1 |
578 |
markom |
/* Support for HPPA 64-bit ELF
|
2 |
|
|
Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of BFD, the Binary File Descriptor library.
|
5 |
|
|
|
6 |
|
|
This program is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
9 |
|
|
(at your option) any later version.
|
10 |
|
|
|
11 |
|
|
This program is distributed in the hope that it will be useful,
|
12 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
|
|
GNU General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with this program; if not, write to the Free Software
|
18 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
19 |
|
|
|
20 |
|
|
#include "alloca-conf.h"
|
21 |
|
|
#include "bfd.h"
|
22 |
|
|
#include "sysdep.h"
|
23 |
|
|
#include "libbfd.h"
|
24 |
|
|
#include "elf-bfd.h"
|
25 |
|
|
#include "elf/hppa.h"
|
26 |
|
|
#include "libhppa.h"
|
27 |
|
|
#include "elf64-hppa.h"
|
28 |
|
|
#define ARCH_SIZE 64
|
29 |
|
|
|
30 |
|
|
#define PLT_ENTRY_SIZE 0x10
|
31 |
|
|
#define DLT_ENTRY_SIZE 0x8
|
32 |
|
|
#define OPD_ENTRY_SIZE 0x20
|
33 |
|
|
|
34 |
|
|
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
|
35 |
|
|
|
36 |
|
|
/* The stub is supposed to load the target address and target's DP
|
37 |
|
|
value out of the PLT, then do an external branch to the target
|
38 |
|
|
address.
|
39 |
|
|
|
40 |
|
|
LDD PLTOFF(%r27),%r1
|
41 |
|
|
BVE (%r1)
|
42 |
|
|
LDD PLTOFF+8(%r27),%r27
|
43 |
|
|
|
44 |
|
|
Note that we must use the LDD with a 14 bit displacement, not the one
|
45 |
|
|
with a 5 bit displacement. */
|
46 |
|
|
static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
|
47 |
|
|
0x53, 0x7b, 0x00, 0x00 };
|
48 |
|
|
|
49 |
|
|
struct elf64_hppa_dyn_hash_entry
|
50 |
|
|
{
|
51 |
|
|
struct bfd_hash_entry root;
|
52 |
|
|
|
53 |
|
|
/* Offsets for this symbol in various linker sections. */
|
54 |
|
|
bfd_vma dlt_offset;
|
55 |
|
|
bfd_vma plt_offset;
|
56 |
|
|
bfd_vma opd_offset;
|
57 |
|
|
bfd_vma stub_offset;
|
58 |
|
|
|
59 |
|
|
/* The symbol table entry, if any, that this was derived from. */
|
60 |
|
|
struct elf_link_hash_entry *h;
|
61 |
|
|
|
62 |
|
|
/* The index of the (possibly local) symbol in the input bfd and its
|
63 |
|
|
associated BFD. Needed so that we can have relocs against local
|
64 |
|
|
symbols in shared libraries. */
|
65 |
|
|
unsigned long sym_indx;
|
66 |
|
|
bfd *owner;
|
67 |
|
|
|
68 |
|
|
/* Dynamic symbols may need to have two different values. One for
|
69 |
|
|
the dynamic symbol table, one for the normal symbol table.
|
70 |
|
|
|
71 |
|
|
In such cases we store the symbol's real value and section
|
72 |
|
|
index here so we can restore the real value before we write
|
73 |
|
|
the normal symbol table. */
|
74 |
|
|
bfd_vma st_value;
|
75 |
|
|
int st_shndx;
|
76 |
|
|
|
77 |
|
|
/* Used to count non-got, non-plt relocations for delayed sizing
|
78 |
|
|
of relocation sections. */
|
79 |
|
|
struct elf64_hppa_dyn_reloc_entry
|
80 |
|
|
{
|
81 |
|
|
/* Next relocation in the chain. */
|
82 |
|
|
struct elf64_hppa_dyn_reloc_entry *next;
|
83 |
|
|
|
84 |
|
|
/* The type of the relocation. */
|
85 |
|
|
int type;
|
86 |
|
|
|
87 |
|
|
/* The input section of the relocation. */
|
88 |
|
|
asection *sec;
|
89 |
|
|
|
90 |
|
|
/* The index of the section symbol for the input section of
|
91 |
|
|
the relocation. Only needed when building shared libraries. */
|
92 |
|
|
int sec_symndx;
|
93 |
|
|
|
94 |
|
|
/* The offset within the input section of the relocation. */
|
95 |
|
|
bfd_vma offset;
|
96 |
|
|
|
97 |
|
|
/* The addend for the relocation. */
|
98 |
|
|
bfd_vma addend;
|
99 |
|
|
|
100 |
|
|
} *reloc_entries;
|
101 |
|
|
|
102 |
|
|
/* Nonzero if this symbol needs an entry in one of the linker
|
103 |
|
|
sections. */
|
104 |
|
|
unsigned want_dlt;
|
105 |
|
|
unsigned want_plt;
|
106 |
|
|
unsigned want_opd;
|
107 |
|
|
unsigned want_stub;
|
108 |
|
|
};
|
109 |
|
|
|
110 |
|
|
struct elf64_hppa_dyn_hash_table
|
111 |
|
|
{
|
112 |
|
|
struct bfd_hash_table root;
|
113 |
|
|
};
|
114 |
|
|
|
115 |
|
|
struct elf64_hppa_link_hash_table
|
116 |
|
|
{
|
117 |
|
|
struct elf_link_hash_table root;
|
118 |
|
|
|
119 |
|
|
/* Shortcuts to get to the various linker defined sections. */
|
120 |
|
|
asection *dlt_sec;
|
121 |
|
|
asection *dlt_rel_sec;
|
122 |
|
|
asection *plt_sec;
|
123 |
|
|
asection *plt_rel_sec;
|
124 |
|
|
asection *opd_sec;
|
125 |
|
|
asection *opd_rel_sec;
|
126 |
|
|
asection *other_rel_sec;
|
127 |
|
|
|
128 |
|
|
/* Offset of __gp within .plt section. When the PLT gets large we want
|
129 |
|
|
to slide __gp into the PLT section so that we can continue to use
|
130 |
|
|
single DP relative instructions to load values out of the PLT. */
|
131 |
|
|
bfd_vma gp_offset;
|
132 |
|
|
|
133 |
|
|
/* Note this is not strictly correct. We should create a stub section for
|
134 |
|
|
each input section with calls. The stub section should be placed before
|
135 |
|
|
the section with the call. */
|
136 |
|
|
asection *stub_sec;
|
137 |
|
|
|
138 |
|
|
bfd_vma text_segment_base;
|
139 |
|
|
bfd_vma data_segment_base;
|
140 |
|
|
|
141 |
|
|
struct elf64_hppa_dyn_hash_table dyn_hash_table;
|
142 |
|
|
|
143 |
|
|
/* We build tables to map from an input section back to its
|
144 |
|
|
symbol index. This is the BFD for which we currently have
|
145 |
|
|
a map. */
|
146 |
|
|
bfd *section_syms_bfd;
|
147 |
|
|
|
148 |
|
|
/* Array of symbol numbers for each input section attached to the
|
149 |
|
|
current BFD. */
|
150 |
|
|
int *section_syms;
|
151 |
|
|
};
|
152 |
|
|
|
153 |
|
|
#define elf64_hppa_hash_table(p) \
|
154 |
|
|
((struct elf64_hppa_link_hash_table *) ((p)->hash))
|
155 |
|
|
|
156 |
|
|
typedef struct bfd_hash_entry *(*new_hash_entry_func)
|
157 |
|
|
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
158 |
|
|
|
159 |
|
|
static boolean elf64_hppa_dyn_hash_table_init
|
160 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
|
161 |
|
|
new_hash_entry_func new));
|
162 |
|
|
static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
|
163 |
|
|
PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
|
164 |
|
|
const char *string));
|
165 |
|
|
static struct bfd_link_hash_table *elf64_hppa_hash_table_create
|
166 |
|
|
PARAMS ((bfd *abfd));
|
167 |
|
|
static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
|
168 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
|
169 |
|
|
boolean create, boolean copy));
|
170 |
|
|
static void elf64_hppa_dyn_hash_traverse
|
171 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_table *table,
|
172 |
|
|
boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
|
173 |
|
|
PTR info));
|
174 |
|
|
|
175 |
|
|
static const char *get_dyn_name
|
176 |
|
|
PARAMS ((asection *, struct elf_link_hash_entry *,
|
177 |
|
|
const Elf_Internal_Rela *, char **, size_t *));
|
178 |
|
|
|
179 |
|
|
/* This must follow the definitions of the various derived linker
|
180 |
|
|
hash tables and shared functions. */
|
181 |
|
|
#include "elf-hppa.h"
|
182 |
|
|
|
183 |
|
|
static boolean elf64_hppa_object_p
|
184 |
|
|
PARAMS ((bfd *));
|
185 |
|
|
|
186 |
|
|
static boolean elf64_hppa_section_from_shdr
|
187 |
|
|
PARAMS ((bfd *, Elf64_Internal_Shdr *, char *));
|
188 |
|
|
|
189 |
|
|
static void elf64_hppa_post_process_headers
|
190 |
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
191 |
|
|
|
192 |
|
|
static boolean elf64_hppa_create_dynamic_sections
|
193 |
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
194 |
|
|
|
195 |
|
|
static boolean elf64_hppa_adjust_dynamic_symbol
|
196 |
|
|
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
|
197 |
|
|
|
198 |
|
|
static boolean elf64_hppa_size_dynamic_sections
|
199 |
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
200 |
|
|
|
201 |
|
|
static boolean elf64_hppa_finish_dynamic_symbol
|
202 |
|
|
PARAMS ((bfd *, struct bfd_link_info *,
|
203 |
|
|
struct elf_link_hash_entry *, Elf_Internal_Sym *));
|
204 |
|
|
|
205 |
|
|
static boolean elf64_hppa_finish_dynamic_sections
|
206 |
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
207 |
|
|
|
208 |
|
|
static boolean elf64_hppa_check_relocs
|
209 |
|
|
PARAMS ((bfd *, struct bfd_link_info *,
|
210 |
|
|
asection *, const Elf_Internal_Rela *));
|
211 |
|
|
|
212 |
|
|
static boolean elf64_hppa_dynamic_symbol_p
|
213 |
|
|
PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
|
214 |
|
|
|
215 |
|
|
static boolean elf64_hppa_mark_exported_functions
|
216 |
|
|
PARAMS ((struct elf_link_hash_entry *, PTR));
|
217 |
|
|
|
218 |
|
|
static boolean elf64_hppa_finalize_opd
|
219 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
220 |
|
|
|
221 |
|
|
static boolean elf64_hppa_finalize_dlt
|
222 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
223 |
|
|
|
224 |
|
|
static boolean allocate_global_data_dlt
|
225 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
226 |
|
|
|
227 |
|
|
static boolean allocate_global_data_plt
|
228 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
229 |
|
|
|
230 |
|
|
static boolean allocate_global_data_stub
|
231 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
232 |
|
|
|
233 |
|
|
static boolean allocate_global_data_opd
|
234 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
235 |
|
|
|
236 |
|
|
static boolean get_reloc_section
|
237 |
|
|
PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
|
238 |
|
|
|
239 |
|
|
static boolean count_dyn_reloc
|
240 |
|
|
PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
|
241 |
|
|
int, asection *, int, bfd_vma, bfd_vma));
|
242 |
|
|
|
243 |
|
|
static boolean allocate_dynrel_entries
|
244 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
245 |
|
|
|
246 |
|
|
static boolean elf64_hppa_finalize_dynreloc
|
247 |
|
|
PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
248 |
|
|
|
249 |
|
|
static boolean get_opd
|
250 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
251 |
|
|
|
252 |
|
|
static boolean get_plt
|
253 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
254 |
|
|
|
255 |
|
|
static boolean get_dlt
|
256 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
257 |
|
|
|
258 |
|
|
static boolean get_stub
|
259 |
|
|
PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
|
260 |
|
|
|
261 |
|
|
static int elf64_hppa_elf_get_symbol_type
|
262 |
|
|
PARAMS ((Elf_Internal_Sym *, int));
|
263 |
|
|
|
264 |
|
|
static boolean
|
265 |
|
|
elf64_hppa_dyn_hash_table_init (ht, abfd, new)
|
266 |
|
|
struct elf64_hppa_dyn_hash_table *ht;
|
267 |
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
268 |
|
|
new_hash_entry_func new;
|
269 |
|
|
{
|
270 |
|
|
memset (ht, 0, sizeof (*ht));
|
271 |
|
|
return bfd_hash_table_init (&ht->root, new);
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
static struct bfd_hash_entry*
|
275 |
|
|
elf64_hppa_new_dyn_hash_entry (entry, table, string)
|
276 |
|
|
struct bfd_hash_entry *entry;
|
277 |
|
|
struct bfd_hash_table *table;
|
278 |
|
|
const char *string;
|
279 |
|
|
{
|
280 |
|
|
struct elf64_hppa_dyn_hash_entry *ret;
|
281 |
|
|
ret = (struct elf64_hppa_dyn_hash_entry *) entry;
|
282 |
|
|
|
283 |
|
|
/* Allocate the structure if it has not already been allocated by a
|
284 |
|
|
subclass. */
|
285 |
|
|
if (!ret)
|
286 |
|
|
