OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [libiberty/] [splay-tree.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* A splay-tree datatype.
2
   Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3
   Contributed by Mark Mitchell (mark@markmitchell.com).
4
 
5
This file is part of GNU CC.
6
 
7
GNU CC is free software; you can redistribute it and/or modify it
8
under the terms of the GNU General Public License as published by
9
the Free Software Foundation; either version 2, or (at your option)
10
any later version.
11
 
12
GNU CC is distributed in the hope that it will be useful, but
13
WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
General Public License for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GNU CC; see the file COPYING.  If not, write to
19
the Free Software Foundation, 59 Temple Place - Suite 330,
20
Boston, MA 02111-1307, USA.  */
21
 
22
/* For an easily readable description of splay-trees, see:
23
 
24
     Lewis, Harry R. and Denenberg, Larry.  Data Structures and Their
25
     Algorithms.  Harper-Collins, Inc.  1991.  */
26
 
27
#ifdef HAVE_CONFIG_H
28
#include "config.h"
29
#endif
30
 
31
#ifdef HAVE_STDLIB_H
32
#include <stdlib.h>
33
#endif
34
 
35
#include <stdio.h>
36
 
37
#include "libiberty.h"
38
#include "splay-tree.h"
39
 
40
static void splay_tree_delete_helper    PARAMS((splay_tree,
41
                                                splay_tree_node));
42
static void splay_tree_splay            PARAMS((splay_tree,
43
                                                splay_tree_key));
44
static splay_tree_node splay_tree_splay_helper
45
                                        PARAMS((splay_tree,
46
                                                splay_tree_key,
47
                                                splay_tree_node*,
48
                                                splay_tree_node*,
49
                                                splay_tree_node*));
50
static int splay_tree_foreach_helper    PARAMS((splay_tree,
51
                                                splay_tree_node,
52
                                                splay_tree_foreach_fn,
53
                                                void*));
54
 
55
/* Deallocate NODE (a member of SP), and all its sub-trees.  */
56
 
57
static void
58
splay_tree_delete_helper (sp, node)
59
     splay_tree sp;
60
     splay_tree_node node;
61
{
62
  if (!node)
63
    return;
64
 
65
  splay_tree_delete_helper (sp, node->left);
66
  splay_tree_delete_helper (sp, node->right);
67
 
68
  if (sp->delete_key)
69
    (*sp->delete_key)(node->key);
70
  if (sp->delete_value)
71
    (*sp->delete_value)(node->value);
72
 
73
  (*sp->deallocate) ((char*) node, sp->allocate_data);
74
}
75
 
76
/* Help splay SP around KEY.  PARENT and GRANDPARENT are the parent
77
   and grandparent, respectively, of NODE.  */
78
 
79
static splay_tree_node
80
splay_tree_splay_helper (sp, key, node, parent, grandparent)
81
     splay_tree sp;
82
     splay_tree_key key;
83
     splay_tree_node *node;
84
     splay_tree_node *parent;
85
     splay_tree_node *grandparent;
86
{
87
  splay_tree_node *next;
88
  splay_tree_node n;
89
  int comparison;
90
 
91
  n = *node;
92
 
93
  if (!n)
94
    return *parent;
95
 
96
  comparison = (*sp->comp) (key, n->key);
97
 
98
  if (comparison == 0)
99
    /* We've found the target.  */
100
    next = 0;
101
  else if (comparison < 0)
102
    /* The target is to the left.  */
103
    next = &n->left;
104
  else
105
    /* The target is to the right.  */
106
    next = &n->right;
107
 
108
  if (next)
109
    {
110
      /* Continue down the tree.  */
111
      n = splay_tree_splay_helper (sp, key, next, node, parent);
112
 
113
      /* The recursive call will change the place to which NODE
114
         points.  */
115
      if (*node != n)
116
        return n;
117
    }
118
 
119
  if (!parent)
120
    /* NODE is the root.  We are done.  */
121
    return n;
122
 
123
  /* First, handle the case where there is no grandparent (i.e.,
124
     *PARENT is the root of the tree.)  */
125
  if (!grandparent)
126
    {
127
      if (n == (*parent)->left)
128
        {
129
          *node = n->right;
130
          n->right = *parent;
131
        }
132
      else
133
        {
134
          *node = n->left;
135
          n->left = *parent;
136
        }
137
      *parent = n;
138
      return n;
139
    }
140
 
