OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [sim/] [m32r/] [m32r.c] - Blame information for rev 1765

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* m32r simulator support code
2
   Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc.
3
   Contributed by Cygnus Support.
4
 
5
This file is part of GDB, the GNU debugger.
6
 
7
This program is free software; you can redistribute it and/or modify
8
it under the terms of the GNU General Public License as published by
9
the Free Software Foundation; either version 2, or (at your option)
10
any later version.
11
 
12
This program is distributed in the hope that it will be useful,
13
but WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
GNU General Public License for more details.
16
 
17
You should have received a copy of the GNU General Public License along
18
with this program; if not, write to the Free Software Foundation, Inc.,
19
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20
 
21
#define WANT_CPU m32rbf
22
#define WANT_CPU_M32RBF
23
 
24
#include "sim-main.h"
25
#include "cgen-mem.h"
26
#include "cgen-ops.h"
27
 
28
/* Decode gdb ctrl register number.  */
29
 
30
int
31
m32r_decode_gdb_ctrl_regnum (int gdb_regnum)
32
{
33
  switch (gdb_regnum)
34
    {
35
      case PSW_REGNUM : return H_CR_PSW;
36
      case CBR_REGNUM : return H_CR_CBR;
37
      case SPI_REGNUM : return H_CR_SPI;
38
      case SPU_REGNUM : return H_CR_SPU;
39
      case BPC_REGNUM : return H_CR_BPC;
40
      case BBPSW_REGNUM : return H_CR_BBPSW;
41
      case BBPC_REGNUM : return H_CR_BBPC;
42
    }
43
  abort ();
44
}
45
 
46
/* The contents of BUF are in target byte order.  */
47
 
48
int
49
m32rbf_fetch_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
50
{
51
  int mach = MACH_NUM (CPU_MACH (current_cpu));
52
 
53
  if (rn < 16)
54
    SETTWI (buf, a_m32r_h_gr_get (current_cpu, rn));
55
  else
56
    switch (rn)
57
      {
58
      case PSW_REGNUM :
59
      case CBR_REGNUM :
60
      case SPI_REGNUM :
61
      case SPU_REGNUM :
62
      case BPC_REGNUM :
63
      case BBPSW_REGNUM :
64
      case BBPC_REGNUM :
65
        SETTWI (buf, a_m32r_h_cr_get (current_cpu,
66
                                      m32r_decode_gdb_ctrl_regnum (rn)));
67
        break;
68
      case PC_REGNUM :
69
        if (mach == MACH_M32R)
70
          SETTWI (buf, m32rbf_h_pc_get (current_cpu));
71
        else
72
          SETTWI (buf, m32rxf_h_pc_get (current_cpu));
73
        break;
74
      case ACCL_REGNUM :
75
        if (mach == MACH_M32R)
76
          SETTWI (buf, GETLODI (m32rbf_h_accum_get (current_cpu)));
77
        else
78
          SETTWI (buf, GETLODI (m32rxf_h_accum_get (current_cpu)));
79
        break;
80
      case ACCH_REGNUM :
81
        if (mach == MACH_M32R)
82
          SETTWI (buf, GETHIDI (m32rbf_h_accum_get (current_cpu)));
83
        else
84
          SETTWI (buf, GETHIDI (m32rxf_h_accum_get (current_cpu)));
85
        break;
86
      default :
87
        return 0;
88
      }
89
 
90
  return -1; /*FIXME*/
91
}
92
 
93
/* The contents of BUF are in target byte order.  */
94
 
95
int
96
m32rbf_store_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
97
{
98
  int mach = MACH_NUM (CPU_MACH (current_cpu));
99
 
