1 |
578 |
markom |
/* Intel 80386/80486-specific support for 32-bit ELF
|
2 |
|
|
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of BFD, the Binary File Descriptor library.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
20 |
|
|
|
21 |
|
|
#include "bfd.h"
|
22 |
|
|
#include "sysdep.h"
|
23 |
|
|
#include "bfdlink.h"
|
24 |
|
|
#include "libbfd.h"
|
25 |
|
|
#include "elf-bfd.h"
|
26 |
|
|
|
27 |
|
|
static reloc_howto_type *elf_i386_reloc_type_lookup
|
28 |
|
|
PARAMS ((bfd *, bfd_reloc_code_real_type));
|
29 |
|
|
static void elf_i386_info_to_howto
|
30 |
|
|
PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
|
31 |
|
|
static void elf_i386_info_to_howto_rel
|
32 |
|
|
PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
|
33 |
|
|
static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *));
|
34 |
|
|
static struct bfd_hash_entry *elf_i386_link_hash_newfunc
|
35 |
|
|
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
36 |
|
|
static struct bfd_link_hash_table *elf_i386_link_hash_table_create
|
37 |
|
|
PARAMS ((bfd *));
|
38 |
|
|
static boolean create_got_section PARAMS((bfd *, struct bfd_link_info *));
|
39 |
|
|
static boolean elf_i386_create_dynamic_sections
|
40 |
|
|
PARAMS((bfd *, struct bfd_link_info *));
|
41 |
|
|
static boolean elf_i386_check_relocs
|
42 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, asection *,
|
43 |
|
|
const Elf_Internal_Rela *));
|
44 |
|
|
static boolean elf_i386_adjust_dynamic_symbol
|
45 |
|
|
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
|
46 |
|
|
static boolean allocate_plt_and_got_and_discard_relocs
|
47 |
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
48 |
|
|
static boolean elf_i386_size_dynamic_sections
|
49 |
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
50 |
|
|
static boolean elf_i386_relocate_section
|
51 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
|
52 |
|
|
Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
|
53 |
|
|
static boolean elf_i386_finish_dynamic_symbol
|
54 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
|
55 |
|
|
Elf_Internal_Sym *));
|
56 |
|
|
static boolean elf_i386_finish_dynamic_sections
|
57 |
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
58 |
|
|
|
59 |
|
|
#define USE_REL 1 /* 386 uses REL relocations instead of RELA */
|
60 |
|
|
|
61 |
|
|
#include "elf/i386.h"
|
62 |
|
|
|
63 |
|
|
static reloc_howto_type elf_howto_table[]=
|
64 |
|
|
{
|
65 |
|
|
HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
|
66 |
|
|
bfd_elf_generic_reloc, "R_386_NONE",
|
67 |
|
|
true, 0x00000000, 0x00000000, false),
|
68 |
|
|
HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
69 |
|
|
bfd_elf_generic_reloc, "R_386_32",
|
70 |
|
|
true, 0xffffffff, 0xffffffff, false),
|
71 |
|
|
HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
|
72 |
|
|
bfd_elf_generic_reloc, "R_386_PC32",
|
73 |
|
|
true, 0xffffffff, 0xffffffff, true),
|
74 |
|
|
HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
75 |
|
|
bfd_elf_generic_reloc, "R_386_GOT32",
|
76 |
|
|
true, 0xffffffff, 0xffffffff, false),
|
77 |
|
|
HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
|
78 |
|
|
bfd_elf_generic_reloc, "R_386_PLT32",
|
79 |
|
|
true, 0xffffffff, 0xffffffff, true),
|
80 |
|
|
HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
81 |
|
|
bfd_elf_generic_reloc, "R_386_COPY",
|
82 |
|
|
true, 0xffffffff, 0xffffffff, false),
|
83 |
|
|
HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
84 |
|
|
bfd_elf_generic_reloc, "R_386_GLOB_DAT",
|
85 |
|
|
true, 0xffffffff, 0xffffffff, false),
|
86 |
|
|
HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
87 |
|
|
bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
|
88 |
|
|
true, 0xffffffff, 0xffffffff, false),
|
89 |
|
|
HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
90 |
|
|
bfd_elf_generic_reloc, "R_386_RELATIVE",
|
91 |
|
|
true, 0xffffffff, 0xffffffff, false),
|
92 |
|
|
HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
|
93 |
|
|
bfd_elf_generic_reloc, "R_386_GOTOFF",
|
94 |
|
|
true, 0xffffffff, 0xffffffff, false),
|
95 |
|
|
HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
|
96 |
|
|
bfd_elf_generic_reloc, "R_386_GOTPC",
|
97 |
|
|
true, 0xffffffff, 0xffffffff, true),
|
98 |
|
|
|
99 |
|
|
/* We have a gap in the reloc numbers here.
|
100 |
|
|
R_386_standard counts the number up to this point, and
|
101 |
|
|
R_386_ext_offset is the value to subtract from a reloc type of
|
102 |
|
|
R_386_16 thru R_386_PC8 to form an index into this table. */
|
103 |
|
|
#define R_386_standard ((unsigned int) R_386_GOTPC + 1)
|
104 |
|
|
#define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
|
105 |
|
|
|
106 |
|
|
/* The remaining relocs are a GNU extension. */
|
107 |
|
|
HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
|
108 |
|
|
bfd_elf_generic_reloc, "R_386_16",
|
109 |
|
|
true, 0xffff, 0xffff, false),
|
110 |
|
|
HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
|
111 |
|
|
bfd_elf_generic_reloc, "R_386_PC16",
|
112 |
|
|
true, 0xffff, 0xffff, true),
|
113 |
|
|
HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
|
114 |
|
|
bfd_elf_generic_reloc, "R_386_8",
|
115 |
|
|
true, 0xff, 0xff, false),
|
116 |
|
|
HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
|
117 |
|
|
bfd_elf_generic_reloc, "R_386_PC8",
|
118 |
|
|
true, 0xff, 0xff, true),
|
119 |
|
|
|
120 |
|
|
/* Another gap. */
|
121 |
|
|
#define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
|
122 |
|
|
#define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
|
123 |
|
|
|
124 |
|
|
/* GNU extension to record C++ vtable hierarchy. */
|
125 |
|
|
HOWTO (R_386_GNU_VTINHERIT, /* type */
|
126 |
|
|
0, /* rightshift */
|
127 |
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
128 |
|
|
0, /* bitsize */
|
129 |
|
|
false, /* pc_relative */
|
130 |
|
|
0, /* bitpos */
|
131 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
132 |
|
|
NULL, /* special_function */
|
133 |
|
|
"R_386_GNU_VTINHERIT", /* name */
|
134 |
|
|
false, /* partial_inplace */
|
135 |
|
|
0, /* src_mask */
|
136 |
|
|
0, /* dst_mask */
|
137 |
|
|
false),
|
138 |
|
|
|
139 |
|
|
/* GNU extension to record C++ vtable member usage. */
|
140 |
|
|
HOWTO (R_386_GNU_VTENTRY, /* type */
|
141 |
|
|
0, /* rightshift */
|
142 |
|
|
2, /* size (0 = byte, 1 = short, 2 = long) */
|
143 |
|
|
0, /* bitsize */
|
144 |
|
|
false, /* pc_relative */
|
145 |
|
|
0, /* bitpos */
|
146 |
|
|
complain_overflow_dont, /* complain_on_overflow */
|
147 |
|
|
_bfd_elf_rel_vtable_reloc_fn, /* special_function */
|
148 |
|
|
"R_386_GNU_VTENTRY", /* name */
|
149 |
|
|
false, /* partial_inplace */
|
150 |
|
|
0, /* src_mask */
|
151 |
|
|
0, /* dst_mask */
|
152 |
|
|
false)
|
153 |
|
|
|
154 |
|
|
#define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
|
155 |
|
|
|
156 |
|
|
};
|
157 |
|
|
|
158 |
|
|
#ifdef DEBUG_GEN_RELOC
|
159 |
|
|
#define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
|
160 |
|
|
#else
|
161 |
|
|
#define TRACE(str)
|
162 |
|
|
#endif
|
163 |
|
|
|
164 |
|
|
static reloc_howto_type *
|
165 |
|
|
elf_i386_reloc_type_lookup (abfd, code)
|
166 |
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
167 |
|
|
bfd_reloc_code_real_type code;
|
168 |
|
|
{
|
169 |
|
|
switch (code)
|
170 |
|
|
{
|
171 |
|
|
case BFD_RELOC_NONE:
|
172 |
|
|
TRACE ("BFD_RELOC_NONE");
|
173 |
|
|
return &elf_howto_table[(unsigned int) R_386_NONE ];
|
174 |
|
|
|
175 |
|
|
case BFD_RELOC_32:
|
176 |
|
|
TRACE ("BFD_RELOC_32");
|
177 |
|
|
return &elf_howto_table[(unsigned int) R_386_32 ];
|
178 |
|
|
|
179 |
|
|
case BFD_RELOC_CTOR:
|
180 |
|
|
TRACE ("BFD_RELOC_CTOR");
|
181 |
|
|
return &elf_howto_table[(unsigned int) R_386_32 ];
|
182 |
|
|
|
183 |
|
|
case BFD_RELOC_32_PCREL:
|
184 |
|
|
TRACE ("BFD_RELOC_PC32");
|
185 |
|
|
return &elf_howto_table[(unsigned int) R_386_PC32 ];
|
186 |
|
|
|
187 |
|
|
case BFD_RELOC_386_GOT32:
|
188 |
|
|
TRACE ("BFD_RELOC_386_GOT32");
|
189 |
|
|
return &elf_howto_table[(unsigned int) R_386_GOT32 ];
|
190 |
|
|
|
191 |
|
|
case BFD_RELOC_386_PLT32:
|
192 |
|
|
TRACE ("BFD_RELOC_386_PLT32");
|
193 |
|
|
return &elf_howto_table[(unsigned int) R_386_PLT32 ];
|
194 |
|
|
|
195 |
|
|
case BFD_RELOC_386_COPY:
|
196 |
|
|
TRACE ("BFD_RELOC_386_COPY");
|
197 |
|
|
return &elf_howto_table[(unsigned int) R_386_COPY ];
|
198 |
|
|
|
199 |
|
|
case BFD_RELOC_386_GLOB_DAT:
|
200 |
|
|
TRACE ("BFD_RELOC_386_GLOB_DAT");
|
201 |
|
|
return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
|
202 |
|
|
|
203 |
|
|
case BFD_RELOC_386_JUMP_SLOT:
|
204 |
|
|
TRACE ("BFD_RELOC_386_JUMP_SLOT");
|
205 |
|
|
return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
|
206 |
|
|
|
207 |
|
|
case BFD_RELOC_386_RELATIVE:
|
208 |
|
|
TRACE ("BFD_RELOC_386_RELATIVE");
|
209 |
|
|
return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
|
210 |
|
|
|
211 |
|
|
case BFD_RELOC_386_GOTOFF:
|
212 |
|
|
TRACE ("BFD_RELOC_386_GOTOFF");
|
213 |
|
|
return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
|
214 |
|
|
|
215 |
|
|
case BFD_RELOC_386_GOTPC:
|
216 |
|
|
TRACE ("BFD_RELOC_386_GOTPC");
|
217 |
|
|
return &elf_howto_table[(unsigned int) R_386_GOTPC ];
|
218 |
|
|
|
219 |
|
|
/* The remaining relocs are a GNU extension. */
|
220 |
|
|
case BFD_RELOC_16:
|
221 |
|
|
TRACE ("BFD_RELOC_16");
|
222 |
|
|
return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
|
223 |
|
|
|
224 |
|
|
case BFD_RELOC_16_PCREL:
|
225 |
|
|
TRACE ("BFD_RELOC_16_PCREL");
|
226 |
|
|
return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
|
227 |
|
|
|
228 |
|
|
case BFD_RELOC_8:
|
229 |
|
|
TRACE ("BFD_RELOC_8");
|
230 |
|
|
return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
|
231 |
|
|
|
232 |
|
|
case BFD_RELOC_8_PCREL:
|
233 |
|
|
TRACE ("BFD_RELOC_8_PCREL");
|
234 |
|
|
return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
|
235 |
|
|
|
236 |
|
|
case BFD_RELOC_VTABLE_INHERIT:
|
237 |
|
|
TRACE ("BFD_RELOC_VTABLE_INHERIT");
|
238 |
|
|
return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
|
239 |
|
|
- R_386_vt_offset];
|
240 |
|
|
|
241 |
|
|
case BFD_RELOC_VTABLE_ENTRY:
|
242 |
|
|
TRACE ("BFD_RELOC_VTABLE_ENTRY");
|
243 |
|
|
return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
|
244 |
|
|
- R_386_vt_offset];
|
245 |
|
|
|
246 |
|
|
default:
|
247 |
|
|
break;
|
248 |
|
|
}
|
249 |
|
|
|
250 |
|
|
TRACE ("Unknown");
|
251 |
|
|
return 0;
|
252 |
|
|
}
|
253 |
|
|
|
254 |
|
|
static void
|
255 |
|
|
elf_i386_info_to_howto (abfd, cache_ptr, dst)
|
256 |
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
257 |
|
|
arelent *cache_ptr ATTRIBUTE_UNUSED;
|
258 |
|
|
Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
|
259 |
|
|
{
|
260 |
|
|
abort ();
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
static void
|
264 |
|
|
elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
|
265 |
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
266 |
|
|
arelent *cache_ptr;
|
267 |
|
|
Elf32_Internal_Rel *dst;
|
268 |
|
|
{
|
269 |
|
|
unsigned int r_type = ELF32_R_TYPE (dst->r_info);
|
270 |
|
|
unsigned int indx;
|
271 |
|
|
|
272 |
|
|
if ((indx = r_type) >= R_386_standard
|
273 |
|
|
&& ((indx = r_type - R_386_ext_offset) - R_386_standard
|
274 |
|
|
>= R_386_ext - R_386_standard)
|
275 |
|
|
&& ((indx = r_type - R_386_vt_offset) - R_386_ext
|
276 |
|
|
>= R_386_vt - R_386_ext))
|
277 |
|
|
{
|
278 |
|
|
(*_bfd_error_handler) (_("%s: invalid relocation type %d"),
|
279 |
|
|
bfd_get_filename (abfd), (int) r_type);
|
280 |
|
|
indx = (unsigned int) R_386_NONE;
|
281 |
|
|
}
|
282 |
|
|
cache_ptr->howto = &elf_howto_table[indx];
|
283 |
|
|
}
|
284 |
|
|
|
285 |
|
|
/* Return whether a symbol name implies a local label. The UnixWare
|
286 |
|
|
2.1 cc generates temporary symbols that start with .X, so we
|
287 |
|
|
recognize them here. FIXME: do other SVR4 compilers also use .X?.
