OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [gdb-5.3/] [sim/] [mips/] [sim-main.h] - Blame information for rev 1775

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 1181 sfurman
/* MIPS Simulator definition.
2
   Copyright (C) 1997, 1998 Free Software Foundation, Inc.
3
   Contributed by Cygnus Support.
4
 
5
This file is part of GDB, the GNU debugger.
6
 
7
This program is free software; you can redistribute it and/or modify
8
it under the terms of the GNU General Public License as published by
9
the Free Software Foundation; either version 2, or (at your option)
10
any later version.
11
 
12
This program is distributed in the hope that it will be useful,
13
but WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
GNU General Public License for more details.
16
 
17
You should have received a copy of the GNU General Public License along
18
with this program; if not, write to the Free Software Foundation, Inc.,
19
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20
 
21
#ifndef SIM_MAIN_H
22
#define SIM_MAIN_H
23
 
24
/* This simulator doesn't cache the Current Instruction Address */
25
/* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26
/* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
 
28
#define SIM_HAVE_BIENDIAN
29
 
30
 
31
/* hobble some common features for moment */
32
#define WITH_WATCHPOINTS 1
33
#define WITH_MODULO_MEMORY 1
34
 
35
 
36
#define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
37
mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
38
 
39
#include "sim-basics.h"
40
 
41
typedef address_word sim_cia;
42
 
43
#include "sim-base.h"
44
 
45
 
46
/* Deprecated macros and types for manipulating 64bit values.  Use
47
   ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
48
 
49
typedef signed64 word64;
50
typedef unsigned64 uword64;
51
 
52
#define WORD64LO(t)     (unsigned int)((t)&0xFFFFFFFF)
53
#define WORD64HI(t)     (unsigned int)(((uword64)(t))>>32)
54
#define SET64LO(t)      (((uword64)(t))&0xFFFFFFFF)
55
#define SET64HI(t)      (((uword64)(t))<<32)
56
#define WORD64(h,l)     ((word64)((SET64HI(h)|SET64LO(l))))
57
#define UWORD64(h,l)     (SET64HI(h)|SET64LO(l))
58
 
59
/* Check if a value will fit within a halfword: */
60
#define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
61
 
62
 
63
 
64
/* Floating-point operations: */
65
 
66
#include "sim-fpu.h"
67
#include "cp1.h"
68
 
69
/* FPU registers must be one of the following types. All other values
70
   are reserved (and undefined). */
71
typedef enum {
72
 fmt_single  = 0,
73
 fmt_double  = 1,
74
 fmt_word    = 4,
75
 fmt_long    = 5,
76
 fmt_ps      = 6,
77
 /* The following are well outside the normal acceptable format
78
    range, and are used in the register status vector. */
79
 fmt_unknown       = 0x10000000,
80
 fmt_uninterpreted = 0x20000000,
81
 fmt_uninterpreted_32 = 0x40000000,
82
 fmt_uninterpreted_64 = 0x80000000U,
83
} FP_formats;
84
 
85
/* For paired word (pw) operations, the opcode representation is fmt_word,
86
   but register transfers (StoreFPR, ValueFPR, etc.) are done as fmt_long.  */
87
#define fmt_pw fmt_long
88
 
89
/* This should be the COC1 value at the start of the preceding
90
   instruction: */
91
#define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
92
 
93
#ifdef TARGET_ENABLE_FR
94
/* FIXME: this should be enabled for all targets, but needs testing first. */
95
#define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
96
   ? ((SR & status_FR) ? 64 : 32) \
97
   : (WITH_TARGET_FLOATING_POINT_BITSIZE))
98
#else
99
#define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
100
#endif
101
 
102
 
103
 
104
 
105
 
106
/* HI/LO register accesses */
107
 
108
/* For some MIPS targets, the HI/LO registers have certain timing
109
   restrictions in that, for instance, a read of a HI register must be
110
   separated by at least three instructions from a preceeding read.
111
 
112
   The struct below is used to record the last access by each of A MT,
113
   MF or other OP instruction to a HI/LO register.  See mips.igen for
114
   more details. */
115
 
116
typedef struct _hilo_access {
117
  signed64 timestamp;
118
  address_word cia;
119
} hilo_access;
120
 
121
typedef struct _hilo_history {
122
  hilo_access mt;
123
  hilo_access mf;
124
  hilo_access op;
125
} hilo_history;
126
 
127
 
128
 
129
 
130
/* Integer ALU operations: */
131
 
132
#include "sim-alu.h"
133
 
134
#define ALU32_END(ANS) \
135
  if (ALU32_HAD_OVERFLOW) \
136
    SignalExceptionIntegerOverflow (); \
137
  (ANS) = (signed32) ALU32_OVERFLOW_RESULT
138
 
139
 
140
#define ALU64_END(ANS) \
141
  if (ALU64_HAD_OVERFLOW) \
142
    SignalExceptionIntegerOverflow (); \
143
  (ANS) = ALU64_OVERFLOW_RESULT;
144
 
