /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5628
     wchar_t *string1, *string2;
5629
     /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5630
     int size1, size2;
5631
     /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5632
     int *mbs_offset1, *mbs_offset2;
5633
#else /* BYTE */
5634
static int
5635
byte_re_match_2_internal (bufp, string1, size1,string2, size2, pos,
5636
                          regs, stop)
5637
     struct re_pattern_buffer *bufp;
5638
     const char *string1, *string2;
5639
     int size1, size2;
5640
     int pos;
5641
     struct re_registers *regs;
5642
     int stop;
5643
#endif /* BYTE */
5644
{
5645
  /* General temporaries.  */
5646
  int mcnt;
5647
  UCHAR_T *p1;
5648
#ifdef WCHAR
5649
  /* They hold whether each wchar_t is binary data or not.  */
5650
  char *is_binary = NULL;
5651
  /* If true, we can't free string1/2, mbs_offset1/2.  */
5652
  int cant_free_wcs_buf = 1;
5653
#endif /* WCHAR */
5654
 
5655
  /* Just past the end of the corresponding string.  */
5656
  const CHAR_T *end1, *end2;
5657
 
5658
  /* Pointers into string1 and string2, just past the last characters in
5659
     each to consider matching.  */
5660
  const CHAR_T *end_match_1, *end_match_2;
5661
 
5662
  /* Where we are in the data, and the end of the current string.  */
5663
  const CHAR_T *d, *dend;
5664
 
5665
  /* Where we are in the pattern, and the end of the pattern.  */
5666
#ifdef WCHAR
5667
  UCHAR_T *pattern, *p;
5668
  register UCHAR_T *pend;
5669
#else /* BYTE */
5670
  UCHAR_T *p = bufp->buffer;
5671
  register UCHAR_T *pend = p + bufp->used;
5672
#endif /* WCHAR */
5673
 
5674
  /* Mark the opcode just after a start_memory, so we can test for an
5675
     empty subpattern when we get to the stop_memory.  */
5676
  UCHAR_T *just_past_start_mem = 0;
5677
 
5678
  /* We use this to map every character in the string.  */
5679
  RE_TRANSLATE_TYPE translate = bufp->translate;
5680
 
5681
  /* Failure point stack.  Each place that can handle a failure further
5682
     down the line pushes a failure point on this stack.  It consists of
5683
     restart, regend, and reg_info for all registers corresponding to
5684
     the subexpressions we're currently inside, plus the number of such
5685
     registers, and, finally, two char *'s.  The first char * is where
5686
     to resume scanning the pattern; the second one is where to resume
5687
     scanning the strings.  If the latter is zero, the failure point is
5688
     a ``dummy''; if a failure happens and the failure point is a dummy,
5689
     it gets discarded and the next next one is tried.  */
5690
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5691
  PREFIX(fail_stack_type) fail_stack;
5692
#endif
5693
#ifdef DEBUG
5694
  static unsigned failure_id;
5695
  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5696
#endif
5697
 
5698
#ifdef REL_ALLOC
5699
  /* This holds the pointer to the failure stack, when
5700
     it is allocated relocatably.  */
5701
  fail_stack_elt_t *failure_stack_ptr;
5702
#endif
5703
 
5704
  /* We fill all the registers internally, independent of what we
5705
     return, for use in backreferences.  The number here includes
5706
     an element for register zero.  */
5707
  size_t num_regs = bufp->re_nsub + 1;
5708
 
5709
  /* The currently active registers.  */
5710
  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5711
  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5712
 
5713
  /* Information on the contents of registers. These are pointers into
5714
     the input strings; they record just what was matched (on this
5715
     attempt) by a subexpression part of the pattern, that is, the
5716
     regnum-th regstart pointer points to where in the pattern we began
5717
     matching and the regnum-th regend points to right after where we
5718
     stopped matching the regnum-th subexpression.  (The zeroth register
5719
     keeps track of what the whole pattern matches.)  */
5720
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5721
  const CHAR_T **regstart, **regend;
5722
#endif
5723
 
5724
  /* If a group that's operated upon by a repetition operator fails to
5725
     match anything, then the register for its start will need to be
5726
     restored because it will have been set to wherever in the string we
5727
     are when we last see its open-group operator.  Similarly for a
5728
     register's end.  */
5729
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5730
  const CHAR_T **old_regstart, **old_regend;
5731
#endif
5732
 
5733
  /* The is_active field of reg_info helps us keep track of which (possibly
5734
     nested) subexpressions we are currently in. The matched_something
5735
     field of reg_info[reg_num] helps us tell whether or not we have
5736
     matched any of the pattern so far this time through the reg_num-th
5737
     subexpression.  These two fields get reset each time through any
5738
     loop their register is in.  */
5739
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5740
  PREFIX(register_info_type) *reg_info;
5741
#endif
5742
 
5743
  /* The following record the register info as found in the above
5744
     variables when we find a match better than any we've seen before.
5745
     This happens as we backtrack through the failure points, which in
5746
     turn happens only if we have not yet matched the entire string. */
5747
  unsigned best_regs_set = false;
5748
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5749
  const CHAR_T **best_regstart, **best_regend;
5750
#endif
5751
 
5752
  /* Logically, this is `best_regend[0]'.  But we don't want to have to
5753
     allocate space for that if we're not allocating space for anything
5754
     else (see below).  Also, we never need info about register 0 for
5755
     any of the other register vectors, and it seems rather a kludge to
5756
     treat `best_regend' differently than the rest.  So we keep track of
5757
     the end of the best match so far in a separate variable.  We
5758
     initialize this to NULL so that when we backtrack the first time
5759
     and need to test it, it's not garbage.  */
5760
  const CHAR_T *match_end = NULL;
5761
 
5762
  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5763
  int set_regs_matched_done = 0;
5764
 
5765
  /* Used when we pop values we don't care about.  */
5766
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5767
  const CHAR_T **reg_dummy;
5768
  PREFIX(register_info_type) *reg_info_dummy;
5769
#endif
5770
 
5771
#ifdef DEBUG
5772
  /* Counts the total number of registers pushed.  */
5773
  unsigned num_regs_pushed = 0;
5774
#endif
5775
 
5776
  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5777
 
5778
  INIT_FAIL_STACK ();
5779
 
5780
#ifdef MATCH_MAY_ALLOCATE
5781
  /* Do not bother to initialize all the register variables if there are
5782
     no groups in the pattern, as it takes a fair amount of time.  If
5783
     there are groups, we include space for register 0 (the whole
5784
     pattern), even though we never use it, since it simplifies the
5785
     array indexing.  We should fix this.  */
5786
  if (bufp->re_nsub)
5787
    {
5788
      regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5789
      regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5790
      old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5791
      old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5792
      best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5793
      best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5794
      reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5795
      reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5796
      reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5797
 
5798
      if (!(regstart && regend && old_regstart && old_regend && reg_info
5799
            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5800
        {
5801
          FREE_VARIABLES ();
5802
          return -2;
5803
        }
5804
    }
5805
  else
5806
    {
5807
      /* We must initialize all our variables to NULL, so that
5808
         `FREE_VARIABLES' doesn't try to free them.  */
5809
      regstart = regend = old_regstart = old_regend = best_regstart
5810
        = best_regend = reg_dummy = NULL;
5811
      reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5812
    }
5813
#endif /* MATCH_MAY_ALLOCATE */
5814
 
5815
  /* The starting position is bogus.  */
5816
#ifdef WCHAR
5817
  if (pos < 0 || pos > csize1 + csize2)
5818
#else /* BYTE */
5819
  if (pos < 0 || pos > size1 + size2)
5820
#endif
5821
    {
5822
      FREE_VARIABLES ();
5823
      return -1;
5824
    }
5825
 
5826
#ifdef WCHAR
5827
  /* Allocate wchar_t array for string1 and string2 and
5828
     fill them with converted string.  */
5829
  if (string1 == NULL && string2 == NULL)
5830
    {
5831
      /* We need seting up buffers here.  */
5832
 
5833
      /* We must free wcs buffers in this function.  */
5834
      cant_free_wcs_buf = 0;
5835
 
5836
      if (csize1 != 0)
5837
        {
5838
          string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5839
          mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5840
          is_binary = REGEX_TALLOC (csize1 + 1, char);
5841
          if (!string1 || !mbs_offset1 || !is_binary)
5842
            {
5843
              FREE_VAR (string1);
5844
              FREE_VAR (mbs_offset1);
5845
              FREE_VAR (is_binary);
5846
              return -2;
5847
            }
5848
        }
5849
      if (csize2 != 0)
5850
        {
5851
          string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5852
          mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5853
          is_binary = REGEX_TALLOC (csize2 + 1, char);
5854
          if (!string2 || !mbs_offset2 || !is_binary)
5855
            {
5856
              FREE_VAR (string1);
5857
              FREE_VAR (mbs_offset1);
5858
              FREE_VAR (string2);
5859
              FREE_VAR (mbs_offset2);
5860
              FREE_VAR (is_binary);
5861
              return -2;
5862
            }
5863
          size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5864
                                     mbs_offset2, is_binary);
5865
          string2[size2] = L'\0'; /* for a sentinel  */
5866
          FREE_VAR (is_binary);
5867
        }
5868
    }
5869
 
5870
  /* We need to cast pattern to (wchar_t*), because we casted this compiled
5871
     pattern to (char*) in regex_compile.  */
5872
  p = pattern = (CHAR_T*)bufp->buffer;
5873
  pend = (CHAR_T*)(bufp->buffer + bufp->used);
5874
 
5875
#endif /* WCHAR */
5876
 
5877
  /* Initialize subexpression text positions to -1 to mark ones that no
5878
     start_memory/stop_memory has been seen for. Also initialize the
5879
     register information struct.  */
5880
  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5881
    {
5882
      regstart[mcnt] = regend[mcnt]
5883
        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5884
 
5885
      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5886
      IS_ACTIVE (reg_info[mcnt]) = 0;
5887
      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5888
      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5889
    }
5890
 
5891
  /* We move `string1' into `string2' if the latter's empty -- but not if
5892
     `string1' is null.  */
5893
  if (size2 == 0 && string1 != NULL)
5894
    {
5895
      string2 = string1;
5896
      size2 = size1;
5897
      string1 = 0;
5898
      size1 = 0;
5899
#ifdef WCHAR
5900
      mbs_offset2 = mbs_offset1;
5901
      csize2 = csize1;
5902
      mbs_offset1 = NULL;
5903
      csize1 = 0;
5904
#endif
5905
    }
5906
  end1 = string1 + size1;
5907
  end2 = string2 + size2;
5908
 
5909
  /* Compute where to stop matching, within the two strings.  */
5910
#ifdef WCHAR
5911
  if (stop <= csize1)
5912
    {
5913
      mcnt = count_mbs_length(mbs_offset1, stop);
5914
      end_match_1 = string1 + mcnt;
5915
      end_match_2 = string2;
5916
    }
5917
  else
5918
    {
5919
      if (stop > csize1 + csize2)
5920
        stop = csize1 + csize2;
5921
      end_match_1 = end1;
5922
      mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5923
      end_match_2 = string2 + mcnt;
5924
    }
5925
  if (mcnt < 0)
5926
    { /* count_mbs_length return error.  */
5927
      FREE_VARIABLES ();
5928
      return -1;
5929
    }
5930
#else
5931
  if (stop <= size1)
5932
    {
5933
      end_match_1 = string1 + stop;
5934
      end_match_2 = string2;
5935
    }
5936
  else
5937
    {
5938
      end_match_1 = end1;
5939
      end_match_2 = string2 + stop - size1;
5940
    }
5941
#endif /* WCHAR */
5942
 