|
288 |
|
|
If so, we should move the .X recognition into
|
289 |
|
|
_bfd_elf_is_local_label_name. */
|
290 |
|
|
|
291 |
|
|
static boolean
|
292 |
|
|
elf_i386_is_local_label_name (abfd, name)
|
293 |
|
|
bfd *abfd;
|
294 |
|
|
const char *name;
|
295 |
|
|
{
|
296 |
|
|
if (name[0] == '.' && name[1] == 'X')
|
297 |
|
|
return true;
|
298 |
|
|
|
299 |
|
|
return _bfd_elf_is_local_label_name (abfd, name);
|
300 |
|
|
}
|
301 |
|
|
|
302 |
|
|
/* Functions for the i386 ELF linker. */
|
303 |
|
|
|
304 |
|
|
/* The name of the dynamic interpreter. This is put in the .interp
|
305 |
|
|
section. */
|
306 |
|
|
|
307 |
|
|
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
|
308 |
|
|
|
309 |
|
|
/* The size in bytes of an entry in the procedure linkage table. */
|
310 |
|
|
|
311 |
|
|
#define PLT_ENTRY_SIZE 16
|
312 |
|
|
|
313 |
|
|
/* The first entry in an absolute procedure linkage table looks like
|
314 |
|
|
this. See the SVR4 ABI i386 supplement to see how this works. */
|
315 |
|
|
|
316 |
|
|
static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
|
317 |
|
|
{
|
318 |
|
|
0xff, 0x35, /* pushl contents of address */
|
319 |
|
|
0, 0, 0, 0, /* replaced with address of .got + 4. */
|
320 |
|
|
0xff, 0x25, /* jmp indirect */
|
321 |
|
|
0, 0, 0, 0, /* replaced with address of .got + 8. */
|
322 |
|
|
0, 0, 0, 0 /* pad out to 16 bytes. */
|
323 |
|
|
};
|
324 |
|
|
|
325 |
|
|
/* Subsequent entries in an absolute procedure linkage table look like
|
326 |
|
|
this. */
|
327 |
|
|
|
328 |
|
|
static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
|
329 |
|
|
{
|
330 |
|
|
0xff, 0x25, /* jmp indirect */
|
331 |
|
|
0, 0, 0, 0, /* replaced with address of this symbol in .got. */
|
332 |
|
|
0x68, /* pushl immediate */
|
333 |
|
|
0, 0, 0, 0, /* replaced with offset into relocation table. */
|
334 |
|
|
0xe9, /* jmp relative */
|
335 |
|
|
0, 0, 0, 0 /* replaced with offset to start of .plt. */
|
336 |
|
|
};
|
337 |
|
|
|
338 |
|
|
/* The first entry in a PIC procedure linkage table look like this. */
|
339 |
|
|
|
340 |
|
|
static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
|
341 |
|
|
{
|
342 |
|
|
0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
|
343 |
|
|
0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
|
344 |
|
|
0, 0, 0, 0 /* pad out to 16 bytes. */
|
345 |
|
|
};
|
346 |
|
|
|
347 |
|
|
/* Subsequent entries in a PIC procedure linkage table look like this. */
|
348 |
|
|
|
349 |
|
|
static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
|
350 |
|
|
{
|
351 |
|
|
0xff, 0xa3, /* jmp *offset(%ebx) */
|
352 |
|
|
0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
|
353 |
|
|
0x68, /* pushl immediate */
|
354 |
|
|
0, 0, 0, 0, /* replaced with offset into relocation table. */
|
355 |
|
|
0xe9, /* jmp relative */
|
356 |
|
|
0, 0, 0, 0 /* replaced with offset to start of .plt. */
|
357 |
|
|
};
|
358 |
|
|
|
359 |
|
|
/* The i386 linker needs to keep track of the number of relocs that it
|
360 |
|
|
decides to copy as dynamic relocs in check_relocs for each symbol.
|
361 |
|
|
This is so that it can later discard them if they are found to be
|
362 |
|
|
unnecessary. We store the information in a field extending the
|
363 |
|
|
regular ELF linker hash table. */
|
364 |
|
|
|
365 |
|
|
struct elf_i386_dyn_relocs
|
366 |
|
|
{
|
367 |
|
|
/* Next section. */
|
368 |
|
|
struct elf_i386_dyn_relocs *next;
|
369 |
|
|
/* A section in dynobj. */
|
370 |
|
|
asection *section;
|
371 |
|
|
/* Number of relocs copied in this section. */
|
372 |
|
|
bfd_size_type count;
|
373 |
|
|
};
|
374 |
|
|
|
375 |
|
|
/* i386 ELF linker hash entry. */
|
376 |
|
|
|
377 |
|
|
struct elf_i386_link_hash_entry
|
378 |
|
|
{
|
379 |
|
|
struct elf_link_hash_entry root;
|
380 |
|
|
|
381 |
|
|
/* Number of PC relative relocs copied for this symbol. */
|
382 |
|
|
struct elf_i386_dyn_relocs *dyn_relocs;
|
383 |
|
|
};
|
384 |
|
|
|
385 |
|
|
/* i386 ELF linker hash table. */
|
386 |
|
|
|
387 |
|
|
struct elf_i386_link_hash_table
|
388 |
|
|
{
|
389 |
|
|
struct elf_link_hash_table root;
|
390 |
|
|
|
391 |
|
|
/* Short-cuts to get to dynamic linker sections. */
|
392 |
|
|
asection *sgot;
|
393 |
|
|
asection *sgotplt;
|
394 |
|
|
asection *srelgot;
|
395 |
|
|
asection *splt;
|
396 |
|
|
asection *srelplt;
|
397 |
|
|
asection *sdynbss;
|
398 |
|
|
asection *srelbss;
|
399 |
|
|
};
|
400 |
|
|
|
401 |
|
|
/* Get the i386 ELF linker hash table from a link_info structure. */
|
402 |
|
|
|
403 |
|
|
#define elf_i386_hash_table(p) \
|
404 |
|
|
((struct elf_i386_link_hash_table *) ((p)->hash))
|
405 |
|
|
|
406 |
|
|
/* Create an entry in an i386 ELF linker hash table. */
|
407 |
|
|
|
408 |
|
|
static struct bfd_hash_entry *
|
409 |
|
|
elf_i386_link_hash_newfunc (entry, table, string)
|
410 |
|
|
struct bfd_hash_entry *entry;
|
411 |
|
|
struct bfd_hash_table *table;
|
412 |
|
|
const char *string;
|
413 |
|
|
{
|
414 |
|
|
struct elf_i386_link_hash_entry *ret =
|
415 |
|
|
(struct elf_i386_link_hash_entry *) entry;
|
416 |
|
|
|
417 |
|
|
/* Allocate the structure if it has not already been allocated by a
|
418 |
|
|
subclass. */
|
419 |
|
|
if (ret == (struct elf_i386_link_hash_entry *) NULL)
|
420 |
|
|
ret = ((struct elf_i386_link_hash_entry *)
|
421 |
|
|
bfd_hash_allocate (table,
|
422 |
|
|
sizeof (struct elf_i386_link_hash_entry)));
|
423 |
|
|
if (ret == (struct elf_i386_link_hash_entry *) NULL)
|
424 |
|
|
return (struct bfd_hash_entry *) ret;
|
425 |
|
|
|
426 |
|
|
/* Call the allocation method of the superclass. */
|
427 |
|
|
ret = ((struct elf_i386_link_hash_entry *)
|
428 |
|
|
_bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
429 |
|
|
table, string));
|
430 |
|
|
if (ret != (struct elf_i386_link_hash_entry *) NULL)
|
431 |
|
|
{
|
432 |
|
|
ret->dyn_relocs = NULL;
|
433 |
|
|
}
|
434 |
|
|
|
435 |
|
|
return (struct bfd_hash_entry *) ret;
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
/* Create an i386 ELF linker hash table. */
|
439 |
|
|
|
440 |
|
|
static struct bfd_link_hash_table *
|
441 |
|
|
elf_i386_link_hash_table_create (abfd)
|
442 |
|
|
bfd *abfd;
|
443 |
|
|
{
|
444 |
|
|
struct elf_i386_link_hash_table *ret;
|
445 |
|
|
|
446 |
|
|
ret = ((struct elf_i386_link_hash_table *)
|
447 |
|
|
bfd_alloc (abfd, sizeof (struct elf_i386_link_hash_table)));
|
448 |
|
|
if (ret == (struct elf_i386_link_hash_table *) NULL)
|
449 |
|
|
return NULL;
|
450 |
|
|
|
451 |
|
|
if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
|
452 |
|
|
elf_i386_link_hash_newfunc))
|
453 |
|
|
{
|
454 |
|
|
bfd_release (abfd, ret);
|
455 |
|
|
return NULL;
|
456 |
|
|
}
|
457 |
|
|
|
458 |
|
|
ret->sgot = NULL;
|
459 |
|
|
ret->sgotplt = NULL;
|
460 |
|
|
ret->srelgot = NULL;
|
461 |
|
|
ret->splt = NULL;
|
462 |
|
|
ret->srelplt = NULL;
|
463 |
|
|
ret->sdynbss = NULL;
|
464 |
|
|
ret->srelbss = NULL;
|
465 |
|
|
|
466 |
|
|
return &ret->root.root;
|
467 |
|
|
}
|
468 |
|
|
|
469 |
|
|
/* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
|
470 |
|
|
shortcuts to them in our hash table. */
|
471 |
|
|
|
472 |
|
|
static boolean
|
473 |
|
|
create_got_section (dynobj, info)
|
474 |
|
|
bfd *dynobj;
|
475 |
|
|
struct bfd_link_info *info;
|
476 |
|
|
{
|
477 |
|
|
struct elf_i386_link_hash_table *htab;
|
478 |
|
|
|
479 |
|
|
if (! _bfd_elf_create_got_section (dynobj, info))
|
480 |
|
|
return false;
|
481 |
|
|
|
482 |
|
|
htab = elf_i386_hash_table (info);
|
483 |
|
|
htab->sgot = bfd_get_section_by_name (dynobj, ".got");
|
484 |
|
|
htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
|
485 |
|
|
if (!htab->sgot || !htab->sgotplt)
|
486 |
|
|
abort ();
|
487 |
|
|
|
488 |
|
|
htab->srelgot = bfd_make_section (dynobj, ".rel.got");
|
489 |
|
|
if (htab->srelgot == NULL
|
490 |
|
|
|| ! bfd_set_section_flags (dynobj, htab->srelgot,
|
491 |
|
|
(SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
|
492 |
|
|
| SEC_IN_MEMORY | SEC_LINKER_CREATED
|
493 |
|
|
| SEC_READONLY))
|
494 |
|
|
|| ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
|
495 |
|
|
return false;
|
496 |
|
|
return true;
|
497 |
|
|
}
|
498 |
|
|
|
499 |
|
|
/* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
|
500 |
|
|
.rel.bss sections in DYNOBJ, and set up shortcuts to them in our
|
501 |
|
|
hash table. */
|
502 |
|
|
|
503 |
|
|
static boolean
|
504 |
|
|
elf_i386_create_dynamic_sections (dynobj, info)
|
505 |
|
|
bfd *dynobj;
|
506 |
|
|
struct bfd_link_info *info;
|
507 |
|
|
{
|
508 |
|
|
struct elf_i386_link_hash_table *htab;
|
509 |
|
|
|
510 |
|
|
htab = elf_i386_hash_table (info);
|
511 |
|
|
if (!htab->sgot && !create_got_section (dynobj, info))
|
512 |
|
|
return false;
|
513 |
|
|
|
514 |
|
|
if (!_bfd_elf_create_dynamic_sections (dynobj, info))
|
515 |
|
|
return false;
|
516 |
|
|
|
517 |
|
|
htab->splt = bfd_get_section_by_name (dynobj, ".plt");
|
518 |
|
|
htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
|
519 |
|
|
htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
|
520 |
|
|
if (!info->shared)
|
521 |
|
|
htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
|
522 |
|
|
|
523 |
|
|
if (!htab->splt || !htab->srelplt || !htab->sdynbss
|
524 |
|
|
|| (!info->shared && !htab->srelbss))
|
525 |
|
|
abort ();
|
526 |
|
|
|
527 |
|
|
return true;
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
/* Look through the relocs for a section during the first phase, and
|
531 |
|
|
allocate space in the global offset table or procedure linkage
|
532 |
|
|
table. */
|
533 |
|
|
|
534 |
|
|
static boolean
|
535 |
|
|
elf_i386_check_relocs (abfd, info, sec, relocs)
|
536 |
|
|
bfd *abfd;
|
537 |
|
|
struct bfd_link_info *info;
|
538 |
|
|
asection *sec;
|
539 |
|
|
const Elf_Internal_Rela *relocs;
|
540 |
|
|
{
|
541 |
|
|
struct elf_i386_link_hash_table *htab;
|
542 |
|
|
bfd *dynobj;
|