141
  /* Next handle the cases where both N and *PARENT are left children,
142
     or where both are right children.  */
143
  if (n == (*parent)->left && *parent == (*grandparent)->left)
144
    {
145
      splay_tree_node p = *parent;
146
 
147
      (*grandparent)->left = p->right;
148
      p->right = *grandparent;
149
      p->left = n->right;
150
      n->right = p;
151
      *grandparent = n;
152
      return n;
153
    }
154
  else if  (n == (*parent)->right && *parent == (*grandparent)->right)
155
    {
156
      splay_tree_node p = *parent;
157
 
158
      (*grandparent)->right = p->left;
159
      p->left = *grandparent;
160
      p->right = n->left;
161
      n->left = p;
162
      *grandparent = n;
163
      return n;
164
    }
165
 
166
  /* Finally, deal with the case where N is a left child, but *PARENT
167
     is a right child, or vice versa.  */
168
  if (n == (*parent)->left)
169
    {
170
      (*parent)->left = n->right;
171
      n->right = *parent;
172
      (*grandparent)->right = n->left;
173
      n->left = *grandparent;
174
      *grandparent = n;
175
      return n;
176
    }
177
  else
178
    {
179
      (*parent)->right = n->left;
180
      n->left = *parent;
181
      (*grandparent)->left = n->right;
182
      n->right = *grandparent;
183
      *grandparent = n;
184
      return n;
185
    }
186
}
187
 
188
/* Splay SP around KEY.  */
189
 
190
static void
191
splay_tree_splay (sp, key)
192
     splay_tree sp;
193
     splay_tree_key key;
194
{
195
  if (sp->root == 0)
196
    return;
197
 
198
  splay_tree_splay_helper (sp, key, &sp->root,
199
                           /*grandparent=*/0, /*parent=*/0);
200
}
201
 
202
/* Call FN, passing it the DATA, for every node below NODE, all of
203
   which are from SP, following an in-order traversal.  If FN every
204
   returns a non-zero value, the iteration ceases immediately, and the
205
   value is returned.  Otherwise, this function returns 0.  */
206
 
207
static int
208
splay_tree_foreach_helper (sp, node, fn, data)
209
     splay_tree sp;
210
     splay_tree_node node;
211
     splay_tree_foreach_fn fn;
212
     void* data;
213
{
214
  int val;
215
 
216
  if (!node)
217
    return 0;
218
 
219
  val = splay_tree_foreach_helper (sp, node->left, fn, data);
220
  if (val)
221
    return val;
222
 
223
  val = (*fn)(node, data);
224
  if (val)
225
    return val;
226
 
227
  return splay_tree_foreach_helper (sp, node->right, fn, data);
228
}
229
 
230
 
231
/* An allocator and deallocator based on xmalloc.  */
232
static void *
233
splay_tree_xmalloc_allocate (size, data)
234
     int size;
235
     void *data ATTRIBUTE_UNUSED;
236
{
237
  return xmalloc (size);
238
}
239
 
240
static void
241
splay_tree_xmalloc_deallocate (object, data)
242
     void *object;
243
     void *data ATTRIBUTE_UNUSED;
244
{
245
  free (object);
246
}
247
 
248
 
249
/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
250
   DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
251
   values.  Use xmalloc to allocate the splay tree structure, and any
252
   nodes added.  */
253
 
254
splay_tree
255
splay_tree_new (compare_fn, delete_key_fn, delete_value_fn)
256
     splay_tree_compare_fn compare_fn;
257
     splay_tree_delete_key_fn delete_key_fn;
258
     splay_tree_delete_value_fn delete_value_fn;
259
{
260
  return (splay_tree_new_with_allocator
261
          (compare_fn, delete_key_fn, delete_value_fn,
262
           splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
263
}
264
 
265
 
266
/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
267
   DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
268
   values.  */
269
 