ret = bfd_hash_allocate (table, sizeof (*ret));
|
287 |
|
|
|
288 |
|
|
if (!ret)
|
289 |
|
|
return 0;
|
290 |
|
|
|
291 |
|
|
/* Initialize our local data. All zeros, and definitely easier
|
292 |
|
|
than setting 8 bit fields. */
|
293 |
|
|
memset (ret, 0, sizeof (*ret));
|
294 |
|
|
|
295 |
|
|
/* Call the allocation method of the superclass. */
|
296 |
|
|
ret = ((struct elf64_hppa_dyn_hash_entry *)
|
297 |
|
|
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
|
298 |
|
|
|
299 |
|
|
return &ret->root;
|
300 |
|
|
}
|
301 |
|
|
|
302 |
|
|
/* Create the derived linker hash table. The PA64 ELF port uses this
|
303 |
|
|
derived hash table to keep information specific to the PA ElF
|
304 |
|
|
linker (without using static variables). */
|
305 |
|
|
|
306 |
|
|
static struct bfd_link_hash_table*
|
307 |
|
|
elf64_hppa_hash_table_create (abfd)
|
308 |
|
|
bfd *abfd;
|
309 |
|
|
{
|
310 |
|
|
struct elf64_hppa_link_hash_table *ret;
|
311 |
|
|
|
312 |
|
|
ret = bfd_zalloc (abfd, sizeof (*ret));
|
313 |
|
|
if (!ret)
|
314 |
|
|
return 0;
|
315 |
|
|
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
316 |
|
|
_bfd_elf_link_hash_newfunc))
|
317 |
|
|
{
|
318 |
|
|
bfd_release (abfd, ret);
|
319 |
|
|
return 0;
|
320 |
|
|
}
|
321 |
|
|
|
322 |
|
|
if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
|
323 |
|
|
elf64_hppa_new_dyn_hash_entry))
|
324 |
|
|
return 0;
|
325 |
|
|
return &ret->root.root;
|
326 |
|
|
}
|
327 |
|
|
|
328 |
|
|
/* Look up an entry in a PA64 ELF linker hash table. */
|
329 |
|
|
|
330 |
|
|
static struct elf64_hppa_dyn_hash_entry *
|
331 |
|
|
elf64_hppa_dyn_hash_lookup(table, string, create, copy)
|
332 |
|
|
struct elf64_hppa_dyn_hash_table *table;
|
333 |
|
|
const char *string;
|
334 |
|
|
boolean create, copy;
|
335 |
|
|
{
|
336 |
|
|
return ((struct elf64_hppa_dyn_hash_entry *)
|
337 |
|
|
bfd_hash_lookup (&table->root, string, create, copy));
|
338 |
|
|
}
|
339 |
|
|
|
340 |
|
|
/* Traverse a PA64 ELF linker hash table. */
|
341 |
|
|
|
342 |
|
|
static void
|
343 |
|
|
elf64_hppa_dyn_hash_traverse (table, func, info)
|
344 |
|
|
struct elf64_hppa_dyn_hash_table *table;
|
345 |
|
|
boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
|
346 |
|
|
PTR info;
|
347 |
|
|
{
|
348 |
|
|
(bfd_hash_traverse
|
349 |
|
|
(&table->root,
|
350 |
|
|
(boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
|
351 |
|
|
info));
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
|
355 |
|
|
|
356 |
|
|
Additionally we set the default architecture and machine. */
|
357 |
|
|
static boolean
|
358 |
|
|
elf64_hppa_object_p (abfd)
|
359 |
|
|
bfd *abfd;
|
360 |
|
|
{
|
361 |
|
|
Elf_Internal_Ehdr * i_ehdrp;
|
362 |
|
|
unsigned int flags;
|
363 |
|
|
|
364 |
|
|
i_ehdrp = elf_elfheader (abfd);
|
365 |
|
|
if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
|
366 |
|
|
{
|
367 |
|
|
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
|
368 |
|
|
return false;
|
369 |
|
|
}
|
370 |
|
|
else
|
371 |
|
|
{
|
372 |
|
|
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
|
373 |
|
|
return false;
|
374 |
|
|
}
|
375 |
|
|
|
376 |
|
|
flags = i_ehdrp->e_flags;
|
377 |
|
|
switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
|
378 |
|
|
{
|
379 |
|
|
case EFA_PARISC_1_0:
|
380 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
|
381 |
|
|
case EFA_PARISC_1_1:
|
382 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
|
383 |
|
|
case EFA_PARISC_2_0:
|
384 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
|
385 |
|
|
case EFA_PARISC_2_0 | EF_PARISC_WIDE:
|
386 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
|
387 |
|
|
}
|
388 |
|
|
/* Don't be fussy. */
|
389 |
|
|
return true;
|
390 |
|
|
}
|
391 |
|
|
|
392 |
|
|
/* Given section type (hdr->sh_type), return a boolean indicating
|
393 |
|
|
whether or not the section is an elf64-hppa specific section. */
|
394 |
|
|
static boolean
|
395 |
|
|
elf64_hppa_section_from_shdr (abfd, hdr, name)
|
396 |
|
|
bfd *abfd;
|
397 |
|
|
Elf64_Internal_Shdr *hdr;
|
398 |
|
|
char *name;
|
399 |
|
|
{
|
400 |
|
|
asection *newsect;
|
401 |
|
|
|
402 |
|
|
switch (hdr->sh_type)
|
403 |
|
|
{
|
404 |
|
|
case SHT_PARISC_EXT:
|
405 |
|
|
if (strcmp (name, ".PARISC.archext") != 0)
|
406 |
|
|
return false;
|
407 |
|
|
break;
|
408 |
|
|
case SHT_PARISC_UNWIND:
|
409 |
|
|
if (strcmp (name, ".PARISC.unwind") != 0)
|
410 |
|
|
return false;
|
411 |
|
|
break;
|
412 |
|
|
case SHT_PARISC_DOC:
|
413 |
|
|
case SHT_PARISC_ANNOT:
|
414 |
|
|
default:
|
415 |
|
|
return false;
|
416 |
|
|
}
|
417 |
|
|
|
418 |
|
|
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
|
419 |
|
|
return false;
|
420 |
|
|
newsect = hdr->bfd_section;
|
421 |
|
|
|
422 |
|
|
return true;
|
423 |
|
|
}
|
424 |
|
|
|
425 |
|
|
/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
|
426 |
|
|
name describes what was once potentially anonymous memory. We
|
427 |
|
|
allocate memory as necessary, possibly reusing PBUF/PLEN. */
|
428 |
|
|
|
429 |
|
|
static const char *
|
430 |
|
|
get_dyn_name (sec, h, rel, pbuf, plen)
|
431 |
|
|
asection *sec;
|
432 |
|
|
struct elf_link_hash_entry *h;
|
433 |
|
|
const Elf_Internal_Rela *rel;
|
434 |
|
|
char **pbuf;
|
435 |
|
|
size_t *plen;
|
436 |
|
|
{
|
437 |
|
|
size_t nlen, tlen;
|
438 |
|
|
char *buf;
|
439 |
|
|
size_t len;
|
440 |
|
|
|
441 |
|
|
if (h && rel->r_addend == 0)
|
442 |
|
|
return h->root.root.string;
|
443 |
|
|
|
444 |
|
|
if (h)
|
445 |
|
|
nlen = strlen (h->root.root.string);
|
446 |
|
|
else
|
447 |
|
|
nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
|
448 |
|
|
tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
|
449 |
|
|
|
450 |
|
|
len = *plen;
|
451 |
|
|
buf = *pbuf;
|
452 |
|
|
if (len < tlen)
|
453 |
|
|
{
|
454 |
|
|
if (buf)
|
455 |
|
|
free (buf);
|
456 |
|
|
*pbuf = buf = malloc (tlen);
|
457 |
|
|
*plen = len = tlen;
|
458 |
|
|
if (!buf)
|
459 |
|
|
return NULL;
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
if (h)
|
463 |
|
|
{
|
464 |
|
|
memcpy (buf, h->root.root.string, nlen);
|
465 |
|
|
buf[nlen++] = '+';
|
466 |
|
|
sprintf_vma (buf + nlen, rel->r_addend);
|
467 |
|
|
}
|
468 |
|
|
else
|
469 |
|
|
{
|
470 |
|
|
nlen = sprintf (buf, "%x:%lx",
|
471 |
|
|
sec->id & 0xffffffff,
|
472 |
|
|
(long) ELF64_R_SYM (rel->r_info));
|
473 |
|
|
if (rel->r_addend)
|
474 |
|
|
{
|
475 |
|
|
buf[nlen++] = '+';
|
476 |
|
|
sprintf_vma (buf + nlen, rel->r_addend);
|
477 |
|
|
}
|
478 |
|
|
}
|
479 |
|
|
|
480 |
|
|
return buf;
|
481 |
|
|
}
|
482 |
|
|
|
483 |
|
|
/* SEC is a section containing relocs for an input BFD when linking; return
|
484 |
|
|
a suitable section for holding relocs in the output BFD for a link. */
|
485 |
|
|
|
486 |
|
|
static boolean
|
487 |
|
|
get_reloc_section (abfd, hppa_info, sec)
|
488 |
|
|
bfd *abfd;
|
489 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
490 |
|
|
asection *sec;
|
491 |
|
|
{
|
492 |
|
|
const char *srel_name;
|
493 |
|
|
asection *srel;
|
494 |
|
|
bfd *dynobj;
|
495 |
|
|
|
496 |
|
|
srel_name = (bfd_elf_string_from_elf_section
|
497 |
|
|
(abfd, elf_elfheader(abfd)->e_shstrndx,
|
498 |
|
|
elf_section_data(sec)->rel_hdr.sh_name));
|
499 |
|
|
if (srel_name == NULL)
|
500 |
|
|
return false;
|
501 |
|
|
|
502 |
|
|
BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
|
503 |
|
|
&& strcmp (bfd_get_section_name (abfd, sec),
|
504 |
|
|
srel_name+5) == 0)
|
505 |
|
|
|| (strncmp (srel_name, ".rel", 4) == 0
|
506 |
|
|
&& strcmp (bfd_get_section_name (abfd, sec),
|
507 |
|
|
srel_name+4) == 0));
|
508 |
|
|
|
509 |
|
|
dynobj = hppa_info->root.dynobj;
|
510 |
|
|
if (!dynobj)
|
511 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
512 |
|
|
|
513 |
|
|
srel = bfd_get_section_by_name (dynobj, srel_name);
|
514 |
|
|
if (srel == NULL)
|
515 |
|
|
{
|
516 |
|
|
srel = bfd_make_section (dynobj, srel_name);
|
517 |
|
|
if (srel == NULL
|
518 |
|
|
|| !bfd_set_section_flags (dynobj, srel,
|
519 |
|
|
(SEC_ALLOC
|
520 |
|
|
| SEC_LOAD
|
521 |
|
|
| SEC_HAS_CONTENTS
|
522 |
|
|
| SEC_IN_MEMORY
|
523 |
|
|
| SEC_LINKER_CREATED
|
524 |
|
|
| SEC_READONLY))
|
525 |
|
|
|| !bfd_set_section_alignment (dynobj, srel, 3))
|
526 |
|
|
return false;
|
527 |
|
|
}
|
528 |
|
|
|
529 |
|
|
hppa_info->other_rel_sec = srel;
|
530 |
|
|
return true;
|
531 |
|
|
}
|
532 |
|
|
|
533 |
|
|
/* Add a new entry to the list of dynamic relocations against DYN_H.
|
534 |
|
|
|
535 |
|
|
We use this to keep a record of all the FPTR relocations against a
|
536 |
|
|
particular symbol so that we can create FPTR relocations in the
|
537 |
|
|
output file. */
|
538 |
|
|
|
539 |
|
|
static boolean
|
540 |
|
|
count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
|
541 |
|
|
bfd *abfd;
|
542 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
543 |
|
|
int type;
|
544 |
|
|
asection *sec;
|
545 |
|
|
int sec_symndx;
|
546 |
|
|
bfd_vma offset;
|
547 |
|
|
bfd_vma addend;
|
548 |
|
|
{
|
549 |
|
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
550 |
|
|
|
551 |
|
|
rent = (struct elf64_hppa_dyn_reloc_entry *)
|
552 |
|
|
bfd_alloc (abfd, sizeof (*rent));
|
553 |
|
|
if (!rent)
|
554 |
|
|
return false;
|
555 |
|
|
|
556 |
|
|
rent->next = dyn_h->reloc_entries;
|
557 |
|
|
rent->type = type;
|
558 |
|
|
rent->sec = sec;
|
559 |
|
|
rent->sec_symndx = sec_symndx;
|
560 |
|
|
rent->offset = offset;
|
561 |
|
|
rent->addend = addend;
|
562 |
|
|
dyn_h->reloc_entries = rent;
|
563 |
|
|
|
564 |
|
|
return true;
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
/* Scan the RELOCS and record the type of dynamic entries that each
|
568 |
|
|
referenced symbol needs. */
|
569 |
|
|
|
570 |
|
|
static boolean
|
571 |
|
|
elf64_hppa_check_relocs (abfd, info, sec, relocs)
|
572 |
|
|
bfd *abfd;
|
573 |
|
|
struct bfd_link_info *info;
|
574 |
|
|
asection *sec;
|
575 |
|
|
const Elf_Internal_Rela *relocs;
|
576 |
|
|
{
|
577 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
578 |
|
|
const Elf_Internal_Rela *relend;
|
579 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
580 |
|
|
const Elf_Internal_Rela *rel;
|
581 |
|
|
asection *dlt, *plt, *stubs;
|
582 |
|
|
char *buf;
|
583 |
|
|
size_t buf_len;
|
584 |
|
|
int sec_symndx;
|
585 |
|
|
|
586 |
|
|
if (info->relocateable)
|
587 |
|
|
return true;
|
588 |
|
|
|
589 |
|
|
/* If this is the first dynamic object found in the link, create
|
590 |
|
|
the special sections required for dynamic linking. */
|
591 |
|
|
if (! elf_hash_table (info)->dynamic_sections_created)
|
592 |
|
|
{
|
593 |
|
|
if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
|
594 |
|
|
return false;
|
595 |
|
|
}
|
596 |
|
|
|
597 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
598 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
599 |
|
|
|
600 |
|
|
/* If necessary, build a new table holding section symbols indices
|
601 |
|
|
for this BFD. This is disgusting. */
|
602 |
|
|
|
603 |
|
|
if (info->shared && hppa_info->section_syms_bfd != abfd)
|
604 |
|
|
{
|
605 |
|
|
unsigned long i;
|
606 |
|
|
int highest_shndx;
|
607 |
|
|
Elf_Internal_Sym *local_syms, *isym;
|
608 |
|
|
Elf64_External_Sym *ext_syms, *esym;
|
609 |
|
|
|
610 |
|
|
/* We're done with the old cache of section index to section symbol
|
611 |
|
|
index information. Free it.