543 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
544 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
545 |
|
|
bfd_signed_vma *local_got_refcounts;
|
546 |
|
|
const Elf_Internal_Rela *rel;
|
547 |
|
|
const Elf_Internal_Rela *rel_end;
|
548 |
|
|
asection *sreloc;
|
549 |
|
|
|
550 |
|
|
if (info->relocateable)
|
551 |
|
|
return true;
|
552 |
|
|
|
553 |
|
|
htab = elf_i386_hash_table (info);
|
554 |
|
|
dynobj = htab->root.dynobj;
|
555 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
556 |
|
|
sym_hashes = elf_sym_hashes (abfd);
|
557 |
|
|
local_got_refcounts = elf_local_got_refcounts (abfd);
|
558 |
|
|
|
559 |
|
|
sreloc = NULL;
|
560 |
|
|
|
561 |
|
|
rel_end = relocs + sec->reloc_count;
|
562 |
|
|
for (rel = relocs; rel < rel_end; rel++)
|
563 |
|
|
{
|
564 |
|
|
unsigned long r_symndx;
|
565 |
|
|
struct elf_link_hash_entry *h;
|
566 |
|
|
|
567 |
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
568 |
|
|
|
569 |
|
|
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
|
570 |
|
|
{
|
571 |
|
|
if (abfd->my_archive)
|
572 |
|
|
(*_bfd_error_handler) (_("%s(%s): bad symbol index: %d"),
|
573 |
|
|
bfd_get_filename (abfd->my_archive),
|
574 |
|
|
bfd_get_filename (abfd),
|
575 |
|
|
r_symndx);
|
576 |
|
|
else
|
577 |
|
|
(*_bfd_error_handler) (_("%s: bad symbol index: %d"),
|
578 |
|
|
bfd_get_filename (abfd),
|
579 |
|
|
r_symndx);
|
580 |
|
|
return false;
|
581 |
|
|
}
|
582 |
|
|
|
583 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
584 |
|
|
h = NULL;
|
585 |
|
|
else
|
586 |
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
587 |
|
|
|
588 |
|
|
/* Some relocs require a global offset table. */
|
589 |
|
|
if (htab->sgot == NULL)
|
590 |
|
|
{
|
591 |
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
592 |
|
|
{
|
593 |
|
|
case R_386_GOT32:
|
594 |
|
|
case R_386_GOTOFF:
|
595 |
|
|
case R_386_GOTPC:
|
596 |
|
|
if (dynobj == NULL)
|
597 |
|
|
htab->root.dynobj = dynobj = abfd;
|
598 |
|
|
if (!create_got_section (dynobj, info))
|
599 |
|
|
return false;
|
600 |
|
|
break;
|
601 |
|
|
|
602 |
|
|
default:
|
603 |
|
|
break;
|
604 |
|
|
}
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
608 |
|
|
{
|
609 |
|
|
case R_386_GOT32:
|
610 |
|
|
/* This symbol requires a global offset table entry. */
|
611 |
|
|
if (h != NULL)
|
612 |
|
|
{
|
613 |
|
|
if (h->got.refcount == -1)
|
614 |
|
|
h->got.refcount = 1;
|
615 |
|
|
else
|
616 |
|
|
h->got.refcount += 1;
|
617 |
|
|
}
|
618 |
|
|
else
|
619 |
|
|
{
|
620 |
|
|
/* This is a global offset table entry for a local symbol. */
|
621 |
|
|
if (local_got_refcounts == NULL)
|
622 |
|
|
{
|
623 |
|
|
size_t size;
|
624 |
|
|
|
625 |
|
|
size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
|
626 |
|
|
local_got_refcounts = ((bfd_signed_vma *)
|
627 |
|
|
bfd_alloc (abfd, size));
|
628 |
|
|
if (local_got_refcounts == NULL)
|
629 |
|
|
return false;
|
630 |
|
|
elf_local_got_refcounts (abfd) = local_got_refcounts;
|
631 |
|
|
memset (local_got_refcounts, -1, size);
|
632 |
|
|
}
|
633 |
|
|
if (local_got_refcounts[r_symndx] == -1)
|
634 |
|
|
local_got_refcounts[r_symndx] = 1;
|
635 |
|
|
else
|
636 |
|
|
local_got_refcounts[r_symndx] += 1;
|
637 |
|
|
}
|
638 |
|
|
break;
|
639 |
|
|
|
640 |
|
|
case R_386_PLT32:
|
641 |
|
|
/* This symbol requires a procedure linkage table entry. We
|
642 |
|
|
actually build the entry in adjust_dynamic_symbol,
|
643 |
|
|
because this might be a case of linking PIC code which is
|
644 |
|
|
never referenced by a dynamic object, in which case we
|
645 |
|
|
don't need to generate a procedure linkage table entry
|
646 |
|
|
after all. */
|
647 |
|
|
|
648 |
|
|
/* If this is a local symbol, we resolve it directly without
|
649 |
|
|
creating a procedure linkage table entry. */
|
650 |
|
|
if (h == NULL)
|
651 |
|
|
continue;
|
652 |
|
|
|
653 |
|
|
if (h->plt.refcount == -1)
|
654 |
|
|
{
|
655 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
|
656 |
|
|
h->plt.refcount = 1;
|
657 |
|
|
}
|
658 |
|
|
else
|
659 |
|
|
h->plt.refcount += 1;
|
660 |
|
|
break;
|
661 |
|
|
|
662 |
|
|
case R_386_32:
|
663 |
|
|
case R_386_PC32:
|
664 |
|
|
if (h != NULL && !info->shared)
|
665 |
|
|
{
|
666 |
|
|
/* If this reloc is in a read-only section, we might
|
667 |
|
|
need a copy reloc. */
|
668 |
|
|
if ((sec->flags & SEC_READONLY) != 0)
|
669 |
|
|
h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
|
670 |
|
|
|
671 |
|
|
/* We may need a .plt entry if the function this reloc
|
672 |
|
|
refers to is in a shared lib. */
|
673 |
|
|
if (h->plt.refcount == -1)
|
674 |
|
|
h->plt.refcount = 1;
|
675 |
|
|
else
|
676 |
|
|
h->plt.refcount += 1;
|
677 |
|
|
}
|
678 |
|
|
|
679 |
|
|
/* If we are creating a shared library, and this is a reloc
|
680 |
|
|
against a global symbol, or a non PC relative reloc
|
681 |
|
|
against a local symbol, then we need to copy the reloc
|
682 |
|
|
into the shared library. However, if we are linking with
|
683 |
|
|
-Bsymbolic, we do not need to copy a reloc against a
|
684 |
|
|
global symbol which is defined in an object we are
|
685 |
|
|
including in the link (i.e., DEF_REGULAR is set). At
|
686 |
|
|
this point we have not seen all the input files, so it is
|
687 |
|
|
possible that DEF_REGULAR is not set now but will be set
|
688 |
|
|
later (it is never cleared). In case of a weak definition,
|
689 |
|
|
DEF_REGULAR may be cleared later by a strong definition in
|
690 |
|
|
a shared library. We account for that possibility below by
|
691 |
|
|
storing information in the relocs_copied field of the hash
|
692 |
|
|
table entry. A similar situation occurs when creating
|
693 |
|
|
shared libraries and symbol visibility changes render the
|
694 |
|
|
symbol local.
|
695 |
|
|
If on the other hand, we are creating an executable, we
|
696 |
|
|
may need to keep relocations for symbols satisfied by a
|
697 |
|
|
dynamic library if we manage to avoid copy relocs for the
|
698 |
|
|
symbol. */
|
699 |
|
|
if ((info->shared
|
700 |
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
701 |
|
|
&& (ELF32_R_TYPE (rel->r_info) != R_386_PC32
|
702 |
|
|
|| (h != NULL
|
703 |
|
|
&& (! info->symbolic
|
704 |
|
|
|| h->root.type == bfd_link_hash_defweak
|
705 |
|
|
|| (h->elf_link_hash_flags
|
706 |
|
|
& ELF_LINK_HASH_DEF_REGULAR) == 0))))
|
707 |
|
|
|| (!info->shared
|
708 |
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
709 |
|
|
&& h != NULL
|
710 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
|
711 |
|
|
&& (h->root.type == bfd_link_hash_defweak
|
712 |
|
|
|| (h->elf_link_hash_flags
|
713 |
|
|
& ELF_LINK_HASH_DEF_REGULAR) == 0)))
|
714 |
|
|
{
|
715 |
|
|
/* We must copy these reloc types into the output file.
|
716 |
|
|
Create a reloc section in dynobj and make room for
|
717 |
|
|
this reloc. */
|
718 |
|
|
if (dynobj == NULL)
|
719 |
|
|
htab->root.dynobj = dynobj = abfd;
|
720 |
|
|
|
721 |
|
|
if (sreloc == NULL)
|
722 |
|
|
{
|
723 |
|
|
const char *name;
|
724 |
|
|
|
725 |
|
|
name = (bfd_elf_string_from_elf_section
|
726 |
|
|
(abfd,
|
727 |
|
|
elf_elfheader (abfd)->e_shstrndx,
|
728 |
|
|
elf_section_data (sec)->rel_hdr.sh_name));
|
729 |
|
|
if (name == NULL)
|
730 |
|
|
return false;
|
731 |
|
|
|
732 |
|
|
if (strncmp (name, ".rel", 4) != 0
|
733 |
|
|
|| strcmp (bfd_get_section_name (abfd, sec),
|
734 |
|
|
name + 4) != 0)
|
735 |
|
|
{
|
736 |
|
|
if (abfd->my_archive)
|
737 |
|
|
(*_bfd_error_handler) (_("%s(%s): bad relocation section name `%s\'"),
|
738 |
|
|
bfd_get_filename (abfd->my_archive),
|
739 |
|
|
bfd_get_filename (abfd),
|
740 |
|
|
name);
|
741 |
|
|
else
|
742 |
|
|
(*_bfd_error_handler) (_("%s: bad relocation section name `%s\'"),
|
743 |
|
|
bfd_get_filename (abfd),
|
744 |
|
|
name);
|
745 |
|
|
}
|
746 |
|
|
|
747 |
|
|
sreloc = bfd_get_section_by_name (dynobj, name);
|
748 |
|
|
if (sreloc == NULL)
|
749 |
|
|
{
|
750 |
|
|
flagword flags;
|
751 |
|
|
|
752 |
|
|
sreloc = bfd_make_section (dynobj, name);
|
753 |
|
|
flags = (SEC_HAS_CONTENTS | SEC_READONLY
|
754 |
|
|
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
|
755 |
|
|
if ((sec->flags & SEC_ALLOC) != 0)
|
756 |
|
|
flags |= SEC_ALLOC | SEC_LOAD;
|
757 |
|
|
if (sreloc == NULL
|
758 |
|
|
|| ! bfd_set_section_flags (dynobj, sreloc, flags)
|
759 |
|
|
|| ! bfd_set_section_alignment (dynobj, sreloc, 2))
|
760 |
|
|
return false;
|
761 |
|
|
}
|
762 |
|
|
}
|
763 |
|
|
|
764 |
|
|
sreloc->_raw_size += sizeof (Elf32_External_Rel);
|
765 |
|
|
|
766 |
|
|
/* If this is a global symbol, we count the number of PC
|
767 |
|
|
relative relocations we have entered for this symbol,
|
768 |
|
|
so that we can discard them later as necessary. Note
|
769 |
|
|
that this function is only called if we are using an
|
770 |
|
|
elf_i386 linker hash table, which means that h is
|
771 |
|
|
really a pointer to an elf_i386_link_hash_entry. */
|
772 |
|
|
if (!info->shared
|
773 |
|
|
|| (h != NULL
|
774 |
|
|
&& ELF32_R_TYPE (rel->r_info) == R_386_PC32))
|
775 |
|
|
{
|
776 |
|
|
struct elf_i386_link_hash_entry *eh;
|
777 |
|
|
struct elf_i386_dyn_relocs *p;
|
778 |
|
|
|
779 |
|
|
eh = (struct elf_i386_link_hash_entry *) h;
|
780 |
|
|
|
781 |
|
|
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
782 |
|
|
if (p->section == sreloc)
|
783 |
|
|
break;
|
784 |
|
|
|
785 |
|
|
if (p == NULL)
|
786 |
|
|
{
|
787 |
|
|
p = ((struct elf_i386_dyn_relocs *)
|
788 |
|
|
bfd_alloc (dynobj, sizeof *p));
|
789 |
|
|
if (p == NULL)
|
790 |
|
|
return false;
|
791 |
|
|
p->next = eh->dyn_relocs;
|
792 |
|
|
eh->dyn_relocs = p;
|
793 |
|
|
p->section = sreloc;
|
794 |
|
|
p->count = 0;
|
795 |
|
|
}
|
796 |
|
|
|
797 |
|
|
++p->count;
|
798 |
|
|
}
|
799 |
|
|
}
|
800 |
|
|
|
801 |
|
|
break;
|
802 |
|
|
|
803 |
|
|
/* This relocation describes the C++ object vtable hierarchy.