5943
  /* `p' scans through the pattern as `d' scans through the data.
5944
     `dend' is the end of the input string that `d' points within.  `d'
5945
     is advanced into the following input string whenever necessary, but
5946
     this happens before fetching; therefore, at the beginning of the
5947
     loop, `d' can be pointing at the end of a string, but it cannot
5948
     equal `string2'.  */
5949
#ifdef WCHAR
5950
  if (size1 > 0 && pos <= csize1)
5951
    {
5952
      mcnt = count_mbs_length(mbs_offset1, pos);
5953
      d = string1 + mcnt;
5954
      dend = end_match_1;
5955
    }
5956
  else
5957
    {
5958
      mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5959
      d = string2 + mcnt;
5960
      dend = end_match_2;
5961
    }
5962
 
5963
  if (mcnt < 0)
5964
    { /* count_mbs_length return error.  */
5965
      FREE_VARIABLES ();
5966
      return -1;
5967
    }
5968
#else
5969
  if (size1 > 0 && pos <= size1)
5970
    {
5971
      d = string1 + pos;
5972
      dend = end_match_1;
5973
    }
5974
  else
5975
    {
5976
      d = string2 + pos - size1;
5977
      dend = end_match_2;
5978
    }
5979
#endif /* WCHAR */
5980
 
5981
  DEBUG_PRINT1 ("The compiled pattern is:\n");
5982
  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5983
  DEBUG_PRINT1 ("The string to match is: `");
5984
  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5985
  DEBUG_PRINT1 ("'\n");
5986
 
5987
  /* This loops over pattern commands.  It exits by returning from the
5988
     function if the match is complete, or it drops through if the match
5989
     fails at this starting point in the input data.  */
5990
  for (;;)
5991
    {
5992
#ifdef _LIBC
5993
      DEBUG_PRINT2 ("\n%p: ", p);
5994
#else
5995
      DEBUG_PRINT2 ("\n0x%x: ", p);
5996
#endif
5997
 
5998
      if (p == pend)
5999
        { /* End of pattern means we might have succeeded.  */
6000
          DEBUG_PRINT1 ("end of pattern ... ");
6001
 
6002
          /* If we haven't matched the entire string, and we want the
6003
             longest match, try backtracking.  */
6004
          if (d != end_match_2)
6005
            {
6006
              /* 1 if this match ends in the same string (string1 or string2)
6007
                 as the best previous match.  */
6008
              boolean same_str_p = (FIRST_STRING_P (match_end)
6009
                                    == MATCHING_IN_FIRST_STRING);
6010
              /* 1 if this match is the best seen so far.  */
6011
              boolean best_match_p;
6012
 
6013
              /* AIX compiler got confused when this was combined
6014
                 with the previous declaration.  */
6015
              if (same_str_p)
6016
                best_match_p = d > match_end;
6017
              else
6018
                best_match_p = !MATCHING_IN_FIRST_STRING;
6019
 
6020
              DEBUG_PRINT1 ("backtracking.\n");
6021
 
6022
              if (!FAIL_STACK_EMPTY ())
6023
                { /* More failure points to try.  */
6024
 
6025
                  /* If exceeds best match so far, save it.  */
6026
                  if (!best_regs_set || best_match_p)
6027
                    {
6028
                      best_regs_set = true;
6029
                      match_end = d;
6030
 
6031
                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6032
 
6033
                      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6034
                        {
6035
                          best_regstart[mcnt] = regstart[mcnt];
6036
                          best_regend[mcnt] = regend[mcnt];
6037
                        }
6038
                    }
6039
                  goto fail;
6040
                }
6041
 
6042
              /* If no failure points, don't restore garbage.  And if
6043
                 last match is real best match, don't restore second
6044
                 best one. */
6045
              else if (best_regs_set && !best_match_p)
6046
                {
6047
                restore_best_regs:
6048
                  /* Restore best match.  It may happen that `dend ==
6049
                     end_match_1' while the restored d is in string2.
6050
                     For example, the pattern `x.*y.*z' against the
6051
                     strings `x-' and `y-z-', if the two strings are
6052
                     not consecutive in memory.  */
6053
                  DEBUG_PRINT1 ("Restoring best registers.\n");
6054
 
6055
                  d = match_end;
6056
                  dend = ((d >= string1 && d <= end1)
6057
                           ? end_match_1 : end_match_2);
6058
 
6059
                  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6060
                    {
6061
                      regstart[mcnt] = best_regstart[mcnt];
6062
                      regend[mcnt] = best_regend[mcnt];
6063
                    }
6064
                }
6065
            } /* d != end_match_2 */
6066
 
6067
        succeed_label:
6068
          DEBUG_PRINT1 ("Accepting match.\n");
6069
          /* If caller wants register contents data back, do it.  */
6070
          if (regs && !bufp->no_sub)
6071
            {
6072
              /* Have the register data arrays been allocated?  */
6073
              if (bufp->regs_allocated == REGS_UNALLOCATED)
6074
                { /* No.  So allocate them with malloc.  We need one
6075
                     extra element beyond `num_regs' for the `-1' marker
6076
                     GNU code uses.  */
6077
                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
6078
                  regs->start = TALLOC (regs->num_regs, regoff_t);
6079
                  regs->end = TALLOC (regs->num_regs, regoff_t);
6080
                  if (regs->start == NULL || regs->end == NULL)
6081
                    {
6082
                      FREE_VARIABLES ();
6083
                      return -2;
6084
                    }
6085
                  bufp->regs_allocated = REGS_REALLOCATE;
6086
                }
6087
              else if (bufp->regs_allocated == REGS_REALLOCATE)
6088
                { /* Yes.  If we need more elements than were already
6089
                     allocated, reallocate them.  If we need fewer, just
6090
                     leave it alone.  */
6091
                  if (regs->num_regs < num_regs + 1)
6092
                    {
6093
                      regs->num_regs = num_regs + 1;
6094
                      RETALLOC (regs->start, regs->num_regs, regoff_t);
6095
                      RETALLOC (regs->end, regs->num_regs, regoff_t);
6096
                      if (regs->start == NULL || regs->end == NULL)
6097
                        {
6098
                          FREE_VARIABLES ();
6099
                          return -2;
6100
                        }
6101
                    }
6102
                }
6103
              else
6104
                {
6105
                  /* These braces fend off a "empty body in an else-statement"
6106
                     warning under GCC when assert expands to nothing.  */
6107
                  assert (bufp->regs_allocated == REGS_FIXED);
6108
                }
6109
 
6110
              /* Convert the pointer data in `regstart' and `regend' to
6111
                 indices.  Register zero has to be set differently,
6112
                 since we haven't kept track of any info for it.  */
6113
              if (regs->num_regs > 0)
6114
                {
6115
                  regs->start[0] = pos;
6116
#ifdef WCHAR
6117
                  if (MATCHING_IN_FIRST_STRING)
6118
                    regs->end[0] = mbs_offset1 != NULL ?
6119
                                        mbs_offset1[d-string1] : 0;
6120
                  else
6121
                    regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6122
                                             mbs_offset2[d-string2] : 0);
6123
#else
6124
                  regs->end[0] = (MATCHING_IN_FIRST_STRING
6125
                                  ? ((regoff_t) (d - string1))
6126
                                  : ((regoff_t) (d - string2 + size1)));
6127
#endif /* WCHAR */
6128
                }
6129
 
6130
              /* Go through the first `min (num_regs, regs->num_regs)'
6131
                 registers, since that is all we initialized.  */
6132
              for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6133
                   mcnt++)
6134
                {
6135
                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6136
                    regs->start[mcnt] = regs->end[mcnt] = -1;
6137
                  else
6138
                    {
6139
                      regs->start[mcnt]
6140
                        = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6141
                      regs->end[mcnt]
6142
                        = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6143
                    }
6144
                }
6145
 
6146
              /* If the regs structure we return has more elements than
6147
                 were in the pattern, set the extra elements to -1.  If
6148
                 we (re)allocated the registers, this is the case,
6149
                 because we always allocate enough to have at least one
6150
                 -1 at the end.  */
6151
              for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6152
                regs->start[mcnt] = regs->end[mcnt] = -1;
6153
            } /* regs && !bufp->no_sub */
6154
 
6155
          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6156
                        nfailure_points_pushed, nfailure_points_popped,
6157
                        nfailure_points_pushed - nfailure_points_popped);
6158
          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6159
 
6160
#ifdef WCHAR
6161
          if (MATCHING_IN_FIRST_STRING)
6162
            mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6163
          else
6164
            mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6165
                        csize1;
6166
          mcnt -= pos;
6167
#else
6168
          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6169
                            ? string1
6170
                            : string2 - size1);
6171
#endif /* WCHAR */
6172
 
6173
          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6174
 
6175
          FREE_VARIABLES ();
6176
          return mcnt;
6177
        }
6178
 
6179
      /* Otherwise match next pattern command.  */
6180
      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6181
        {
6182
        /* Ignore these.  Used to ignore the n of succeed_n's which
6183
           currently have n == 0.  */
6184
        case no_op:
6185
          DEBUG_PRINT1 ("EXECUTING no_op.\n");
6186
          break;
6187
 
6188
        case succeed:
6189
          DEBUG_PRINT1 ("EXECUTING succeed.\n");
6190
          goto succeed_label;
6191
 
6192
        /* Match the next n pattern characters exactly.  The following
6193
           byte in the pattern defines n, and the n bytes after that
6194
           are the characters to match.  */
6195
        case exactn:
6196
#ifdef MBS_SUPPORT
6197
        case exactn_bin:
6198
#endif
6199
          mcnt = *p++;
6200
          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6201
 
6202
          /* This is written out as an if-else so we don't waste time
6203
             testing `translate' inside the loop.  */
6204
          if (translate)
6205
            {
6206
              do
6207
                {
6208
                  PREFETCH ();
6209
#ifdef WCHAR
6210
                  if (*d <= 0xff)
6211
                    {
6212
                      if ((UCHAR_T) translate[(unsigned char) *d++]
6213
                          != (UCHAR_T) *p++)
6214
                        goto fail;
6215
                    }
6216
                  else
6217
                    {
6218
                      if (*d++ != (CHAR_T) *p++)
6219
                        goto fail;
6220
                    }
6221
#else
6222
                  if ((UCHAR_T) translate[(unsigned char) *d++]
6223
                      != (UCHAR_T) *p++)
6224
                    goto fail;
6225
#endif /* WCHAR */
6226
                }
6227
              while (--mcnt);
6228
            }
6229
          else
6230
            {
6231
              do
6232
                {
6233
                  PREFETCH ();
6234
                  if (*d++ != (CHAR_T) *p++) goto fail;
6235
                }
6236
              while (--mcnt);
6237
            }
6238
          SET_REGS_MATCHED ();
6239
          break;
6240
 
6241
 
6242
        /* Match any character except possibly a newline or a null.  */
6243
        case anychar:
6244
          DEBUG_PRINT1 ("EXECUTING anychar.\n");
6245
 
6246
          PREFETCH ();
6247
 
6248
          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6249
              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6250
            goto fail;
6251
 
6252
          SET_REGS_MATCHED ();
6253
          DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
6254
          d++;
6255
          break;
6256
 