|
612 |
|
|
|
613 |
|
|
?!? Note we leak the last section_syms array. Presumably we
|
614 |
|
|
could free it in one of the later routines in this file. */
|
615 |
|
|
if (hppa_info->section_syms)
|
616 |
|
|
free (hppa_info->section_syms);
|
617 |
|
|
|
618 |
|
|
/* Allocate memory for the internal and external symbols. */
|
619 |
|
|
local_syms
|
620 |
|
|
= (Elf_Internal_Sym *) bfd_malloc (symtab_hdr->sh_info
|
621 |
|
|
* sizeof (Elf_Internal_Sym));
|
622 |
|
|
if (local_syms == NULL)
|
623 |
|
|
return false;
|
624 |
|
|
|
625 |
|
|
ext_syms
|
626 |
|
|
= (Elf64_External_Sym *) bfd_malloc (symtab_hdr->sh_info
|
627 |
|
|
* sizeof (Elf64_External_Sym));
|
628 |
|
|
if (ext_syms == NULL)
|
629 |
|
|
{
|
630 |
|
|
free (local_syms);
|
631 |
|
|
return false;
|
632 |
|
|
}
|
633 |
|
|
|
634 |
|
|
/* Read in the local symbols. */
|
635 |
|
|
if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|
636 |
|
|
|| bfd_read (ext_syms, 1,
|
637 |
|
|
(symtab_hdr->sh_info
|
638 |
|
|
* sizeof (Elf64_External_Sym)), abfd)
|
639 |
|
|
!= (symtab_hdr->sh_info * sizeof (Elf64_External_Sym)))
|
640 |
|
|
{
|
641 |
|
|
free (local_syms);
|
642 |
|
|
free (ext_syms);
|
643 |
|
|
return false;
|
644 |
|
|
}
|
645 |
|
|
|
646 |
|
|
/* Swap in the local symbols, also record the highest section index
|
647 |
|
|
referenced by the local symbols. */
|
648 |
|
|
isym = local_syms;
|
649 |
|
|
esym = ext_syms;
|
650 |
|
|
highest_shndx = 0;
|
651 |
|
|
for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
|
652 |
|
|
{
|
653 |
|
|
bfd_elf64_swap_symbol_in (abfd, esym, isym);
|
654 |
|
|
if (isym->st_shndx > highest_shndx)
|
655 |
|
|
highest_shndx = isym->st_shndx;
|
656 |
|
|
}
|
657 |
|
|
|
658 |
|
|
/* Now we can free the external symbols. */
|
659 |
|
|
free (ext_syms);
|
660 |
|
|
|
661 |
|
|
/* Allocate an array to hold the section index to section symbol index
|
662 |
|
|
mapping. Bump by one since we start counting at zero. */
|
663 |
|
|
highest_shndx++;
|
664 |
|
|
hppa_info->section_syms = (int *) bfd_malloc (highest_shndx
|
665 |
|
|
* sizeof (int));
|
666 |
|
|
|
667 |
|
|
/* Now walk the local symbols again. If we find a section symbol,
|
668 |
|
|
record the index of the symbol into the section_syms array. */
|
669 |
|
|
for (isym = local_syms, i = 0; i < symtab_hdr->sh_info; i++, isym++)
|
670 |
|
|
{
|
671 |
|
|
if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
|
672 |
|
|
hppa_info->section_syms[isym->st_shndx] = i;
|
673 |
|
|
}
|
674 |
|
|
|
675 |
|
|
/* We are finished with the local symbols. Get rid of them. */
|
676 |
|
|
free (local_syms);
|
677 |
|
|
|
678 |
|
|
/* Record which BFD we built the section_syms mapping for. */
|
679 |
|
|
hppa_info->section_syms_bfd = abfd;
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
/* Record the symbol index for this input section. We may need it for
|
683 |
|
|
relocations when building shared libraries. When not building shared
|
684 |
|
|
libraries this value is never really used, but assign it to zero to
|
685 |
|
|
prevent out of bounds memory accesses in other routines. */
|
686 |
|
|
if (info->shared)
|
687 |
|
|
{
|
688 |
|
|
sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
689 |
|
|
|
690 |
|
|
/* If we did not find a section symbol for this section, then
|
691 |
|
|
something went terribly wrong above. */
|
692 |
|
|
if (sec_symndx == -1)
|
693 |
|
|
return false;
|
694 |
|
|
|
695 |
|
|
sec_symndx = hppa_info->section_syms[sec_symndx];
|
696 |
|
|
}
|
697 |
|
|
else
|
698 |
|
|
sec_symndx = 0;
|
699 |
|
|
|
700 |
|
|
dlt = plt = stubs = NULL;
|
701 |
|
|
buf = NULL;
|
702 |
|
|
buf_len = 0;
|
703 |
|
|
|
704 |
|
|
relend = relocs + sec->reloc_count;
|
705 |
|
|
for (rel = relocs; rel < relend; ++rel)
|
706 |
|
|
{
|
707 |
|
|
enum {
|
708 |
|
|
NEED_DLT = 1,
|
709 |
|
|
NEED_PLT = 2,
|
710 |
|
|
NEED_STUB = 4,
|
711 |
|
|
NEED_OPD = 8,
|
712 |
|
|
NEED_DYNREL = 16,
|
713 |
|
|
};
|
714 |
|
|
|
715 |
|
|
struct elf_link_hash_entry *h = NULL;
|
716 |
|
|
unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
|
717 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
718 |
|
|
int need_entry;
|
719 |
|
|
const char *addr_name;
|
720 |
|
|
boolean maybe_dynamic;
|
721 |
|
|
int dynrel_type = R_PARISC_NONE;
|
722 |
|
|
static reloc_howto_type *howto;
|
723 |
|
|
|
724 |
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
725 |
|
|
{
|
726 |
|
|
/* We're dealing with a global symbol -- find its hash entry
|
727 |
|
|
and mark it as being referenced. */
|
728 |
|
|
long indx = r_symndx - symtab_hdr->sh_info;
|
729 |
|
|
h = elf_sym_hashes (abfd)[indx];
|
730 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
731 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
732 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
733 |
|
|
|
734 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
|
735 |
|
|
}
|
736 |
|
|
|
737 |
|
|
/* We can only get preliminary data on whether a symbol is
|
738 |
|
|
locally or externally defined, as not all of the input files
|
739 |
|
|
have yet been processed. Do something with what we know, as
|
740 |
|
|
this may help reduce memory usage and processing time later. */
|
741 |
|
|
maybe_dynamic = false;
|
742 |
|
|
if (h && ((info->shared && ! info->symbolic)
|
743 |
|
|
|| ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
|
744 |
|
|
|| h->root.type == bfd_link_hash_defweak))
|
745 |
|
|
maybe_dynamic = true;
|
746 |
|
|
|
747 |
|
|
howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
|
748 |
|
|
need_entry = 0;
|
749 |
|
|
switch (howto->type)
|
750 |
|
|
{
|
751 |
|
|
/* These are simple indirect references to symbols through the
|
752 |
|
|
DLT. We need to create a DLT entry for any symbols which
|
753 |
|
|
appears in a DLTIND relocation. */
|
754 |
|
|
case R_PARISC_DLTIND21L:
|
755 |
|
|
case R_PARISC_DLTIND14R:
|
756 |
|
|
case R_PARISC_DLTIND14F:
|
757 |
|
|
case R_PARISC_DLTIND14WR:
|
758 |
|
|
case R_PARISC_DLTIND14DR:
|
759 |
|
|
need_entry = NEED_DLT;
|
760 |
|
|
break;
|
761 |
|
|
|
762 |
|
|
/* ?!? These need a DLT entry. But I have no idea what to do with
|
763 |
|
|
the "link time TP value. */
|
764 |
|
|
case R_PARISC_LTOFF_TP21L:
|
765 |
|
|
case R_PARISC_LTOFF_TP14R:
|
766 |
|
|
case R_PARISC_LTOFF_TP14F:
|
767 |
|
|
case R_PARISC_LTOFF_TP64:
|
768 |
|
|
case R_PARISC_LTOFF_TP14WR:
|
769 |
|
|
case R_PARISC_LTOFF_TP14DR:
|
770 |
|
|
case R_PARISC_LTOFF_TP16F:
|
771 |
|
|
case R_PARISC_LTOFF_TP16WF:
|
772 |
|
|
case R_PARISC_LTOFF_TP16DF:
|
773 |
|
|
need_entry = NEED_DLT;
|
774 |
|
|
break;
|
775 |
|
|
|
776 |
|
|
/* These are function calls. Depending on their precise target we
|
777 |
|
|
may need to make a stub for them. The stub uses the PLT, so we
|
778 |
|
|
need to create PLT entries for these symbols too. */
|
779 |
|
|
case R_PARISC_PCREL12F:
|
780 |
|
|
case R_PARISC_PCREL17F:
|
781 |
|
|
case R_PARISC_PCREL22F:
|
782 |
|
|
case R_PARISC_PCREL32:
|
783 |
|
|
case R_PARISC_PCREL64:
|
784 |
|
|
case R_PARISC_PCREL21L:
|
785 |
|
|
case R_PARISC_PCREL17R:
|
786 |
|
|
case R_PARISC_PCREL17C:
|
787 |
|
|
case R_PARISC_PCREL14R:
|
788 |
|
|
case R_PARISC_PCREL14F:
|
789 |
|
|
case R_PARISC_PCREL22C:
|
790 |
|
|
case R_PARISC_PCREL14WR:
|
791 |
|
|
case R_PARISC_PCREL14DR:
|
792 |
|
|
case R_PARISC_PCREL16F:
|
793 |
|
|
case R_PARISC_PCREL16WF:
|
794 |
|
|
case R_PARISC_PCREL16DF:
|
795 |
|
|
need_entry = (NEED_PLT | NEED_STUB);
|
796 |
|
|
break;
|
797 |
|
|
|
798 |
|
|
case R_PARISC_PLTOFF21L:
|
799 |
|
|
case R_PARISC_PLTOFF14R:
|
800 |
|
|
case R_PARISC_PLTOFF14F:
|
801 |
|
|
case R_PARISC_PLTOFF14WR:
|
802 |
|
|
case R_PARISC_PLTOFF14DR:
|
803 |
|
|
case R_PARISC_PLTOFF16F:
|
804 |
|
|
case R_PARISC_PLTOFF16WF:
|
805 |
|
|
case R_PARISC_PLTOFF16DF:
|
806 |
|
|
need_entry = (NEED_PLT);
|
807 |
|
|
break;
|
808 |
|
|
|
809 |
|
|
case R_PARISC_DIR64:
|
810 |
|
|
if (info->shared || maybe_dynamic)
|
811 |
|
|
need_entry = (NEED_DYNREL);
|
812 |
|
|
dynrel_type = R_PARISC_DIR64;
|
813 |
|
|
break;
|
814 |
|
|
|
815 |
|
|
/* This is an indirect reference through the DLT to get the address
|
816 |
|
|
of a OPD descriptor. Thus we need to make a DLT entry that points
|
817 |
|
|
to an OPD entry. */
|
818 |
|
|
case R_PARISC_LTOFF_FPTR21L:
|
819 |
|
|
case R_PARISC_LTOFF_FPTR14R:
|
820 |
|
|
case R_PARISC_LTOFF_FPTR14WR:
|
821 |
|
|
case R_PARISC_LTOFF_FPTR14DR:
|
822 |
|
|
case R_PARISC_LTOFF_FPTR32:
|
823 |
|
|
case R_PARISC_LTOFF_FPTR64:
|
824 |
|
|
case R_PARISC_LTOFF_FPTR16F:
|
825 |
|
|
case R_PARISC_LTOFF_FPTR16WF:
|
826 |
|
|
case R_PARISC_LTOFF_FPTR16DF:
|
827 |
|
|
if (info->shared || maybe_dynamic)
|
828 |
|
|
need_entry = (NEED_DLT | NEED_OPD);
|
829 |
|
|
else
|
830 |
|
|
need_entry = (NEED_DLT | NEED_OPD);
|
831 |
|
|
dynrel_type = R_PARISC_FPTR64;
|
832 |
|
|
break;
|
833 |
|
|
|
834 |
|
|
/* This is a simple OPD entry. */
|
835 |
|
|
case R_PARISC_FPTR64:
|
836 |
|
|
if (info->shared || maybe_dynamic)
|
837 |
|
|
need_entry = (NEED_OPD | NEED_DYNREL);
|
838 |
|
|
else
|
839 |
|
|
need_entry = (NEED_OPD);
|
840 |
|
|
dynrel_type = R_PARISC_FPTR64;
|
841 |
|
|
break;
|
842 |
|
|
|
843 |
|
|
/* Add more cases as needed. */
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
if (!need_entry)
|
847 |
|
|
continue;
|
848 |
|
|
|
849 |
|
|
/* Collect a canonical name for this address. */
|
850 |
|
|
addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
|
851 |
|
|
|
852 |
|
|
/* Collect the canonical entry data for this address. */
|
853 |