|
804 |
|
|
Reconstruct it for later use during GC. */
|
805 |
|
|
case R_386_GNU_VTINHERIT:
|
806 |
|
|
if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
807 |
|
|
return false;
|
808 |
|
|
break;
|
809 |
|
|
|
810 |
|
|
/* This relocation describes which C++ vtable entries are actually
|
811 |
|
|
used. Record for later use during GC. */
|
812 |
|
|
case R_386_GNU_VTENTRY:
|
813 |
|
|
if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
|
814 |
|
|
return false;
|
815 |
|
|
break;
|
816 |
|
|
|
817 |
|
|
default:
|
818 |
|
|
break;
|
819 |
|
|
}
|
820 |
|
|
}
|
821 |
|
|
|
822 |
|
|
return true;
|
823 |
|
|
}
|
824 |
|
|
|
825 |
|
|
/* Return the section that should be marked against GC for a given
|
826 |
|
|
relocation. */
|
827 |
|
|
|
828 |
|
|
static asection *
|
829 |
|
|
elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
|
830 |
|
|
bfd *abfd;
|
831 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
832 |
|
|
Elf_Internal_Rela *rel;
|
833 |
|
|
struct elf_link_hash_entry *h;
|
834 |
|
|
Elf_Internal_Sym *sym;
|
835 |
|
|
{
|
836 |
|
|
if (h != NULL)
|
837 |
|
|
{
|
838 |
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
839 |
|
|
{
|
840 |
|
|
case R_386_GNU_VTINHERIT:
|
841 |
|
|
case R_386_GNU_VTENTRY:
|
842 |
|
|
break;
|
843 |
|
|
|
844 |
|
|
default:
|
845 |
|
|
switch (h->root.type)
|
846 |
|
|
{
|
847 |
|
|
case bfd_link_hash_defined:
|
848 |
|
|
case bfd_link_hash_defweak:
|
849 |
|
|
return h->root.u.def.section;
|
850 |
|
|
|
851 |
|
|
case bfd_link_hash_common:
|
852 |
|
|
return h->root.u.c.p->section;
|
853 |
|
|
|
854 |
|
|
default:
|
855 |
|
|
break;
|
856 |
|
|
}
|
857 |
|
|
}
|
858 |
|
|
}
|
859 |
|
|
else
|
860 |
|
|
{
|
861 |
|
|
if (!(elf_bad_symtab (abfd)
|
862 |
|
|
&& ELF_ST_BIND (sym->st_info) != STB_LOCAL)
|
863 |
|
|
&& ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
|
864 |
|
|
&& sym->st_shndx != SHN_COMMON))
|
865 |
|
|
{
|
866 |
|
|
return bfd_section_from_elf_index (abfd, sym->st_shndx);
|
867 |
|
|
}
|
868 |
|
|
}
|
869 |
|
|
|
870 |
|
|
return NULL;
|
871 |
|
|
}
|
872 |
|
|
|
873 |
|
|
/* Update the got entry reference counts for the section being removed. */
|
874 |
|
|
|
875 |
|
|
static boolean
|
876 |
|
|
elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
|
877 |
|
|
bfd *abfd;
|
878 |
|
|
struct bfd_link_info *info;
|
879 |
|
|
asection *sec;
|
880 |
|
|
const Elf_Internal_Rela *relocs;
|
881 |
|
|
{
|
882 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
883 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
884 |
|
|
bfd_signed_vma *local_got_refcounts;
|
885 |
|
|
const Elf_Internal_Rela *rel, *relend;
|
886 |
|
|
unsigned long r_symndx;
|
887 |
|
|
struct elf_link_hash_entry *h;
|
888 |
|
|
bfd *dynobj;
|
889 |
|
|
|
890 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
891 |
|
|
if (dynobj == NULL)
|
892 |
|
|
return true;
|
893 |
|
|
|
894 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
895 |
|
|
sym_hashes = elf_sym_hashes (abfd);
|
896 |
|
|
local_got_refcounts = elf_local_got_refcounts (abfd);
|
897 |
|
|
|
898 |
|
|
relend = relocs + sec->reloc_count;
|
899 |
|
|
for (rel = relocs; rel < relend; rel++)
|
900 |
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
901 |
|
|
{
|
902 |
|
|
case R_386_GOT32:
|
903 |
|
|
case R_386_GOTOFF:
|
904 |
|
|
case R_386_GOTPC:
|
905 |
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
906 |
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
907 |
|
|
{
|
908 |
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
909 |
|
|
if (h->got.refcount > 0)
|
910 |
|
|
h->got.refcount -= 1;
|
911 |
|
|
}
|
912 |
|
|
else if (local_got_refcounts != NULL)
|
913 |
|
|
{
|
914 |
|
|
if (local_got_refcounts[r_symndx] > 0)
|
915 |
|
|
local_got_refcounts[r_symndx] -= 1;
|
916 |
|
|
}
|
917 |
|
|
break;
|
918 |
|
|
|
919 |
|
|
case R_386_32:
|
920 |
|
|
case R_386_PC32:
|
921 |
|
|
if (info->shared)
|
922 |
|
|
break;
|
923 |
|
|
/* Fall through. */
|
924 |
|
|
|
925 |
|
|
case R_386_PLT32:
|
926 |
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
927 |
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
928 |
|
|
{
|
929 |
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
930 |
|
|
if (h->plt.refcount > 0)
|
931 |
|
|
h->plt.refcount -= 1;
|
932 |
|
|
}
|
933 |
|
|
break;
|
934 |
|
|
|
935 |
|
|
default:
|
936 |
|
|
break;
|
937 |
|
|
}
|
938 |
|
|
|
939 |
|
|
return true;
|
940 |
|
|
}
|
941 |
|
|
|
942 |
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
943 |
|
|
regular object. The current definition is in some section of the
|
944 |
|
|
dynamic object, but we're not including those sections. We have to
|
945 |
|
|
change the definition to something the rest of the link can
|
946 |
|
|
understand. */
|
947 |
|
|
|
948 |
|
|
static boolean
|
949 |
|
|
elf_i386_adjust_dynamic_symbol (info, h)
|
950 |
|
|
struct bfd_link_info *info;
|
951 |
|
|
struct elf_link_hash_entry *h;
|
952 |
|
|
{
|
953 |
|
|
struct elf_i386_link_hash_table *htab;
|
954 |
|
|
bfd *dynobj;
|
955 |
|
|
asection *s;
|
956 |
|
|
unsigned int power_of_two;
|
957 |
|
|
|
958 |
|
|
htab = elf_i386_hash_table (info);
|
959 |
|
|
dynobj = htab->root.dynobj;
|
960 |
|
|
|
961 |
|
|
/* If this is a function, put it in the procedure linkage table. We
|
962 |
|
|
will fill in the contents of the procedure linkage table later,
|
963 |
|
|
when we know the address of the .got section. */
|
964 |
|
|
if (h->type == STT_FUNC
|
965 |
|
|
|| (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
|
966 |
|
|
{
|
967 |
|
|
if (h->plt.refcount <= 0
|
968 |
|
|
|| (! info->shared
|
969 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
|
970 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
|
971 |
|
|
{
|
972 |
|
|
/* This case can occur if we saw a PLT32 reloc in an input
|
973 |
|
|
file, but the symbol was never referred to by a dynamic
|
974 |
|
|
object, or if all references were garbage collected. In
|
975 |
|
|
such a case, we don't actually need to build a procedure
|
976 |
|
|
linkage table, and we can just do a PC32 reloc instead. */
|
977 |
|
|
h->plt.refcount = (bfd_vma) -1;
|
978 |
|
|
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
|
979 |
|
|
}
|
980 |
|
|
|
981 |
|
|
return true;
|
982 |
|
|
}
|
983 |
|
|
else
|
984 |
|
|
/* It's possible that we incorrectly decided a .plt reloc was
|
985 |
|
|
needed for an R_386_PC32 reloc to a non-function sym in
|
986 |
|
|
check_relocs. We can't decide accurately between function and
|
987 |
|
|
non-function syms in check-relocs; Objects loaded later in
|
988 |
|
|
the link may change h->type. So fix it now. */
|
989 |
|
|
h->plt.refcount = (bfd_vma) -1;
|
990 |
|
|
|
991 |
|
|
/* If this is a weak symbol, and there is a real definition, the
|
992 |
|
|
processor independent code will have arranged for us to see the
|
993 |
|
|
real definition first, and we can just use the same value. */
|
994 |
|
|
if (h->weakdef != NULL)
|
995 |
|
|
{
|
996 |
|
|
BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
|
997 |
|
|
|| h->weakdef->root.type == bfd_link_hash_defweak);
|
998 |
|
|
h->root.u.def.section = h->weakdef->root.u.def.section;
|
999 |
|
|
h->root.u.def.value = h->weakdef->root.u.def.value;
|
1000 |
|
|
return true;
|
1001 |
|
|
}
|
1002 |
|
|
|
1003 |
|
|
/* This is a reference to a symbol defined by a dynamic object which
|
1004 |
|
|
is not a function. */
|
1005 |
|
|
|
1006 |
|
|
/* If we are creating a shared library, we must presume that the
|
1007 |
|
|
only references to the symbol are via the global offset table.
|
1008 |
|
|
For such cases we need not do anything here; the relocations will
|
1009 |
|
|
be handled correctly by relocate_section. */
|
1010 |
|
|
if (info->shared)
|
1011 |
|
|
return true;
|
1012 |
|
|
|
1013 |
|
|
/* If there are no references to this symbol that do not use the
|
1014 |
|
|
GOT, we don't need to generate a copy reloc. */
|
1015 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
|
1016 |
|
|
return true;
|
1017 |
|
|
|
1018 |
|
|
/* We must allocate the symbol in our .dynbss section, which will
|
1019 |
|
|
become part of the .bss section of the executable. There will be
|
1020 |
|
|
an entry for this symbol in the .dynsym section. The dynamic
|
1021 |
|
|
object will contain position independent code, so all references
|
1022 |
|
|
from the dynamic object to this symbol will go through the global
|
1023 |
|
|
offset table. The dynamic linker will use the .dynsym entry to
|
1024 |
|
|
determine the address it must put in the global offset table, so
|
1025 |
|
|
both the dynamic object and the regular object will refer to the
|
1026 |
|
|
same memory location for the variable. */
|
1027 |
|
|
|
1028 |
|
|
s = htab->sdynbss;
|
1029 |
|
|
if (s == NULL)
|
1030 |
|
|
abort ();
|
1031 |
|
|
|
1032 |
|
|
/* We must generate a R_386_COPY reloc to tell the dynamic linker to
|
1033 |
|
|
copy the initial value out of the dynamic object and into the
|
1034 |
|
|
runtime process image. We need to remember the offset into the
|
1035 |
|
|
.rel.bss section we are going to use. */
|
1036 |
|
|
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
|
1037 |
|
|
{
|
1038 |
|
|
asection *srel;
|
1039 |
|
|
|
1040 |
|
|
srel = htab->srelbss;
|
1041 |
|
|
if (srel == NULL)
|
1042 |
|
|
abort ();
|
1043 |
|
|
srel->_raw_size += sizeof (Elf32_External_Rel);
|
1044 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
|
1045 |
|
|
}
|
1046 |
|
|
|
1047 |
|
|
/* We need to figure out the alignment required for this symbol. I
|
1048 |
|
|
have no idea how ELF linkers handle this. */
|
1049 |
|
|
power_of_two = bfd_log2 (h->size);
|
1050 |
|
|
if (power_of_two > 3)
|
1051 |
|
|
power_of_two = 3;
|
1052 |
|
|
|
1053 |
|
|
/* Apply the required alignment. */
|
1054 |
|
|
s->_raw_size = BFD_ALIGN (s->_raw_size,
|
1055 |
|
|
(bfd_size_type) (1 << power_of_two));
|
1056 |
|
|
if (power_of_two > bfd_get_section_alignment (dynobj, s))
|
1057 |
|
|
{
|
1058 |
|
|
if (! bfd_set_section_alignment (dynobj, s, power_of_two))
|
1059 |
|
|
return false;
|
1060 |
|
|
}
|
1061 |
|
|
|
1062 |
|
|
/* Define the symbol as being at this point in the section. */
|
1063 |
|
|
h->root.u.def.section = s;
|
1064 |
|
|
h->root.u.def.value = s->_raw_size;
|
1065 |
|
|
|
1066 |
|
|
/* Increment the section size to make room for the symbol. */
|
1067 |
|
|
s->_raw_size += h->size;
|
1068 |
|
|
|
1069 |
|
|
return true;
|
1070 |
|
|
}
|
1071 |
|
|
|
1072 |
|
|
/* This is the condition under which elf_i386_finish_dynamic_symbol
|
1073 |
|
|
will be called from elflink.h. If elflink.h doesn't call our
|
1074 |
|
|
finish_dynamic_symbol routine, we'll need to do something about
|
1075 |
|
|
initializing any .plt and .got entries in elf_i386_relocate_section. */
|
1076 |
|
|
#define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
|
1077 |
|
|
((DYN) \
|
1078 |
|
|
&& ((INFO)->shared \
|
1079 |
|
|
|| ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
|
1080 |
|
|
&& ((H)->dynindx != -1 \
|
1081 |
|
|
|| ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
|
1082 |
|
|
|
1083 |
|
|
/* Allocate space in .plt, .got and associated reloc sections for
|
1084 |
|
|
global syms. Also discards space allocated for relocs in the
|
1085 |
|
|