145
 
146
 
147
 
148
 
149
/* The following is probably not used for MIPS IV onwards: */
150
/* Slots for delayed register updates. For the moment we just have a
151
   fixed number of slots (rather than a more generic, dynamic
152
   system). This keeps the simulator fast. However, we only allow
153
   for the register update to be delayed for a single instruction
154
   cycle. */
155
#define PSLOTS (8) /* Maximum number of instruction cycles */
156
 
157
typedef struct _pending_write_queue {
158
  int in;
159
  int out;
160
  int total;
161
  int slot_delay[PSLOTS];
162
  int slot_size[PSLOTS];
163
  int slot_bit[PSLOTS];
164
  void *slot_dest[PSLOTS];
165
  unsigned64 slot_value[PSLOTS];
166
} pending_write_queue;
167
 
168
#ifndef PENDING_TRACE
169
#define PENDING_TRACE 0
170
#endif
171
#define PENDING_IN ((CPU)->pending.in)
172
#define PENDING_OUT ((CPU)->pending.out)
173
#define PENDING_TOTAL ((CPU)->pending.total)
174
#define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
175
#define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
176
#define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
177
#define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
178
#define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
179
 
180
/* Invalidate the pending write queue, all pending writes are
181
   discarded. */
182
 
183
#define PENDING_INVALIDATE() \
184
memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
185
 
186
/* Schedule a write to DEST for N cycles time.  For 64 bit
187
   destinations, schedule two writes.  For floating point registers,
188
   the caller should schedule a write to both the dest register and
189
   the FPR_STATE register.  When BIT is non-negative, only BIT of DEST
190
   is updated. */
191
 
192
#define PENDING_SCHED(DEST,VAL,DELAY,BIT)                               \
193
  do {                                                                  \
194
    if (PENDING_SLOT_DEST[PENDING_IN] != NULL)                          \
195
      sim_engine_abort (SD, CPU, cia,                                   \
196
                        "PENDING_SCHED - buffer overflow\n");           \
197
    if (PENDING_TRACE)                                                  \
198
      sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n",                  \
199
                      (unsigned long) cia, (unsigned long) &(DEST),     \
200
                      (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
201
                      PENDING_IN, PENDING_OUT, PENDING_TOTAL);          \
202
    PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1;                       \
203
    PENDING_SLOT_DEST[PENDING_IN] = &(DEST);                            \
204
    PENDING_SLOT_VALUE[PENDING_IN] = (VAL);                             \
205
    PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST);                      \
206
    PENDING_SLOT_BIT[PENDING_IN] = (BIT);                               \
207
    PENDING_IN = (PENDING_IN + 1) % PSLOTS;                             \
208
    PENDING_TOTAL += 1;                                                 \
209
  } while (0)
210
 
211
#define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
212
#define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
213
 
214
#define PENDING_TICK() pending_tick (SD, CPU, cia)
215
 
216
#define PENDING_FLUSH() abort () /* think about this one */
217
#define PENDING_FP() abort () /* think about this one */
218
 
219
/* For backward compatibility */
220
#define PENDING_FILL(R,VAL)                                             \
221
do {                                                                    \
222
  if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR)                       \
223
    {                                                                   \
224
      PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1);                   \
225
      PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \
226
    }                                                                   \
227
  else                                                                  \
228
    PENDING_SCHED(GPR[(R)], VAL, 1, -1);                                \
229
} while (0)
230
 
231
 
232
enum float_operation
233
  {
234
    FLOP_ADD,    FLOP_SUB,    FLOP_MUL,    FLOP_MADD,
235
    FLOP_MSUB,   FLOP_MAX=10, FLOP_MIN,    FLOP_ABS,
236
    FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
237
  };
238
 
239
 
240
/* The internal representation of an MDMX accumulator.
241
   Note that 24 and 48 bit accumulator elements are represented in
242
   32 or 64 bits.  Since the accumulators are 2's complement with
243
   overflow suppressed, high-order bits can be ignored in most contexts.  */
244
 
245
typedef signed32 signed24;
246
typedef signed64 signed48;
247
 
248
typedef union {
249
  signed24  ob[8];
250
  signed48  qh[4];
251
} MDMX_accumulator;
252
 
253
 
254
/* Conventional system arguments.  */
255
#define SIM_STATE  sim_cpu *cpu, address_word cia
256
#define SIM_ARGS   CPU, cia
257
 
258
struct _sim_cpu {
259
 
260
 
261
  /* The following are internal simulator state variables: */
262
#define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
263
#define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
264
  address_word dspc;  /* delay-slot PC */
265
#define DSPC ((CPU)->dspc)
266
 
267
#define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
268
#define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
269
 
270
 
271
  /* State of the simulator */
272
  unsigned int state;
273
  unsigned int dsstate;
274
#define STATE ((CPU)->state)
275
#define DSSTATE ((CPU)->dsstate)
276
 