270
splay_tree
271
splay_tree_new_with_allocator (compare_fn, delete_key_fn, delete_value_fn,
272
                               allocate_fn, deallocate_fn, allocate_data)
273
     splay_tree_compare_fn compare_fn;
274
     splay_tree_delete_key_fn delete_key_fn;
275
     splay_tree_delete_value_fn delete_value_fn;
276
     splay_tree_allocate_fn allocate_fn;
277
     splay_tree_deallocate_fn deallocate_fn;
278
     void *allocate_data;
279
{
280
  splay_tree sp = (splay_tree) (*allocate_fn) (sizeof (struct splay_tree_s),
281
                                               allocate_data);
282
  sp->root = 0;
283
  sp->comp = compare_fn;
284
  sp->delete_key = delete_key_fn;
285
  sp->delete_value = delete_value_fn;
286
  sp->allocate = allocate_fn;
287
  sp->deallocate = deallocate_fn;
288
  sp->allocate_data = allocate_data;
289
 
290
  return sp;
291
}
292
 
293
/* Deallocate SP.  */
294
 
295
void
296
splay_tree_delete (sp)
297
     splay_tree sp;
298
{
299
  splay_tree_delete_helper (sp, sp->root);
300
  (*sp->deallocate) ((char*) sp, sp->allocate_data);
301
}
302
 
303
/* Insert a new node (associating KEY with DATA) into SP.  If a
304
   previous node with the indicated KEY exists, its data is replaced
305
   with the new value.  Returns the new node.  */
306
 
307
splay_tree_node
308
splay_tree_insert (sp, key, value)
309
     splay_tree sp;
310
     splay_tree_key key;
311
     splay_tree_value value;
312
{
313
  int comparison = 0;
314
 
315
  splay_tree_splay (sp, key);
316
 
317
  if (sp->root)
318
    comparison = (*sp->comp)(sp->root->key, key);
319
 
320
  if (sp->root && comparison == 0)
321
    {
322
      /* If the root of the tree already has the indicated KEY, just
323
         replace the value with VALUE.  */
324
      if (sp->delete_value)
325
        (*sp->delete_value)(sp->root->value);
326
      sp->root->value = value;
327
    }
328
  else
329
    {
330
      /* Create a new node, and insert it at the root.  */
331
      splay_tree_node node;
332
 
333
      node = ((splay_tree_node)
334
              (*sp->allocate) (sizeof (struct splay_tree_node_s),
335
                               sp->allocate_data));
336
      node->key = key;
337
      node->value = value;
338
 
339
      if (!sp->root)
340
        node->left = node->right = 0;
341
      else if (comparison < 0)
342
        {
343
          node->left = sp->root;
344
          node->right = node->left->right;
345
          node->left->right = 0;
346
        }
347
      else
348
        {
349
          node->right = sp->root;
350
          node->left = node->right->left;
351
          node->right->left = 0;
352
        }
353
 
354
      sp->root = node;
355
    }
356
 
357
  return sp->root;
358
}
359
 
360
/* Remove KEY from SP.  It is not an error if it did not exist.  */
361
 
362
void
363
splay_tree_remove (sp, key)
364
     splay_tree sp;
365
     splay_tree_key key;
366
{
367
  splay_tree_splay (sp, key);
368
 
369
  if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
370
    {
371
      splay_tree_node left, right;
372
 
373
      left = sp->root->left;
374
      right = sp->root->right;
375
 
376
      /* Delete the root node itself.  */
377
      if (sp->delete_value)
378
        (*sp->delete_value) (sp->root->value);
379
      (*sp->deallocate) (sp->root, sp->allocate_data);
380
 
381
      /* One of the children is now the root.  Doesn't matter much
382
         which, so long as we preserve the properties of the tree.  */
383
      if (left)
384
        {
385
          sp->root = left;
386
 
387
          /* If there was a right child as well, hang it off the
388
             right-most leaf of the left child.  */
389
          if (right)
390
            {
391
              while (left->right)
392
                left = left->right;
393
              left->right = right;
394
            }
395
        }
396
      else
397
        sp->root = right;
398
    }
399
}
400
 
401
/* Lookup KEY in SP, returning VALUE if present, and NULL
402
   otherwise.  */
403
 
404
splay_tree_node
405
splay_tree_lookup (sp, key)
406
     splay_tree sp;
407
     splay_tree_key key;
408
{
409
  splay_tree_splay (sp, key);
410
 
411
  if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
412
    return sp->root;
413
  else
414
    return 0;
415
}
416
 