check_relocs function that we subsequently have found to be
|
1086 |
|
|
unneeded. */
|
1087 |
|
|
|
1088 |
|
|
static boolean
|
1089 |
|
|
allocate_plt_and_got_and_discard_relocs (h, inf)
|
1090 |
|
|
struct elf_link_hash_entry *h;
|
1091 |
|
|
PTR inf;
|
1092 |
|
|
{
|
1093 |
|
|
struct bfd_link_info *info;
|
1094 |
|
|
struct elf_i386_link_hash_table *htab;
|
1095 |
|
|
asection *s;
|
1096 |
|
|
struct elf_i386_link_hash_entry *eh;
|
1097 |
|
|
|
1098 |
|
|
if (h->root.type == bfd_link_hash_indirect
|
1099 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
1100 |
|
|
return true;
|
1101 |
|
|
|
1102 |
|
|
info = (struct bfd_link_info *) inf;
|
1103 |
|
|
htab = elf_i386_hash_table (info);
|
1104 |
|
|
|
1105 |
|
|
if (htab->root.dynamic_sections_created
|
1106 |
|
|
&& h->plt.refcount > 0)
|
1107 |
|
|
{
|
1108 |
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
1109 |
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
1110 |
|
|
if (h->dynindx == -1
|
1111 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
|
1112 |
|
|
{
|
1113 |
|
|
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
|
1114 |
|
|
return false;
|
1115 |
|
|
}
|
1116 |
|
|
|
1117 |
|
|
s = htab->splt;
|
1118 |
|
|
if (s == NULL)
|
1119 |
|
|
abort ();
|
1120 |
|
|
|
1121 |
|
|
/* If this is the first .plt entry, make room for the special
|
1122 |
|
|
first entry. */
|
1123 |
|
|
if (s->_raw_size == 0)
|
1124 |
|
|
s->_raw_size += PLT_ENTRY_SIZE;
|
1125 |
|
|
|
1126 |
|
|
h->plt.offset = s->_raw_size;
|
1127 |
|
|
|
1128 |
|
|
/* If this symbol is not defined in a regular file, and we are
|
1129 |
|
|
not generating a shared library, then set the symbol to this
|
1130 |
|
|
location in the .plt. This is required to make function
|
1131 |
|
|
pointers compare as equal between the normal executable and
|
1132 |
|
|
the shared library. */
|
1133 |
|
|
if (! info->shared
|
1134 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
1135 |
|
|
{
|
1136 |
|
|
h->root.u.def.section = s;
|
1137 |
|
|
h->root.u.def.value = h->plt.offset;
|
1138 |
|
|
}
|
1139 |
|
|
|
1140 |
|
|
/* Make room for this entry. */
|
1141 |
|
|
s->_raw_size += PLT_ENTRY_SIZE;
|
1142 |
|
|
|
1143 |
|
|
/* We also need to make an entry in the .got.plt section, which
|
1144 |
|
|
will be placed in the .got section by the linker script. */
|
1145 |
|
|
s = htab->sgotplt;
|
1146 |
|
|
if (s == NULL)
|
1147 |
|
|
abort ();
|
1148 |
|
|
s->_raw_size += 4;
|
1149 |
|
|
|
1150 |
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
|
1151 |
|
|
{
|
1152 |
|
|
/* We also need to make an entry in the .rel.plt section. */
|
1153 |
|
|
s = htab->srelplt;
|
1154 |
|
|
if (s == NULL)
|
1155 |
|
|
abort ();
|
1156 |
|
|
s->_raw_size += sizeof (Elf32_External_Rel);
|
1157 |
|
|
}
|
1158 |
|
|
}
|
1159 |
|
|
else
|
1160 |
|
|
{
|
1161 |
|
|
h->plt.offset = (bfd_vma) -1;
|
1162 |
|
|
h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
|
1163 |
|
|
}
|
1164 |
|
|
|
1165 |
|
|
if (h->got.refcount > 0)
|
1166 |
|
|
{
|
1167 |
|
|
boolean dyn;
|
1168 |
|
|
|
1169 |
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
1170 |
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
1171 |
|
|
if (h->dynindx == -1
|
1172 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
|
1173 |
|
|
{
|
1174 |
|
|
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
|
1175 |
|
|
return false;
|
1176 |
|
|
}
|
1177 |
|
|
|
1178 |
|
|
s = htab->sgot;
|
1179 |
|
|
h->got.offset = s->_raw_size;
|
1180 |
|
|
s->_raw_size += 4;
|
1181 |
|
|
dyn = htab->root.dynamic_sections_created;
|
1182 |
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
|
1183 |
|
|
htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
|
1184 |
|
|
}
|
1185 |
|
|
else
|
1186 |
|
|
h->got.offset = (bfd_vma) -1;
|
1187 |
|
|
|
1188 |
|
|
/* In the shared -Bsymbolic case, discard space allocated for
|
1189 |
|
|
dynamic relocs against symbols which turn out to be defined
|
1190 |
|
|
in regular objects. For the normal shared case, discard space
|
1191 |
|
|
for relocs that have become local due to symbol visibility
|
1192 |
|
|
changes. For the non-shared case, discard space for symbols
|
1193 |
|
|
which turn out to need copy relocs or are not dynamic. */
|
1194 |
|
|
|
1195 |
|
|
eh = (struct elf_i386_link_hash_entry *) h;
|
1196 |
|
|
if (eh->dyn_relocs == NULL)
|
1197 |
|
|
return true;
|
1198 |
|
|
|
1199 |
|
|
if (!info->shared
|
1200 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
|
1201 |
|
|
&& ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
1202 |
|
|
|| h->root.type == bfd_link_hash_undefweak
|
1203 |
|
|
|| h->root.type == bfd_link_hash_undefined))
|
1204 |
|
|
{
|
1205 |
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
1206 |
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
1207 |
|
|
if (h->dynindx == -1
|
1208 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
|
1209 |
|
|
{
|
1210 |
|
|
if (! bfd_elf32_link_record_dynamic_symbol (info, h))
|
1211 |
|
|
return false;
|
1212 |
|
|
}
|
1213 |
|
|
|
1214 |
|
|
/* If that succeeded, we know we'll be keeping all the relocs. */
|
1215 |
|
|
if (h->dynindx != -1)
|
1216 |
|
|
return true;
|
1217 |
|
|
}
|
1218 |
|
|
|
1219 |
|
|
if (!info->shared
|
1220 |
|
|
|| ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
|
1221 |
|
|
&& ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
|
1222 |
|
|
|| info->symbolic)))
|
1223 |
|
|
{
|
1224 |
|
|
struct elf_i386_dyn_relocs *c;
|
1225 |
|
|
|
1226 |
|
|
for (c = eh->dyn_relocs; c != NULL; c = c->next)
|
1227 |
|
|
c->section->_raw_size -= c->count * sizeof (Elf32_External_Rel);
|
1228 |
|
|
}
|
1229 |
|
|
|
1230 |
|
|
return true;
|
1231 |
|
|
}
|
1232 |
|
|
|
1233 |
|
|
/* Set the sizes of the dynamic sections. */
|
1234 |
|
|
|
1235 |
|
|
static boolean
|
1236 |
|
|
elf_i386_size_dynamic_sections (output_bfd, info)
|
1237 |
|
|
bfd *output_bfd;
|
1238 |
|
|
struct bfd_link_info *info;
|
1239 |
|
|
{
|
1240 |
|
|
struct elf_i386_link_hash_table *htab;
|
1241 |
|
|
bfd *dynobj;
|
1242 |
|
|
asection *s;
|
1243 |
|
|
boolean relocs;
|
1244 |
|
|
boolean reltext;
|
1245 |
|
|
bfd *i;
|
1246 |
|
|
|
1247 |
|
|
htab = elf_i386_hash_table (info);
|
1248 |
|
|
dynobj = htab->root.dynobj;
|
1249 |
|
|
if (dynobj == NULL)
|
1250 |
|
|
abort ();
|
1251 |
|
|
|
1252 |
|
|
if (htab->root.dynamic_sections_created)
|
1253 |
|
|
{
|
1254 |
|
|
/* Set the contents of the .interp section to the interpreter. */
|
1255 |
|
|
if (! info->shared)
|
1256 |
|
|
{
|
1257 |
|
|
s = bfd_get_section_by_name (dynobj, ".interp");
|
1258 |
|
|
if (s == NULL)
|
1259 |
|
|
abort ();
|
1260 |
|
|
s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
|
1261 |
|
|
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
1262 |
|
|
}
|
1263 |
|
|
}
|
1264 |
|
|
|
1265 |
|
|
/* Set up .got offsets for local syms. */
|
1266 |
|
|
for (i = info->input_bfds; i; i = i->link_next)
|
1267 |
|
|
{
|
1268 |
|
|
bfd_signed_vma *local_got;
|
1269 |
|
|
bfd_signed_vma *end_local_got;
|
1270 |
|
|
bfd_size_type locsymcount;
|
1271 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
1272 |
|
|
asection *srel;
|
1273 |
|
|
|
1274 |
|
|
if (bfd_get_flavour (i) != bfd_target_elf_flavour)
|
1275 |
|
|
continue;
|
1276 |
|
|
|
1277 |
|
|
local_got = elf_local_got_refcounts (i);
|
1278 |
|
|
if (!local_got)
|
1279 |
|
|
continue;
|
1280 |
|
|
|
1281 |
|
|
symtab_hdr = &elf_tdata (i)->symtab_hdr;
|
1282 |
|
|
locsymcount = symtab_hdr->sh_info;
|
1283 |
|
|
end_local_got = local_got + locsymcount;
|
1284 |
|
|
s = htab->sgot;
|
1285 |
|
|
srel = htab->srelgot;
|
1286 |
|
|
for (; local_got < end_local_got; ++local_got)
|
1287 |
|
|
{
|
1288 |
|
|
if (*local_got > 0)
|
1289 |
|
|
{
|
1290 |
|
|
*local_got = s->_raw_size;
|
1291 |
|
|
s->_raw_size += 4;
|
1292 |
|
|
if (info->shared)
|
1293 |
|
|
srel->_raw_size += sizeof (Elf32_External_Rel);
|
1294 |
|
|
}
|
1295 |
|
|
else
|
1296 |
|
|
*local_got = (bfd_vma) -1;
|
1297 |
|
|
}
|
1298 |
|
|
}
|
1299 |
|
|
|
1300 |
|
|
/* Allocate global sym .plt and .got entries. Also discard all
|
1301 |
|
|
unneeded relocs. */
|
1302 |
|
|
elf_link_hash_traverse (&htab->root,
|
1303 |
|
|
allocate_plt_and_got_and_discard_relocs,
|
1304 |
|
|
(PTR) info);
|
1305 |
|
|
|
1306 |
|
|
/* We now have determined the sizes of the various dynamic sections.
|
1307 |
|
|
Allocate memory for them. */
|
1308 |
|
|
relocs = false;
|
1309 |
|
|
reltext = false;
|
1310 |
|
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
1311 |
|
|
{
|
1312 |
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
1313 |
|
|
continue;
|
1314 |
|
|
|
1315 |
|
|
if (s == htab->splt
|
1316 |
|
|
|| s == htab->sgot
|
1317 |
|
|
|| s == htab->sgotplt)
|
1318 |
|
|
{
|
1319 |
|
|
/* Strip this section if we don't need it; see the
|
1320 |
|
|
comment below. */
|
1321 |
|
|
}
|
1322 |
|
|
else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
|
1323 |
|
|
{
|
1324 |
|
|
if (s->_raw_size == 0)
|
1325 |
|
|
{
|
1326 |
|
|
/* If we don't need this section, strip it from the
|
1327 |
|
|
output file. This is mostly to handle .rel.bss and
|
1328 |
|
|
.rel.plt. We must create both sections in
|
1329 |
|
|
create_dynamic_sections, because they must be created
|
1330 |
|
|
before the linker maps input sections to output
|
1331 |
|
|
sections. The linker does that before
|
1332 |
|
|
adjust_dynamic_symbol is called, and it is that
|
1333 |
|
|
function which decides whether anything needs to go
|
1334 |
|
|
into these sections. */
|
1335 |
|
|
}
|
1336 |
|
|
else
|
1337 |
|
|
{
|
1338 |
|
|
asection *target;
|
1339 |
|
|
|
1340 |
|
|
/* Remember whether there are any reloc sections other
|
1341 |
|
|
than .rel.plt. */
|
1342 |
|
|
if (s != htab->srelplt)
|
1343 |
|
|
{
|
1344 |
|
|
const char *outname;
|
1345 |
|
|
|
1346 |
|
|
relocs = true;
|
1347 |
|
|
|
1348 |
|
|
/* If this relocation section applies to a read only
|
1349 |
|
|
section, then we probably need a DT_TEXTREL
|
1350 |
|
|
entry. The entries in the .rel.plt section
|
1351 |
|
|
really apply to the .got section, which we
|
1352 |
|
|
created ourselves and so know is not readonly. */
|
1353 |
|
|
outname = bfd_get_section_name (output_bfd,
|
1354 |
|
|
s->output_section);
|
1355 |
|
|
target = bfd_get_section_by_name (output_bfd, outname + 4);
|
1356 |
|
|
if (target != NULL
|
1357 |
|
|
&& (target->flags & SEC_READONLY) != 0
|
1358 |
|
|
&& (target->flags & SEC_ALLOC) != 0)
|
1359 |
|
|
reltext = true;
|
1360 |
|
|
}
|
1361 |
|
|
|
1362 |
|
|
/* We use the reloc_count field as a counter if we need
|
1363 |
|
|
to copy relocs into the output file. */
|
1364 |
|
|
s->reloc_count = 0;
|
1365 |
|
|
}
|
1366 |
|
|
}
|
1367 |
|
|
else
|
1368 |
|
|
{
|
1369 |
|
|
/* It's not one of our sections, so don't allocate space. */
|
1370 |
|
|
continue;
|
1371 |
|
|
}
|
1372 |
|
|
|
1373 |
|
|
if (s->_raw_size == 0)
|
1374 |
|
|
{
|
1375 |
|
|
_bfd_strip_section_from_output (info, s);
|
1376 |
|
|
continue;
|
1377 |
|
|
}
|
1378 |
|
|
|
1379 |
|
|
/* Allocate memory for the section contents. We use bfd_zalloc
|
1380 |
|
|
here in case unused entries are not reclaimed before the
|
1381 |
|
|
section's contents are written out. This should not happen,
|
1382 |
|
|
but this way if it does, we get a R_386_NONE reloc instead