277
/* Flags in the "state" variable: */
278
#define simHALTEX       (1 << 2)  /* 0 = run; 1 = halt on exception */
279
#define simHALTIN       (1 << 3)  /* 0 = run; 1 = halt on interrupt */
280
#define simTRACE        (1 << 8)  /* 0 = do nothing; 1 = trace address activity */
281
#define simPCOC0        (1 << 17) /* COC[1] from current */
282
#define simPCOC1        (1 << 18) /* COC[1] from previous */
283
#define simDELAYSLOT    (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
284
#define simSKIPNEXT     (1 << 25) /* 0 = do nothing; 1 = skip instruction */
285
#define simSIGINT       (1 << 28)  /* 0 = do nothing; 1 = SIGINT has occured */
286
#define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
287
 
288
#ifndef ENGINE_ISSUE_PREFIX_HOOK
289
#define ENGINE_ISSUE_PREFIX_HOOK() \
290
  { \
291
    /* Perform any pending writes */ \
292
    PENDING_TICK(); \
293
    /* Set previous flag, depending on current: */ \
294
    if (STATE & simPCOC0) \
295
     STATE |= simPCOC1; \
296
    else \
297
     STATE &= ~simPCOC1; \
298
    /* and update the current value: */ \
299
    if (GETFCC(0)) \
300
     STATE |= simPCOC0; \
301
    else \
302
     STATE &= ~simPCOC0; \
303
  }
304
#endif /* ENGINE_ISSUE_PREFIX_HOOK */
305
 
306
 
307
/* This is nasty, since we have to rely on matching the register
308
   numbers used by GDB. Unfortunately, depending on the MIPS target
309
   GDB uses different register numbers. We cannot just include the
310
   relevant "gdb/tm.h" link, since GDB may not be configured before
311
   the sim world, and also the GDB header file requires too much other
312
   state. */
313
 
314
#ifndef TM_MIPS_H
315
#define LAST_EMBED_REGNUM (89)
316
#define NUM_REGS (LAST_EMBED_REGNUM + 1)
317
 
318
#define FP0_REGNUM 38           /* Floating point register 0 (single float) */
319
#define FCRCS_REGNUM 70         /* FP control/status */
320
#define FCRIR_REGNUM 71         /* FP implementation/revision */
321
#endif
322
 
323
 
324
/* To keep this default simulator simple, and fast, we use a direct
325
   vector of registers. The internal simulator engine then uses
326
   manifests to access the correct slot. */
327
 
328
  unsigned_word registers[LAST_EMBED_REGNUM + 1];
329
 
330
  int register_widths[NUM_REGS];
331
#define REGISTERS       ((CPU)->registers)
332
 
333
#define GPR     (&REGISTERS[0])
334
#define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
335
 
336
#define LO      (REGISTERS[33])
337
#define HI      (REGISTERS[34])
338
#define PCIDX   37
339
#define PC      (REGISTERS[PCIDX])
340
#define CAUSE   (REGISTERS[36])
341
#define SRIDX   (32)
342
#define SR      (REGISTERS[SRIDX])      /* CPU status register */
343
#define FCR0IDX  (71)
344
#define FCR0    (REGISTERS[FCR0IDX])    /* really a 32bit register */
345
#define FCR31IDX (70)
346
#define FCR31   (REGISTERS[FCR31IDX])   /* really a 32bit register */
347
#define FCSR    (FCR31)
348
#define Debug   (REGISTERS[86])
349
#define DEPC    (REGISTERS[87])
350
#define EPC     (REGISTERS[88])
351
 
352
  /* All internal state modified by signal_exception() that may need to be
353
     rolled back for passing moment-of-exception image back to gdb. */
354
  unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
355
  unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
356
  int exc_suspended;
357
 
358
#define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
359
#define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
360
#define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
361
 
362
  unsigned_word c0_config_reg;
363
#define C0_CONFIG ((CPU)->c0_config_reg)
364
 
365
/* The following are pseudonyms for standard registers */
366
#define ZERO    (REGISTERS[0])
367
#define V0      (REGISTERS[2])
368
#define A0      (REGISTERS[4])
369
#define A1      (REGISTERS[5])
370
#define A2      (REGISTERS[6])
371
#define A3      (REGISTERS[7])
372
#define T8IDX   24
373
#define T8      (REGISTERS[T8IDX])
374
#define SPIDX   29
375
#define SP      (REGISTERS[SPIDX])
376
#define RAIDX   31
377
#define RA      (REGISTERS[RAIDX])
378
 
379
  /* While space is allocated in the main registers arrray for some of
380
     the COP0 registers, that space isn't sufficient.  Unknown COP0
381
     registers overflow into the array below */
382
 
383
#define NR_COP0_GPR     32
384
  unsigned_word cop0_gpr[NR_COP0_GPR];
385
#define COP0_GPR        ((CPU)->cop0_gpr)
386
#define COP0_BADVADDR ((unsigned32)(COP0_GPR[8]))
387
 
388
  /* While space is allocated for the floating point registers in the
389
     main registers array, they are stored separatly.  This is because
390
     their size may not necessarily match the size of either the
391
     general-purpose or system specific registers.  */
392
#define NR_FGR    (32)
393
#define FGR_BASE  FP0_REGNUM
394
  fp_word fgr[NR_FGR];
395
#define FGR       ((CPU)->fgr)
396
 