100
  if (rn < 16)
101
    a_m32r_h_gr_set (current_cpu, rn, GETTWI (buf));
102
  else
103
    switch (rn)
104
      {
105
      case PSW_REGNUM :
106
      case CBR_REGNUM :
107
      case SPI_REGNUM :
108
      case SPU_REGNUM :
109
      case BPC_REGNUM :
110
      case BBPSW_REGNUM :
111
      case BBPC_REGNUM :
112
        a_m32r_h_cr_set (current_cpu,
113
                         m32r_decode_gdb_ctrl_regnum (rn),
114
                         GETTWI (buf));
115
        break;
116
      case PC_REGNUM :
117
        if (mach == MACH_M32R)
118
          m32rbf_h_pc_set (current_cpu, GETTWI (buf));
119
        else
120
          m32rxf_h_pc_set (current_cpu, GETTWI (buf));
121
        break;
122
      case ACCL_REGNUM :
123
        {
124
          DI val;
125
          if (mach == MACH_M32R)
126
            val = m32rbf_h_accum_get (current_cpu);
127
          else
128
            val = m32rxf_h_accum_get (current_cpu);
129
          SETLODI (val, GETTWI (buf));
130
          if (mach == MACH_M32R)
131
            m32rbf_h_accum_set (current_cpu, val);
132
          else
133
            m32rxf_h_accum_set (current_cpu, val);
134
          break;
135
        }
136
      case ACCH_REGNUM :
137
        {
138
          DI val;
139
          if (mach == MACH_M32R)
140
            val = m32rbf_h_accum_get (current_cpu);
141
          else
142
            val = m32rxf_h_accum_get (current_cpu);
143
          SETHIDI (val, GETTWI (buf));
144
          if (mach == MACH_M32R)
145
            m32rbf_h_accum_set (current_cpu, val);
146
          else
147
            m32rxf_h_accum_set (current_cpu, val);
148
          break;
149
        }
150
      default :
151
        return 0;
152
      }
153
 
154
  return -1; /*FIXME*/
155
}
156
 
157
/* Cover fns for mach independent register accesses.  */
158
 
159
SI
160
a_m32r_h_gr_get (SIM_CPU *current_cpu, UINT regno)
161
{
162
  switch (MACH_NUM (CPU_MACH (current_cpu)))
163
    {
164
#ifdef HAVE_CPU_M32RBF
165
    case MACH_M32R :
166
      return m32rbf_h_gr_get (current_cpu, regno);
167
#endif
168
#ifdef HAVE_CPU_M32RXF
169
    case MACH_M32RX :
170
      return m32rxf_h_gr_get (current_cpu, regno);
171
#endif
172
    default :
173
      abort ();
174
    }
175
}
176
 
177
void
178
a_m32r_h_gr_set (SIM_CPU *current_cpu, UINT regno, SI newval)
179
{
180
  switch (MACH_NUM (CPU_MACH (current_cpu)))
181
    {
182
#ifdef HAVE_CPU_M32RBF
183
    case MACH_M32R :
184
      m32rbf_h_gr_set (current_cpu, regno, newval);
185
      break;
186
#endif
187
#ifdef HAVE_CPU_M32RXF
188
    case MACH_M32RX :
189
      m32rxf_h_gr_set (current_cpu, regno, newval);
190
      break;
191
#endif
192
    default :
193
      abort ();
194
    }
195
}
196
 
197
USI
198
a_m32r_h_cr_get (SIM_CPU *current_cpu, UINT regno)
199
{
200
  switch (MACH_NUM (CPU_MACH (current_cpu)))
201
    {
202
#ifdef HAVE_CPU_M32RBF
203
    case MACH_M32R :
204
      return m32rbf_h_cr_get (current_cpu, regno);
205
#endif
206
#ifdef HAVE_CPU_M32RXF
207
    case MACH_M32RX :
208
      return m32rxf_h_cr_get (current_cpu, regno);
209
#endif
210
    default :
211
      abort ();
212
    }
213
}
214
 