|
1383 |
|
|
of garbage. */
|
1384 |
|
|
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
|
1385 |
|
|
if (s->contents == NULL)
|
1386 |
|
|
return false;
|
1387 |
|
|
}
|
1388 |
|
|
|
1389 |
|
|
if (htab->root.dynamic_sections_created)
|
1390 |
|
|
{
|
1391 |
|
|
/* Add some entries to the .dynamic section. We fill in the
|
1392 |
|
|
values later, in elf_i386_finish_dynamic_sections, but we
|
1393 |
|
|
must add the entries now so that we get the correct size for
|
1394 |
|
|
the .dynamic section. The DT_DEBUG entry is filled in by the
|
1395 |
|
|
dynamic linker and used by the debugger. */
|
1396 |
|
|
if (! info->shared)
|
1397 |
|
|
{
|
1398 |
|
|
if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
|
1399 |
|
|
return false;
|
1400 |
|
|
}
|
1401 |
|
|
|
1402 |
|
|
if (htab->splt->_raw_size != 0)
|
1403 |
|
|
{
|
1404 |
|
|
if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
|
1405 |
|
|
|| ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
|
1406 |
|
|
|| ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
|
1407 |
|
|
|| ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
|
1408 |
|
|
return false;
|
1409 |
|
|
}
|
1410 |
|
|
|
1411 |
|
|
if (relocs)
|
1412 |
|
|
{
|
1413 |
|
|
if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
|
1414 |
|
|
|| ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
|
1415 |
|
|
|| ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
|
1416 |
|
|
sizeof (Elf32_External_Rel)))
|
1417 |
|
|
return false;
|
1418 |
|
|
}
|
1419 |
|
|
|
1420 |
|
|
if (reltext)
|
1421 |
|
|
{
|
1422 |
|
|
if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
|
1423 |
|
|
return false;
|
1424 |
|
|
info->flags |= DF_TEXTREL;
|
1425 |
|
|
}
|
1426 |
|
|
}
|
1427 |
|
|
|
1428 |
|
|
return true;
|
1429 |
|
|
}
|
1430 |
|
|
|
1431 |
|
|
/* Relocate an i386 ELF section. */
|
1432 |
|
|
|
1433 |
|
|
static boolean
|
1434 |
|
|
elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
|
1435 |
|
|
contents, relocs, local_syms, local_sections)
|
1436 |
|
|
bfd *output_bfd;
|
1437 |
|
|
struct bfd_link_info *info;
|
1438 |
|
|
bfd *input_bfd;
|
1439 |
|
|
asection *input_section;
|
1440 |
|
|
bfd_byte *contents;
|
1441 |
|
|
Elf_Internal_Rela *relocs;
|
1442 |
|
|
Elf_Internal_Sym *local_syms;
|
1443 |
|
|
asection **local_sections;
|
1444 |
|
|
{
|
1445 |
|
|
struct elf_i386_link_hash_table *htab;
|
1446 |
|
|
bfd *dynobj;
|
1447 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
1448 |
|
|
struct elf_link_hash_entry **sym_hashes;
|
1449 |
|
|
bfd_vma *local_got_offsets;
|
1450 |
|
|
asection *sreloc;
|
1451 |
|
|
Elf_Internal_Rela *rel;
|
1452 |
|
|
Elf_Internal_Rela *relend;
|
1453 |
|
|
|
1454 |
|
|
htab = elf_i386_hash_table (info);
|
1455 |
|
|
dynobj = htab->root.dynobj;
|
1456 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
1457 |
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
1458 |
|
|
local_got_offsets = elf_local_got_offsets (input_bfd);
|
1459 |
|
|
|
1460 |
|
|
sreloc = NULL;
|
1461 |
|
|
rel = relocs;
|
1462 |
|
|
relend = relocs + input_section->reloc_count;
|
1463 |
|
|
for (; rel < relend; rel++)
|
1464 |
|
|
{
|
1465 |
|
|
int r_type;
|
1466 |
|
|
reloc_howto_type *howto;
|
1467 |
|
|
unsigned long r_symndx;
|
1468 |
|
|
struct elf_link_hash_entry *h;
|
1469 |
|
|
Elf_Internal_Sym *sym;
|
1470 |
|
|
asection *sec;
|
1471 |
|
|
bfd_vma off;
|
1472 |
|
|
bfd_vma relocation;
|
1473 |
|
|
boolean unresolved_reloc;
|
1474 |
|
|
bfd_reloc_status_type r;
|
1475 |
|
|
unsigned int indx;
|
1476 |
|
|
|
1477 |
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
1478 |
|
|
if (r_type == (int) R_386_GNU_VTINHERIT
|
1479 |
|
|
|| r_type == (int) R_386_GNU_VTENTRY)
|
1480 |
|
|
continue;
|
1481 |
|
|
|
1482 |
|
|
if ((indx = (unsigned) r_type) >= R_386_standard
|
1483 |
|
|
&& ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
|
1484 |
|
|
>= R_386_ext - R_386_standard))
|
1485 |
|
|
{
|
1486 |
|
|
bfd_set_error (bfd_error_bad_value);
|
1487 |
|
|
return false;
|
1488 |
|
|
}
|
1489 |
|
|
howto = elf_howto_table + indx;
|
1490 |
|
|
|
1491 |
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
1492 |
|
|
|
1493 |
|
|
if (info->relocateable)
|
1494 |
|
|
{
|
1495 |
|
|
/* This is a relocateable link. We don't have to change
|
1496 |
|
|
anything, unless the reloc is against a section symbol,
|
1497 |
|
|
in which case we have to adjust according to where the
|
1498 |
|
|
section symbol winds up in the output section. */
|
1499 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
1500 |
|
|
{
|
1501 |
|
|
sym = local_syms + r_symndx;
|
1502 |
|
|
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
|
1503 |
|
|
{
|
1504 |
|
|
bfd_vma val;
|
1505 |
|
|
|
1506 |
|
|
sec = local_sections[r_symndx];
|
1507 |
|
|
val = bfd_get_32 (input_bfd, contents + rel->r_offset);
|
1508 |
|
|
val += sec->output_offset + sym->st_value;
|
1509 |
|
|
bfd_put_32 (input_bfd, val, contents + rel->r_offset);
|
1510 |
|
|
}
|
1511 |
|
|
}
|
1512 |
|
|
|
1513 |
|
|
continue;
|
1514 |
|
|
}
|
1515 |
|
|
|
1516 |
|
|
/* This is a final link. */
|
1517 |
|
|
h = NULL;
|
1518 |
|
|
sym = NULL;
|
1519 |
|
|
sec = NULL;
|
1520 |
|
|
unresolved_reloc = false;
|
1521 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
1522 |
|
|
{
|
1523 |
|
|
sym = local_syms + r_symndx;
|
1524 |
|
|
sec = local_sections[r_symndx];
|
1525 |
|
|
relocation = (sec->output_section->vma
|
1526 |
|
|
+ sec->output_offset
|
1527 |
|
|
+ sym->st_value);
|
1528 |
|
|
}
|
1529 |
|
|
else
|
1530 |
|
|
{
|
1531 |
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
1532 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
1533 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
1534 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
1535 |
|
|
|
1536 |
|
|
relocation = 0;
|
1537 |
|
|
if (h->root.type == bfd_link_hash_defined
|
1538 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
1539 |
|
|
{
|
1540 |
|
|
sec = h->root.u.def.section;
|
1541 |
|
|
if (sec->output_section == NULL)
|
1542 |
|
|
/* Set a flag that will be cleared later if we find a
|
1543 |
|
|
relocation value for this symbol. output_section
|
1544 |
|
|
is typically NULL for symbols satisfied by a shared
|
1545 |
|
|
library. */
|
1546 |
|
|
unresolved_reloc = true;
|
1547 |
|
|
else
|
1548 |
|
|
relocation = (h->root.u.def.value
|
1549 |
|
|
+ sec->output_section->vma
|
1550 |
|
|
+ sec->output_offset);
|
1551 |
|
|
}
|
1552 |
|
|
else if (h->root.type == bfd_link_hash_undefweak)
|
1553 |
|
|
;
|
1554 |
|
|
else if (info->shared && !info->symbolic
|
1555 |
|
|
&& !info->no_undefined
|
1556 |
|
|
&& ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
|
1557 |
|
|
;
|
1558 |
|
|
else
|
1559 |
|
|
{
|
1560 |
|
|
if (! ((*info->callbacks->undefined_symbol)
|
1561 |
|
|
(info, h->root.root.string, input_bfd,
|
1562 |
|
|
input_section, rel->r_offset,
|
1563 |
|
|
(!info->shared || info->no_undefined
|
1564 |
|
|
|| ELF_ST_VISIBILITY (h->other)))))
|
1565 |
|
|
return false;
|
1566 |
|
|
}
|
1567 |
|
|
}
|
1568 |
|
|
|
1569 |
|
|
switch (r_type)
|
1570 |
|
|
{
|
1571 |
|
|
case R_386_GOT32:
|
1572 |
|
|
/* Relocation is to the entry for this symbol in the global
|
1573 |
|
|
offset table. */
|
1574 |
|
|
if (htab->sgot == NULL)
|
1575 |
|
|
abort ();
|
1576 |
|
|
|
1577 |
|
|
if (h != NULL)
|
1578 |
|
|
{
|
1579 |
|
|
boolean dyn;
|
1580 |
|
|
|
1581 |
|
|
off = h->got.offset;
|
1582 |
|
|
dyn = htab->root.dynamic_sections_created;
|
1583 |
|
|
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
|
1584 |
|
|
|| (info->shared
|
1585 |
|
|
&& (info->symbolic
|
1586 |
|
|
|| h->dynindx == -1
|
1587 |
|
|
|| (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
|
1588 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
|
1589 |
|
|
{
|
1590 |
|
|
/* This is actually a static link, or it is a
|
1591 |
|
|
-Bsymbolic link and the symbol is defined
|
1592 |
|
|
locally, or the symbol was forced to be local
|
1593 |
|
|
because of a version file. We must initialize
|
1594 |
|
|
this entry in the global offset table. Since the
|
1595 |
|
|
offset must always be a multiple of 4, we use the
|
1596 |
|
|
least significant bit to record whether we have
|
1597 |
|
|
initialized it already.
|
1598 |
|
|
|
1599 |
|
|
When doing a dynamic link, we create a .rel.got
|
1600 |
|
|
relocation entry to initialize the value. This
|
1601 |
|
|
is done in the finish_dynamic_symbol routine. */
|
1602 |
|
|
if ((off & 1) != 0)
|
1603 |
|
|
off &= ~1;
|
1604 |
|
|
else
|
1605 |
|
|
{
|
1606 |
|
|
bfd_put_32 (output_bfd, relocation,
|
1607 |
|
|
htab->sgot->contents + off);
|
1608 |
|
|
h->got.offset |= 1;
|
1609 |
|
|
}
|
1610 |
|
|
}
|
1611 |
|
|
else
|
1612 |
|
|
unresolved_reloc = false;
|
1613 |
|
|
}
|
1614 |
|
|
else
|
1615 |
|
|
{
|
1616 |
|
|
if (local_got_offsets == NULL)
|
1617 |
|
|
abort ();
|
1618 |
|
|
|
1619 |
|
|
off = local_got_offsets[r_symndx];
|
1620 |
|
|
|
1621 |
|
|
/* The offset must always be a multiple of 4. We use
|
1622 |
|
|
the least significant bit to record whether we have
|
1623 |
|
|
already generated the necessary reloc. */
|
1624 |
|
|
if ((off & 1) != 0)
|
1625 |
|
|
off &= ~1;
|
1626 |
|
|
else
|
1627 |
|
|
{
|
1628 |
|
|
bfd_put_32 (output_bfd, relocation,
|
1629 |
|
|
htab->sgot->contents + off);
|
1630 |
|
|
|
1631 |
|
|
if (info->shared)
|
1632 |
|
|
{
|
1633 |
|
|
asection *srelgot;
|
1634 |
|
|
Elf_Internal_Rel outrel;
|
1635 |
|
|
|
1636 |
|
|
srelgot = htab->srelgot;
|
1637 |
|
|
if (srelgot == NULL)
|
1638 |
|
|
abort ();
|
1639 |
|
|
|
1640 |
|
|
outrel.r_offset = (htab->sgot->output_section->vma
|
1641 |
|
|
+ htab->sgot->output_offset
|
1642 |
|
|
+ off);
|
1643 |
|
|
outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
|
1644 |
|
|
bfd_elf32_swap_reloc_out (output_bfd, &outrel,
|
1645 |
|
|
(((Elf32_External_Rel *)
|
1646 |
|
|
srelgot->contents)
|
1647 |
|
|
+ srelgot->reloc_count));
|
1648 |
|
|
++srelgot->reloc_count;
|
1649 |
|
|
}
|
1650 |
|
|
|
1651 |
|
|
local_got_offsets[r_symndx] |= 1;
|
1652 |
|
|
}
|
1653 |
|
|
}
|
1654 |
|
|
|
1655 |
|
|
if (off >= (bfd_vma) -2)
|
1656 |
|
|
abort ();
|
1657 |
|
|
|
1658 |
|
|
relocation = htab->sgot->output_offset + off;
|
1659 |
|
|
break;
|
1660 |
|
|
|
1661 |
|
|
case R_386_GOTOFF:
|
1662 |
|
|
/* Relocation is relative to the start of the global offset
|
1663 |
|
|
table. */
|
1664 |
|
|
|
1665 |
|
|
/* Note that sgot->output_offset is not involved in this
|
1666 |
|
|
calculation. We always want the start of .got. If we
|
1667 |
|
|
defined _GLOBAL_OFFSET_TABLE in a different way, as is
|
1668 |
|
|
permitted by the ABI, we might have to change this
|
1669 |
|
|
calculation. */
|
1670 |
|
|
relocation -= htab->sgot->output_section->vma;
|
1671 |
|
|
break;
|
1672 |
|
|
|
1673 |
|
|
case R_386_GOTPC:
|
1674 |
|
|
/* Use global offset table as symbol value. */
|
1675 |
|
|
relocation = htab->sgot->output_section->vma;
|
1676 |
|
|
unresolved_reloc = false;
|
1677 |
|
|
break;
|
1678 |
|
|
|
1679 |
|
|
case R_386_PLT32:
|
1680 |
|
|
/* Relocation is to the entry for this symbol in the
|
1681 |
|
|
procedure linkage table. */
|
1682 |
|
|
|
1683 |
|
|
/* Resolve a PLT32 reloc against a local symbol directly,
|
1684 |
|
|