397
  /* Keep the current format state for each register: */
398
  FP_formats fpr_state[32];
399
#define FPR_STATE ((CPU)->fpr_state)
400
 
401
  pending_write_queue pending;
402
 
403
  /* The MDMX accumulator (used only for MDMX ASE).  */
404
  MDMX_accumulator acc;
405
#define ACC             ((CPU)->acc)
406
 
407
  /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
408
     read-write instructions. It is set when a linked load occurs. It
409
     is tested and cleared by the conditional store. It is cleared
410
     (during other CPU operations) when a store to the location would
411
     no longer be atomic. In particular, it is cleared by exception
412
     return instructions. */
413
  int llbit;
414
#define LLBIT ((CPU)->llbit)
415
 
416
 
417
/* The HIHISTORY and LOHISTORY timestamps are used to ensure that
418
   corruptions caused by using the HI or LO register too close to a
419
   following operation is spotted. See mips.igen for more details. */
420
 
421
  hilo_history hi_history;
422
#define HIHISTORY (&(CPU)->hi_history)
423
  hilo_history lo_history;
424
#define LOHISTORY (&(CPU)->lo_history)
425
 
426
#define check_branch_bug() 
427
#define mark_branch_bug(TARGET) 
428
 
429
 
430
 
431
  sim_cpu_base base;
432
};
433
 
434
 
435
/* MIPS specific simulator watch config */
436
 
437
void watch_options_install PARAMS ((SIM_DESC sd));
438
 
439
struct swatch {
440
  sim_event *pc;
441
  sim_event *clock;
442
  sim_event *cycles;
443
};
444
 
445
 
446
/* FIXME: At present much of the simulator is still static */
447
struct sim_state {
448
 
449
  struct swatch watch;
450
 
451
  sim_cpu cpu[MAX_NR_PROCESSORS];
452
#if (WITH_SMP)
453
#define STATE_CPU(sd,n) (&(sd)->cpu[n])
454
#else
455
#define STATE_CPU(sd,n) (&(sd)->cpu[0])
456
#endif
457
 
458
 
459
  sim_state_base base;
460
};
461
 
462
 
463
 
464
/* Status information: */
465
 
466
/* TODO : these should be the bitmasks for these bits within the
467
   status register. At the moment the following are VR4300
468
   bit-positions: */
469
#define status_KSU_mask  (0x18)         /* mask for KSU bits */
470
#define status_KSU_shift (3)            /* shift for field */
471
#define ksu_kernel       (0x0)
472
#define ksu_supervisor   (0x1)
473
#define ksu_user         (0x2)
474
#define ksu_unknown      (0x3)
475
 
476
#define SR_KSU           ((SR & status_KSU_mask) >> status_KSU_shift)
477
 
478
#define status_IE        (1 <<  0)      /* Interrupt enable */
479
#define status_EIE       (1 << 16)      /* Enable Interrupt Enable */
480
#define status_EXL       (1 <<  1)      /* Exception level */
481
#define status_RE        (1 << 25)      /* Reverse Endian in user mode */
482
#define status_FR        (1 << 26)      /* enables MIPS III additional FP registers */
483
#define status_SR        (1 << 20)      /* soft reset or NMI */
484
#define status_BEV       (1 << 22)      /* Location of general exception vectors */
485
#define status_TS        (1 << 21)      /* TLB shutdown has occurred */
486
#define status_ERL       (1 <<  2)      /* Error level */
487
#define status_IM7       (1 << 15)      /* Timer Interrupt Mask */
488
#define status_RP        (1 << 27)      /* Reduced Power mode */
489
 
490
/* Specializations for TX39 family */
491
#define status_IEc       (1 << 0)       /* Interrupt enable (current) */
492
#define status_KUc       (1 << 1)       /* Kernel/User mode */
493
#define status_IEp       (1 << 2)       /* Interrupt enable (previous) */
494
#define status_KUp       (1 << 3)       /* Kernel/User mode */
495
#define status_IEo       (1 << 4)       /* Interrupt enable (old) */
496
#define status_KUo       (1 << 5)       /* Kernel/User mode */
497
#define status_IM_mask   (0xff)         /* Interrupt mask */
498
#define status_IM_shift  (8)
499
#define status_NMI       (1 << 20)      /* NMI */
500
#define status_NMI       (1 << 20)      /* NMI */
501
 
502
/* Status bits used by MIPS32/MIPS64.  */
503
#define status_UX        (1 <<  5)      /* 64-bit user addrs */
504
#define status_SX        (1 <<  6)      /* 64-bit supervisor addrs */
505
#define status_KX        (1 <<  7)      /* 64-bit kernel addrs */
506
#define status_TS        (1 << 21)      /* TLB shutdown has occurred */
507
#define status_PX        (1 << 23)      /* Enable 64 bit operations */
508
#define status_MX        (1 << 24)      /* Enable MDMX resources */
509
#define status_CU0       (1 << 28)      /* Coprocessor 0 usable */
510
#define status_CU1       (1 << 29)      /* Coprocessor 1 usable */
511
#define status_CU2       (1 << 30)      /* Coprocessor 2 usable */
512
#define status_CU3       (1 << 31)      /* Coprocessor 3 usable */
513
/* Bits reserved for implementations:  */
514
#define status_SBX       (1 << 16)      /* Enable SiByte SB-1 extensions.  */
515
 