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
854 |
|
|
addr_name, true, true);
|
855 |
|
|
BFD_ASSERT (dyn_h);
|
856 |
|
|
|
857 |
|
|
/* Stash away enough information to be able to find this symbol
|
858 |
|
|
regardless of whether or not it is local or global. */
|
859 |
|
|
dyn_h->h = h;
|
860 |
|
|
dyn_h->owner = abfd;
|
861 |
|
|
dyn_h->sym_indx = r_symndx;
|
862 |
|
|
|
863 |
|
|
/* ?!? We may need to do some error checking in here. */
|
864 |
|
|
/* Create what's needed. */
|
865 |
|
|
if (need_entry & NEED_DLT)
|
866 |
|
|
{
|
867 |
|
|
if (! hppa_info->dlt_sec
|
868 |
|
|
&& ! get_dlt (abfd, info, hppa_info))
|
869 |
|
|
goto err_out;
|
870 |
|
|
dyn_h->want_dlt = 1;
|
871 |
|
|
}
|
872 |
|
|
|
873 |
|
|
if (need_entry & NEED_PLT)
|
874 |
|
|
{
|
875 |
|
|
if (! hppa_info->plt_sec
|
876 |
|
|
&& ! get_plt (abfd, info, hppa_info))
|
877 |
|
|
goto err_out;
|
878 |
|
|
dyn_h->want_plt = 1;
|
879 |
|
|
}
|
880 |
|
|
|
881 |
|
|
if (need_entry & NEED_STUB)
|
882 |
|
|
{
|
883 |
|
|
if (! hppa_info->stub_sec
|
884 |
|
|
&& ! get_stub (abfd, info, hppa_info))
|
885 |
|
|
goto err_out;
|
886 |
|
|
dyn_h->want_stub = 1;
|
887 |
|
|
}
|
888 |
|
|
|
889 |
|
|
if (need_entry & NEED_OPD)
|
890 |
|
|
{
|
891 |
|
|
if (! hppa_info->opd_sec
|
892 |
|
|
&& ! get_opd (abfd, info, hppa_info))
|
893 |
|
|
goto err_out;
|
894 |
|
|
|
895 |
|
|
dyn_h->want_opd = 1;
|
896 |
|
|
|
897 |
|
|
/* FPTRs are not allocated by the dynamic linker for PA64, though
|
898 |
|
|
it is possible that will change in the future. */
|
899 |
|
|
|
900 |
|
|
/* This could be a local function that had its address taken, in
|
901 |
|
|
which case H will be NULL. */
|
902 |
|
|
if (h)
|
903 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
|
904 |
|
|
}
|
905 |
|
|
|
906 |
|
|
/* Add a new dynamic relocation to the chain of dynamic
|
907 |
|
|
relocations for this symbol. */
|
908 |
|
|
if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
|
909 |
|
|
{
|
910 |
|
|
if (! hppa_info->other_rel_sec
|
911 |
|
|
&& ! get_reloc_section (abfd, hppa_info, sec))
|
912 |
|
|
goto err_out;
|
913 |
|
|
|
914 |
|
|
if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
|
915 |
|
|
sec_symndx, rel->r_offset, rel->r_addend))
|
916 |
|
|
goto err_out;
|
917 |
|
|
|
918 |
|
|
/* If we are building a shared library and we just recorded
|
919 |
|
|
a dynamic R_PARISC_FPTR64 relocation, then make sure the
|
920 |
|
|
section symbol for this section ends up in the dynamic
|
921 |
|
|
symbol table. */
|
922 |
|
|
if (info->shared && dynrel_type == R_PARISC_FPTR64
|
923 |
|
|
&& ! (_bfd_elf64_link_record_local_dynamic_symbol
|
924 |
|
|
(info, abfd, sec_symndx)))
|
925 |
|
|
return false;
|
926 |
|
|
}
|
927 |
|
|
}
|
928 |
|
|
|
929 |
|
|
if (buf)
|
930 |
|
|
free (buf);
|
931 |
|
|
return true;
|
932 |
|
|
|
933 |
|
|
err_out:
|
934 |
|
|
if (buf)
|
935 |
|
|
free (buf);
|
936 |
|
|
return false;
|
937 |
|
|
}
|
938 |
|
|
|
939 |
|
|
struct elf64_hppa_allocate_data
|
940 |
|
|
{
|
941 |
|
|
struct bfd_link_info *info;
|
942 |
|
|
bfd_size_type ofs;
|
943 |
|
|
};
|
944 |
|
|
|
945 |
|
|
/* Should we do dynamic things to this symbol? */
|
946 |
|
|
|
947 |
|
|
static boolean
|
948 |
|
|
elf64_hppa_dynamic_symbol_p (h, info)
|
949 |
|
|
struct elf_link_hash_entry *h;
|
950 |
|
|
struct bfd_link_info *info;
|
951 |
|
|
{
|
952 |
|
|
if (h == NULL)
|
953 |
|
|
return false;
|
954 |
|
|
|
955 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
956 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
957 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
958 |
|
|
|
959 |
|
|
if (h->dynindx == -1)
|
960 |
|
|
return false;
|
961 |
|
|
|
962 |
|
|
if (h->root.type == bfd_link_hash_undefweak
|
963 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
964 |
|
|
return true;
|
965 |
|
|
|
966 |
|
|
if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
|
967 |
|
|
return false;
|
968 |
|
|
|
969 |
|
|
if ((info->shared && !info->symbolic)
|
970 |
|
|
|| ((h->elf_link_hash_flags
|
971 |
|
|
& (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
|
972 |
|
|
== (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
|
973 |
|
|
return true;
|
974 |
|
|
|
975 |
|
|
return false;
|
976 |
|
|
}
|
977 |
|
|
|
978 |
|
|
/* Mark all funtions exported by this file so that we can later allocate
|
979 |
|
|
entries in .opd for them. */
|
980 |
|
|
|
981 |
|
|
static boolean
|
982 |
|
|
elf64_hppa_mark_exported_functions (h, data)
|
983 |
|
|
struct elf_link_hash_entry *h;
|
984 |
|
|
PTR data;
|
985 |
|
|
{
|
986 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
987 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
988 |
|
|
|
989 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
990 |
|
|
|
991 |
|
|
if (h
|
992 |
|
|
&& (h->root.type == bfd_link_hash_defined
|
993 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
994 |
|
|
&& h->root.u.def.section->output_section != NULL
|
995 |
|
|
&& h->type == STT_FUNC)
|
996 |
|
|
{
|
997 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
998 |
|
|
|
999 |
|
|
/* Add this symbol to the PA64 linker hash table. */
|
1000 |
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
1001 |
|
|
h->root.root.string, true, true);
|
1002 |
|
|
BFD_ASSERT (dyn_h);
|
1003 |
|
|
dyn_h->h = h;
|
1004 |
|
|
|
1005 |
|
|
if (! hppa_info->opd_sec
|
1006 |
|
|
&& ! get_opd (hppa_info->root.dynobj, info, hppa_info))
|
1007 |
|
|
return false;
|
1008 |
|
|
|
1009 |
|
|
dyn_h->want_opd = 1;
|
1010 |
|
|
/* Put a flag here for output_symbol_hook. */
|
1011 |
|
|
dyn_h->st_shndx = -1;
|
1012 |
|
|
h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
|
1013 |
|
|
}
|
1014 |
|
|
|
1015 |
|
|
return true;
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
/* Allocate space for a DLT entry. */
|
1019 |
|
|
|
1020 |
|
|
static boolean
|
1021 |
|
|
allocate_global_data_dlt (dyn_h, data)
|
1022 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
1023 |
|
|
PTR data;
|
1024 |
|
|
{
|
1025 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
1026 |
|
|
|
1027 |
|
|
if (dyn_h->want_dlt)
|
1028 |
|
|
{
|
1029 |
|
|
struct elf_link_hash_entry *h = dyn_h->h;
|
1030 |
|
|
|
1031 |
|
|
if (x->info->shared)
|
1032 |
|
|
{
|
1033 |
|
|
/* Possibly add the symbol to the local dynamic symbol
|
1034 |
|
|
table since we might need to create a dynamic relocation
|
1035 |
|
|
against it. */
|
1036 |
|
|
if (! h
|
1037 |
|
|
|| (h && h->dynindx == -1))
|
1038 |
|
|
{
|
1039 |
|
|
bfd *owner;
|
1040 |
|
|
owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
|
1041 |
|
|
|
1042 |
|
|
if (!_bfd_elf64_link_record_local_dynamic_symbol
|
1043 |
|
|
(x->info, owner, dyn_h->sym_indx))
|
1044 |
|
|
return false;
|
1045 |
|
|
}
|
1046 |
|
|
}
|
1047 |
|
|
|
1048 |
|
|
dyn_h->dlt_offset = x->ofs;
|
1049 |
|
|
x->ofs += DLT_ENTRY_SIZE;
|
1050 |
|
|
}
|
1051 |
|
|
return true;
|
1052 |
|
|
}
|
1053 |
|
|
|
1054 |
|
|
/* Allocate space for a DLT.PLT entry. */
|
1055 |
|
|
|
1056 |
|
|
static boolean
|
1057 |
|
|
allocate_global_data_plt (dyn_h, data)
|
1058 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
1059 |
|
|
PTR data;
|
1060 |
|
|
{
|
1061 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
1062 |
|
|
|
1063 |
|
|
if (dyn_h->want_plt
|
1064 |
|
|
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
|
1065 |
|
|
&& !((dyn_h->h->root.type == bfd_link_hash_defined
|
1066 |
|
|
|| dyn_h->h->root.type == bfd_link_hash_defweak)
|
1067 |
|
|
&& dyn_h->h->root.u.def.section->output_section != NULL))
|
1068 |
|
|
{
|
1069 |
|
|
dyn_h->plt_offset = x->ofs;
|
1070 |
|
|
x->ofs += PLT_ENTRY_SIZE;
|
1071 |
|
|
if (dyn_h->plt_offset < 0x2000)
|
1072 |
|
|
elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
|
1073 |
|
|
}
|
1074 |
|
|
else
|
1075 |
|
|
dyn_h->want_plt = 0;
|
1076 |
|
|
|
1077 |
|
|
return true;
|
1078 |
|
|
}
|
1079 |
|
|
|
1080 |
|
|
/* Allocate space for a STUB entry. */
|
1081 |
|
|
|
1082 |
|
|
static boolean
|
1083 |
|
|
allocate_global_data_stub (dyn_h, data)
|
1084 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
1085 |
|
|
PTR data;
|
1086 |
|
|
{
|
1087 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
1088 |
|
|
|
1089 |
|
|
if (dyn_h->want_stub
|
1090 |
|
|
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
|
1091 |
|
|
&& !((dyn_h->h->root.type == bfd_link_hash_defined
|
1092 |
|
|
|| dyn_h->h->root.type == bfd_link_hash_defweak)
|
1093 |
|
|
&& dyn_h->h->root.u.def.section->output_section != NULL))
|
1094 |
|
|
{
|
1095 |
|
|
dyn_h->stub_offset = x->ofs;
|
1096 |
|
|
x->ofs += sizeof (plt_stub);
|
1097 |
|
|
}
|
1098 |
|
|
else
|
1099 |
|
|
dyn_h->want_stub = 0;
|
1100 |
|
|
return true;
|
1101 |
|
|
}
|
1102 |
|
|
|
1103 |
|
|
/* Allocate space for a FPTR entry. */
|
1104 |
|
|
|
1105 |
|
|
static boolean
|
1106 |
|
|
allocate_global_data_opd (dyn_h, data)
|
1107 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
1108 |
|
|
PTR data;
|
1109 |
|
|
{
|
1110 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
1111 |
|
|
|
1112 |
|
|
if (dyn_h->want_opd)
|
1113 |
|
|
{
|
1114 |
|
|
struct elf_link_hash_entry *h = dyn_h->h;
|
1115 |
|
|
|
1116 |
|
|
if (h)
|
1117 |
|
|
while (h->root.type == bfd_link_hash_indirect
|
1118 |
|
|
|| h->root.type == bfd_link_hash_warning)
|
1119 |
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
1120 |
|
|
|
1121 |
|
|
/* We never need an opd entry for a symbol which is not
|
1122 |
|
|
defined by this output file. */
|
1123 |
|
|
if (h && h->root.type == bfd_link_hash_undefined)