6257
 
6258
        case charset:
6259
        case charset_not:
6260
          {
6261
            register UCHAR_T c;
6262
#ifdef WCHAR
6263
            unsigned int i, char_class_length, coll_symbol_length,
6264
              equiv_class_length, ranges_length, chars_length, length;
6265
            CHAR_T *workp, *workp2, *charset_top;
6266
#define WORK_BUFFER_SIZE 128
6267
            CHAR_T str_buf[WORK_BUFFER_SIZE];
6268
# ifdef _LIBC
6269
            uint32_t nrules;
6270
# endif /* _LIBC */
6271
#endif /* WCHAR */
6272
            boolean not = (re_opcode_t) *(p - 1) == charset_not;
6273
 
6274
            DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6275
            PREFETCH ();
6276
            c = TRANSLATE (*d); /* The character to match.  */
6277
#ifdef WCHAR
6278
# ifdef _LIBC
6279
            nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6280
# endif /* _LIBC */
6281
            charset_top = p - 1;
6282
            char_class_length = *p++;
6283
            coll_symbol_length = *p++;
6284
            equiv_class_length = *p++;
6285
            ranges_length = *p++;
6286
            chars_length = *p++;
6287
            /* p points charset[6], so the address of the next instruction
6288
               (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6289
               where l=length of char_classes, m=length of collating_symbol,
6290
               n=equivalence_class, o=length of char_range,
6291
               p'=length of character.  */
6292
            workp = p;
6293
            /* Update p to indicate the next instruction.  */
6294
            p += char_class_length + coll_symbol_length+ equiv_class_length +
6295
              2*ranges_length + chars_length;
6296
 
6297
            /* match with char_class?  */
6298
            for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6299
              {
6300
                wctype_t wctype;
6301
                uintptr_t alignedp = ((uintptr_t)workp
6302
                                      + __alignof__(wctype_t) - 1)
6303
                                      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6304
                wctype = *((wctype_t*)alignedp);
6305
                workp += CHAR_CLASS_SIZE;
6306
# ifdef _LIBC
6307
                if (__iswctype((wint_t)c, wctype))
6308
                  goto char_set_matched;
6309
# else
6310
                if (iswctype((wint_t)c, wctype))
6311
                  goto char_set_matched;
6312
# endif
6313
              }
6314
 
6315
            /* match with collating_symbol?  */
6316
# ifdef _LIBC
6317
            if (nrules != 0)
6318
              {
6319
                const unsigned char *extra = (const unsigned char *)
6320
                  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6321
 
6322
                for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6323
                     workp++)
6324
                  {
6325
                    int32_t *wextra;
6326
                    wextra = (int32_t*)(extra + *workp++);
6327
                    for (i = 0; i < *wextra; ++i)
6328
                      if (TRANSLATE(d[i]) != wextra[1 + i])
6329
                        break;
6330
 
6331
                    if (i == *wextra)
6332
                      {
6333
                        /* Update d, however d will be incremented at
6334
                           char_set_matched:, we decrement d here.  */
6335
                        d += i - 1;
6336
                        goto char_set_matched;
6337
                      }
6338
                  }
6339
              }
6340
            else /* (nrules == 0) */
6341
# endif
6342
              /* If we can't look up collation data, we use wcscoll
6343
                 instead.  */
6344
              {
6345
                for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6346
                  {
6347
                    const CHAR_T *backup_d = d, *backup_dend = dend;
6348
# ifdef _LIBC
6349
                    length = __wcslen (workp);
6350
# else
6351
                    length = wcslen (workp);
6352
# endif
6353
 
6354
                    /* If wcscoll(the collating symbol, whole string) > 0,
6355
                       any substring of the string never match with the
6356
                       collating symbol.  */
6357
# ifdef _LIBC
6358
                    if (__wcscoll (workp, d) > 0)
6359
# else
6360
                    if (wcscoll (workp, d) > 0)
6361
# endif
6362
                      {
6363
                        workp += length + 1;
6364
                        continue;
6365
                      }
6366
 
6367
                    /* First, we compare the collating symbol with
6368
                       the first character of the string.
6369
                       If it don't match, we add the next character to
6370
                       the compare buffer in turn.  */
6371
                    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6372
                      {
6373
                        int match;
6374
                        if (d == dend)
6375
                          {
6376
                            if (dend == end_match_2)
6377
                              break;
6378
                            d = string2;
6379
                            dend = end_match_2;
6380
                          }
6381
 
6382
                        /* add next character to the compare buffer.  */
6383
                        str_buf[i] = TRANSLATE(*d);
6384
                        str_buf[i+1] = '\0';
6385
 
6386
# ifdef _LIBC
6387
                        match = __wcscoll (workp, str_buf);
6388
# else
6389
                        match = wcscoll (workp, str_buf);
6390
# endif
6391
                        if (match == 0)
6392
                          goto char_set_matched;
6393
 
6394
                        if (match < 0)
6395
                          /* (str_buf > workp) indicate (str_buf + X > workp),
6396
                             because for all X (str_buf + X > str_buf).
6397
                             So we don't need continue this loop.  */
6398
                          break;
6399
 
6400
                        /* Otherwise(str_buf < workp),
6401
                           (str_buf+next_character) may equals (workp).
6402
                           So we continue this loop.  */
6403
                      }
6404
                    /* not matched */
6405
                    d = backup_d;
6406
                    dend = backup_dend;
6407
                    workp += length + 1;
6408
                  }
6409
              }
6410
            /* match with equivalence_class?  */
6411
# ifdef _LIBC
6412
            if (nrules != 0)
6413
              {
6414
                const CHAR_T *backup_d = d, *backup_dend = dend;
6415
                /* Try to match the equivalence class against
6416
                   those known to the collate implementation.  */
6417
                const int32_t *table;
6418
                const int32_t *weights;
6419
                const int32_t *extra;
6420
                const int32_t *indirect;
6421
                int32_t idx, idx2;
6422
                wint_t *cp;
6423
                size_t len;
6424
 
6425
                /* This #include defines a local function!  */
6426
#  include <locale/weightwc.h>
6427
 
6428
                table = (const int32_t *)
6429
                  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6430
                weights = (const wint_t *)
6431
                  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6432
                extra = (const wint_t *)
6433
                  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6434
                indirect = (const int32_t *)
6435
                  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6436
 
6437
                /* Write 1 collating element to str_buf, and
6438
                   get its index.  */
6439
                idx2 = 0;
6440
 
6441
                for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6442
                  {
6443
                    cp = (wint_t*)str_buf;
6444
                    if (d == dend)
6445
                      {
6446
                        if (dend == end_match_2)
6447
                          break;
6448
                        d = string2;
6449
                        dend = end_match_2;
6450
                      }
6451
                    str_buf[i] = TRANSLATE(*(d+i));
6452
                    str_buf[i+1] = '\0'; /* sentinel */
6453
                    idx2 = findidx ((const wint_t**)&cp);
6454
                  }
6455
 
6456
                /* Update d, however d will be incremented at
6457
                   char_set_matched:, we decrement d here.  */
6458
                d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6459
                if (d >= dend)
6460
                  {
6461
                    if (dend == end_match_2)
6462
                        d = dend;
6463
                    else
6464
                      {
6465
                        d = string2;
6466
                        dend = end_match_2;
6467
                      }
6468
                  }
6469
 
6470
                len = weights[idx2];
6471
 
6472
                for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6473
                     workp++)
6474
                  {
6475
                    idx = (int32_t)*workp;
6476
                    /* We already checked idx != 0 in regex_compile. */
6477
 
6478
                    if (idx2 != 0 && len == weights[idx])
6479
                      {
6480
                        int cnt = 0;
6481
                        while (cnt < len && (weights[idx + 1 + cnt]
6482
                                             == weights[idx2 + 1 + cnt]))
6483
                          ++cnt;
6484
 
6485
                        if (cnt == len)
6486
                          goto char_set_matched;
6487
                      }
6488
                  }
6489
                /* not matched */
6490
                d = backup_d;
6491
                dend = backup_dend;
6492
              }
6493
            else /* (nrules == 0) */
6494
# endif
6495
              /* If we can't look up collation data, we use wcscoll
6496
                 instead.  */
6497
              {
6498
                for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6499
                  {
6500
                    const CHAR_T *backup_d = d, *backup_dend = dend;
6501
# ifdef _LIBC
6502
                    length = __wcslen (workp);
6503
# else
6504
                    length = wcslen (workp);
6505
# endif
6506
 
6507
                    /* If wcscoll(the collating symbol, whole string) > 0,
6508
                       any substring of the string never match with the
6509
                       collating symbol.  */
6510
# ifdef _LIBC
6511
                    if (__wcscoll (workp, d) > 0)
6512
# else
6513
                    if (wcscoll (workp, d) > 0)
6514
# endif
6515
                      {
6516
                        workp += length + 1;
6517
                        break;
6518
                      }
6519
 
6520
                    /* First, we compare the equivalence class with
6521
                       the first character of the string.
6522
                       If it don't match, we add the next character to
6523
                       the compare buffer in turn.  */
6524
                    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6525
                      {
6526
                        int match;
6527
                        if (d == dend)
6528
                          {
6529
                            if (dend == end_match_2)
6530
                              break;
6531
                            d = string2;
6532
                            dend = end_match_2;
6533
                          }
6534
 
6535
                        /* add next character to the compare buffer.  */
6536
                        str_buf[i] = TRANSLATE(*d);
6537
                        str_buf[i+1] = '\0';
6538
 
6539
# ifdef _LIBC
6540
                        match = __wcscoll (workp, str_buf);
6541
# else
6542
                        match = wcscoll (workp, str_buf);
6543
# endif
6544
 
6545
                        if (match == 0)
6546
                          goto char_set_matched;
6547
 
6548
                        if (match < 0)
6549
                        /* (str_buf > workp) indicate (str_buf + X > workp),
6550
                           because for all X (str_buf + X > str_buf).
6551
                           So we don't need continue this loop.  */
6552
                          break;
6553
 
6554
                        /* Otherwise(str_buf < workp),
6555
                           (str_buf+next_character) may equals (workp).
6556
                           So we continue this loop.  */
6557
                      }
6558
                    /* not matched */
6559
                    d = backup_d;
6560
                    dend = backup_dend;
6561
                    workp += length + 1;
6562
                  }
6563
              }
6564
 
6565
            /* match with char_range?  */
6566
# ifdef _LIBC
6567
            if (nrules != 0)
6568
              {
6569
                uint32_t collseqval;
6570
                const char *collseq = (const char *)
6571
                  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6572
 
6573
                collseqval = collseq_table_lookup (collseq, c);
6574
 
6575
                for (; workp < p - chars_length ;)
6576
                  {
6577
                    uint32_t start_val, end_val;
6578
 
6579
                    /* We already compute the collation sequence value
6580
                       of the characters (or collating symbols).  */
6581
                    start_val = (uint32_t) *workp++; /* range_start */
6582
                    end_val = (uint32_t) *workp++; /* range_end */
6583
 
6584
                    if (start_val <= collseqval && collseqval <= end_val)
6585
                      goto char_set_matched;
6586
                  }
6587
              }
6588
            else
6589
# endif
6590
              {
6591
                /* We set range_start_char at str_buf[0], range_end_char
6592
                   at str_buf[4], and compared char at str_buf[2].  */
6593
                str_buf[1] = 0;
6594
                str_buf[2] = c;
6595
                str_buf[3] = 0;
6596
                str_buf[5] = 0;
6597
                for (; workp < p - chars_length ;)
6598
                  {
6599
                    wchar_t *range_start_char, *range_end_char;
6600
 