without using the procedure linkage table. */
|
1685 |
|
|
if (h == NULL)
|
1686 |
|
|
break;
|
1687 |
|
|
|
1688 |
|
|
if (h->plt.offset == (bfd_vma) -1
|
1689 |
|
|
|| htab->splt == NULL)
|
1690 |
|
|
{
|
1691 |
|
|
/* We didn't make a PLT entry for this symbol. This
|
1692 |
|
|
happens when statically linking PIC code, or when
|
1693 |
|
|
using -Bsymbolic. */
|
1694 |
|
|
break;
|
1695 |
|
|
}
|
1696 |
|
|
|
1697 |
|
|
relocation = (htab->splt->output_section->vma
|
1698 |
|
|
+ htab->splt->output_offset
|
1699 |
|
|
+ h->plt.offset);
|
1700 |
|
|
unresolved_reloc = false;
|
1701 |
|
|
break;
|
1702 |
|
|
|
1703 |
|
|
case R_386_32:
|
1704 |
|
|
case R_386_PC32:
|
1705 |
|
|
if ((info->shared
|
1706 |
|
|
&& (input_section->flags & SEC_ALLOC) != 0
|
1707 |
|
|
&& (r_type != R_386_PC32
|
1708 |
|
|
|| (h != NULL
|
1709 |
|
|
&& h->dynindx != -1
|
1710 |
|
|
&& (! info->symbolic
|
1711 |
|
|
|| (h->elf_link_hash_flags
|
1712 |
|
|
& ELF_LINK_HASH_DEF_REGULAR) == 0))))
|
1713 |
|
|
|| (!info->shared
|
1714 |
|
|
&& (input_section->flags & SEC_ALLOC) != 0
|
1715 |
|
|
&& h != NULL
|
1716 |
|
|
&& h->dynindx != -1
|
1717 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
|
1718 |
|
|
&& ((h->elf_link_hash_flags
|
1719 |
|
|
& ELF_LINK_HASH_DEF_DYNAMIC) != 0
|
1720 |
|
|
|| h->root.type == bfd_link_hash_undefweak
|
1721 |
|
|
|| h->root.type == bfd_link_hash_undefined)))
|
1722 |
|
|
{
|
1723 |
|
|
Elf_Internal_Rel outrel;
|
1724 |
|
|
boolean skip, relocate;
|
1725 |
|
|
|
1726 |
|
|
/* When generating a shared object, these relocations
|
1727 |
|
|
are copied into the output file to be resolved at run
|
1728 |
|
|
time. */
|
1729 |
|
|
|
1730 |
|
|
if (sreloc == NULL)
|
1731 |
|
|
{
|
1732 |
|
|
const char *name;
|
1733 |
|
|
|
1734 |
|
|
name = (bfd_elf_string_from_elf_section
|
1735 |
|
|
(input_bfd,
|
1736 |
|
|
elf_elfheader (input_bfd)->e_shstrndx,
|
1737 |
|
|
elf_section_data (input_section)->rel_hdr.sh_name));
|
1738 |
|
|
if (name == NULL)
|
1739 |
|
|
return false;
|
1740 |
|
|
|
1741 |
|
|
if (strncmp (name, ".rel", 4) != 0
|
1742 |
|
|
|| strcmp (bfd_get_section_name (input_bfd,
|
1743 |
|
|
input_section),
|
1744 |
|
|
name + 4) != 0)
|
1745 |
|
|
{
|
1746 |
|
|
if (input_bfd->my_archive)
|
1747 |
|
|
(*_bfd_error_handler)\
|
1748 |
|
|
(_("%s(%s): bad relocation section name `%s\'"),
|
1749 |
|
|
bfd_get_filename (input_bfd->my_archive),
|
1750 |
|
|
bfd_get_filename (input_bfd),
|
1751 |
|
|
name);
|
1752 |
|
|
else
|
1753 |
|
|
(*_bfd_error_handler)
|
1754 |
|
|
(_("%s: bad relocation section name `%s\'"),
|
1755 |
|
|
bfd_get_filename (input_bfd),
|
1756 |
|
|
name);
|
1757 |
|
|
return false;
|
1758 |
|
|
}
|
1759 |
|
|
|
1760 |
|
|
sreloc = bfd_get_section_by_name (dynobj, name);
|
1761 |
|
|
if (sreloc == NULL)
|
1762 |
|
|
abort ();
|
1763 |
|
|
}
|
1764 |
|
|
|
1765 |
|
|
skip = false;
|
1766 |
|
|
|
1767 |
|
|
if (elf_section_data (input_section)->stab_info == NULL)
|
1768 |
|
|
outrel.r_offset = rel->r_offset;
|
1769 |
|
|
else
|
1770 |
|
|
{
|
1771 |
|
|
bfd_vma off;
|
1772 |
|
|
|
1773 |
|
|
off = (_bfd_stab_section_offset
|
1774 |
|
|
(output_bfd, htab->root.stab_info, input_section,
|
1775 |
|
|
&elf_section_data (input_section)->stab_info,
|
1776 |
|
|
rel->r_offset));
|
1777 |
|
|
if (off == (bfd_vma) -1)
|
1778 |
|
|
skip = true;
|
1779 |
|
|
outrel.r_offset = off;
|
1780 |
|
|
}
|
1781 |
|
|
|
1782 |
|
|
outrel.r_offset += (input_section->output_section->vma
|
1783 |
|
|
+ input_section->output_offset);
|
1784 |
|
|
|
1785 |
|
|
if (skip)
|
1786 |
|
|
{
|
1787 |
|
|
memset (&outrel, 0, sizeof outrel);
|
1788 |
|
|
relocate = false;
|
1789 |
|
|
}
|
1790 |
|
|
else if (h != NULL
|
1791 |
|
|
&& h->dynindx != -1
|
1792 |
|
|
&& (r_type == R_386_PC32
|
1793 |
|
|
|| !info->shared
|
1794 |
|
|
|| !info->symbolic
|
1795 |
|
|
|| (h->elf_link_hash_flags
|
1796 |
|
|
& ELF_LINK_HASH_DEF_REGULAR) == 0))
|
1797 |
|
|
|
1798 |
|
|
{
|
1799 |
|
|
relocate = false;
|
1800 |
|
|
outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
|
1801 |
|
|
}
|
1802 |
|
|
else
|
1803 |
|
|
{
|
1804 |
|
|
/* This symbol is local, or marked to become local. */
|
1805 |
|
|
relocate = true;
|
1806 |
|
|
outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
|
1807 |
|
|
}
|
1808 |
|
|
|
1809 |
|
|
bfd_elf32_swap_reloc_out (output_bfd, &outrel,
|
1810 |
|
|
(((Elf32_External_Rel *)
|
1811 |
|
|
sreloc->contents)
|
1812 |
|
|
+ sreloc->reloc_count));
|
1813 |
|
|
++sreloc->reloc_count;
|
1814 |
|
|
|
1815 |
|
|
/* If this reloc is against an external symbol, we do
|
1816 |
|
|
not want to fiddle with the addend. Otherwise, we
|
1817 |
|
|
need to include the symbol value so that it becomes
|
1818 |
|
|
an addend for the dynamic reloc. */
|
1819 |
|
|
if (! relocate)
|
1820 |
|
|
continue;
|
1821 |
|
|
}
|
1822 |
|
|
|
1823 |
|
|
break;
|
1824 |
|
|
|
1825 |
|
|
default:
|
1826 |
|
|
break;
|
1827 |
|
|
}
|
1828 |
|
|
|
1829 |
|
|
/* FIXME: Why do we allow debugging sections to escape this error?
|
1830 |
|
|
More importantly, why do we not emit dynamic relocs for
|
1831 |
|
|
R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
|
1832 |
|
|
If we had emitted the dynamic reloc, we could remove the
|
1833 |
|
|
fudge here. */
|
1834 |
|
|
if (unresolved_reloc
|
1835 |
|
|
&& !(info->shared
|
1836 |
|
|
&& (input_section->flags & SEC_DEBUGGING) != 0
|
1837 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
|
1838 |
|
|
(*_bfd_error_handler)
|
1839 |
|
|
(_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
|
1840 |
|
|
bfd_get_filename (input_bfd),
|
1841 |
|
|
bfd_get_section_name (input_bfd, input_section),
|
1842 |
|
|
(long) rel->r_offset,
|
1843 |
|
|
h->root.root.string);
|
1844 |
|
|
|
1845 |
|
|
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
1846 |
|
|
contents, rel->r_offset,
|
1847 |
|
|
relocation, (bfd_vma) 0);
|
1848 |
|
|
|
1849 |
|
|
switch (r)
|
1850 |
|
|
{
|
1851 |
|
|
case bfd_reloc_ok:
|
1852 |
|
|
break;
|
1853 |
|
|
|
1854 |
|
|
case bfd_reloc_overflow:
|
1855 |
|
|
{
|
1856 |
|
|
const char *name;
|
1857 |
|
|
|
1858 |
|
|
if (h != NULL)
|
1859 |
|
|
name = h->root.root.string;
|
1860 |
|
|
else
|
1861 |
|
|
{
|
1862 |
|
|
name = bfd_elf_string_from_elf_section (input_bfd,
|
1863 |
|
|
symtab_hdr->sh_link,
|
1864 |
|
|
sym->st_name);
|
1865 |
|
|
if (name == NULL)
|
1866 |
|
|
return false;
|
1867 |
|
|
if (*name == '\0')
|
1868 |
|
|
name = bfd_section_name (input_bfd, sec);
|
1869 |
|
|
}
|
1870 |
|
|
if (! ((*info->callbacks->reloc_overflow)
|
1871 |
|
|
(info, name, howto->name, (bfd_vma) 0,
|
1872 |
|
|
input_bfd, input_section, rel->r_offset)))
|
1873 |
|
|
return false;
|
1874 |
|
|
}
|
1875 |
|
|
break;
|
1876 |
|
|
|
1877 |
|
|
default:
|
1878 |
|
|
case bfd_reloc_outofrange:
|
1879 |
|
|
abort ();
|
1880 |
|
|
break;
|
1881 |
|
|
}
|
1882 |
|
|
}
|
1883 |
|
|
|
1884 |
|
|
return true;
|
1885 |
|
|
}
|
1886 |
|
|
|
1887 |
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
1888 |
|
|
dynamic sections here. */
|
1889 |
|
|
|
1890 |
|
|
static boolean
|
1891 |
|
|
elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
|
1892 |
|
|
bfd *output_bfd;
|
1893 |
|
|
struct bfd_link_info *info;
|
1894 |
|
|
struct elf_link_hash_entry *h;
|
1895 |
|
|
Elf_Internal_Sym *sym;
|
1896 |
|
|
{
|
1897 |
|
|
struct elf_i386_link_hash_table *htab;
|
1898 |
|
|
bfd *dynobj;
|
1899 |
|
|
|
1900 |
|
|
htab = elf_i386_hash_table (info);
|
1901 |
|
|
dynobj = htab->root.dynobj;
|
1902 |
|
|
|
1903 |
|
|
if (h->plt.offset != (bfd_vma) -1)
|
1904 |
|
|
{
|
1905 |
|
|
bfd_vma plt_index;
|
1906 |
|
|
bfd_vma got_offset;
|
1907 |
|
|
Elf_Internal_Rel rel;
|
1908 |
|
|
|
1909 |
|
|
/* This symbol has an entry in the procedure linkage table. Set
|
1910 |
|
|
it up. */
|
1911 |
|
|
|
1912 |
|
|
if (h->dynindx == -1
|
1913 |
|
|
|| htab->splt == NULL
|
1914 |
|
|
|| htab->sgotplt == NULL
|
1915 |
|
|
|| htab->srelplt == NULL)
|
1916 |
|
|
abort ();
|
1917 |
|
|
|
1918 |
|
|
/* Get the index in the procedure linkage table which
|
1919 |
|
|
corresponds to this symbol. This is the index of this symbol
|
1920 |
|
|
in all the symbols for which we are making plt entries. The
|
1921 |
|
|
first entry in the procedure linkage table is reserved. */
|
1922 |
|
|
plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
|
1923 |
|
|
|
1924 |
|
|
/* Get the offset into the .got table of the entry that
|
1925 |
|
|
corresponds to this function. Each .got entry is 4 bytes.
|
1926 |
|
|
The first three are reserved. */
|
1927 |
|
|
got_offset = (plt_index + 3) * 4;
|
1928 |
|
|
|
1929 |
|
|
/* Fill in the entry in the procedure linkage table. */
|
1930 |
|
|
if (! info->shared)
|
1931 |
|
|
{
|
1932 |
|
|
memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
|
1933 |
|
|
PLT_ENTRY_SIZE);
|
1934 |
|
|
bfd_put_32 (output_bfd,
|
1935 |
|
|
(htab->sgotplt->output_section->vma
|
1936 |
|
|
+ htab->sgotplt->output_offset
|
1937 |
|
|
+ got_offset),
|
1938 |
|
|
htab->splt->contents + h->plt.offset + 2);
|
1939 |
|
|
}
|
1940 |
|
|
else
|
1941 |
|
|
{
|
1942 |
|
|
memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
|
1943 |
|
|
PLT_ENTRY_SIZE);
|
1944 |
|
|
bfd_put_32 (output_bfd, got_offset,
|
1945 |
|
|
htab->splt->contents + h->plt.offset + 2);
|
1946 |
|
|
}
|
1947 |
|
|
|
1948 |
|
|
bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
|
1949 |
|
|
htab->splt->contents + h->plt.offset + 7);
|
1950 |
|
|
bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
|
1951 |
|
|
htab->splt->contents + h->plt.offset + 12);
|
1952 |
|
|
|
1953 |
|
|
/* Fill in the entry in the global offset table. */
|
1954 |
|
|
bfd_put_32 (output_bfd,
|
1955 |
|
|
(htab->splt->output_section->vma
|
1956 |
|
|
+ htab->splt->output_offset
|
1957 |
|
|
+ h->plt.offset
|
1958 |
|
|
+ 6),
|
1959 |
|
|
htab->sgotplt->contents + got_offset);
|
1960 |
|
|
|
1961 |
|
|
/* Fill in the entry in the .rel.plt section. */
|
1962 |
|
|
rel.r_offset = (htab->sgotplt->output_section->vma
|
1963 |
|
|
+ htab->sgotplt->output_offset
|
1964 |
|
|
+ got_offset);
|
1965 |
|
|
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
|
1966 |
|
|
bfd_elf32_swap_reloc_out (output_bfd, &rel,
|
1967 |
|
|
((Elf32_External_Rel *) htab->srelplt->contents
|
1968 |
|
|
+ plt_index));
|
1969 |
|
|
|
1970 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
|
1971 |
|
|
{
|
1972 |
|
|
/* Mark the symbol as undefined, rather than as defined in
|
1973 |
|
|
the .plt section. Leave the value alone. */
|
1974 |
|
|
sym->st_shndx = SHN_UNDEF;
|
1975 |
|
|
}
|
1976 |
|
|
}
|
1977 |
|
|
|
1978 |
|
|
if (h->got.offset != (bfd_vma) -1)
|
1979 |
|
|
{
|
1980 |
|
|
Elf_Internal_Rel rel;
|
1981 |
|
|
|
1982 |
|
|
/* This symbol has an entry in the global offset table. Set it
|
1983 |
|
|
up. */
|
1984 |
|
|
|
1985 |
|
|
if (htab->sgot == NULL || htab->srelgot == NULL)
|
1986 |
|
|
abort ();
|
1987 |
|
|
|
1988 |
|
|
rel.r_offset = (htab->sgot->output_section->vma
|
1989 |
|
|
+ htab->sgot->output_offset
|
1990 |
|
|
+ (h->got.offset &~ 1));
|
1991 |
|
|
|
1992 |
|
|
/* If this is a static link, or it is a -Bsymbolic link and the
|
1993 |
|
|
symbol is defined locally or was forced to be local because
|
1994 |
|
|
of a version file, we just want to emit a RELATIVE reloc.