215
void
216
a_m32r_h_cr_set (SIM_CPU *current_cpu, UINT regno, USI newval)
217
{
218
  switch (MACH_NUM (CPU_MACH (current_cpu)))
219
    {
220
#ifdef HAVE_CPU_M32RBF
221
    case MACH_M32R :
222
      m32rbf_h_cr_set (current_cpu, regno, newval);
223
      break;
224
#endif
225
#ifdef HAVE_CPU_M32RXF
226
    case MACH_M32RX :
227
      m32rxf_h_cr_set (current_cpu, regno, newval);
228
      break;
229
#endif
230
    default :
231
      abort ();
232
    }
233
}
234
 
235
USI
236
m32rbf_h_cr_get_handler (SIM_CPU *current_cpu, UINT cr)
237
{
238
  switch (cr)
239
    {
240
    case H_CR_PSW : /* psw */
241
      return (((CPU (h_bpsw) & 0xc1) << 8)
242
              | ((CPU (h_psw) & 0xc0) << 0)
243
              | GET_H_COND ());
244
    case H_CR_BBPSW : /* backup backup psw */
245
      return CPU (h_bbpsw) & 0xc1;
246
    case H_CR_CBR : /* condition bit */
247
      return GET_H_COND ();
248
    case H_CR_SPI : /* interrupt stack pointer */
249
      if (! GET_H_SM ())
250
        return CPU (h_gr[H_GR_SP]);
251
      else
252
        return CPU (h_cr[H_CR_SPI]);
253
    case H_CR_SPU : /* user stack pointer */
254
      if (GET_H_SM ())
255
        return CPU (h_gr[H_GR_SP]);
256
      else
257
        return CPU (h_cr[H_CR_SPU]);
258
    case H_CR_BPC : /* backup pc */
259
      return CPU (h_cr[H_CR_BPC]) & 0xfffffffe;
260
    case H_CR_BBPC : /* backup backup pc */
261
      return CPU (h_cr[H_CR_BBPC]) & 0xfffffffe;
262
    case 4 : /* ??? unspecified, but apparently available */
263
    case 5 : /* ??? unspecified, but apparently available */
264
      return CPU (h_cr[cr]);
265
    default :
266
      return 0;
267
    }
268
}
269
 
270
void
271
m32rbf_h_cr_set_handler (SIM_CPU *current_cpu, UINT cr, USI newval)
272
{
273
  switch (cr)
274
    {
275
    case H_CR_PSW : /* psw */
276
      {
277
        int old_sm = (CPU (h_psw) & 0x80) != 0;
278
        int new_sm = (newval & 0x80) != 0;
279
        CPU (h_bpsw) = (newval >> 8) & 0xff;
280
        CPU (h_psw) = newval & 0xff;
281
        SET_H_COND (newval & 1);
282
        /* When switching stack modes, update the registers.  */
283
        if (old_sm != new_sm)
284
          {
285
            if (old_sm)
286
              {
287
                /* Switching user -> system.  */
288
                CPU (h_cr[H_CR_SPU]) = CPU (h_gr[H_GR_SP]);
289
                CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPI]);
290
              }
291
            else
292
              {
293
                /* Switching system -> user.  */
294
                CPU (h_cr[H_CR_SPI]) = CPU (h_gr[H_GR_SP]);
295
                CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPU]);
296
              }
297
          }
298
        break;
299
      }
300
    case H_CR_BBPSW : /* backup backup psw */
301
      CPU (h_bbpsw) = newval & 0xff;
302
      break;
303
    case H_CR_CBR : /* condition bit */
304
      SET_H_COND (newval & 1);
305
      break;
306
    case H_CR_SPI : /* interrupt stack pointer */
307
      if (! GET_H_SM ())
308
        CPU (h_gr[H_GR_SP]) = newval;
309
      else
310
        CPU (h_cr[H_CR_SPI]) = newval;
311
      break;
312
    case H_CR_SPU : /* user stack pointer */
313
      if (GET_H_SM ())
314
        CPU (h_gr[H_GR_SP]) = newval;
315
      else
316
        CPU (h_cr[H_CR_SPU]) = newval;
317
      break;
318
    case H_CR_BPC : /* backup pc */
319
      CPU (h_cr[H_CR_BPC]) = newval;
320
      break;
321
    case H_CR_BBPC : /* backup backup pc */
322
      CPU (h_cr[H_CR_BBPC]) = newval;
323
      break;
324
    case 4 : /* ??? unspecified, but apparently available */
325
    case 5 : /* ??? unspecified, but apparently available */
326
      CPU (h_cr[cr]) = newval;
327
      break;
328
    default :
329
      /* ignore */
330
      break;
331
    }
332
}
333
 