|
1124 |
|
|
dyn_h->want_opd = 0;
|
1125 |
|
|
|
1126 |
|
|
/* If we are creating a shared library, took the address of a local
|
1127 |
|
|
function or might export this function from this object file, then
|
1128 |
|
|
we have to create an opd descriptor. */
|
1129 |
|
|
else if (x->info->shared
|
1130 |
|
|
|| h == NULL
|
1131 |
|
|
|| h->dynindx == -1
|
1132 |
|
|
|| ((h->root.type == bfd_link_hash_defined
|
1133 |
|
|
|| h->root.type == bfd_link_hash_defweak)
|
1134 |
|
|
&& h->root.u.def.section->output_section != NULL))
|
1135 |
|
|
{
|
1136 |
|
|
/* If we are creating a shared library, then we will have to
|
1137 |
|
|
create a runtime relocation for the symbol to properly
|
1138 |
|
|
initialize the .opd entry. Make sure the symbol gets
|
1139 |
|
|
added to the dynamic symbol table. */
|
1140 |
|
|
if (x->info->shared
|
1141 |
|
|
&& (h == NULL || (h->dynindx == -1)))
|
1142 |
|
|
{
|
1143 |
|
|
bfd *owner;
|
1144 |
|
|
owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
|
1145 |
|
|
|
1146 |
|
|
if (!_bfd_elf64_link_record_local_dynamic_symbol
|
1147 |
|
|
(x->info, owner, dyn_h->sym_indx))
|
1148 |
|
|
return false;
|
1149 |
|
|
}
|
1150 |
|
|
|
1151 |
|
|
/* This may not be necessary or desirable anymore now that
|
1152 |
|
|
we have some support for dealing with section symbols
|
1153 |
|
|
in dynamic relocs. But name munging does make the result
|
1154 |
|
|
much easier to debug. ie, the EPLT reloc will reference
|
1155 |
|
|
a symbol like .foobar, instead of .text + offset. */
|
1156 |
|
|
if (x->info->shared && h)
|
1157 |
|
|
{
|
1158 |
|
|
char *new_name;
|
1159 |
|
|
struct elf_link_hash_entry *nh;
|
1160 |
|
|
|
1161 |
|
|
new_name = alloca (strlen (h->root.root.string) + 2);
|
1162 |
|
|
new_name[0] = '.';
|
1163 |
|
|
strcpy (new_name + 1, h->root.root.string);
|
1164 |
|
|
|
1165 |
|
|
nh = elf_link_hash_lookup (elf_hash_table (x->info),
|
1166 |
|
|
new_name, true, true, true);
|
1167 |
|
|
|
1168 |
|
|
nh->root.type = h->root.type;
|
1169 |
|
|
nh->root.u.def.value = h->root.u.def.value;
|
1170 |
|
|
nh->root.u.def.section = h->root.u.def.section;
|
1171 |
|
|
|
1172 |
|
|
if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
|
1173 |
|
|
return false;
|
1174 |
|
|
|
1175 |
|
|
}
|
1176 |
|
|
dyn_h->opd_offset = x->ofs;
|
1177 |
|
|
x->ofs += OPD_ENTRY_SIZE;
|
1178 |
|
|
}
|
1179 |
|
|
|
1180 |
|
|
/* Otherwise we do not need an opd entry. */
|
1181 |
|
|
else
|
1182 |
|
|
dyn_h->want_opd = 0;
|
1183 |
|
|
}
|
1184 |
|
|
return true;
|
1185 |
|
|
}
|
1186 |
|
|
|
1187 |
|
|
/* HP requires the EI_OSABI field to be filled in. The assignment to
|
1188 |
|
|
EI_ABIVERSION may not be strictly necessary. */
|
1189 |
|
|
|
1190 |
|
|
static void
|
1191 |
|
|
elf64_hppa_post_process_headers (abfd, link_info)
|
1192 |
|
|
bfd * abfd;
|
1193 |
|
|
struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
|
1194 |
|
|
{
|
1195 |
|
|
Elf_Internal_Ehdr * i_ehdrp;
|
1196 |
|
|
|
1197 |
|
|
i_ehdrp = elf_elfheader (abfd);
|
1198 |
|
|
|
1199 |
|
|
if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
|
1200 |
|
|
{
|
1201 |
|
|
i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
|
1202 |
|
|
}
|
1203 |
|
|
else
|
1204 |
|
|
{
|
1205 |
|
|
i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
|
1206 |
|
|
i_ehdrp->e_ident[EI_ABIVERSION] = 1;
|
1207 |
|
|
}
|
1208 |
|
|
}
|
1209 |
|
|
|
1210 |
|
|
/* Create function descriptor section (.opd). This section is called .opd
|
1211 |
|
|
because it contains "official prodecure descriptors". The "official"
|
1212 |
|
|
refers to the fact that these descriptors are used when taking the address
|
1213 |
|
|
of a procedure, thus ensuring a unique address for each procedure. */
|
1214 |
|
|
|
1215 |
|
|
static boolean
|
1216 |
|
|
get_opd (abfd, info, hppa_info)
|
1217 |
|
|
bfd *abfd;
|
1218 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
1219 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
1220 |
|
|
{
|
1221 |
|
|
asection *opd;
|
1222 |
|
|
bfd *dynobj;
|
1223 |
|
|
|
1224 |
|
|
opd = hppa_info->opd_sec;
|
1225 |
|
|
if (!opd)
|
1226 |
|
|
{
|
1227 |
|
|
dynobj = hppa_info->root.dynobj;
|
1228 |
|
|
if (!dynobj)
|
1229 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
1230 |
|
|
|
1231 |
|
|
opd = bfd_make_section (dynobj, ".opd");
|
1232 |
|
|
if (!opd
|
1233 |
|
|
|| !bfd_set_section_flags (dynobj, opd,
|
1234 |
|
|
(SEC_ALLOC
|
1235 |
|
|
| SEC_LOAD
|
1236 |
|
|
| SEC_HAS_CONTENTS
|
1237 |
|
|
| SEC_IN_MEMORY
|
1238 |
|
|
| SEC_LINKER_CREATED))
|
1239 |
|
|
|| !bfd_set_section_alignment (abfd, opd, 3))
|
1240 |
|
|
{
|
1241 |
|
|
BFD_ASSERT (0);
|
1242 |
|
|
return false;
|
1243 |
|
|
}
|
1244 |
|
|
|
1245 |
|
|
hppa_info->opd_sec = opd;
|
1246 |
|
|
}
|
1247 |
|
|
|
1248 |
|
|
return true;
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
/* Create the PLT section. */
|
1252 |
|
|
|
1253 |
|
|
static boolean
|
1254 |
|
|
get_plt (abfd, info, hppa_info)
|
1255 |
|
|
bfd *abfd;
|
1256 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
1257 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
1258 |
|
|
{
|
1259 |
|
|
asection *plt;
|
1260 |
|
|
bfd *dynobj;
|
1261 |
|
|
|
1262 |
|
|
plt = hppa_info->plt_sec;
|
1263 |
|
|
if (!plt)
|
1264 |
|
|
{
|
1265 |
|
|
dynobj = hppa_info->root.dynobj;
|
1266 |
|
|
if (!dynobj)
|
1267 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
1268 |
|
|
|
1269 |
|
|
plt = bfd_make_section (dynobj, ".plt");
|
1270 |
|
|
if (!plt
|
1271 |
|
|
|| !bfd_set_section_flags (dynobj, plt,
|
1272 |
|
|
(SEC_ALLOC
|
1273 |
|
|
| SEC_LOAD
|
1274 |
|
|
| SEC_HAS_CONTENTS
|
1275 |
|
|
| SEC_IN_MEMORY
|
1276 |
|
|
| SEC_LINKER_CREATED))
|
1277 |
|
|
|| !bfd_set_section_alignment (abfd, plt, 3))
|
1278 |
|
|
{
|
1279 |
|
|
BFD_ASSERT (0);
|
1280 |
|
|
return false;
|
1281 |
|
|
}
|
1282 |
|
|
|
1283 |
|
|
hppa_info->plt_sec = plt;
|
1284 |
|
|
}
|
1285 |
|
|
|
1286 |
|
|
return true;
|
1287 |
|
|
}
|
1288 |
|
|
|
1289 |
|
|
/* Create the DLT section. */
|
1290 |
|
|
|
1291 |
|
|
static boolean
|
1292 |
|
|
get_dlt (abfd, info, hppa_info)
|
1293 |
|
|
bfd *abfd;
|
1294 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
1295 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
1296 |
|
|
{
|
1297 |
|
|
asection *dlt;
|
1298 |
|
|
bfd *dynobj;
|
1299 |
|
|
|
1300 |
|
|
dlt = hppa_info->dlt_sec;
|
1301 |
|
|
if (!dlt)
|
1302 |
|
|
{
|
1303 |
|
|
dynobj = hppa_info->root.dynobj;
|
1304 |
|
|
if (!dynobj)
|
1305 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
1306 |
|
|
|
1307 |
|
|
dlt = bfd_make_section (dynobj, ".dlt");
|
1308 |
|
|
if (!dlt
|
1309 |
|
|
|| !bfd_set_section_flags (dynobj, dlt,
|
1310 |
|
|
(SEC_ALLOC
|
1311 |
|
|
| SEC_LOAD
|
1312 |
|
|
| SEC_HAS_CONTENTS
|
1313 |
|
|
| SEC_IN_MEMORY
|
1314 |
|
|
| SEC_LINKER_CREATED))
|
1315 |
|
|
|| !bfd_set_section_alignment (abfd, dlt, 3))
|
1316 |
|
|
{
|
1317 |
|
|
BFD_ASSERT (0);
|
1318 |
|
|
return false;
|
1319 |
|
|
}
|
1320 |
|
|
|
1321 |
|
|
hppa_info->dlt_sec = dlt;
|
1322 |
|
|
}
|
1323 |
|
|
|
1324 |
|
|
return true;
|
1325 |
|
|
}
|
1326 |
|
|
|
1327 |
|
|
/* Create the stubs section. */
|
1328 |
|
|
|
1329 |
|
|
static boolean
|
1330 |
|
|
get_stub (abfd, info, hppa_info)
|
1331 |
|
|
bfd *abfd;
|
1332 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
1333 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
1334 |
|
|
{
|
1335 |
|
|
asection *stub;
|
1336 |
|
|
bfd *dynobj;
|
1337 |
|
|
|
1338 |
|
|
stub = hppa_info->stub_sec;
|
1339 |
|
|
if (!stub)
|
1340 |
|
|
{
|
1341 |
|
|
dynobj = hppa_info->root.dynobj;
|
1342 |
|
|
if (!dynobj)
|
1343 |
|
|
hppa_info->root.dynobj = dynobj = abfd;
|
1344 |
|
|
|
1345 |
|
|
stub = bfd_make_section (dynobj, ".stub");
|
1346 |
|
|
if (!stub
|
1347 |
|
|
|| !bfd_set_section_flags (dynobj, stub,
|
1348 |
|
|
(SEC_ALLOC
|
1349 |
|
|
| SEC_LOAD
|
1350 |
|
|
| SEC_HAS_CONTENTS
|
1351 |
|
|
| SEC_IN_MEMORY
|
1352 |
|
|
| SEC_READONLY
|
1353 |
|
|
| SEC_LINKER_CREATED))
|
1354 |
|
|
|| !bfd_set_section_alignment (abfd, stub, 3))
|
1355 |
|
|
{
|
1356 |
|
|
BFD_ASSERT (0);
|
1357 |
|
|
return false;
|
1358 |
|
|
}
|
1359 |
|
|
|
1360 |
|
|
hppa_info->stub_sec = stub;
|
1361 |
|
|
}
|
1362 |
|
|
|
1363 |
|
|
return true;
|
1364 |
|
|
}
|
1365 |
|
|
|
1366 |
|
|
/* Create sections necessary for dynamic linking. This is only a rough
|
1367 |
|
|
cut and will likely change as we learn more about the somewhat
|
1368 |
|
|
unusual dynamic linking scheme HP uses.
|
1369 |
|
|
|
1370 |
|
|
.stub:
|
1371 |
|
|
Contains code to implement cross-space calls. The first time one
|
1372 |
|
|
of the stubs is used it will call into the dynamic linker, later
|
1373 |
|
|
calls will go straight to the target.
|
1374 |
|
|
|
1375 |
|
|
The only stub we support right now looks like
|
1376 |
|
|
|
1377 |
|
|
ldd OFFSET(%dp),%r1
|
1378 |
|
|
bve %r0(%r1)
|
1379 |
|
|
ldd OFFSET+8(%dp),%dp
|
1380 |
|
|
|
1381 |
|
|
Other stubs may be needed in the future. We may want the remove
|
1382 |
|
|
the break/nop instruction. It is only used right now to keep the
|
1383 |
|
|
offset of a .plt entry and a .stub entry in sync.
|
1384 |
|
|
|
1385 |
|
|
.dlt:
|
1386 |
|
|
This is what most people call the .got. HP used a different name.
|
1387 |
|
|
Losers.
|
1388 |
|
|
|
1389 |
|
|
.rela.dlt:
|
1390 |
|
|
Relocations for the DLT.
|
1391 |
|
|
|
1392 |
|
|
.plt:
|
1393 |
|
|
Function pointers as address,gp pairs.
|
1394 |
|
|
|
1395 |
|
|
.rela.plt:
|
1396 |
|
|
Should contain dynamic IPLT (and EPLT?) relocations.