6601
                    /* match if (range_start_char <= c <= range_end_char).  */
6602
 
6603
                    /* If range_start(or end) < 0, we assume -range_start(end)
6604
                       is the offset of the collating symbol which is specified
6605
                       as the character of the range start(end).  */
6606
 
6607
                    /* range_start */
6608
                    if (*workp < 0)
6609
                      range_start_char = charset_top - (*workp++);
6610
                    else
6611
                      {
6612
                        str_buf[0] = *workp++;
6613
                        range_start_char = str_buf;
6614
                      }
6615
 
6616
                    /* range_end */
6617
                    if (*workp < 0)
6618
                      range_end_char = charset_top - (*workp++);
6619
                    else
6620
                      {
6621
                        str_buf[4] = *workp++;
6622
                        range_end_char = str_buf + 4;
6623
                      }
6624
 
6625
# ifdef _LIBC
6626
                    if (__wcscoll (range_start_char, str_buf+2) <= 0
6627
                        && __wcscoll (str_buf+2, range_end_char) <= 0)
6628
# else
6629
                    if (wcscoll (range_start_char, str_buf+2) <= 0
6630
                        && wcscoll (str_buf+2, range_end_char) <= 0)
6631
# endif
6632
                      goto char_set_matched;
6633
                  }
6634
              }
6635
 
6636
            /* match with char?  */
6637
            for (; workp < p ; workp++)
6638
              if (c == *workp)
6639
                goto char_set_matched;
6640
 
6641
            not = !not;
6642
 
6643
          char_set_matched:
6644
            if (not) goto fail;
6645
#else
6646
            /* Cast to `unsigned' instead of `unsigned char' in case the
6647
               bit list is a full 32 bytes long.  */
6648
            if (c < (unsigned) (*p * BYTEWIDTH)
6649
                && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6650
              not = !not;
6651
 
6652
            p += 1 + *p;
6653
 
6654
            if (!not) goto fail;
6655
#undef WORK_BUFFER_SIZE
6656
#endif /* WCHAR */
6657
            SET_REGS_MATCHED ();
6658
            d++;
6659
            break;
6660
          }
6661
 
6662
 
6663
        /* The beginning of a group is represented by start_memory.
6664
           The arguments are the register number in the next byte, and the
6665
           number of groups inner to this one in the next.  The text
6666
           matched within the group is recorded (in the internal
6667
           registers data structure) under the register number.  */
6668
        case start_memory:
6669
          DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6670
                        (long int) *p, (long int) p[1]);
6671
 
6672
          /* Find out if this group can match the empty string.  */
6673
          p1 = p;               /* To send to group_match_null_string_p.  */
6674
 
6675
          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6676
            REG_MATCH_NULL_STRING_P (reg_info[*p])
6677
              = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6678
 
6679
          /* Save the position in the string where we were the last time
6680
             we were at this open-group operator in case the group is
6681
             operated upon by a repetition operator, e.g., with `(a*)*b'
6682
             against `ab'; then we want to ignore where we are now in
6683
             the string in case this attempt to match fails.  */
6684
          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6685
                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6686
                             : regstart[*p];
6687
          DEBUG_PRINT2 ("  old_regstart: %d\n",
6688
                         POINTER_TO_OFFSET (old_regstart[*p]));
6689
 
6690
          regstart[*p] = d;
6691
          DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6692
 
6693
          IS_ACTIVE (reg_info[*p]) = 1;
6694
          MATCHED_SOMETHING (reg_info[*p]) = 0;
6695
 
6696
          /* Clear this whenever we change the register activity status.  */
6697
          set_regs_matched_done = 0;
6698
 
6699
          /* This is the new highest active register.  */
6700
          highest_active_reg = *p;
6701
 
6702
          /* If nothing was active before, this is the new lowest active
6703
             register.  */
6704
          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6705
            lowest_active_reg = *p;
6706
 
6707
          /* Move past the register number and inner group count.  */
6708
          p += 2;
6709
          just_past_start_mem = p;
6710
 
6711
          break;
6712
 
6713
 
6714
        /* The stop_memory opcode represents the end of a group.  Its
6715
           arguments are the same as start_memory's: the register
6716
           number, and the number of inner groups.  */
6717
        case stop_memory:
6718
          DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6719
                        (long int) *p, (long int) p[1]);
6720
 
6721
          /* We need to save the string position the last time we were at
6722
             this close-group operator in case the group is operated
6723
             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6724
             against `aba'; then we want to ignore where we are now in
6725
             the string in case this attempt to match fails.  */
6726
          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6727
                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
6728
                           : regend[*p];
6729
          DEBUG_PRINT2 ("      old_regend: %d\n",
6730
                         POINTER_TO_OFFSET (old_regend[*p]));
6731
 
6732
          regend[*p] = d;
6733
          DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6734
 
6735
          /* This register isn't active anymore.  */
6736
          IS_ACTIVE (reg_info[*p]) = 0;
6737
 
6738
          /* Clear this whenever we change the register activity status.  */
6739
          set_regs_matched_done = 0;
6740
 
6741
          /* If this was the only register active, nothing is active
6742
             anymore.  */
6743
          if (lowest_active_reg == highest_active_reg)
6744
            {
6745
              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6746
              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6747
            }
6748
          else
6749
            { /* We must scan for the new highest active register, since
6750
                 it isn't necessarily one less than now: consider
6751
                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6752
                 new highest active register is 1.  */
6753
              UCHAR_T r = *p - 1;
6754
              while (r > 0 && !IS_ACTIVE (reg_info[r]))
6755
                r--;
6756
 
6757
              /* If we end up at register zero, that means that we saved
6758
                 the registers as the result of an `on_failure_jump', not
6759
                 a `start_memory', and we jumped to past the innermost
6760
                 `stop_memory'.  For example, in ((.)*) we save
6761
                 registers 1 and 2 as a result of the *, but when we pop
6762
                 back to the second ), we are at the stop_memory 1.
6763
                 Thus, nothing is active.  */
6764
              if (r == 0)
6765
                {
6766
                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6767
                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6768
                }
6769
              else
6770
                highest_active_reg = r;
6771
            }
6772
 
6773
          /* If just failed to match something this time around with a
6774
             group that's operated on by a repetition operator, try to
6775
             force exit from the ``loop'', and restore the register
6776
             information for this group that we had before trying this
6777
             last match.  */
6778
          if ((!MATCHED_SOMETHING (reg_info[*p])
6779
               || just_past_start_mem == p - 1)
6780
              && (p + 2) < pend)
6781
            {
6782
              boolean is_a_jump_n = false;
6783
 
6784
              p1 = p + 2;
6785
              mcnt = 0;
6786
              switch ((re_opcode_t) *p1++)
6787
                {
6788
                  case jump_n:
6789
                    is_a_jump_n = true;
6790
                  case pop_failure_jump:
6791
                  case maybe_pop_jump:
6792
                  case jump:
6793
                  case dummy_failure_jump:
6794
                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6795
                    if (is_a_jump_n)
6796
                      p1 += OFFSET_ADDRESS_SIZE;
6797
                    break;
6798
 
6799
                  default:
6800
                    /* do nothing */ ;
6801
                }
6802
              p1 += mcnt;
6803
 
6804
              /* If the next operation is a jump backwards in the pattern
6805
                 to an on_failure_jump right before the start_memory
6806
                 corresponding to this stop_memory, exit from the loop
6807
                 by forcing a failure after pushing on the stack the
6808
                 on_failure_jump's jump in the pattern, and d.  */
6809
              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6810
                  && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6811
                  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6812
                {
6813
                  /* If this group ever matched anything, then restore
6814
                     what its registers were before trying this last
6815
                     failed match, e.g., with `(a*)*b' against `ab' for
6816
                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
6817
                     against `aba' for regend[3].
6818
 
6819
                     Also restore the registers for inner groups for,
6820
                     e.g., `((a*)(b*))*' against `aba' (register 3 would
6821
                     otherwise get trashed).  */
6822
 
6823
                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6824
                    {
6825
                      unsigned r;
6826
 
6827
                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6828
 
6829
                      /* Restore this and inner groups' (if any) registers.  */
6830
                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6831
                           r++)
6832
                        {
6833
                          regstart[r] = old_regstart[r];
6834
 
6835
                          /* xx why this test?  */
6836
                          if (old_regend[r] >= regstart[r])
6837
                            regend[r] = old_regend[r];
6838
                        }
6839
                    }
6840
                  p1++;
6841
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6842
                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6843
 
6844
                  goto fail;
6845
                }
6846
            }
6847
 
6848
          /* Move past the register number and the inner group count.  */
6849
          p += 2;
6850
          break;
6851
 
6852
 
6853
        /* \<digit> has been turned into a `duplicate' command which is
6854
           followed by the numeric value of <digit> as the register number.  */
6855
        case duplicate:
6856
          {
6857
            register const CHAR_T *d2, *dend2;
6858
            int regno = *p++;   /* Get which register to match against.  */
6859
            DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6860
 
6861
            /* Can't back reference a group which we've never matched.  */
6862
            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6863
              goto fail;
6864
 
6865
            /* Where in input to try to start matching.  */
6866
            d2 = regstart[regno];
6867
 
6868
            /* Where to stop matching; if both the place to start and
6869
               the place to stop matching are in the same string, then
6870
               set to the place to stop, otherwise, for now have to use
6871
               the end of the first string.  */
6872
 
6873
            dend2 = ((FIRST_STRING_P (regstart[regno])
6874
                      == FIRST_STRING_P (regend[regno]))
6875
                     ? regend[regno] : end_match_1);
6876
            for (;;)
6877
              {
6878
                /* If necessary, advance to next segment in register
6879
                   contents.  */
6880
                while (d2 == dend2)
6881
                  {
6882
                    if (dend2 == end_match_2) break;
6883
                    if (dend2 == regend[regno]) break;
6884
 
6885
                    /* End of string1 => advance to string2. */
6886
                    d2 = string2;
6887
                    dend2 = regend[regno];
6888
                  }
6889
                /* At end of register contents => success */
6890
                if (d2 == dend2) break;
6891
 
6892
                /* If necessary, advance to next segment in data.  */
6893
                PREFETCH ();
6894
 
6895
                /* How many characters left in this segment to match.  */
6896
                mcnt = dend - d;
6897
 
6898
                /* Want how many consecutive characters we can match in
6899
                   one shot, so, if necessary, adjust the count.  */
6900
                if (mcnt > dend2 - d2)
6901
                  mcnt = dend2 - d2;
6902
 
6903
                /* Compare that many; failure if mismatch, else move
6904
                   past them.  */
6905
                if (translate
6906
                    ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6907
                    : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6908
                  goto fail;
6909
                d += mcnt, d2 += mcnt;
6910
 
6911
                /* Do this because we've match some characters.  */
6912
                SET_REGS_MATCHED ();
6913
              }
6914
          }
6915
          break;
6916
 
6917
 
6918
        /* begline matches the empty string at the beginning of the string
6919
           (unless `not_bol' is set in `bufp'), and, if
6920
           `newline_anchor' is set, after newlines.  */
6921
        case begline:
6922
          DEBUG_PRINT1 ("EXECUTING begline.\n");
6923
 
6924
          if (AT_STRINGS_BEG (d))
6925
            {
6926
              if (!bufp->not_bol) break;
6927
            }
6928
          else if (d[-1] == '\n' && bufp->newline_anchor)
6929
            {
6930
              break;
6931
            }
6932
          /* In all other cases, we fail.  */
6933
          goto fail;
6934
 