516
#define cause_BD ((unsigned)1 << 31)    /* L1 Exception in branch delay slot */
517
#define cause_BD2         (1 << 30)     /* L2 Exception in branch delay slot */
518
#define cause_CE_mask     0x30000000    /* Coprocessor exception */
519
#define cause_CE_shift    28
520
#define cause_EXC2_mask   0x00070000
521
#define cause_EXC2_shift  16
522
#define cause_IP7         (1 << 15)     /* Interrupt pending */
523
#define cause_SIOP        (1 << 12)     /* SIO pending */
524
#define cause_IP3         (1 << 11)     /* Int 0 pending */
525
#define cause_IP2         (1 << 10)     /* Int 1 pending */
526
 
527
#define cause_EXC_mask  (0x1c)          /* Exception code */
528
#define cause_EXC_shift (2)
529
 
530
#define cause_SW0       (1 << 8)        /* Software interrupt 0 */
531
#define cause_SW1       (1 << 9)        /* Software interrupt 1 */
532
#define cause_IP_mask   (0x3f)          /* Interrupt pending field */
533
#define cause_IP_shift  (10)
534
 
535
#define cause_set_EXC(x)  CAUSE = (CAUSE & ~cause_EXC_mask)  | ((x << cause_EXC_shift)  & cause_EXC_mask)
536
#define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
537
 
538
 
539
/* NOTE: We keep the following status flags as bit values (1 for true,
540
 
541
   operations without worrying about what exactly the non-zero true
542
   value is. */
543
 
544
/* UserMode */
545
#ifdef SUBTARGET_R3900
546
#define UserMode        ((SR & status_KUc) ? 1 : 0)
547
#else
548
#define UserMode        ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
549
#endif /* SUBTARGET_R3900 */
550
 
551
/* BigEndianMem */
552
/* Hardware configuration. Affects endianness of LoadMemory and
553
   StoreMemory and the endianness of Kernel and Supervisor mode
554
   execution. The value is 0 for little-endian; 1 for big-endian. */
555
#define BigEndianMem    (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
556
/*(state & simBE) ? 1 : 0)*/
557
 
558
/* ReverseEndian */
559
/* This mode is selected if in User mode with the RE bit being set in
560
   SR (Status Register). It reverses the endianness of load and store
561
   instructions. */
562
#define ReverseEndian   (((SR & status_RE) && UserMode) ? 1 : 0)
563
 
564
/* BigEndianCPU */
565
/* The endianness for load and store instructions (0=little;1=big). In
566
   User mode this endianness may be switched by setting the state_RE
567
   bit in the SR register. Thus, BigEndianCPU may be computed as
568
   (BigEndianMem EOR ReverseEndian). */
569
#define BigEndianCPU    (BigEndianMem ^ ReverseEndian) /* Already bits */
570
 
571
 
572
 
573
/* Exceptions: */
574
 
575
/* NOTE: These numbers depend on the processor architecture being
576
   simulated: */
577
enum ExceptionCause {
578
  Interrupt               = 0,
579
  TLBModification         = 1,
580
  TLBLoad                 = 2,
581
  TLBStore                = 3,
582
  AddressLoad             = 4,
583
  AddressStore            = 5,
584
  InstructionFetch        = 6,
585
  DataReference           = 7,
586
  SystemCall              = 8,
587
  BreakPoint              = 9,
588
  ReservedInstruction     = 10,
589
  CoProcessorUnusable     = 11,
590
  IntegerOverflow         = 12,    /* Arithmetic overflow (IDT monitor raises SIGFPE) */
591
  Trap                    = 13,
592
  FPE                     = 15,
593
  DebugBreakPoint         = 16,    /* Impl. dep. in MIPS32/MIPS64.  */
594
  MDMX                    = 22,
595
  Watch                   = 23,
596
  MCheck                  = 24,
597
  CacheErr                = 30,
598
  NMIReset                = 31,    /* Reserved in MIPS32/MIPS64.  */
599
 
600
 
601
/* The following exception code is actually private to the simulator
602
   world. It is *NOT* a processor feature, and is used to signal
603
   run-time errors in the simulator. */
604
  SimulatorFault          = 0xFFFFFFFF
605
};
606
 
607
#define TLB_REFILL  (0)
608
#define TLB_INVALID (1)
609
 
610
 
611
/* The following break instructions are reserved for use by the
612
   simulator.  The first is used to halt the simulation.  The second
613
   is used by gdb for break-points.  NOTE: Care must be taken, since
614
   this value may be used in later revisions of the MIPS ISA. */
615
#define HALT_INSTRUCTION_MASK   (0x03FFFFC0)
616
 
617
#define HALT_INSTRUCTION        (0x03ff000d)
618
#define HALT_INSTRUCTION2       (0x0000ffcd)
619
 