|
1397 |
|
|
|
1398 |
|
|
.opd:
|
1399 |
|
|
FPTRS
|
1400 |
|
|
|
1401 |
|
|
.rela.opd:
|
1402 |
|
|
EPLT relocations for symbols exported from shared libraries. */
|
1403 |
|
|
|
1404 |
|
|
static boolean
|
1405 |
|
|
elf64_hppa_create_dynamic_sections (abfd, info)
|
1406 |
|
|
bfd *abfd;
|
1407 |
|
|
struct bfd_link_info *info;
|
1408 |
|
|
{
|
1409 |
|
|
asection *s;
|
1410 |
|
|
|
1411 |
|
|
if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
|
1412 |
|
|
return false;
|
1413 |
|
|
|
1414 |
|
|
if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
|
1415 |
|
|
return false;
|
1416 |
|
|
|
1417 |
|
|
if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
|
1418 |
|
|
return false;
|
1419 |
|
|
|
1420 |
|
|
if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
|
1421 |
|
|
return false;
|
1422 |
|
|
|
1423 |
|
|
s = bfd_make_section(abfd, ".rela.dlt");
|
1424 |
|
|
if (s == NULL
|
1425 |
|
|
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
|
1426 |
|
|
| SEC_HAS_CONTENTS
|
1427 |
|
|
| SEC_IN_MEMORY
|
1428 |
|
|
| SEC_READONLY
|
1429 |
|
|
| SEC_LINKER_CREATED))
|
1430 |
|
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
1431 |
|
|
return false;
|
1432 |
|
|
elf64_hppa_hash_table (info)->dlt_rel_sec = s;
|
1433 |
|
|
|
1434 |
|
|
s = bfd_make_section(abfd, ".rela.plt");
|
1435 |
|
|
if (s == NULL
|
1436 |
|
|
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
|
1437 |
|
|
| SEC_HAS_CONTENTS
|
1438 |
|
|
| SEC_IN_MEMORY
|
1439 |
|
|
| SEC_READONLY
|
1440 |
|
|
| SEC_LINKER_CREATED))
|
1441 |
|
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
1442 |
|
|
return false;
|
1443 |
|
|
elf64_hppa_hash_table (info)->plt_rel_sec = s;
|
1444 |
|
|
|
1445 |
|
|
s = bfd_make_section(abfd, ".rela.data");
|
1446 |
|
|
if (s == NULL
|
1447 |
|
|
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
|
1448 |
|
|
| SEC_HAS_CONTENTS
|
1449 |
|
|
| SEC_IN_MEMORY
|
1450 |
|
|
| SEC_READONLY
|
1451 |
|
|
| SEC_LINKER_CREATED))
|
1452 |
|
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
1453 |
|
|
return false;
|
1454 |
|
|
elf64_hppa_hash_table (info)->other_rel_sec = s;
|
1455 |
|
|
|
1456 |
|
|
s = bfd_make_section(abfd, ".rela.opd");
|
1457 |
|
|
if (s == NULL
|
1458 |
|
|
|| !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
|
1459 |
|
|
| SEC_HAS_CONTENTS
|
1460 |
|
|
| SEC_IN_MEMORY
|
1461 |
|
|
| SEC_READONLY
|
1462 |
|
|
| SEC_LINKER_CREATED))
|
1463 |
|
|
|| !bfd_set_section_alignment (abfd, s, 3))
|
1464 |
|
|
return false;
|
1465 |
|
|
elf64_hppa_hash_table (info)->opd_rel_sec = s;
|
1466 |
|
|
|
1467 |
|
|
return true;
|
1468 |
|
|
}
|
1469 |
|
|
|
1470 |
|
|
/* Allocate dynamic relocations for those symbols that turned out
|
1471 |
|
|
to be dynamic. */
|
1472 |
|
|
|
1473 |
|
|
static boolean
|
1474 |
|
|
allocate_dynrel_entries (dyn_h, data)
|
1475 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
1476 |
|
|
PTR data;
|
1477 |
|
|
{
|
1478 |
|
|
struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
|
1479 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
1480 |
|
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
1481 |
|
|
boolean dynamic_symbol, shared;
|
1482 |
|
|
|
1483 |
|
|
hppa_info = elf64_hppa_hash_table (x->info);
|
1484 |
|
|
dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
|
1485 |
|
|
shared = x->info->shared;
|
1486 |
|
|
|
1487 |
|
|
/* We may need to allocate relocations for a non-dynamic symbol
|
1488 |
|
|
when creating a shared library. */
|
1489 |
|
|
if (!dynamic_symbol && !shared)
|
1490 |
|
|
return true;
|
1491 |
|
|
|
1492 |
|
|
/* Take care of the normal data relocations. */
|
1493 |
|
|
|
1494 |
|
|
for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
|
1495 |
|
|
{
|
1496 |
|
|
switch (rent->type)
|
1497 |
|
|
{
|
1498 |
|
|
case R_PARISC_FPTR64:
|
1499 |
|
|
/* Allocate one iff we are not building a shared library and
|
1500 |
|
|
!want_opd, which by this point will be true only if we're
|
1501 |
|
|
actually allocating one statically in the main executable. */
|
1502 |
|
|
if (!x->info->shared && dyn_h->want_opd)
|
1503 |
|
|
continue;
|
1504 |
|
|
break;
|
1505 |
|
|
}
|
1506 |
|
|
hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
|
1507 |
|
|
|
1508 |
|
|
/* Make sure this symbol gets into the dynamic symbol table if it is
|
1509 |
|
|
not already recorded. ?!? This should not be in the loop since
|
1510 |
|
|
the symbol need only be added once. */
|
1511 |
|
|
if (dyn_h->h == 0 || dyn_h->h->dynindx == -1)
|
1512 |
|
|
if (!_bfd_elf64_link_record_local_dynamic_symbol
|
1513 |
|
|
(x->info, rent->sec->owner, dyn_h->sym_indx))
|
1514 |
|
|
return false;
|
1515 |
|
|
}
|
1516 |
|
|
|
1517 |
|
|
/* Take care of the GOT and PLT relocations. */
|
1518 |
|
|
|
1519 |
|
|
if ((dynamic_symbol || shared) && dyn_h->want_dlt)
|
1520 |
|
|
hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
|
1521 |
|
|
|
1522 |
|
|
/* If we are building a shared library, then every symbol that has an
|
1523 |
|
|
opd entry will need an EPLT relocation to relocate the symbol's address
|
1524 |
|
|
and __gp value based on the runtime load address. */
|
1525 |
|
|
if (shared && dyn_h->want_opd)
|
1526 |
|
|
hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
|
1527 |
|
|
|
1528 |
|
|
if (dyn_h->want_plt && dynamic_symbol)
|
1529 |
|
|
{
|
1530 |
|
|
bfd_size_type t = 0;
|
1531 |
|
|
|
1532 |
|
|
/* Dynamic symbols get one IPLT relocation. Local symbols in
|
1533 |
|
|
shared libraries get two REL relocations. Local symbols in
|
1534 |
|
|
main applications get nothing. */
|
1535 |
|
|
if (dynamic_symbol)
|
1536 |
|
|
t = sizeof (Elf64_External_Rela);
|
1537 |
|
|
else if (shared)
|
1538 |
|
|
t = 2 * sizeof (Elf64_External_Rela);
|
1539 |
|
|
|
1540 |
|
|
hppa_info->plt_rel_sec->_raw_size += t;
|
1541 |
|
|
}
|
1542 |
|
|
|
1543 |
|
|
return true;
|
1544 |
|
|
}
|
1545 |
|
|
|
1546 |
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
1547 |
|
|
regular object. */
|
1548 |
|
|
|
1549 |
|
|
static boolean
|
1550 |
|
|
elf64_hppa_adjust_dynamic_symbol (info, h)
|
1551 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
1552 |
|
|
struct elf_link_hash_entry *h;
|
1553 |
|
|
{
|
1554 |
|
|
/* ??? Undefined symbols with PLT entries should be re-defined
|
1555 |
|
|
to be the PLT entry. */
|
1556 |
|
|
|
1557 |
|
|
/* If this is a weak symbol, and there is a real definition, the
|
1558 |
|
|
processor independent code will have arranged for us to see the
|
1559 |
|
|
real definition first, and we can just use the same value. */
|
1560 |
|
|
if (h->weakdef != NULL)
|
1561 |
|
|
{
|
1562 |
|
|
BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
|
1563 |
|
|
|| h->weakdef->root.type == bfd_link_hash_defweak);
|
1564 |
|
|
h->root.u.def.section = h->weakdef->root.u.def.section;
|
1565 |
|
|
h->root.u.def.value = h->weakdef->root.u.def.value;
|
1566 |
|
|
return true;
|
1567 |
|
|
}
|
1568 |
|
|
|
1569 |
|
|
/* If this is a reference to a symbol defined by a dynamic object which
|
1570 |
|
|
is not a function, we might allocate the symbol in our .dynbss section
|
1571 |
|
|
and allocate a COPY dynamic relocation.
|
1572 |
|
|
|
1573 |
|
|
But PA64 code is canonically PIC, so as a rule we can avoid this sort
|
1574 |
|
|
of hackery. */
|
1575 |
|
|
|
1576 |
|
|
return true;
|
1577 |
|
|
}
|
1578 |
|
|
|
1579 |
|
|
/* Set the final sizes of the dynamic sections and allocate memory for
|
1580 |
|
|
the contents of our special sections. */
|
1581 |
|
|
|
1582 |
|
|
static boolean
|
1583 |
|
|
elf64_hppa_size_dynamic_sections (output_bfd, info)
|
1584 |
|
|
bfd *output_bfd;
|
1585 |
|
|
struct bfd_link_info *info;
|
1586 |
|
|
{
|
1587 |
|
|
bfd *dynobj;
|
1588 |
|
|
asection *s;
|
1589 |
|
|
boolean plt;
|
1590 |
|
|
boolean relocs;
|
1591 |
|
|
boolean reltext;
|
1592 |
|
|
struct elf64_hppa_allocate_data data;
|
1593 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
1594 |
|
|
|
1595 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
1596 |
|
|
|
1597 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
1598 |
|
|
BFD_ASSERT (dynobj != NULL);
|
1599 |
|
|
|
1600 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
1601 |
|
|
{
|
1602 |
|
|
/* Set the contents of the .interp section to the interpreter. */
|
1603 |
|
|
if (! info->shared)
|
1604 |
|
|
{
|
1605 |
|
|
s = bfd_get_section_by_name (dynobj, ".interp");
|
1606 |
|
|
BFD_ASSERT (s != NULL);
|
1607 |
|
|
s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
|
1608 |
|
|
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
1609 |
|
|
}
|
1610 |
|
|
}
|
1611 |
|
|
else
|
1612 |
|
|
{
|
1613 |
|
|
/* We may have created entries in the .rela.got section.
|
1614 |
|
|
However, if we are not creating the dynamic sections, we will
|
1615 |
|
|
not actually use these entries. Reset the size of .rela.dlt,
|
1616 |
|
|
which will cause it to get stripped from the output file
|
1617 |
|
|
below. */
|
1618 |
|
|
s = bfd_get_section_by_name (dynobj, ".rela.dlt");
|
1619 |
|
|
if (s != NULL)
|
1620 |
|
|
s->_raw_size = 0;
|
1621 |
|
|
}
|
1622 |
|
|
|
1623 |
|
|
/* Allocate the GOT entries. */
|
1624 |
|
|
|
1625 |
|
|
data.info = info;
|
1626 |
|
|
if (elf64_hppa_hash_table (info)->dlt_sec)
|
1627 |
|
|
{
|
1628 |
|
|
data.ofs = 0x0;
|
1629 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
1630 |
|
|
allocate_global_data_dlt, &data);
|
1631 |
|
|
hppa_info->dlt_sec->_raw_size = data.ofs;
|
1632 |
|
|
|
1633 |
|
|
data.ofs = 0x0;
|
1634 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
1635 |
|
|
allocate_global_data_plt, &data);
|
1636 |
|
|
hppa_info->plt_sec->_raw_size = data.ofs;
|
1637 |
|
|
|
1638 |
|
|
data.ofs = 0x0;
|
1639 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
1640 |
|
|
allocate_global_data_stub, &data);
|
1641 |
|
|
hppa_info->stub_sec->_raw_size = data.ofs;
|
1642 |
|
|
}
|
1643 |
|
|
|
1644 |
|
|
/* Mark each function this program exports so that we will allocate
|
1645 |
|
|
space in the .opd section for each function's FPTR.
|
1646 |
|
|
|
1647 |
|
|
We have to traverse the main linker hash table since we have to
|
1648 |
|
|
find functions which may not have been mentioned in any relocs. */
|
1649 |
|
|
elf_link_hash_traverse (elf_hash_table (info),
|
1650 |
|
|
elf64_hppa_mark_exported_functions,
|
1651 |
|
|
info);
|
1652 |
|
|
|
1653 |
|
|
/* Allocate space for entries in the .opd section. */
|
1654 |
|
|
if (elf64_hppa_hash_table (info)->opd_sec)
|
1655 |
|
|
{
|
1656 |
|
|
data.ofs = 0;
|
1657 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
1658 |
|
|
allocate_global_data_opd, &data);
|
1659 |
|
|
hppa_info->opd_sec->_raw_size = data.ofs;
|
1660 |
|
|
}
|
1661 |
|
|
|
1662 |
|
|
/* Now allocate space for dynamic relocations, if necessary. */
|
1663 |
|
|
if (hppa_info->root.dynamic_sections_created)
|
1664 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
1665 |
|
|
allocate_dynrel_entries, &data);
|
1666 |
|
|
|
1667 |
|
|
/* The sizes of all the sections are set. Allocate memory for them. */
|
1668 |
|
|
plt = false;
|
1669 |
|
|
relocs = false;
|
1670 |
|
|
reltext = false;
|
1671 |
|
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
1672 |
|
|
{
|
1673 |
|
|
const char *name;
|
1674 |
|
|
boolean strip;
|
1675 |
|
|
|
1676 |
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
1677 |
|
|
continue;
|
1678 |
|
|
|
1679 |
|
|
/* It's OK to base decisions on the section name, because none
|
1680 |
|
|
of the dynobj section names depend upon the input files. */
|
1681 |
|
|
name = bfd_get_section_name (dynobj, s);
|
1682 |
|
|
|
1683 |
|
|
strip = 0;
|
1684 |
|
|
|
1685 |
|
|
if (strcmp (name, ".plt") == 0)
|
1686 |
|
|
{
|
1687 |
|
|
if (s->_raw_size == 0)
|
1688 |
|
|
{
|
1689 |
|
|
/* Strip this section if we don't need it; see the
|
1690 |
|
|
comment below. */
|
1691 |
|
|
strip = true;
|
1692 |
|
|
}
|
1693 |
|
|
else
|
1694 |
|
|
{
|
1695 |
|
|
/* Remember whether there is a PLT. */
|
1696 |
|
|
plt = true;
|
1697 |
|
|
}
|
1698 |
|
|
}
|
1699 |
|
|
else if (strcmp (name, ".dlt") == 0)
|
1700 |
|
|
{
|
1701 |
|
|
if (s->_raw_size == 0)
|
1702 |
|
|
{
|
1703 |
|
|
/* Strip this section if we don't need it; see the
|
1704 |
|
|
comment below. */
|
1705 |
|
|
strip = true;
|
1706 |
|
|
}
|
1707 |
|
|
}
|
1708 |
|
|
else if (strcmp (name, ".opd") == 0)
|
1709 |
|
|
{
|
1710 |
|
|
if (s->_raw_size == 0)
|
1711 |
|
|
{
|
1712 |
|
|
/* Strip this section if we don't need it; see the
|
1713 |
|
|
comment below. */
|
1714 |
|
|
strip = true;
|
1715 |
|
|
}
|
1716 |
|
|
}
|
1717 |
|
|
else if (strncmp (name, ".rela", 4) == 0)
|
1718 |
|
|
{
|
1719 |
|
|
if (s->_raw_size == 0)
|
1720 |
|
|
{
|
1721 |
|
|
/* If we don't need this section, strip it from the
|
1722 |
|
|
output file. This is mostly to handle .rela.bss and
|
1723 |
|
|
.rela.plt. We must create both sections in
|
1724 |
|
|
create_dynamic_sections, because they must be created
|
1725 |
|
|
before the linker maps input sections to output
|
1726 |
|
|
sections. The linker does that before
|
1727 |
|
|
adjust_dynamic_symbol is called, and it is that
|
1728 |
|
|
function which decides whether anything needs to go
|
1729 |
|
|
into these sections. */
|
1730 |
|
|
strip = true;
|
1731 |
|
|
}
|
1732 |
|
|
else
|
1733 |
|
|
{
|
1734 |
|
|
asection *target;
|
1735 |
|
|
|
1736 |
|
|
/* Remember whether there are any reloc sections other
|
1737 |
|
|
than .rela.plt. */
|
1738 |
|
|
if (strcmp (name, ".rela.plt") != 0)
|
1739 |
|
|
{
|
1740 |
|
|
const char *outname;
|
1741 |
|
|
|
1742 |
|
|
relocs = true;
|
1743 |
|
|
|
1744 |
|
|
/* If this relocation section applies to a read only
|
1745 |
|
|
section, then we probably need a DT_TEXTREL
|
1746 |
|
|
entry. The entries in the .rela.plt section
|
1747 |
|
|
really apply to the .got section, which we
|
1748 |
|
|
created ourselves and so know is not readonly. */
|
1749 |
|
|
outname = bfd_get_section_name (output_bfd,
|
1750 |
|
|
s->output_section);
|
1751 |
|
|
target = bfd_get_section_by_name (output_bfd, outname + 4);
|
1752 |
|
|
if (target != NULL
|
1753 |
|
|
&& (target->flags & SEC_READONLY) != 0
|
1754 |
|
|
&& (target->flags & SEC_ALLOC) != 0)
|
1755 |
|
|
reltext = true;
|
1756 |
|
|
}
|
1757 |
|
|
|
1758 |
|
|
/* We use the reloc_count field as a counter if we need
|
1759 |
|
|
to copy relocs into the output file. */
|
1760 |
|
|
s->reloc_count = 0;
|
1761 |
|
|
}
|
1762 |
|
|
}
|
1763 |
|
|
else if (strncmp (name, ".dlt", 4) != 0
|
1764 |
|
|
&& strcmp (name, ".stub") != 0
|
1765 |
|
|
&& strcmp (name, ".got") != 0)
|
1766 |
|
|
{
|
1767 |
|
|
/* It's not one of our sections, so don't allocate space. */
|
1768 |
|
|
continue;
|
1769 |
|
|
}
|
1770 |
|
|
|
1771 |
|
|
if (strip)
|
1772 |
|
|
{
|
1773 |
|
|
_bfd_strip_section_from_output (info, s);
|
1774 |
|
|
continue;
|
1775 |
|
|
}
|
1776 |
|
|
|
1777 |
|
|
/* Allocate memory for the section contents if it has not
|
1778 |
|
|
been allocated already. We use bfd_zalloc here in case
|
1779 |
|
|
unused entries are not reclaimed before the section's
|
1780 |
|
|
contents are written out. This should not happen, but this
|
1781 |
|
|
way if it does, we get a R_PARISC_NONE reloc instead of
|
1782 |
|
|
garbage. */
|
1783 |
|
|
if (s->contents == NULL)
|
1784 |
|
|
{
|
1785 |
|
|
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
|
1786 |
|
|
if (s->contents == NULL && s->_raw_size != 0)
|
1787 |
|
|
return false;
|
1788 |
|
|
}
|
1789 |
|
|
}
|
1790 |
|
|
|
1791 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
1792 |
|
|
{
|
1793 |
|
|
/* Always create a DT_PLTGOT. It actually has nothing to do with
|
1794 |
|
|
the PLT, it is how we communicate the __gp value of a load
|
1795 |
|
|
module to the dynamic linker. */
|
1796 |
|
|
if (! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_FLAGS, 0)
|
1797 |
|
|
|| ! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0))
|
1798 |
|
|
return false;
|
1799 |
|
|
|
1800 |
|
|
/* Add some entries to the .dynamic section. We fill in the
|
1801 |
|
|
values later, in elf64_hppa_finish_dynamic_sections, but we
|
1802 |
|
|
must add the entries now so that we get the correct size for
|
1803 |
|
|
the .dynamic section. The DT_DEBUG entry is filled in by the
|
1804 |
|
|
dynamic linker and used by the debugger. */
|
1805 |
|
|
if (! info->shared)
|
1806 |
|
|
{
|
1807 |
|
|
if (! bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)
|
1808 |
|
|
|| ! bfd_elf64_add_dynamic_entry (info, DT_HP_DLD_HOOK, 0)
|
1809 |
|
|
|| ! bfd_elf64_add_dynamic_entry (info, DT_HP_LOAD_MAP, 0))
|
1810 |
|
|
return false;
|
1811 |
|
|
}
|
1812 |
|
|
|
1813 |
|
|
if (plt)
|
1814 |
|
|
{
|
1815 |
|
|
if (! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0)
|
1816 |
|
|
|| ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
|
1817 |
|
|
|| ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0))
|
1818 |
|
|
return false;
|
1819 |
|
|
}
|
1820 |
|
|
|
1821 |
|
|
if (relocs)
|
1822 |
|
|
{
|
1823 |
|
|
if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0)
|
1824 |
|
|
|| ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0)
|
1825 |
|
|
|| ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT,
|
1826 |
|
|
sizeof (Elf64_External_Rela)))
|
1827 |
|
|
return false;
|
1828 |
|
|
}
|
1829 |
|
|
|
1830 |
|
|
if (reltext)
|
1831 |
|
|
{
|
1832 |
|
|
if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0))
|
1833 |
|
|
return false;
|
1834 |
|
|
info->flags |= DF_TEXTREL;
|
1835 |
|
|
}
|
1836 |
|
|
}
|
1837 |
|
|
|
1838 |
|
|
return true;
|
1839 |
|
|
}
|
1840 |
|
|
|
1841 |
|
|
/* Called after we have output the symbol into the dynamic symbol
|
1842 |
|
|
table, but before we output the symbol into the normal symbol
|
1843 |
|
|
table.