417
/* Return the node in SP with the greatest key.  */
418
 
419
splay_tree_node
420
splay_tree_max (sp)
421
     splay_tree sp;
422
{
423
  splay_tree_node n = sp->root;
424
 
425
  if (!n)
426
    return NULL;
427
 
428
  while (n->right)
429
    n = n->right;
430
 
431
  return n;
432
}
433
 
434
/* Return the node in SP with the smallest key.  */
435
 
436
splay_tree_node
437
splay_tree_min (sp)
438
     splay_tree sp;
439
{
440
  splay_tree_node n = sp->root;
441
 
442
  if (!n)
443
    return NULL;
444
 
445
  while (n->left)
446
    n = n->left;
447
 
448
  return n;
449
}
450
 
451
/* Return the immediate predecessor KEY, or NULL if there is no
452
   predecessor.  KEY need not be present in the tree.  */
453
 
454
splay_tree_node
455
splay_tree_predecessor (sp, key)
456
     splay_tree sp;
457
     splay_tree_key key;
458
{
459
  int comparison;
460
  splay_tree_node node;
461
 
462
  /* If the tree is empty, there is certainly no predecessor.  */
463
  if (!sp->root)
464
    return NULL;
465
 
466
  /* Splay the tree around KEY.  That will leave either the KEY
467
     itself, its predecessor, or its successor at the root.  */
468
  splay_tree_splay (sp, key);
469
  comparison = (*sp->comp)(sp->root->key, key);
470
 
471
  /* If the predecessor is at the root, just return it.  */
472
  if (comparison < 0)
473
    return sp->root;
474
 
475
  /* Otherwise, find the leftmost element of the right subtree.  */
476
  node = sp->root->left;
477
  if (node)
478
    while (node->right)
479
      node = node->right;
480
 
481
  return node;
482
}
483
 
484
/* Return the immediate successor KEY, or NULL if there is no
485
   predecessor.  KEY need not be present in the tree.  */
486
 
487
splay_tree_node
488
splay_tree_successor (sp, key)
489
     splay_tree sp;
490
     splay_tree_key key;
491
{
492
  int comparison;
493
  splay_tree_node node;
494
 
495
  /* If the tree is empty, there is certainly no predecessor.  */
496
  if (!sp->root)
497
    return NULL;
498
 
499
  /* Splay the tree around KEY.  That will leave either the KEY
500
     itself, its predecessor, or its successor at the root.  */
501
  splay_tree_splay (sp, key);
502
  comparison = (*sp->comp)(sp->root->key, key);
503
 
504
  /* If the successor is at the root, just return it.  */
505
  if (comparison > 0)
506
    return sp->root;
507
 
508
  /* Otherwise, find the rightmost element of the left subtree.  */
509
  node = sp->root->right;
510
  if (node)
511
    while (node->left)
512
      node = node->left;
513
 
514
  return node;
515
}
516
 
517
/* Call FN, passing it the DATA, for every node in SP, following an
518
   in-order traversal.  If FN every returns a non-zero value, the
519
   iteration ceases immediately, and the value is returned.
520
   Otherwise, this function returns 0.  */
521
 
522
int
523
splay_tree_foreach (sp, fn, data)
524
     splay_tree sp;
525
     splay_tree_foreach_fn fn;
526
     void *data;
527
{
528
  return splay_tree_foreach_helper (sp, sp->root, fn, data);
529
}
530
 
531
/* Splay-tree comparison function, treating the keys as ints.  */
532
 
533
int
534
splay_tree_compare_ints (k1, k2)
535
     splay_tree_key k1;
536
     splay_tree_key k2;
537
{
538
  if ((int) k1 < (int) k2)
539
    return -1;
540
  else if ((int) k1 > (int) k2)
541
    return 1;
542
  else
543
    return 0;
544
}
545
 
546
/* Splay-tree comparison function, treating the keys as pointers.  */
547
 
548
int
549
splay_tree_compare_pointers (k1, k2)
550
     splay_tree_key k1;
551
     splay_tree_key k2;
552
{
553
  if ((char*) k1 < (char*) k2)
554
    return -1;
555
  else if ((char*) k1 > (char*) k2)
556
    return 1;
557
  else
558
    return 0;
559
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.