334
/* Cover fns to access h-psw.  */
335
 
336
UQI
337
m32rbf_h_psw_get_handler (SIM_CPU *current_cpu)
338
{
339
  return (CPU (h_psw) & 0xfe) | (CPU (h_cond) & 1);
340
}
341
 
342
void
343
m32rbf_h_psw_set_handler (SIM_CPU *current_cpu, UQI newval)
344
{
345
  CPU (h_psw) = newval;
346
  CPU (h_cond) = newval & 1;
347
}
348
 
349
/* Cover fns to access h-accum.  */
350
 
351
DI
352
m32rbf_h_accum_get_handler (SIM_CPU *current_cpu)
353
{
354
  /* Sign extend the top 8 bits.  */
355
  DI r;
356
#if 1
357
  r = ANDDI (CPU (h_accum), MAKEDI (0xffffff, 0xffffffff));
358
  r = XORDI (r, MAKEDI (0x800000, 0));
359
  r = SUBDI (r, MAKEDI (0x800000, 0));
360
#else
361
  SI hi,lo;
362
  r = CPU (h_accum);
363
  hi = GETHIDI (r);
364
  lo = GETLODI (r);
365
  hi = ((hi & 0xffffff) ^ 0x800000) - 0x800000;
366
  r = MAKEDI (hi, lo);
367
#endif
368
  return r;
369
}
370
 
371
void
372
m32rbf_h_accum_set_handler (SIM_CPU *current_cpu, DI newval)
373
{
374
  CPU (h_accum) = newval;
375
}
376
 
377
#if WITH_PROFILE_MODEL_P
378
 
379
/* FIXME: Some of these should be inline or macros.  Later.  */
380
 
381
/* Initialize cycle counting for an insn.
382
   FIRST_P is non-zero if this is the first insn in a set of parallel
383
   insns.  */
384
 
385
void
386
m32rbf_model_insn_before (SIM_CPU *cpu, int first_p)
387
{
388
  M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
389
  mp->cti_stall = 0;
390
  mp->load_stall = 0;
391
  if (first_p)
392
    {
393
      mp->load_regs_pending = 0;
394
      mp->biggest_cycles = 0;
395
    }
396
}
397
 
398
/* Record the cycles computed for an insn.
399
   LAST_P is non-zero if this is the last insn in a set of parallel insns,
400
   and we update the total cycle count.
401
   CYCLES is the cycle count of the insn.  */
402
 
403
void
404
m32rbf_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
405
{
406
  PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
407
  M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
408
  unsigned long total = cycles + mp->cti_stall + mp->load_stall;
409
 
410
  if (last_p)
411
    {
412
      unsigned long biggest = total > mp->biggest_cycles ? total : mp->biggest_cycles;
413
      PROFILE_MODEL_TOTAL_CYCLES (p) += biggest;
414
      PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
415
    }
416
  else
417
    {
418
      /* Here we take advantage of the fact that !last_p -> first_p.  */
419
      mp->biggest_cycles = total;
420
      PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
421
    }
422
 