|
1844 |
|
|
|
1845 |
|
|
For some symbols we had to change their address when outputting
|
1846 |
|
|
the dynamic symbol table. We undo that change here so that
|
1847 |
|
|
the symbols have their expected value in the normal symbol
|
1848 |
|
|
table. Ick. */
|
1849 |
|
|
|
1850 |
|
|
static boolean
|
1851 |
|
|
elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
|
1852 |
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
1853 |
|
|
struct bfd_link_info *info;
|
1854 |
|
|
const char *name;
|
1855 |
|
|
Elf_Internal_Sym *sym;
|
1856 |
|
|
asection *input_sec ATTRIBUTE_UNUSED;
|
1857 |
|
|
{
|
1858 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
1859 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
1860 |
|
|
|
1861 |
|
|
/* We may be called with the file symbol or section symbols.
|
1862 |
|
|
They never need munging, so it is safe to ignore them. */
|
1863 |
|
|
if (!name)
|
1864 |
|
|
return true;
|
1865 |
|
|
|
1866 |
|
|
/* Get the PA dyn_symbol (if any) associated with NAME. */
|
1867 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
1868 |
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
1869 |
|
|
name, false, false);
|
1870 |
|
|
|
1871 |
|
|
/* Function symbols for which we created .opd entries *may* have been
|
1872 |
|
|
munged by finish_dynamic_symbol and have to be un-munged here.
|
1873 |
|
|
|
1874 |
|
|
Note that finish_dynamic_symbol sometimes turns dynamic symbols
|
1875 |
|
|
into non-dynamic ones, so we initialize st_shndx to -1 in
|
1876 |
|
|
mark_exported_functions and check to see if it was overwritten
|
1877 |
|
|
here instead of just checking dyn_h->h->dynindx. */
|
1878 |
|
|
if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
|
1879 |
|
|
{
|
1880 |
|
|
/* Restore the saved value and section index. */
|
1881 |
|
|
sym->st_value = dyn_h->st_value;
|
1882 |
|
|
sym->st_shndx = dyn_h->st_shndx;
|
1883 |
|
|
}
|
1884 |
|
|
|
1885 |
|
|
return true;
|
1886 |
|
|
}
|
1887 |
|
|
|
1888 |
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
1889 |
|
|
dynamic sections here. */
|
1890 |
|
|
|
1891 |
|
|
static boolean
|
1892 |
|
|
elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
|
1893 |
|
|
bfd *output_bfd;
|
1894 |
|
|
struct bfd_link_info *info;
|
1895 |
|
|
struct elf_link_hash_entry *h;
|
1896 |
|
|
Elf_Internal_Sym *sym;
|
1897 |
|
|
{
|
1898 |
|
|
asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
|
1899 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
1900 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
1901 |
|
|
|
1902 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
1903 |
|
|
dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
|
1904 |
|
|
h->root.root.string, false, false);
|
1905 |
|
|
|
1906 |
|
|
stub = hppa_info->stub_sec;
|
1907 |
|
|
splt = hppa_info->plt_sec;
|
1908 |
|
|
sdlt = hppa_info->dlt_sec;
|
1909 |
|
|
sopd = hppa_info->opd_sec;
|
1910 |
|
|
spltrel = hppa_info->plt_rel_sec;
|
1911 |
|
|
sdltrel = hppa_info->dlt_rel_sec;
|
1912 |
|
|
|
1913 |
|
|
BFD_ASSERT (stub != NULL && splt != NULL
|
1914 |
|
|
&& sopd != NULL && sdlt != NULL)
|
1915 |
|
|
|
1916 |
|
|
/* Incredible. It is actually necessary to NOT use the symbol's real
|
1917 |
|
|
value when building the dynamic symbol table for a shared library.
|
1918 |
|
|
At least for symbols that refer to functions.
|
1919 |
|
|
|
1920 |
|
|
We will store a new value and section index into the symbol long
|
1921 |
|
|
enough to output it into the dynamic symbol table, then we restore
|
1922 |
|
|
the original values (in elf64_hppa_link_output_symbol_hook). */
|
1923 |
|
|
if (dyn_h && dyn_h->want_opd)
|
1924 |
|
|
{
|
1925 |
|
|
/* Save away the original value and section index so that we
|
1926 |
|
|
can restore them later. */
|
1927 |
|
|
dyn_h->st_value = sym->st_value;
|
1928 |
|
|
dyn_h->st_shndx = sym->st_shndx;
|
1929 |
|
|
|
1930 |
|
|
/* For the dynamic symbol table entry, we want the value to be
|
1931 |
|
|
address of this symbol's entry within the .opd section. */
|
1932 |
|
|
sym->st_value = (dyn_h->opd_offset
|
1933 |
|
|
+ sopd->output_offset
|
1934 |
|
|
+ sopd->output_section->vma);
|
1935 |
|
|
sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
|
1936 |
|
|
sopd->output_section);
|
1937 |
|
|
}
|
1938 |
|
|
|
1939 |
|
|
/* Initialize a .plt entry if requested. */
|
1940 |
|
|
if (dyn_h && dyn_h->want_plt
|
1941 |
|
|
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
|
1942 |
|
|
{
|
1943 |
|
|
bfd_vma value;
|
1944 |
|
|
Elf_Internal_Rela rel;
|
1945 |
|
|
|
1946 |
|
|
/* We do not actually care about the value in the PLT entry
|
1947 |
|
|
if we are creating a shared library and the symbol is
|
1948 |
|
|
still undefined, we create a dynamic relocation to fill
|
1949 |
|
|
in the correct value. */
|
1950 |
|
|
if (info->shared && h->root.type == bfd_link_hash_undefined)
|
1951 |
|
|
value = 0;
|
1952 |
|
|
else
|
1953 |
|
|
value = (h->root.u.def.value + h->root.u.def.section->vma);
|
1954 |
|
|
|
1955 |
|
|
/* Fill in the entry in the procedure linkage table.
|
1956 |
|
|
|
1957 |
|
|
The format of a plt entry is
|
1958 |
|
|
<funcaddr> <__gp>.
|
1959 |
|
|
|
1960 |
|
|
plt_offset is the offset within the PLT section at which to
|
1961 |
|
|
install the PLT entry.
|
1962 |
|
|
|
1963 |
|
|
We are modifying the in-memory PLT contents here, so we do not add
|
1964 |
|
|
in the output_offset of the PLT section. */
|
1965 |
|
|
|
1966 |
|
|
bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
|
1967 |
|
|
value = _bfd_get_gp_value (splt->output_section->owner);
|
1968 |
|
|
bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
|
1969 |
|
|
|
1970 |
|
|
/* Create a dynamic IPLT relocation for this entry.
|
1971 |
|
|
|
1972 |
|
|
We are creating a relocation in the output file's PLT section,
|
1973 |
|
|
which is included within the DLT secton. So we do need to include
|
1974 |
|
|
the PLT's output_offset in the computation of the relocation's
|
1975 |
|
|
address. */
|
1976 |
|
|
rel.r_offset = (dyn_h->plt_offset + splt->output_offset
|
1977 |
|
|
+ splt->output_section->vma);
|
1978 |
|
|
rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
|
1979 |
|
|
rel.r_addend = 0;
|
1980 |
|
|
|
1981 |
|
|
bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
|
1982 |
|
|
(((Elf64_External_Rela *)
|
1983 |
|
|
spltrel->contents)
|
1984 |
|
|
+ spltrel->reloc_count));
|
1985 |
|
|
spltrel->reloc_count++;
|
1986 |
|
|
}
|
1987 |
|
|
|
1988 |
|
|
/* Initialize an external call stub entry if requested. */
|
1989 |
|
|
if (dyn_h && dyn_h->want_stub
|
1990 |
|
|
&& elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
|
1991 |
|
|
{
|
1992 |
|
|
bfd_vma value;
|
1993 |
|
|
int insn;
|
1994 |
|
|
unsigned int max_offset;
|
1995 |
|
|
|
1996 |
|
|
/* Install the generic stub template.
|
1997 |
|
|
|
1998 |
|
|
We are modifying the contents of the stub section, so we do not
|
1999 |
|
|
need to include the stub section's output_offset here. */
|
2000 |
|
|
memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
|
2001 |
|
|
|
2002 |
|
|
/* Fix up the first ldd instruction.
|
2003 |
|
|
|
2004 |
|
|
We are modifying the contents of the STUB section in memory,
|
2005 |
|
|
so we do not need to include its output offset in this computation.
|
2006 |
|
|
|
2007 |
|
|
Note the plt_offset value is the value of the PLT entry relative to
|
2008 |
|
|
the start of the PLT section. These instructions will reference
|
2009 |
|
|
data relative to the value of __gp, which may not necessarily have
|
2010 |
|
|
the same address as the start of the PLT section.