6935
 
6936
        /* endline is the dual of begline.  */
6937
        case endline:
6938
          DEBUG_PRINT1 ("EXECUTING endline.\n");
6939
 
6940
          if (AT_STRINGS_END (d))
6941
            {
6942
              if (!bufp->not_eol) break;
6943
            }
6944
 
6945
          /* We have to ``prefetch'' the next character.  */
6946
          else if ((d == end1 ? *string2 : *d) == '\n'
6947
                   && bufp->newline_anchor)
6948
            {
6949
              break;
6950
            }
6951
          goto fail;
6952
 
6953
 
6954
        /* Match at the very beginning of the data.  */
6955
        case begbuf:
6956
          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6957
          if (AT_STRINGS_BEG (d))
6958
            break;
6959
          goto fail;
6960
 
6961
 
6962
        /* Match at the very end of the data.  */
6963
        case endbuf:
6964
          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6965
          if (AT_STRINGS_END (d))
6966
            break;
6967
          goto fail;
6968
 
6969
 
6970
        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6971
           pushes NULL as the value for the string on the stack.  Then
6972
           `pop_failure_point' will keep the current value for the
6973
           string, instead of restoring it.  To see why, consider
6974
           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6975
           then the . fails against the \n.  But the next thing we want
6976
           to do is match the \n against the \n; if we restored the
6977
           string value, we would be back at the foo.
6978
 
6979
           Because this is used only in specific cases, we don't need to
6980
           check all the things that `on_failure_jump' does, to make
6981
           sure the right things get saved on the stack.  Hence we don't
6982
           share its code.  The only reason to push anything on the
6983
           stack at all is that otherwise we would have to change
6984
           `anychar's code to do something besides goto fail in this
6985
           case; that seems worse than this.  */
6986
        case on_failure_keep_string_jump:
6987
          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6988
 
6989
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6990
#ifdef _LIBC
6991
          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6992
#else
6993
          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6994
#endif
6995
 
6996
          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6997
          break;
6998
 
6999
 
7000
        /* Uses of on_failure_jump:
7001
 
7002
           Each alternative starts with an on_failure_jump that points
7003
           to the beginning of the next alternative.  Each alternative
7004
           except the last ends with a jump that in effect jumps past
7005
           the rest of the alternatives.  (They really jump to the
7006
           ending jump of the following alternative, because tensioning
7007
           these jumps is a hassle.)
7008
 
7009
           Repeats start with an on_failure_jump that points past both
7010
           the repetition text and either the following jump or
7011
           pop_failure_jump back to this on_failure_jump.  */
7012
        case on_failure_jump:
7013
        on_failure:
7014
          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7015
 
7016
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
7017
#ifdef _LIBC
7018
          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
7019
#else
7020
          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
7021
#endif
7022
 
7023
          /* If this on_failure_jump comes right before a group (i.e.,
7024
             the original * applied to a group), save the information
7025
             for that group and all inner ones, so that if we fail back
7026
             to this point, the group's information will be correct.
7027
             For example, in \(a*\)*\1, we need the preceding group,
7028
             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
7029
 
7030
          /* We can't use `p' to check ahead because we push
7031
             a failure point to `p + mcnt' after we do this.  */
7032
          p1 = p;
7033
 
7034
          /* We need to skip no_op's before we look for the
7035
             start_memory in case this on_failure_jump is happening as
7036
             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7037
             against aba.  */
7038
          while (p1 < pend && (re_opcode_t) *p1 == no_op)
7039
            p1++;
7040
 
7041
          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
7042
            {
7043
              /* We have a new highest active register now.  This will
7044
                 get reset at the start_memory we are about to get to,
7045
                 but we will have saved all the registers relevant to
7046
                 this repetition op, as described above.  */
7047
              highest_active_reg = *(p1 + 1) + *(p1 + 2);
7048
              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
7049
                lowest_active_reg = *(p1 + 1);
7050
            }
7051
 
7052
          DEBUG_PRINT1 (":\n");
7053
          PUSH_FAILURE_POINT (p + mcnt, d, -2);
7054
          break;
7055
 
7056
 
7057
        /* A smart repeat ends with `maybe_pop_jump'.
7058
           We change it to either `pop_failure_jump' or `jump'.  */
7059
        case maybe_pop_jump:
7060
          EXTRACT_NUMBER_AND_INCR (mcnt, p);
7061
          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
7062
          {
7063
            register UCHAR_T *p2 = p;
7064
 
7065
            /* Compare the beginning of the repeat with what in the
7066
               pattern follows its end. If we can establish that there
7067
               is nothing that they would both match, i.e., that we
7068
               would have to backtrack because of (as in, e.g., `a*a')
7069
               then we can change to pop_failure_jump, because we'll
7070
               never have to backtrack.
7071
 
7072
               This is not true in the case of alternatives: in
7073
               `(a|ab)*' we do need to backtrack to the `ab' alternative
7074
               (e.g., if the string was `ab').  But instead of trying to
7075
               detect that here, the alternative has put on a dummy
7076
               failure point which is what we will end up popping.  */
7077
 
7078
            /* Skip over open/close-group commands.
7079
               If what follows this loop is a ...+ construct,
7080
               look at what begins its body, since we will have to
7081
               match at least one of that.  */
7082
            while (1)
7083
              {
7084
                if (p2 + 2 < pend
7085
                    && ((re_opcode_t) *p2 == stop_memory
7086
                        || (re_opcode_t) *p2 == start_memory))
7087
                  p2 += 3;
7088
                else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7089
                         && (re_opcode_t) *p2 == dummy_failure_jump)
7090
                  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7091
                else
7092
                  break;
7093
              }
7094
 
7095
            p1 = p + mcnt;
7096
            /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7097
               to the `maybe_finalize_jump' of this case.  Examine what
7098
               follows.  */
7099
 
7100
            /* If we're at the end of the pattern, we can change.  */
7101
            if (p2 == pend)
7102
              {
7103
                /* Consider what happens when matching ":\(.*\)"
7104
                   against ":/".  I don't really understand this code
7105
                   yet.  */
7106
                p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7107
                  pop_failure_jump;
7108
                DEBUG_PRINT1
7109
                  ("  End of pattern: change to `pop_failure_jump'.\n");
7110
              }
7111
 
7112
            else if ((re_opcode_t) *p2 == exactn
7113
#ifdef MBS_SUPPORT
7114
                     || (re_opcode_t) *p2 == exactn_bin
7115
#endif
7116
                     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7117
              {
7118
                register UCHAR_T c
7119
                  = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7120
 
7121
                if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7122
#ifdef MBS_SUPPORT
7123
                     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7124
#endif
7125
                    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7126
                  {
7127
                    p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7128
                      pop_failure_jump;
7129
#ifdef WCHAR
7130
                      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
7131
                                    (wint_t) c,
7132
                                    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7133
#else
7134
                      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
7135
                                    (char) c,
7136
                                    (char) p1[3+OFFSET_ADDRESS_SIZE]);
7137
#endif
7138
                  }
7139
 
7140
#ifndef WCHAR
7141
                else if ((re_opcode_t) p1[3] == charset
7142
                         || (re_opcode_t) p1[3] == charset_not)
7143
                  {
7144
                    int not = (re_opcode_t) p1[3] == charset_not;
7145
 
7146
                    if (c < (unsigned) (p1[4] * BYTEWIDTH)
7147
                        && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7148
                      not = !not;
7149
 
7150
                    /* `not' is equal to 1 if c would match, which means
7151
                        that we can't change to pop_failure_jump.  */
7152
                    if (!not)
7153
                      {
7154
                        p[-3] = (unsigned char) pop_failure_jump;
7155
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7156
                      }
7157
                  }
7158
#endif /* not WCHAR */
7159
              }
7160
#ifndef WCHAR
7161
            else if ((re_opcode_t) *p2 == charset)
7162
              {
7163
                /* We win if the first character of the loop is not part
7164
                   of the charset.  */
7165
                if ((re_opcode_t) p1[3] == exactn
7166
                    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7167
                          && (p2[2 + p1[5] / BYTEWIDTH]
7168
                              & (1 << (p1[5] % BYTEWIDTH)))))
7169
                  {
7170
                    p[-3] = (unsigned char) pop_failure_jump;
7171
                    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7172
                  }
7173
 
7174
                else if ((re_opcode_t) p1[3] == charset_not)
7175
                  {
7176
                    int idx;
7177
                    /* We win if the charset_not inside the loop
7178
                       lists every character listed in the charset after.  */
7179
                    for (idx = 0; idx < (int) p2[1]; idx++)
7180
                      if (! (p2[2 + idx] == 0
7181
                             || (idx < (int) p1[4]
7182
                                 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7183
                        break;
7184
 
7185
                    if (idx == p2[1])
7186
                      {
7187
                        p[-3] = (unsigned char) pop_failure_jump;
7188
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7189
                      }
7190
                  }
7191
                else if ((re_opcode_t) p1[3] == charset)
7192
                  {
7193
                    int idx;
7194
                    /* We win if the charset inside the loop
7195
                       has no overlap with the one after the loop.  */
7196
                    for (idx = 0;
7197
                         idx < (int) p2[1] && idx < (int) p1[4];
7198
                         idx++)
7199
                      if ((p2[2 + idx] & p1[5 + idx]) != 0)
7200
                        break;
7201
 
7202
                    if (idx == p2[1] || idx == p1[4])
7203
                      {
7204
                        p[-3] = (unsigned char) pop_failure_jump;
7205
                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7206
                      }
7207
                  }
7208
              }
7209
#endif /* not WCHAR */
7210
          }
7211
          p -= OFFSET_ADDRESS_SIZE;     /* Point at relative address again.  */
7212
          if ((re_opcode_t) p[-1] != pop_failure_jump)
7213
            {
7214
              p[-1] = (UCHAR_T) jump;
7215
              DEBUG_PRINT1 ("  Match => jump.\n");
7216
              goto unconditional_jump;
7217
            }
7218
        /* Note fall through.  */
7219
 
7220
 
7221
        /* The end of a simple repeat has a pop_failure_jump back to
7222
           its matching on_failure_jump, where the latter will push a
7223
           failure point.  The pop_failure_jump takes off failure
7224
           points put on by this pop_failure_jump's matching
7225
           on_failure_jump; we got through the pattern to here from the
7226
           matching on_failure_jump, so didn't fail.  */
7227
        case pop_failure_jump:
7228
          {
7229
            /* We need to pass separate storage for the lowest and
7230
               highest registers, even though we don't care about the
7231
               actual values.  Otherwise, we will restore only one
7232
               register from the stack, since lowest will == highest in
7233
               `pop_failure_point'.  */
7234
            active_reg_t dummy_low_reg, dummy_high_reg;
7235
            UCHAR_T *pdummy = NULL;
7236
            const CHAR_T *sdummy = NULL;
7237
 
7238
            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7239
            POP_FAILURE_POINT (sdummy, pdummy,
7240
                               dummy_low_reg, dummy_high_reg,
7241
                               reg_dummy, reg_dummy, reg_info_dummy);
7242
          }
7243
          /* Note fall through.  */
7244
 
7245
        unconditional_jump:
7246
#ifdef _LIBC
7247
          DEBUG_PRINT2 ("\n%p: ", p);
7248
#else
7249
          DEBUG_PRINT2 ("\n0x%x: ", p);
7250
#endif
7251
          /* Note fall through.  */
7252
 