423
  /* Branch and load stall counts are recorded independently of the
424
     total cycle count.  */
425
  PROFILE_MODEL_CTI_STALL_CYCLES (p) += mp->cti_stall;
426
  PROFILE_MODEL_LOAD_STALL_CYCLES (p) += mp->load_stall;
427
 
428
  mp->load_regs = mp->load_regs_pending;
429
}
430
 
431
static INLINE void
432
check_load_stall (SIM_CPU *cpu, int regno)
433
{
434
  UINT h_gr = CPU_M32R_MISC_PROFILE (cpu)->load_regs;
435
 
436
  if (regno != -1
437
      && (h_gr & (1 << regno)) != 0)
438
    {
439
      CPU_M32R_MISC_PROFILE (cpu)->load_stall += 2;
440
      if (TRACE_INSN_P (cpu))
441
        cgen_trace_printf (cpu, " ; Load stall of 2 cycles.");
442
    }
443
}
444
 
445
int
446
m32rbf_model_m32r_d_u_exec (SIM_CPU *cpu, const IDESC *idesc,
447
                            int unit_num, int referenced,
448
                            INT sr, INT sr2, INT dr)
449
{
450
  check_load_stall (cpu, sr);
451
  check_load_stall (cpu, sr2);
452
  return idesc->timing->units[unit_num].done;
453
}
454
 
455
int
456
m32rbf_model_m32r_d_u_cmp (SIM_CPU *cpu, const IDESC *idesc,
457
                           int unit_num, int referenced,
458
                           INT src1, INT src2)
459
{
460
  check_load_stall (cpu, src1);
461
  check_load_stall (cpu, src2);
462
  return idesc->timing->units[unit_num].done;
463
}
464
 
465
int
466
m32rbf_model_m32r_d_u_mac (SIM_CPU *cpu, const IDESC *idesc,
467
                           int unit_num, int referenced,
468
                           INT src1, INT src2)
469
{
470
  check_load_stall (cpu, src1);
471
  check_load_stall (cpu, src2);
472
  return idesc->timing->units[unit_num].done;
473
}
474
 
475
int
476
m32rbf_model_m32r_d_u_cti (SIM_CPU *cpu, const IDESC *idesc,
477
                           int unit_num, int referenced,
478
                           INT sr)
479
{
480
  PROFILE_DATA *profile = CPU_PROFILE_DATA (cpu);
481
  int taken_p = (referenced & (1 << 1)) != 0;
482
 
483
  check_load_stall (cpu, sr);
484
  if (taken_p)
485
    {
486
      CPU_M32R_MISC_PROFILE (cpu)->cti_stall += 2;
487
      PROFILE_MODEL_TAKEN_COUNT (profile) += 1;
488
    }
489
  else
490
    PROFILE_MODEL_UNTAKEN_COUNT (profile) += 1;
491
  return idesc->timing->units[unit_num].done;
492
}
493
 
494
int
495
m32rbf_model_m32r_d_u_load (SIM_CPU *cpu, const IDESC *idesc,
496
                            int unit_num, int referenced,
497
                            INT sr, INT dr)
498
{
499
  CPU_M32R_MISC_PROFILE (cpu)->load_regs_pending |= (1 << dr);
500
  check_load_stall (cpu, sr);
501
  return idesc->timing->units[unit_num].done;
502
}
503
 
504
int
505
m32rbf_model_m32r_d_u_store (SIM_CPU *cpu, const IDESC *idesc,
506
                             int unit_num, int referenced,
507
                             INT src1, INT src2)
508
{
509
  check_load_stall (cpu, src1);
510
  check_load_stall (cpu, src2);
511
  return idesc->timing->units[unit_num].done;
512
}
513
 
514
int
515
m32rbf_model_test_u_exec (SIM_CPU *cpu, const IDESC *idesc,
516
                          int unit_num, int referenced)
517
{
518
  return idesc->timing->units[unit_num].done;
519
}
520
 
521
#endif /* WITH_PROFILE_MODEL_P */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.