620
 
621
#define BREAKPOINT_INSTRUCTION  (0x0005000d)
622
#define BREAKPOINT_INSTRUCTION2 (0x0000014d)
623
 
624
 
625
 
626
void interrupt_event (SIM_DESC sd, void *data);
627
 
628
void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
629
#define SignalException(exc,instruction)     signal_exception (SD, CPU, cia, (exc), (instruction))
630
#define SignalExceptionInterrupt(level)      signal_exception (SD, CPU, cia, Interrupt, level)
631
#define SignalExceptionInstructionFetch()    signal_exception (SD, CPU, cia, InstructionFetch)
632
#define SignalExceptionAddressStore()        signal_exception (SD, CPU, cia, AddressStore)
633
#define SignalExceptionAddressLoad()         signal_exception (SD, CPU, cia, AddressLoad)
634
#define SignalExceptionDataReference()       signal_exception (SD, CPU, cia, DataReference)
635
#define SignalExceptionSimulatorFault(buf)   signal_exception (SD, CPU, cia, SimulatorFault, buf)
636
#define SignalExceptionFPE()                 signal_exception (SD, CPU, cia, FPE)
637
#define SignalExceptionIntegerOverflow()     signal_exception (SD, CPU, cia, IntegerOverflow)
638
#define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
639
#define SignalExceptionNMIReset()            signal_exception (SD, CPU, cia, NMIReset)
640
#define SignalExceptionTLBRefillStore()      signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
641
#define SignalExceptionTLBRefillLoad()       signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
642
#define SignalExceptionTLBInvalidStore()     signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
643
#define SignalExceptionTLBInvalidLoad()      signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
644
#define SignalExceptionTLBModification()     signal_exception (SD, CPU, cia, TLBModification)
645
#define SignalExceptionMDMX()                signal_exception (SD, CPU, cia, MDMX)
646
#define SignalExceptionWatch()               signal_exception (SD, CPU, cia, Watch)
647
#define SignalExceptionMCheck()              signal_exception (SD, CPU, cia, MCheck)
648
#define SignalExceptionCacheErr()            signal_exception (SD, CPU, cia, CacheErr)
649
 
650
/* Co-processor accesses */
651
 
652
/* XXX FIXME: For now, assume that FPU (cp1) is always usable.  */
653
#define COP_Usable(coproc_num)          (coproc_num == 1)
654
 
655
void cop_lw  PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
656
void cop_ld  PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
657
unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
658
uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
659
 
660
#define COP_LW(coproc_num,coproc_reg,memword) \
661
cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
662
#define COP_LD(coproc_num,coproc_reg,memword) \
663
cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
664
#define COP_SW(coproc_num,coproc_reg) \
665
cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
666
#define COP_SD(coproc_num,coproc_reg) \
667
cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
668
 
669
 
670
void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
671
#define DecodeCoproc(instruction) \
672
decode_coproc (SD, CPU, cia, (instruction))
673
 
674
int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
675
 
676
 
677
/* FPR access.  */
678
unsigned64 value_fpr (SIM_STATE, int fpr, FP_formats);
679
#define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT))
680
void store_fpr (SIM_STATE, int fpr, FP_formats fmt, unsigned64 value);
681
#define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE))
682
unsigned64 ps_lower (SIM_STATE, unsigned64 op);
683
#define PSLower(op) ps_lower (SIM_ARGS, op)
684
unsigned64 ps_upper (SIM_STATE, unsigned64 op);
685
#define PSUpper(op) ps_upper (SIM_ARGS, op)
686
unsigned64 pack_ps (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats from);
687
#define PackPS(op1,op2) pack_ps (SIM_ARGS, op1, op2, fmt_single)
688
 
689
 
690
/* FCR access.  */
691
unsigned_word value_fcr (SIM_STATE, int fcr);
692
#define ValueFCR(FCR) value_fcr (SIM_ARGS, (FCR))
693
void store_fcr (SIM_STATE, int fcr, unsigned_word value);
694
#define StoreFCR(FCR,VALUE) store_fcr (SIM_ARGS, (FCR), (VALUE))
695
void test_fcsr (SIM_STATE);
696
#define TestFCSR() test_fcsr (SIM_ARGS)
697
 