7253
        /* Unconditionally jump (without popping any failure points).  */
7254
        case jump:
7255
          EXTRACT_NUMBER_AND_INCR (mcnt, p);    /* Get the amount to jump.  */
7256
          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7257
          p += mcnt;                            /* Do the jump.  */
7258
#ifdef _LIBC
7259
          DEBUG_PRINT2 ("(to %p).\n", p);
7260
#else
7261
          DEBUG_PRINT2 ("(to 0x%x).\n", p);
7262
#endif
7263
          break;
7264
 
7265
 
7266
        /* We need this opcode so we can detect where alternatives end
7267
           in `group_match_null_string_p' et al.  */
7268
        case jump_past_alt:
7269
          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7270
          goto unconditional_jump;
7271
 
7272
 
7273
        /* Normally, the on_failure_jump pushes a failure point, which
7274
           then gets popped at pop_failure_jump.  We will end up at
7275
           pop_failure_jump, also, and with a pattern of, say, `a+', we
7276
           are skipping over the on_failure_jump, so we have to push
7277
           something meaningless for pop_failure_jump to pop.  */
7278
        case dummy_failure_jump:
7279
          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7280
          /* It doesn't matter what we push for the string here.  What
7281
             the code at `fail' tests is the value for the pattern.  */
7282
          PUSH_FAILURE_POINT (NULL, NULL, -2);
7283
          goto unconditional_jump;
7284
 
7285
 
7286
        /* At the end of an alternative, we need to push a dummy failure
7287
           point in case we are followed by a `pop_failure_jump', because
7288
           we don't want the failure point for the alternative to be
7289
           popped.  For example, matching `(a|ab)*' against `aab'
7290
           requires that we match the `ab' alternative.  */
7291
        case push_dummy_failure:
7292
          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7293
          /* See comments just above at `dummy_failure_jump' about the
7294
             two zeroes.  */
7295
          PUSH_FAILURE_POINT (NULL, NULL, -2);
7296
          break;
7297
 
7298
        /* Have to succeed matching what follows at least n times.
7299
           After that, handle like `on_failure_jump'.  */
7300
        case succeed_n:
7301
          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7302
          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7303
 
7304
          assert (mcnt >= 0);
7305
          /* Originally, this is how many times we HAVE to succeed.  */
7306
          if (mcnt > 0)
7307
            {
7308
               mcnt--;
7309
               p += OFFSET_ADDRESS_SIZE;
7310
               STORE_NUMBER_AND_INCR (p, mcnt);
7311
#ifdef _LIBC
7312
               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7313
                             , mcnt);
7314
#else
7315
               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7316
                             , mcnt);
7317
#endif
7318
            }
7319
          else if (mcnt == 0)
7320
            {
7321
#ifdef _LIBC
7322
              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
7323
                            p + OFFSET_ADDRESS_SIZE);
7324
#else
7325
              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
7326
                            p + OFFSET_ADDRESS_SIZE);
7327
#endif /* _LIBC */
7328
 
7329
#ifdef WCHAR
7330
              p[1] = (UCHAR_T) no_op;
7331
#else
7332
              p[2] = (UCHAR_T) no_op;
7333
              p[3] = (UCHAR_T) no_op;
7334
#endif /* WCHAR */
7335
              goto on_failure;
7336
            }
7337
          break;
7338
 
7339
        case jump_n:
7340
          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7341
          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7342
 
7343
          /* Originally, this is how many times we CAN jump.  */
7344
          if (mcnt)
7345
            {
7346
               mcnt--;
7347
               STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7348
 
7349
#ifdef _LIBC
7350
               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7351
                             mcnt);
7352
#else
7353
               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7354
                             mcnt);
7355
#endif /* _LIBC */
7356
               goto unconditional_jump;
7357
            }
7358
          /* If don't have to jump any more, skip over the rest of command.  */
7359
          else
7360
            p += 2 * OFFSET_ADDRESS_SIZE;
7361
          break;
7362
 
7363
        case set_number_at:
7364
          {
7365
            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7366
 
7367
            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7368
            p1 = p + mcnt;
7369
            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7370
#ifdef _LIBC
7371
            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7372
#else
7373
            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7374
#endif
7375
            STORE_NUMBER (p1, mcnt);
7376
            break;
7377
          }
7378
 
7379
#if 0
7380
        /* The DEC Alpha C compiler 3.x generates incorrect code for the
7381
           test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7382
           AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7383
           macro and introducing temporary variables works around the bug.  */
7384
 
7385
        case wordbound:
7386
          DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7387
          if (AT_WORD_BOUNDARY (d))
7388
            break;
7389
          goto fail;
7390
 
7391
        case notwordbound:
7392
          DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7393
          if (AT_WORD_BOUNDARY (d))
7394
            goto fail;
7395
          break;
7396
#else
7397
        case wordbound:
7398
        {
7399
          boolean prevchar, thischar;
7400
 
7401
          DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7402
          if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7403
            break;
7404
 
7405
          prevchar = WORDCHAR_P (d - 1);
7406
          thischar = WORDCHAR_P (d);
7407
          if (prevchar != thischar)
7408
            break;
7409
          goto fail;
7410
        }
7411
 
7412
      case notwordbound:
7413
        {
7414
          boolean prevchar, thischar;
7415
 
7416
          DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7417
          if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7418
            goto fail;
7419
 
7420
          prevchar = WORDCHAR_P (d - 1);
7421
          thischar = WORDCHAR_P (d);
7422
          if (prevchar != thischar)
7423
            goto fail;
7424
          break;
7425
        }
7426
#endif
7427
 
7428
        case wordbeg:
7429
          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7430
          if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7431
              && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7432
            break;
7433
          goto fail;
7434
 
7435
        case wordend:
7436
          DEBUG_PRINT1 ("EXECUTING wordend.\n");
7437
          if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7438
              && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7439
            break;
7440
          goto fail;
7441
 
7442
#ifdef emacs
7443
        case before_dot:
7444
          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7445
          if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7446
            goto fail;
7447
          break;
7448
 
7449
        case at_dot:
7450
          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7451
          if (PTR_CHAR_POS ((unsigned char *) d) != point)
7452
            goto fail;
7453
          break;
7454
 
7455
        case after_dot:
7456
          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7457
          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7458
            goto fail;
7459
          break;
7460
 
7461
        case syntaxspec:
7462
          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7463
          mcnt = *p++;
7464
          goto matchsyntax;
7465
 
7466
        case wordchar:
7467
          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7468
          mcnt = (int) Sword;
7469
        matchsyntax:
7470
          PREFETCH ();
7471
          /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7472
          d++;
7473
          if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7474
            goto fail;
7475
          SET_REGS_MATCHED ();
7476
          break;
7477
 
7478
        case notsyntaxspec:
7479
          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7480
          mcnt = *p++;
7481
          goto matchnotsyntax;
7482
 
7483
        case notwordchar:
7484
          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7485
          mcnt = (int) Sword;
7486
        matchnotsyntax:
7487
          PREFETCH ();
7488
          /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7489
          d++;
7490
          if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7491
            goto fail;
7492
          SET_REGS_MATCHED ();
7493
          break;
7494
 
7495
#else /* not emacs */
7496
        case wordchar:
7497
          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7498
          PREFETCH ();
7499
          if (!WORDCHAR_P (d))
7500
            goto fail;
7501
          SET_REGS_MATCHED ();
7502
          d++;
7503
          break;
7504
 
7505
        case notwordchar:
7506
          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7507
          PREFETCH ();
7508
          if (WORDCHAR_P (d))
7509
            goto fail;
7510
          SET_REGS_MATCHED ();
7511
          d++;
7512
          break;
7513
#endif /* not emacs */
7514
 
7515
        default:
7516
          abort ();
7517
        }
7518
      continue;  /* Successfully executed one pattern command; keep going.  */
7519
 
7520
 
7521
    /* We goto here if a matching operation fails. */
7522
    fail:
7523
      if (!FAIL_STACK_EMPTY ())
7524
        { /* A restart point is known.  Restore to that state.  */
7525
          DEBUG_PRINT1 ("\nFAIL:\n");
7526
          POP_FAILURE_POINT (d, p,
7527
                             lowest_active_reg, highest_active_reg,
7528
                             regstart, regend, reg_info);
7529
 
7530
          /* If this failure point is a dummy, try the next one.  */
7531
          if (!p)
7532
            goto fail;
7533
 
7534
          /* If we failed to the end of the pattern, don't examine *p.  */
7535
          assert (p <= pend);
7536
          if (p < pend)
7537
            {
7538
              boolean is_a_jump_n = false;
7539
 
7540
              /* If failed to a backwards jump that's part of a repetition
7541
                 loop, need to pop this failure point and use the next one.  */
7542
              switch ((re_opcode_t) *p)
7543
                {
7544
                case jump_n:
7545
                  is_a_jump_n = true;
7546
                case maybe_pop_jump:
7547
                case pop_failure_jump:
7548
                case jump:
7549
                  p1 = p + 1;
7550
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7551
                  p1 += mcnt;
7552
 
7553
                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7554
                      || (!is_a_jump_n
7555
                          && (re_opcode_t) *p1 == on_failure_jump))
7556
                    goto fail;
7557
                  break;
7558
                default:
7559
                  /* do nothing */ ;
7560
                }
7561
            }
7562
 
7563
          if (d >= string1 && d <= end1)
7564
            dend = end_match_1;
7565
        }
7566
      else
7567
        break;   /* Matching at this starting point really fails.  */
7568
    } /* for (;;) */
7569
 
7570
  if (best_regs_set)
7571
    goto restore_best_regs;
7572
 
7573
  FREE_VARIABLES ();
7574
 
7575
  return -1;                            /* Failure to match.  */
7576
} /* re_match_2 */
7577
 
7578
/* Subroutine definitions for re_match_2.  */
7579
 
7580
 
7581
/* We are passed P pointing to a register number after a start_memory.
7582
 
7583
   Return true if the pattern up to the corresponding stop_memory can
7584
   match the empty string, and false otherwise.
7585
 
7586
   If we find the matching stop_memory, sets P to point to one past its number.
7587
   Otherwise, sets P to an undefined byte less than or equal to END.
7588
 
7589
   We don't handle duplicates properly (yet).  */
7590
 
7591
static boolean
7592
PREFIX(group_match_null_string_p) (p, end, reg_info)
7593
    UCHAR_T **p, *end;
7594
    PREFIX(register_info_type) *reg_info;
7595
{
7596
  int mcnt;
7597
  /* Point to after the args to the start_memory.  */
7598
  UCHAR_T *p1 = *p + 2;
7599
 
7600
  while (p1 < end)
7601
    {
7602
      /* Skip over opcodes that can match nothing, and return true or
7603
         false, as appropriate, when we get to one that can't, or to the
7604
         matching stop_memory.  */
7605
 
7606
      switch ((re_opcode_t) *p1)
7607
        {
7608
        /* Could be either a loop or a series of alternatives.  */
7609
        case on_failure_jump:
7610
          p1++;
7611
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7612
 
7613
          /* If the next operation is not a jump backwards in the
7614
             pattern.  */
7615
 
7616
          if (mcnt >= 0)
7617
            {
7618
              /* Go through the on_failure_jumps of the alternatives,
7619
                 seeing if any of the alternatives cannot match nothing.
7620
                 The last alternative starts with only a jump,
7621
                 whereas the rest start with on_failure_jump and end
7622
                 with a jump, e.g., here is the pattern for `a|b|c':
7623
 