|
1995 |
|
|
The entry in the global offset table will already have been
|
1996 |
|
|
initialized in the relocate_section function. */
|
1997 |
|
|
if (info->shared
|
1998 |
|
|
&& (info->symbolic
|
1999 |
|
|
|| h->dynindx == -1
|
2000 |
|
|
|| (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
|
2001 |
|
|
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
|
2002 |
|
|
{
|
2003 |
|
|
BFD_ASSERT((h->got.offset & 1) != 0);
|
2004 |
|
|
rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
|
2005 |
|
|
}
|
2006 |
|
|
else
|
2007 |
|
|
{
|
2008 |
|
|
BFD_ASSERT((h->got.offset & 1) == 0);
|
2009 |
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0,
|
2010 |
|
|
htab->sgot->contents + h->got.offset);
|
2011 |
|
|
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
|
2012 |
|
|
}
|
2013 |
|
|
|
2014 |
|
|
bfd_elf32_swap_reloc_out (output_bfd, &rel,
|
2015 |
|
|
((Elf32_External_Rel *) htab->srelgot->contents
|
2016 |
|
|
+ htab->srelgot->reloc_count));
|
2017 |
|
|
++htab->srelgot->reloc_count;
|
2018 |
|
|
}
|
2019 |
|
|
|
2020 |
|
|
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
|
2021 |
|
|
{
|
2022 |
|
|
Elf_Internal_Rel rel;
|
2023 |
|
|
|
2024 |
|
|
/* This symbol needs a copy reloc. Set it up. */
|
2025 |
|
|
|
2026 |
|
|
if (h->dynindx == -1
|
2027 |
|
|
|| (h->root.type != bfd_link_hash_defined
|
2028 |
|
|
&& h->root.type != bfd_link_hash_defweak)
|
2029 |
|
|
|| htab->srelbss == NULL)
|
2030 |
|
|
abort ();
|
2031 |
|
|
|
2032 |
|
|
rel.r_offset = (h->root.u.def.value
|
2033 |
|
|
+ h->root.u.def.section->output_section->vma
|
2034 |
|
|
+ h->root.u.def.section->output_offset);
|
2035 |
|
|
rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
|
2036 |
|
|
bfd_elf32_swap_reloc_out (output_bfd, &rel,
|
2037 |
|
|
((Elf32_External_Rel *) htab->srelbss->contents
|
2038 |
|
|
+ htab->srelbss->reloc_count));
|
2039 |
|
|
++htab->srelbss->reloc_count;
|
2040 |
|
|
}
|
2041 |
|
|
|
2042 |
|
|
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
2043 |
|
|
if (strcmp (h->root.root.string, "_DYNAMIC") == 0
|
2044 |
|
|
|| strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
|
2045 |
|
|
sym->st_shndx = SHN_ABS;
|
2046 |
|
|
|
2047 |
|
|
return true;
|
2048 |
|
|
}
|
2049 |
|
|
|
2050 |
|
|
/* Finish up the dynamic sections. */
|
2051 |
|
|
|
2052 |
|
|
static boolean
|
2053 |
|
|
elf_i386_finish_dynamic_sections (output_bfd, info)
|
2054 |
|
|
bfd *output_bfd;
|
2055 |
|
|
struct bfd_link_info *info;
|
2056 |
|
|
{
|
2057 |
|
|
struct elf_i386_link_hash_table *htab;
|
2058 |
|
|
bfd *dynobj;
|
2059 |
|
|
asection *sdyn;
|
2060 |
|
|
|
2061 |
|
|
htab = elf_i386_hash_table (info);
|
2062 |
|
|
dynobj = htab->root.dynobj;
|
2063 |
|
|
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
2064 |
|
|
|
2065 |
|
|
if (htab->root.dynamic_sections_created)
|
2066 |
|
|
{
|
2067 |
|
|
Elf32_External_Dyn *dyncon, *dynconend;
|
2068 |
|
|
|
2069 |
|
|
if (sdyn == NULL || htab->sgot == NULL)
|
2070 |
|
|
abort ();
|
2071 |
|
|
|
2072 |
|
|
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
2073 |
|
|
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
|
2074 |
|
|
for (; dyncon < dynconend; dyncon++)
|
2075 |
|
|
{
|
2076 |
|
|
Elf_Internal_Dyn dyn;
|
2077 |
|
|
|
2078 |
|
|
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
2079 |
|
|
|
2080 |
|
|
switch (dyn.d_tag)
|
2081 |
|
|
{
|
2082 |
|
|
default:
|
2083 |
|
|
break;
|
2084 |
|
|
|
2085 |
|
|
case DT_PLTGOT:
|
2086 |
|
|
dyn.d_un.d_ptr = htab->sgot->output_section->vma;
|
2087 |
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2088 |
|
|
break;
|
2089 |
|
|
|
2090 |
|
|
case DT_JMPREL:
|
2091 |
|
|
dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
|
2092 |
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2093 |
|
|
break;
|
2094 |
|
|
|
2095 |
|
|
case DT_PLTRELSZ:
|
2096 |
|
|
if (htab->srelplt->output_section->_cooked_size != 0)
|
2097 |
|
|
dyn.d_un.d_val = htab->srelplt->output_section->_cooked_size;
|
2098 |
|
|
else
|
2099 |
|
|
dyn.d_un.d_val = htab->srelplt->output_section->_raw_size;
|
2100 |
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2101 |
|
|
break;
|
2102 |
|
|
|
2103 |
|
|
case DT_RELSZ:
|
2104 |
|
|
/* My reading of the SVR4 ABI indicates that the
|
2105 |
|
|
procedure linkage table relocs (DT_JMPREL) should be
|
2106 |
|
|
included in the overall relocs (DT_REL). This is
|
2107 |
|
|
what Solaris does. However, UnixWare can not handle
|
2108 |
|
|
that case. Therefore, we override the DT_RELSZ entry
|
2109 |
|
|
here to make it not include the JMPREL relocs. Since
|
2110 |
|
|
the linker script arranges for .rel.plt to follow all
|
2111 |
|
|
other relocation sections, we don't have to worry
|
2112 |
|
|
about changing the DT_REL entry. */
|
2113 |
|
|
if (htab->srelplt != NULL)
|
2114 |
|
|
{
|
2115 |
|
|
if (htab->srelplt->output_section->_cooked_size != 0)
|
2116 |
|
|
dyn.d_un.d_val -= htab->srelplt->output_section->_cooked_size;
|
2117 |
|
|
else
|
2118 |
|
|
dyn.d_un.d_val -= htab->srelplt->output_section->_raw_size;
|
2119 |
|
|
}
|
2120 |
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2121 |
|
|
break;
|
2122 |
|
|
}
|
2123 |
|
|
}
|
2124 |
|
|
|
2125 |
|
|
/* Fill in the first entry in the procedure linkage table. */
|
2126 |
|
|
if (htab->splt && htab->splt->_raw_size > 0)
|
2127 |
|
|
{
|
2128 |
|
|
if (info->shared)
|
2129 |
|
|
memcpy (htab->splt->contents,
|
2130 |
|
|
elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
|
2131 |
|
|
else
|
2132 |
|
|
{
|
2133 |
|
|
memcpy (htab->splt->contents,
|
2134 |
|
|
elf_i386_plt0_entry, PLT_ENTRY_SIZE);
|
2135 |
|
|
bfd_put_32 (output_bfd,
|
2136 |
|
|
(htab->sgotplt->output_section->vma
|
2137 |
|
|
+ htab->sgotplt->output_offset
|
2138 |
|
|
+ 4),
|
2139 |
|
|
htab->splt->contents + 2);
|
2140 |
|
|
bfd_put_32 (output_bfd,
|
2141 |
|
|
(htab->sgotplt->output_section->vma
|
2142 |
|
|
+ htab->sgotplt->output_offset
|
2143 |
|
|
+ 8),
|
2144 |
|
|
htab->splt->contents + 8);
|
2145 |
|
|
}
|
2146 |
|
|
|
2147 |
|
|
/* UnixWare sets the entsize of .plt to 4, although that doesn't
|
2148 |
|
|
really seem like the right value. */
|
2149 |
|
|
elf_section_data (htab->splt->output_section)
|
2150 |
|
|
->this_hdr.sh_entsize = 4;
|
2151 |
|
|
}
|
2152 |
|
|
}
|
2153 |
|
|
|
2154 |
|
|
if (htab->sgotplt)
|
2155 |
|
|
{
|
2156 |
|
|
/* Fill in the first three entries in the global offset table. */
|
2157 |
|
|
if (htab->sgotplt->_raw_size > 0)
|
2158 |
|
|
{
|
2159 |
|
|
bfd_put_32 (output_bfd,
|
2160 |
|
|
(sdyn == NULL ? (bfd_vma) 0
|
2161 |
|
|
: sdyn->output_section->vma + sdyn->output_offset),
|
2162 |
|
|
htab->sgotplt->contents);
|
2163 |
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
|
2164 |
|
|
bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
|
2165 |
|
|
}
|
2166 |
|
|
|
2167 |
|
|
elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
|
2168 |
|
|
}
|
2169 |
|
|
return true;
|
2170 |
|
|
}
|
2171 |
|
|
|
2172 |
|
|
/* Set the correct type for an x86 ELF section. We do this by the
|
2173 |
|
|
section name, which is a hack, but ought to work. */
|
2174 |
|
|
|
2175 |
|
|
static boolean
|
2176 |
|
|
elf_i386_fake_sections (abfd, hdr, sec)
|
2177 |
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
2178 |
|
|
Elf32_Internal_Shdr *hdr;
|
2179 |
|
|
asection *sec;
|
2180 |
|
|
{
|
2181 |
|
|
register const char *name;
|
2182 |
|
|
|
2183 |
|
|
name = bfd_get_section_name (abfd, sec);
|
2184 |
|
|
|
2185 |
|
|
if (strcmp (name, ".reloc") == 0)
|
2186 |
|
|
/*
|
2187 |
|
|
* This is an ugly, but unfortunately necessary hack that is
|
2188 |
|
|
* needed when producing EFI binaries on x86. It tells
|
2189 |
|
|
* elf.c:elf_fake_sections() not to consider ".reloc" as a section
|
2190 |
|
|
* containing ELF relocation info. We need this hack in order to
|
2191 |
|
|
* be able to generate ELF binaries that can be translated into
|
2192 |
|
|
* EFI applications (which are essentially COFF objects). Those
|
2193 |
|
|
* files contain a COFF ".reloc" section inside an ELFNN object,
|
2194 |
|
|
* which would normally cause BFD to segfault because it would
|
2195 |
|
|
* attempt to interpret this section as containing relocation
|
2196 |
|
|
* entries for section "oc". With this hack enabled, ".reloc"
|
2197 |
|
|
* will be treated as a normal data section, which will avoid the
|
2198 |
|
|
* segfault. However, you won't be able to create an ELFNN binary
|
2199 |
|
|
* with a section named "oc" that needs relocations, but that's
|
2200 |
|
|
* the kind of ugly side-effects you get when detecting section
|
2201 |
|
|
* types based on their names... In practice, this limitation is
|
2202 |
|
|
* unlikely to bite.
|
2203 |
|
|
*/
|
2204 |
|
|
hdr->sh_type = SHT_PROGBITS;
|
2205 |
|
|
|
2206 |
|
|
return true;
|
2207 |
|
|
}
|
2208 |
|
|
|
2209 |
|
|
|
2210 |
|
|
#define TARGET_LITTLE_SYM bfd_elf32_i386_vec
|
2211 |
|
|
#define TARGET_LITTLE_NAME "elf32-i386"
|
2212 |
|
|
#define ELF_ARCH bfd_arch_i386
|
2213 |
|
|
#define ELF_MACHINE_CODE EM_386
|
2214 |
|
|
#define ELF_MAXPAGESIZE 0x1000
|
2215 |
|
|
|
2216 |
|
|
#define elf_backend_can_gc_sections 1
|
2217 |
|
|
#define elf_backend_want_got_plt 1
|
2218 |
|
|
#define elf_backend_plt_readonly 1
|
2219 |
|
|
#define elf_backend_want_plt_sym 0
|
2220 |
|
|
#define elf_backend_got_header_size 12
|
2221 |
|
|
#define elf_backend_plt_header_size PLT_ENTRY_SIZE
|
2222 |
|
|
|
2223 |
|
|
#define elf_info_to_howto elf_i386_info_to_howto
|
2224 |
|
|
#define elf_info_to_howto_rel elf_i386_info_to_howto_rel
|
2225 |
|
|
|
2226 |
|
|
#define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
|
2227 |
|
|
#define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
|
2228 |
|
|
#define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
|
2229 |
|
|
|
2230 |
|
|
#define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
|
2231 |
|
|
#define elf_backend_check_relocs elf_i386_check_relocs
|
2232 |
|
|
#define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
|
2233 |
|
|
#define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
|
2234 |
|
|
#define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
|
2235 |
|
|
#define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
|
2236 |
|
|
#define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
|
2237 |
|
|
#define elf_backend_relocate_section elf_i386_relocate_section
|
2238 |
|
|
#define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
|
2239 |
|
|
#define elf_backend_fake_sections elf_i386_fake_sections
|
2240 |
|
|
|
2241 |
|
|
#include "elf32-target.h"
|