698
 
699
/* FPU operations.  */
700
void fp_cmp (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt, int abs, int cond, int cc);
701
#define Compare(op1,op2,fmt,cond,cc) fp_cmp(SIM_ARGS, op1, op2, fmt, 0, cond, cc)
702
unsigned64 fp_abs (SIM_STATE, unsigned64 op, FP_formats fmt);
703
#define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt)
704
unsigned64 fp_neg (SIM_STATE, unsigned64 op, FP_formats fmt);
705
#define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt)
706
unsigned64 fp_add (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
707
#define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt)
708
unsigned64 fp_sub (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
709
#define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt)
710
unsigned64 fp_mul (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
711
#define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt)
712
unsigned64 fp_div (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
713
#define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt)
714
unsigned64 fp_recip (SIM_STATE, unsigned64 op, FP_formats fmt);
715
#define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt)
716
unsigned64 fp_sqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
717
#define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt)
718
unsigned64 fp_rsqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
719
#define RSquareRoot(op,fmt) fp_rsqrt(SIM_ARGS, op, fmt)
720
unsigned64 fp_madd (SIM_STATE, unsigned64 op1, unsigned64 op2,
721
                    unsigned64 op3, FP_formats fmt);
722
#define MultiplyAdd(op1,op2,op3,fmt) fp_madd(SIM_ARGS, op1, op2, op3, fmt)
723
unsigned64 fp_msub (SIM_STATE, unsigned64 op1, unsigned64 op2,
724
                    unsigned64 op3, FP_formats fmt);
725
#define MultiplySub(op1,op2,op3,fmt) fp_msub(SIM_ARGS, op1, op2, op3, fmt)
726
unsigned64 fp_nmadd (SIM_STATE, unsigned64 op1, unsigned64 op2,
727
                     unsigned64 op3, FP_formats fmt);
728
#define NegMultiplyAdd(op1,op2,op3,fmt) fp_nmadd(SIM_ARGS, op1, op2, op3, fmt)
729
unsigned64 fp_nmsub (SIM_STATE, unsigned64 op1, unsigned64 op2,
730
                     unsigned64 op3, FP_formats fmt);
731
#define NegMultiplySub(op1,op2,op3,fmt) fp_nmsub(SIM_ARGS, op1, op2, op3, fmt)
732
unsigned64 convert (SIM_STATE, int rm, unsigned64 op, FP_formats from, FP_formats to);
733
#define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to)
734
unsigned64 convert_ps (SIM_STATE, int rm, unsigned64 op, FP_formats from,
735
                       FP_formats to);
736
#define ConvertPS(rm,op,from,to) convert_ps (SIM_ARGS, rm, op, from, to)
737
 
738
 
739
/* MIPS-3D ASE operations.  */
740
#define CompareAbs(op1,op2,fmt,cond,cc) \
741
fp_cmp(SIM_ARGS, op1, op2, fmt, 1, cond, cc)
742
unsigned64 fp_add_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
743
#define AddR(op1,op2,fmt) fp_add_r(SIM_ARGS, op1, op2, fmt)
744
unsigned64 fp_mul_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
745
#define MultiplyR(op1,op2,fmt) fp_mul_r(SIM_ARGS, op1, op2, fmt)
746
unsigned64 fp_recip1 (SIM_STATE, unsigned64 op, FP_formats fmt);
747
#define Recip1(op,fmt) fp_recip1(SIM_ARGS, op, fmt)
748
unsigned64 fp_recip2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
749
#define Recip2(op1,op2,fmt) fp_recip2(SIM_ARGS, op1, op2, fmt)
750
unsigned64 fp_rsqrt1 (SIM_STATE, unsigned64 op, FP_formats fmt);
751
#define RSquareRoot1(op,fmt) fp_rsqrt1(SIM_ARGS, op, fmt)
752
unsigned64 fp_rsqrt2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
753
#define RSquareRoot2(op1,op2,fmt) fp_rsqrt2(SIM_ARGS, op1, op2, fmt)
754
 
755
 
756
/* MDMX access.  */
757
 
758
typedef unsigned int MX_fmtsel;   /* MDMX format select field (5 bits).  */
759
#define ob_fmtsel(sel) (((sel)<<1)|0x0)
760
#define qh_fmtsel(sel) (((sel)<<2)|0x1)
761
 
762
#define fmt_mdmx fmt_uninterpreted
763
 
764
#define MX_VECT_AND  (0)
765
#define MX_VECT_NOR  (1)
766
#define MX_VECT_OR   (2)
767
#define MX_VECT_XOR  (3)
768
#define MX_VECT_SLL  (4)
769
#define MX_VECT_SRL  (5)
770
#define MX_VECT_ADD  (6)
771
#define MX_VECT_SUB  (7)
772
#define MX_VECT_MIN  (8)
773
#define MX_VECT_MAX  (9)
774
#define MX_VECT_MUL  (10)
775
#define MX_VECT_MSGN (11)
776
#define MX_VECT_SRA  (12)
777
#define MX_VECT_ABSD (13)               /* SB-1 only.  */
778
#define MX_VECT_AVG  (14)               /* SB-1 only.  */
779
 
780
unsigned64 mdmx_cpr_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
781
#define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
782
#define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
783
#define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
784
#define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
785
#define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
786
#define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
787
#define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
788
#define MX_Or(op1,vt,fmtsel)  mdmx_cpr_op(SIM_ARGS, MX_VECT_OR,  op1, vt, fmtsel)
789
#define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
790
#define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
791
#define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
792
#define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
793
#define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
794
#define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
795
#define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
796
 
797
#define MX_C_EQ  0x1
798
#define MX_C_LT  0x4
799
 
800
void mdmx_cc_op (SIM_STATE, int cond, unsigned64 op1, int vt, MX_fmtsel fmtsel);
801
#define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
802
 
803
unsigned64 mdmx_pick_op (SIM_STATE, int tf, unsigned64 op1, int vt, MX_fmtsel fmtsel);
804
#define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
805
 