7624
                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7625
                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7626
                 /exactn/1/c
7627
 
7628
                 So, we have to first go through the first (n-1)
7629
                 alternatives and then deal with the last one separately.  */
7630
 
7631
 
7632
              /* Deal with the first (n-1) alternatives, which start
7633
                 with an on_failure_jump (see above) that jumps to right
7634
                 past a jump_past_alt.  */
7635
 
7636
              while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7637
                     jump_past_alt)
7638
                {
7639
                  /* `mcnt' holds how many bytes long the alternative
7640
                     is, including the ending `jump_past_alt' and
7641
                     its number.  */
7642
 
7643
                  if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7644
                                                (1 + OFFSET_ADDRESS_SIZE),
7645
                                                reg_info))
7646
                    return false;
7647
 
7648
                  /* Move to right after this alternative, including the
7649
                     jump_past_alt.  */
7650
                  p1 += mcnt;
7651
 
7652
                  /* Break if it's the beginning of an n-th alternative
7653
                     that doesn't begin with an on_failure_jump.  */
7654
                  if ((re_opcode_t) *p1 != on_failure_jump)
7655
                    break;
7656
 
7657
                  /* Still have to check that it's not an n-th
7658
                     alternative that starts with an on_failure_jump.  */
7659
                  p1++;
7660
                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7661
                  if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7662
                      jump_past_alt)
7663
                    {
7664
                      /* Get to the beginning of the n-th alternative.  */
7665
                      p1 -= 1 + OFFSET_ADDRESS_SIZE;
7666
                      break;
7667
                    }
7668
                }
7669
 
7670
              /* Deal with the last alternative: go back and get number
7671
                 of the `jump_past_alt' just before it.  `mcnt' contains
7672
                 the length of the alternative.  */
7673
              EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7674
 
7675
              if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7676
                return false;
7677
 
7678
              p1 += mcnt;       /* Get past the n-th alternative.  */
7679
            } /* if mcnt > 0 */
7680
          break;
7681
 
7682
 
7683
        case stop_memory:
7684
          assert (p1[1] == **p);
7685
          *p = p1 + 2;
7686
          return true;
7687
 
7688
 
7689
        default:
7690
          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7691
            return false;
7692
        }
7693
    } /* while p1 < end */
7694
 
7695
  return false;
7696
} /* group_match_null_string_p */
7697
 
7698
 
7699
/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7700
   It expects P to be the first byte of a single alternative and END one
7701
   byte past the last. The alternative can contain groups.  */
7702
 
7703
static boolean
7704
PREFIX(alt_match_null_string_p) (p, end, reg_info)
7705
    UCHAR_T *p, *end;
7706
    PREFIX(register_info_type) *reg_info;
7707
{
7708
  int mcnt;
7709
  UCHAR_T *p1 = p;
7710
 
7711
  while (p1 < end)
7712
    {
7713
      /* Skip over opcodes that can match nothing, and break when we get
7714
         to one that can't.  */
7715
 
7716
      switch ((re_opcode_t) *p1)
7717
        {
7718
        /* It's a loop.  */
7719
        case on_failure_jump:
7720
          p1++;
7721
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7722
          p1 += mcnt;
7723
          break;
7724
 
7725
        default:
7726
          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7727
            return false;
7728
        }
7729
    }  /* while p1 < end */
7730
 
7731
  return true;
7732
} /* alt_match_null_string_p */
7733
 
7734
 
7735
/* Deals with the ops common to group_match_null_string_p and
7736
   alt_match_null_string_p.
7737
 
7738
   Sets P to one after the op and its arguments, if any.  */
7739
 
7740
static boolean
7741
PREFIX(common_op_match_null_string_p) (p, end, reg_info)
7742
    UCHAR_T **p, *end;
7743
    PREFIX(register_info_type) *reg_info;
7744
{
7745
  int mcnt;
7746
  boolean ret;
7747
  int reg_no;
7748
  UCHAR_T *p1 = *p;
7749
 
7750
  switch ((re_opcode_t) *p1++)
7751
    {
7752
    case no_op:
7753
    case begline:
7754
    case endline:
7755
    case begbuf:
7756
    case endbuf:
7757
    case wordbeg:
7758
    case wordend:
7759
    case wordbound:
7760
    case notwordbound:
7761
#ifdef emacs
7762
    case before_dot:
7763
    case at_dot:
7764
    case after_dot:
7765
#endif
7766
      break;
7767
 
7768
    case start_memory:
7769
      reg_no = *p1;
7770
      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7771
      ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7772
 
7773
      /* Have to set this here in case we're checking a group which
7774
         contains a group and a back reference to it.  */
7775
 
7776
      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7777
        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7778
 
7779
      if (!ret)
7780
        return false;
7781
      break;
7782
 
7783
    /* If this is an optimized succeed_n for zero times, make the jump.  */
7784
    case jump:
7785
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7786
      if (mcnt >= 0)
7787
        p1 += mcnt;
7788
      else
7789
        return false;
7790
      break;
7791
 
7792
    case succeed_n:
7793
      /* Get to the number of times to succeed.  */
7794
      p1 += OFFSET_ADDRESS_SIZE;
7795
      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7796
 
7797
      if (mcnt == 0)
7798
        {
7799
          p1 -= 2 * OFFSET_ADDRESS_SIZE;
7800
          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7801
          p1 += mcnt;
7802
        }
7803
      else
7804
        return false;
7805
      break;
7806
 
7807
    case duplicate:
7808
      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7809
        return false;
7810
      break;
7811
 
7812
    case set_number_at:
7813
      p1 += 2 * OFFSET_ADDRESS_SIZE;
7814
 
7815
    default:
7816
      /* All other opcodes mean we cannot match the empty string.  */
7817
      return false;
7818
  }
7819
 
7820
  *p = p1;
7821
  return true;
7822
} /* common_op_match_null_string_p */
7823
 
7824
 
7825
/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7826
   bytes; nonzero otherwise.  */
7827
 
7828
static int
7829
PREFIX(bcmp_translate) (s1, s2, len, translate)
7830
     const CHAR_T *s1, *s2;
7831
     register int len;
7832
     RE_TRANSLATE_TYPE translate;
7833
{
7834
  register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7835
  register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7836
  while (len)
7837
    {
7838
#ifdef WCHAR
7839
      if (((*p1<=0xff)?translate[*p1++]:*p1++)
7840
          != ((*p2<=0xff)?translate[*p2++]:*p2++))
7841
        return 1;
7842
#else /* BYTE */
7843
      if (translate[*p1++] != translate[*p2++]) return 1;
7844
#endif /* WCHAR */
7845
      len--;
7846
    }
7847
  return 0;
7848
}
7849
 
7850
 
7851
#else /* not INSIDE_RECURSION */
7852
 
7853
/* Entry points for GNU code.  */
7854
 
7855
/* re_compile_pattern is the GNU regular expression compiler: it
7856
   compiles PATTERN (of length SIZE) and puts the result in BUFP.
7857
   Returns 0 if the pattern was valid, otherwise an error string.
7858
 
7859
   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7860
   are set in BUFP on entry.
7861
 
7862
   We call regex_compile to do the actual compilation.  */
7863
 
7864
const char *
7865
re_compile_pattern (pattern, length, bufp)
7866
     const char *pattern;
7867
     size_t length;
7868
     struct re_pattern_buffer *bufp;
7869
{
7870
  reg_errcode_t ret;
7871
 
7872
  /* GNU code is written to assume at least RE_NREGS registers will be set
7873
     (and at least one extra will be -1).  */
7874
  bufp->regs_allocated = REGS_UNALLOCATED;
7875
 
7876
  /* And GNU code determines whether or not to get register information
7877
     by passing null for the REGS argument to re_match, etc., not by
7878
     setting no_sub.  */
7879
  bufp->no_sub = 0;
7880
 
7881
  /* Match anchors at newline.  */
7882
  bufp->newline_anchor = 1;
7883
 
7884
# ifdef MBS_SUPPORT
7885
  if (MB_CUR_MAX != 1)
7886
    ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7887
  else
7888
# endif
7889
    ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7890
 
7891
  if (!ret)
7892
    return NULL;
7893
  return gettext (re_error_msgid[(int) ret]);
7894
}
7895
#ifdef _LIBC
7896
weak_alias (__re_compile_pattern, re_compile_pattern)
7897
#endif
7898
 
7899
/* Entry points compatible with 4.2 BSD regex library.  We don't define
7900
   them unless specifically requested.  */
7901
 
7902
#if defined _REGEX_RE_COMP || defined _LIBC
7903
 
7904
/* BSD has one and only one pattern buffer.  */
7905
static struct re_pattern_buffer re_comp_buf;
7906
 
7907
char *
7908
#ifdef _LIBC
7909
/* Make these definitions weak in libc, so POSIX programs can redefine
7910
   these names if they don't use our functions, and still use
7911
   regcomp/regexec below without link errors.  */
7912
weak_function
7913
#endif
7914
re_comp (s)
7915
    const char *s;
7916
{
7917
  reg_errcode_t ret;
7918
 
7919
  if (!s)
7920
    {
7921
      if (!re_comp_buf.buffer)
7922
        return gettext ("No previous regular expression");
7923
      return 0;
7924
    }
7925
 
7926
  if (!re_comp_buf.buffer)
7927
    {
7928
      re_comp_buf.buffer = (unsigned char *) malloc (200);
7929
      if (re_comp_buf.buffer == NULL)
7930
        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7931
      re_comp_buf.allocated = 200;
7932
 
7933
      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7934
      if (re_comp_buf.fastmap == NULL)
7935
        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7936
    }
7937
 
7938
  /* Since `re_exec' always passes NULL for the `regs' argument, we
7939
     don't need to initialize the pattern buffer fields which affect it.  */
7940
 
7941
  /* Match anchors at newlines.  */
7942
  re_comp_buf.newline_anchor = 1;
7943
 
7944
# ifdef MBS_SUPPORT
7945
  if (MB_CUR_MAX != 1)
7946
    ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7947
  else
7948
# endif
7949
    ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7950
 
7951
  if (!ret)
7952
    return NULL;
7953
 
7954
  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7955
  return (char *) gettext (re_error_msgid[(int) ret]);
7956
}
7957
 
7958
 
7959
int
7960
#ifdef _LIBC
7961
weak_function
7962
#endif
7963
re_exec (s)
7964
    const char *s;
7965
{
7966
  const int len = strlen (s);
7967
  return
7968
 
7969
}
7970
 
7971
#endif /* _REGEX_RE_COMP */
7972
 
7973
/* POSIX.2 functions.  Don't define these for Emacs.  */
7974
 
7975
#ifndef emacs
7976
 
7977
/* regcomp takes a regular expression as a string and compiles it.
7978
 
7979
   PREG is a regex_t *.  We do not expect any fields to be initialized,
7980
   since POSIX says we shouldn't.  Thus, we set
7981
 
7982
     `buffer' to the compiled pattern;
7983
     `used' to the length of the compiled pattern;
7984
     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7985
       REG_EXTENDED bit in CFLAGS is set; otherwise, to
7986
       RE_SYNTAX_POSIX_BASIC;
7987
     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7988
     `fastmap' to an allocated space for the fastmap;
7989
     `fastmap_accurate' to zero;
7990
     `re_nsub' to the number of subexpressions in PATTERN.
7991
 
7992
   PATTERN is the address of the pattern string.
7993
 
7994
   CFLAGS is a series of bits which affect compilation.
7995
 
7996
     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7997
     use POSIX basic syntax.
7998
 