806
#define MX_VECT_ADDA  (0)
807
#define MX_VECT_ADDL  (1)
808
#define MX_VECT_MULA  (2)
809
#define MX_VECT_MULL  (3)
810
#define MX_VECT_MULS  (4)
811
#define MX_VECT_MULSL (5)
812
#define MX_VECT_SUBA  (6)
813
#define MX_VECT_SUBL  (7)
814
#define MX_VECT_ABSDA (8)               /* SB-1 only.  */
815
 
816
void mdmx_acc_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
817
#define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
818
#define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
819
#define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
820
#define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
821
#define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
822
#define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
823
#define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
824
#define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
825
#define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
826
 
827
#define MX_FMT_OB   (0)
828
#define MX_FMT_QH   (1)
829
 
830
/* The following codes chosen to indicate the units of shift.  */
831
#define MX_RAC_L    (0)
832
#define MX_RAC_M    (1)
833
#define MX_RAC_H    (2)
834
 
835
unsigned64 mdmx_rac_op (SIM_STATE, int, int);
836
#define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
837
 
838
void mdmx_wacl (SIM_STATE, int, unsigned64, unsigned64);
839
#define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
840
void mdmx_wach (SIM_STATE, int, unsigned64);
841
#define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
842
 
843
#define MX_RND_AS   (0)
844
#define MX_RND_AU   (1)
845
#define MX_RND_ES   (2)
846
#define MX_RND_EU   (3)
847
#define MX_RND_ZS   (4)
848
#define MX_RND_ZU   (5)
849
 
850
unsigned64 mdmx_round_op (SIM_STATE, int, int, MX_fmtsel);
851
#define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
852
#define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
853
#define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
854
#define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
855
#define MX_RZS(vt,fmt)  mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
856
#define MX_RZU(vt,fmt)  mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
857
 
858
unsigned64 mdmx_shuffle (SIM_STATE, int, unsigned64, unsigned64);
859
#define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
860
 
861
 
862
 
863
/* Memory accesses */
864
 
865
/* The following are generic to all versions of the MIPS architecture
866
   to date: */
867
 
868
/* Memory Access Types (for CCA): */
869
#define Uncached                (0)
870
#define CachedNoncoherent       (1)
871
#define CachedCoherent          (2)
872
#define Cached                  (3)
873
 
874
#define isINSTRUCTION   (1 == 0) /* FALSE */
875
#define isDATA          (1 == 1) /* TRUE */
876
#define isLOAD          (1 == 0) /* FALSE */
877
#define isSTORE         (1 == 1) /* TRUE */
878
#define isREAL          (1 == 0) /* FALSE */
879
#define isRAW           (1 == 1) /* TRUE */
880
/* The parameter HOST (isTARGET / isHOST) is ignored */
881
#define isTARGET        (1 == 0) /* FALSE */
882
/* #define isHOST          (1 == 1) TRUE */
883
 
884
/* The "AccessLength" specifications for Loads and Stores. NOTE: This
885
   is the number of bytes minus 1. */
886
#define AccessLength_BYTE       (0)
887
#define AccessLength_HALFWORD   (1)
888
#define AccessLength_TRIPLEBYTE (2)
889
#define AccessLength_WORD       (3)
890
#define AccessLength_QUINTIBYTE (4)
891
#define AccessLength_SEXTIBYTE  (5)
892
#define AccessLength_SEPTIBYTE  (6)
893
#define AccessLength_DOUBLEWORD (7)
894
#define AccessLength_QUADWORD   (15)
895
 
896
#define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
897
                    ? AccessLength_DOUBLEWORD /*7*/ \
898
                    : AccessLength_WORD /*3*/)
899
#define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
900
 
901
 
902
INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
903
#define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
904
address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
905
 
906
INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD));
907
#define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
908
load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
909
 
910
INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
911
#define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
912
store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
913
 
914
INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
915
#define CacheOp(op,pAddr,vAddr,instruction) \
916
cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
917
 
918
INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
919
#define SyncOperation(stype) \
920
sync_operation (SD, CPU, cia, (stype))
921
 
922
INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
923
#define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
924
prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
925
 
926
void unpredictable_action (sim_cpu *cpu, address_word cia);
927
#define NotWordValue(val)       not_word_value (SD_, (val))
928
#define Unpredictable()         unpredictable (SD_)
929
#define UnpredictableResult()   /* For now, do nothing.  */
930
 
931
INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
932
#define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
933
INLINE_SIM_MAIN (unsigned16) ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
934
#define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
935
#define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
936
 
937
void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
938
extern FILE *tracefh;
939
 
940
INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
941
extern SIM_CORE_SIGNAL_FN mips_core_signal;
942
 
943
char* pr_addr PARAMS ((SIM_ADDR addr));
944
char* pr_uword64 PARAMS ((uword64 addr));
945
 
946
 
947
#define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
948
 
949
void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
950
void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
951
void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
952
 
953
 
954
#if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
955
#include "sim-main.c"
956
#endif
957
 
958
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.