7999
     If REG_NEWLINE is set, then . and [^...] don't match newline.
8000
     Also, regexec will try a match beginning after every newline.
8001
 
8002
     If REG_ICASE is set, then we considers upper- and lowercase
8003
     versions of letters to be equivalent when matching.
8004
 
8005
     If REG_NOSUB is set, then when PREG is passed to regexec, that
8006
     routine will report only success or failure, and nothing about the
8007
     registers.
8008
 
8009
   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
8010
   the return codes and their meanings.)  */
8011
 
8012
int
8013
regcomp (preg, pattern, cflags)
8014
    regex_t *preg;
8015
    const char *pattern;
8016
    int cflags;
8017
{
8018
  reg_errcode_t ret;
8019
  reg_syntax_t syntax
8020
    = (cflags & REG_EXTENDED) ?
8021
      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
8022
 
8023
  /* regex_compile will allocate the space for the compiled pattern.  */
8024
  preg->buffer = 0;
8025
  preg->allocated = 0;
8026
  preg->used = 0;
8027
 
8028
  /* Try to allocate space for the fastmap.  */
8029
  preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
8030
 
8031
  if (cflags & REG_ICASE)
8032
    {
8033
      unsigned i;
8034
 
8035
      preg->translate
8036
        = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
8037
                                      * sizeof (*(RE_TRANSLATE_TYPE)0));
8038
      if (preg->translate == NULL)
8039
        return (int) REG_ESPACE;
8040
 
8041
      /* Map uppercase characters to corresponding lowercase ones.  */
8042
      for (i = 0; i < CHAR_SET_SIZE; i++)
8043
        preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
8044
    }
8045
  else
8046
    preg->translate = NULL;
8047
 
8048
  /* If REG_NEWLINE is set, newlines are treated differently.  */
8049
  if (cflags & REG_NEWLINE)
8050
    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
8051
      syntax &= ~RE_DOT_NEWLINE;
8052
      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
8053
      /* It also changes the matching behavior.  */
8054
      preg->newline_anchor = 1;
8055
    }
8056
  else
8057
    preg->newline_anchor = 0;
8058
 
8059
  preg->no_sub = !!(cflags & REG_NOSUB);
8060
 
8061
  /* POSIX says a null character in the pattern terminates it, so we
8062
     can use strlen here in compiling the pattern.  */
8063
# ifdef MBS_SUPPORT
8064
  if (MB_CUR_MAX != 1)
8065
    ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
8066
  else
8067
# endif
8068
    ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
8069
 
8070
  /* POSIX doesn't distinguish between an unmatched open-group and an
8071
     unmatched close-group: both are REG_EPAREN.  */
8072
  if (ret == REG_ERPAREN) ret = REG_EPAREN;
8073
 
8074
  if (ret == REG_NOERROR && preg->fastmap)
8075
    {
8076
      /* Compute the fastmap now, since regexec cannot modify the pattern
8077
         buffer.  */
8078
      if (re_compile_fastmap (preg) == -2)
8079
        {
8080
          /* Some error occurred while computing the fastmap, just forget
8081
             about it.  */
8082
          free (preg->fastmap);
8083
          preg->fastmap = NULL;
8084
        }
8085
    }
8086
 
8087
  return (int) ret;
8088
}
8089
#ifdef _LIBC
8090
weak_alias (__regcomp, regcomp)
8091
#endif
8092
 
8093
 
8094
/* regexec searches for a given pattern, specified by PREG, in the
8095
   string STRING.
8096
 
8097
   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8098
   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
8099
   least NMATCH elements, and we set them to the offsets of the
8100
   corresponding matched substrings.
8101
 
8102
   EFLAGS specifies `execution flags' which affect matching: if
8103
   REG_NOTBOL is set, then ^ does not match at the beginning of the
8104
   string; if REG_NOTEOL is set, then $ does not match at the end.
8105
 
8106
   We return 0 if we find a match and REG_NOMATCH if not.  */
8107
 
8108
int
8109
regexec (preg, string, nmatch, pmatch, eflags)
8110
    const regex_t *preg;
8111
    const char *string;
8112
    size_t nmatch;
8113
    regmatch_t pmatch[];
8114
    int eflags;
8115
{
8116
  int ret;
8117
  struct re_registers regs;
8118
  regex_t private_preg;
8119
  int len = strlen (string);
8120
  boolean want_reg_info = !preg->no_sub && nmatch > 0;
8121
 
8122
  private_preg = *preg;
8123
 
8124
  private_preg.not_bol = !!(eflags & REG_NOTBOL);
8125
  private_preg.not_eol = !!(eflags & REG_NOTEOL);
8126
 
8127
  /* The user has told us exactly how many registers to return
8128
     information about, via `nmatch'.  We have to pass that on to the
8129
     matching routines.  */
8130
  private_preg.regs_allocated = REGS_FIXED;
8131
 
8132
  if (want_reg_info)
8133
    {
8134
      regs.num_regs = nmatch;
8135
      regs.start = TALLOC (nmatch * 2, regoff_t);
8136
      if (regs.start == NULL)
8137
        return (int) REG_NOMATCH;
8138
      regs.end = regs.start + nmatch;
8139
    }
8140
 
8141
  /* Perform the searching operation.  */
8142
  ret = re_search (&private_preg, string, len,
8143
                   /* start: */ 0, /* range: */ len,
8144
                   want_reg_info ? &regs : (struct re_registers *) 0);
8145
 
8146
  /* Copy the register information to the POSIX structure.  */
8147
  if (want_reg_info)
8148
    {
8149
      if (ret >= 0)
8150
        {
8151
          unsigned r;
8152
 
8153
          for (r = 0; r < nmatch; r++)
8154
            {
8155
              pmatch[r].rm_so = regs.start[r];
8156
              pmatch[r].rm_eo = regs.end[r];
8157
            }
8158
        }
8159
 
8160
      /* If we needed the temporary register info, free the space now.  */
8161
      free (regs.start);
8162
    }
8163
 
8164
  /* We want zero return to mean success, unlike `re_search'.  */
8165
  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8166
}
8167
#ifdef _LIBC
8168
weak_alias (__regexec, regexec)
8169
#endif
8170
 
8171
 
8172
/* Returns a message corresponding to an error code, ERRCODE, returned
8173
   from either regcomp or regexec.   We don't use PREG here.  */
8174
 
8175
size_t
8176
regerror (errcode, preg, errbuf, errbuf_size)
8177
    int errcode;
8178
    const regex_t *preg;
8179
    char *errbuf;
8180
    size_t errbuf_size;
8181
{
8182
  const char *msg;
8183
  size_t msg_size;
8184
 
8185
  if (errcode < 0
8186
      || errcode >= (int) (sizeof (re_error_msgid)
8187
                           / sizeof (re_error_msgid[0])))
8188
    /* Only error codes returned by the rest of the code should be passed
8189
       to this routine.  If we are given anything else, or if other regex
8190
       code generates an invalid error code, then the program has a bug.
8191
       Dump core so we can fix it.  */
8192
    abort ();
8193
 
8194
  msg = gettext (re_error_msgid[errcode]);
8195
 
8196
  msg_size = strlen (msg) + 1; /* Includes the null.  */
8197
 
8198
  if (errbuf_size != 0)
8199
    {
8200
      if (msg_size > errbuf_size)
8201
        {
8202
#if defined HAVE_MEMPCPY || defined _LIBC
8203
          *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8204
#else
8205
          memcpy (errbuf, msg, errbuf_size - 1);
8206
          errbuf[errbuf_size - 1] = 0;
8207
#endif
8208
        }
8209
      else
8210
        memcpy (errbuf, msg, msg_size);
8211
    }
8212
 
8213
  return msg_size;
8214
}
8215
#ifdef _LIBC
8216
weak_alias (__regerror, regerror)
8217
#endif
8218
 
8219
 
8220
/* Free dynamically allocated space used by PREG.  */
8221
 
8222
void
8223
regfree (preg)
8224
    regex_t *preg;
8225
{
8226
  if (preg->buffer != NULL)
8227
    free (preg->buffer);
8228
  preg->buffer = NULL;
8229
 
8230
  preg->allocated = 0;
8231
  preg->used = 0;
8232
 
8233
  if (preg->fastmap != NULL)
8234
    free (preg->fastmap);
8235
  preg->fastmap = NULL;
8236
  preg->fastmap_accurate = 0;
8237
 
8238
  if (preg->translate != NULL)
8239
    free (preg->translate);
8240
  preg->translate = NULL;
8241
}
8242
#ifdef _LIBC
8243
weak_alias (__regfree, regfree)
8244
#endif
8245
 
8246
#endif /* not emacs  */
8247
 
8248
#endif /* not INSIDE_RECURSION */
8249
 
8250
 
8251
#undef STORE_NUMBER
8252
#undef STORE_NUMBER_AND_INCR
8253
#undef EXTRACT_NUMBER
8254
#undef EXTRACT_NUMBER_AND_INCR
8255
 
8256
#undef DEBUG_PRINT_COMPILED_PATTERN
8257
#undef DEBUG_PRINT_DOUBLE_STRING
8258
 
8259
#undef INIT_FAIL_STACK
8260
#undef RESET_FAIL_STACK
8261
#undef DOUBLE_FAIL_STACK
8262
#undef PUSH_PATTERN_OP
8263
#undef PUSH_FAILURE_POINTER
8264
#undef PUSH_FAILURE_INT
8265
#undef PUSH_FAILURE_ELT
8266
#undef POP_FAILURE_POINTER
8267
#undef POP_FAILURE_INT
8268
#undef POP_FAILURE_ELT
8269
#undef DEBUG_PUSH
8270
#undef DEBUG_POP
8271
#undef PUSH_FAILURE_POINT
8272
#undef POP_FAILURE_POINT
8273
 
8274
#undef REG_UNSET_VALUE
8275
#undef REG_UNSET
8276
 
8277
#undef PATFETCH
8278
#undef PATFETCH_RAW
8279
#undef PATUNFETCH
8280
#undef TRANSLATE
8281
 
8282
#undef INIT_BUF_SIZE
8283
#undef GET_BUFFER_SPACE
8284
#undef BUF_PUSH
8285
#undef BUF_PUSH_2
8286
#undef BUF_PUSH_3
8287
#undef STORE_JUMP
8288
#undef STORE_JUMP2
8289
#undef INSERT_JUMP
8290
#undef INSERT_JUMP2
8291
#undef EXTEND_BUFFER
8292
#undef GET_UNSIGNED_NUMBER
8293
#undef FREE_STACK_RETURN
8294
 
8295
# undef POINTER_TO_OFFSET
8296
# undef MATCHING_IN_FRST_STRING
8297
# undef PREFETCH
8298
# undef AT_STRINGS_BEG
8299
# undef AT_STRINGS_END
8300
# undef WORDCHAR_P
8301
# undef FREE_VAR
8302
# undef FREE_VARIABLES
8303
# undef NO_HIGHEST_ACTIVE_REG
8304
# undef NO_LOWEST_ACTIVE_REG
8305
 
8306
# undef CHAR_T
8307
# undef UCHAR_T
8308
# undef COMPILED_BUFFER_VAR
8309
# undef OFFSET_ADDRESS_SIZE
8310
# undef CHAR_CLASS_SIZE
8311
# undef PREFIX
8312
# undef ARG_PREFIX
8313
# undef PUT_CHAR
8314
# undef BYTE
8315
# undef WCHAR
8316
 
8317
# define DEFINED_ONCE

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.