|
2011 |
|
|
|
2012 |
|
|
gp_offset contains the offset of __gp within the PLT section. */
|
2013 |
|
|
value = dyn_h->plt_offset - hppa_info->gp_offset;
|
2014 |
|
|
|
2015 |
|
|
insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
|
2016 |
|
|
if (output_bfd->arch_info->mach >= 25)
|
2017 |
|
|
{
|
2018 |
|
|
/* Wide mode allows 16 bit offsets. */
|
2019 |
|
|
max_offset = 32768;
|
2020 |
|
|
insn &= ~ 0xfff1;
|
2021 |
|
|
insn |= re_assemble_16 (value);
|
2022 |
|
|
}
|
2023 |
|
|
else
|
2024 |
|
|
{
|
2025 |
|
|
max_offset = 8192;
|
2026 |
|
|
insn &= ~ 0x3ff1;
|
2027 |
|
|
insn |= re_assemble_14 (value);
|
2028 |
|
|
}
|
2029 |
|
|
|
2030 |
|
|
if ((value & 7) || value + max_offset >= 2*max_offset - 8)
|
2031 |
|
|
{
|
2032 |
|
|
(*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
|
2033 |
|
|
dyn_h->root.string,
|
2034 |
|
|
(long) value);
|
2035 |
|
|
return false;
|
2036 |
|
|
}
|
2037 |
|
|
|
2038 |
|
|
bfd_put_32 (stub->owner, insn,
|
2039 |
|
|
stub->contents + dyn_h->stub_offset);
|
2040 |
|
|
|
2041 |
|
|
/* Fix up the second ldd instruction. */
|
2042 |
|
|
value += 8;
|
2043 |
|
|
insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
|
2044 |
|
|
if (output_bfd->arch_info->mach >= 25)
|
2045 |
|
|
{
|
2046 |
|
|
insn &= ~ 0xfff1;
|
2047 |
|
|
insn |= re_assemble_16 (value);
|
2048 |
|
|
}
|
2049 |
|
|
else
|
2050 |
|
|
{
|
2051 |
|
|
insn &= ~ 0x3ff1;
|
2052 |
|
|
insn |= re_assemble_14 (value);
|
2053 |
|
|
}
|
2054 |
|
|
bfd_put_32 (stub->owner, insn,
|
2055 |
|
|
stub->contents + dyn_h->stub_offset + 8);
|
2056 |
|
|
}
|
2057 |
|
|
|
2058 |
|
|
/* Millicode symbols should not be put in the dynamic
|
2059 |
|
|
symbol table under any circumstances. */
|
2060 |
|
|
if (ELF_ST_TYPE (sym->st_info) == STT_PARISC_MILLI)
|
2061 |
|
|
h->dynindx = -1;
|
2062 |
|
|
|
2063 |
|
|
return true;
|
2064 |
|
|
}
|
2065 |
|
|
|
2066 |
|
|
/* The .opd section contains FPTRs for each function this file
|
2067 |
|
|
exports. Initialize the FPTR entries. */
|
2068 |
|
|
|
2069 |
|
|
static boolean
|
2070 |
|
|
elf64_hppa_finalize_opd (dyn_h, data)
|
2071 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
2072 |
|
|
PTR data;
|
2073 |
|
|
{
|
2074 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
2075 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
2076 |
|
|
struct elf_link_hash_entry *h = dyn_h->h;
|
2077 |
|
|
asection *sopd;
|
2078 |
|
|
asection *sopdrel;
|
2079 |
|
|
|
2080 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
2081 |
|
|
sopd = hppa_info->opd_sec;
|
2082 |
|
|
sopdrel = hppa_info->opd_rel_sec;
|
2083 |
|
|
|
2084 |
|
|
if (h && dyn_h && dyn_h->want_opd)
|
2085 |
|
|
{
|
2086 |
|
|
bfd_vma value;
|
2087 |
|
|
|
2088 |
|
|
/* The first two words of an .opd entry are zero.
|
2089 |
|
|
|
2090 |
|
|
We are modifying the contents of the OPD section in memory, so we
|
2091 |
|
|
do not need to include its output offset in this computation. */
|
2092 |
|
|
memset (sopd->contents + dyn_h->opd_offset, 0, 16);
|
2093 |
|
|
|
2094 |
|
|
value = (h->root.u.def.value
|
2095 |
|
|
+ h->root.u.def.section->output_section->vma
|
2096 |
|
|
+ h->root.u.def.section->output_offset);
|
2097 |
|
|
|
2098 |
|
|
/* The next word is the address of the function. */
|
2099 |
|
|
bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
|
2100 |
|
|
|
2101 |
|
|
/* The last word is our local __gp value. */
|
2102 |
|
|
value = _bfd_get_gp_value (sopd->output_section->owner);
|
2103 |
|
|
bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
|
2104 |
|
|
}
|
2105 |
|
|
|
2106 |
|
|
/* If we are generating a shared library, we must generate EPLT relocations
|
2107 |
|
|
for each entry in the .opd, even for static functions (they may have
|
2108 |
|
|
had their address taken). */
|
2109 |
|
|
if (info->shared && dyn_h && dyn_h->want_opd)
|
2110 |
|
|
{
|
2111 |
|
|
Elf64_Internal_Rela rel;
|
2112 |
|
|
int dynindx;
|
2113 |
|
|
|
2114 |
|
|
/* We may need to do a relocation against a local symbol, in
|
2115 |
|
|
which case we have to look up it's dynamic symbol index off
|
2116 |
|
|
the local symbol hash table. */
|
2117 |
|
|
if (h && h->dynindx != -1)
|
2118 |
|
|
dynindx = h->dynindx;
|
2119 |
|
|
else
|
2120 |
|
|
dynindx
|
2121 |
|
|
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
|
2122 |
|
|
dyn_h->sym_indx);
|
2123 |
|
|
|
2124 |
|
|
/* The offset of this relocation is the absolute address of the
|
2125 |
|
|
.opd entry for this symbol. */
|
2126 |
|
|
rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
|
2127 |
|
|
+ sopd->output_section->vma);
|
2128 |
|
|
|
2129 |
|
|
/* If H is non-null, then we have an external symbol.
|
2130 |
|
|
|
2131 |
|
|
It is imperative that we use a different dynamic symbol for the
|
2132 |
|
|
EPLT relocation if the symbol has global scope.
|
2133 |
|
|
|
2134 |
|
|
In the dynamic symbol table, the function symbol will have a value
|
2135 |
|
|
which is address of the function's .opd entry.
|
2136 |
|
|
|
2137 |
|
|
Thus, we can not use that dynamic symbol for the EPLT relocation
|
2138 |
|
|
(if we did, the data in the .opd would reference itself rather
|
2139 |
|
|
than the actual address of the function). Instead we have to use
|
2140 |
|
|
a new dynamic symbol which has the same value as the original global
|
2141 |
|
|
function symbol.
|
2142 |
|
|
|
2143 |
|
|
We prefix the original symbol with a "." and use the new symbol in
|
2144 |
|
|
the EPLT relocation. This new symbol has already been recorded in
|
2145 |
|
|
the symbol table, we just have to look it up and use it.
|
2146 |
|
|
|
2147 |
|
|
We do not have such problems with static functions because we do
|
2148 |
|
|
not make their addresses in the dynamic symbol table point to
|
2149 |
|
|
the .opd entry. Ultimately this should be safe since a static
|
2150 |
|
|
function can not be directly referenced outside of its shared
|
2151 |
|
|
library.
|
2152 |
|
|
|
2153 |
|
|
We do have to play similar games for FPTR relocations in shared
|
2154 |
|
|
libraries, including those for static symbols. See the FPTR
|
2155 |
|
|
handling in elf64_hppa_finalize_dynreloc. */
|
2156 |
|
|
if (h)
|
2157 |
|
|
{
|
2158 |
|
|
char *new_name;
|
2159 |
|
|
struct elf_link_hash_entry *nh;
|
2160 |
|
|
|
2161 |
|
|
new_name = alloca (strlen (h->root.root.string) + 2);
|
2162 |
|
|
new_name[0] = '.';
|
2163 |
|
|
strcpy (new_name + 1, h->root.root.string);
|
2164 |
|
|
|
2165 |
|
|
nh = elf_link_hash_lookup (elf_hash_table (info),
|
2166 |
|
|
new_name, false, false, false);
|
2167 |
|
|
|
2168 |
|
|
/* All we really want from the new symbol is its dynamic
|
2169 |
|
|
symbol index. */
|
2170 |
|
|
dynindx = nh->dynindx;
|
2171 |
|
|
}
|
2172 |
|
|
|
2173 |
|
|
rel.r_addend = 0;
|
2174 |
|
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
|
2175 |
|
|
|
2176 |
|
|
bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
|
2177 |
|
|
(((Elf64_External_Rela *)
|
2178 |
|
|
sopdrel->contents)
|
2179 |
|
|
+ sopdrel->reloc_count));
|
2180 |
|
|
sopdrel->reloc_count++;
|
2181 |
|
|
}
|
2182 |
|
|
return true;
|
2183 |
|
|
}
|
2184 |
|
|
|
2185 |
|
|
/* The .dlt section contains addresses for items referenced through the
|
2186 |
|
|
dlt. Note that we can have a DLTIND relocation for a local symbol, thus
|
2187 |
|
|
we can not depend on finish_dynamic_symbol to initialize the .dlt. */
|
2188 |
|
|
|
2189 |
|
|
static boolean
|
2190 |
|
|
elf64_hppa_finalize_dlt (dyn_h, data)
|
2191 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
2192 |
|
|
PTR data;
|
2193 |
|
|
{
|
2194 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
2195 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
2196 |
|
|
asection *sdlt, *sdltrel;
|
2197 |
|
|
struct elf_link_hash_entry *h = dyn_h->h;
|
2198 |
|
|
|
2199 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
2200 |
|
|
|
2201 |
|
|
sdlt = hppa_info->dlt_sec;
|
2202 |
|
|
sdltrel = hppa_info->dlt_rel_sec;
|
2203 |
|
|
|
2204 |
|
|
/* H/DYN_H may refer to a local variable and we know it's
|
2205 |
|
|
address, so there is no need to create a relocation. Just install
|
2206 |
|
|
the proper value into the DLT, note this shortcut can not be
|
2207 |
|
|
skipped when building a shared library. */
|
2208 |
|
|
if (! info->shared && h && dyn_h && dyn_h->want_dlt)
|
2209 |
|
|
{
|
2210 |
|
|
bfd_vma value;
|
2211 |
|
|
|
2212 |
|
|
/* If we had an LTOFF_FPTR style relocation we want the DLT entry
|
2213 |
|
|
to point to the FPTR entry in the .opd section.
|
2214 |
|
|
|
2215 |
|
|
We include the OPD's output offset in this computation as
|
2216 |
|
|
we are referring to an absolute address in the resulting
|
2217 |
|
|
object file. */
|
2218 |
|
|
if (dyn_h->want_opd)
|
2219 |
|
|
{
|
2220 |
|
|
value = (dyn_h->opd_offset
|
2221 |
|
|
+ hppa_info->opd_sec->output_offset
|
2222 |
|
|
+ hppa_info->opd_sec->output_section->vma);
|
2223 |
|
|
}
|
2224 |
|
|
else
|
2225 |
|
|
{
|
2226 |
|
|
value = (h->root.u.def.value
|
2227 |
|
|
+ h->root.u.def.section->output_offset);
|
2228 |
|
|
|
2229 |
|
|
if (h->root.u.def.section->output_section)
|
2230 |
|
|
value += h->root.u.def.section->output_section->vma;
|
2231 |
|
|
else
|
2232 |
|
|
value += h->root.u.def.section->vma;
|
2233 |
|
|
}
|
2234 |
|
|
|
2235 |
|
|
/* We do not need to include the output offset of the DLT section
|
2236 |
|
|
here because we are modifying the in-memory contents. */
|
2237 |
|
|
bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
|
2238 |
|
|
}
|
2239 |
|
|
|
2240 |
|
|
/* Create a relocation for the DLT entry assocated with this symbol.
|
2241 |
|
|
When building a shared library the symbol does not have to be dynamic. */
|
2242 |
|
|
if (dyn_h->want_dlt
|
2243 |
|
|
&& (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
|
2244 |
|
|
{
|
2245 |
|
|
Elf64_Internal_Rela rel;
|
2246 |
|
|
int dynindx;
|
2247 |
|
|
|
2248 |
|
|
/* We may need to do a relocation against a local symbol, in
|
2249 |
|
|
which case we have to look up it's dynamic symbol index off
|
2250 |
|
|
the local symbol hash table. */
|
2251 |
|
|
if (h && h->dynindx != -1)
|
2252 |
|
|
dynindx = h->dynindx;
|
2253 |
|
|
else
|
2254 |
|
|
dynindx
|
2255 |
|
|
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
|
2256 |
|
|
dyn_h->sym_indx);
|
2257 |
|
|
|
2258 |
|
|
/* Create a dynamic relocation for this entry. Do include the output
|
2259 |
|
|
offset of the DLT entry since we need an absolute address in the
|
2260 |
|
|
resulting object file. */
|
2261 |
|
|
rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
|
2262 |
|
|
+ sdlt->output_section->vma);
|
2263 |
|
|
if (h && h->type == STT_FUNC)
|
2264 |
|
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
|
2265 |
|
|
else
|
2266 |
|
|
rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
|
2267 |
|
|
rel.r_addend = 0;
|
2268 |
|
|
|
2269 |
|
|
bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
|
2270 |
|
|
(((Elf64_External_Rela *)
|
2271 |
|
|
sdltrel->contents)
|
2272 |
|
|
+ sdltrel->reloc_count));
|
2273 |
|
|
sdltrel->reloc_count++;
|
2274 |
|
|
}
|
2275 |
|
|
return true;
|
2276 |
|
|
}
|
2277 |
|
|
|
2278 |
|
|
/* Finalize the dynamic relocations. Specifically the FPTR relocations
|
2279 |
|
|
for dynamic functions used to initialize static data. */
|
2280 |
|
|
|
2281 |
|
|
static boolean
|
2282 |
|
|
elf64_hppa_finalize_dynreloc (dyn_h, data)
|
2283 |
|
|
struct elf64_hppa_dyn_hash_entry *dyn_h;
|
2284 |
|
|
PTR data;
|
2285 |
|
|
{
|
2286 |
|
|
struct bfd_link_info *info = (struct bfd_link_info *)data;
|
2287 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
2288 |
|
|
struct elf_link_hash_entry *h;
|
2289 |
|
|
int dynamic_symbol;
|
2290 |
|
|
|
2291 |
|
|
dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
|
2292 |
|
|
|
2293 |
|
|
if (!dynamic_symbol && !info->shared)
|
2294 |
|
|
return true;
|
2295 |
|
|
|
2296 |
|
|
if (dyn_h->reloc_entries)
|
2297 |
|
|
{
|
2298 |
|
|
struct elf64_hppa_dyn_reloc_entry *rent;
|
2299 |
|
|
int dynindx;
|
2300 |
|
|
|
2301 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
2302 |
|
|
h = dyn_h->h;
|
2303 |
|
|
|
2304 |
|
|
/* We may need to do a relocation against a local symbol, in
|
2305 |
|
|
which case we have to look up it's dynamic symbol index off
|
2306 |
|
|
the local symbol hash table. */
|
2307 |
|
|
if (h && h->dynindx != -1)
|
2308 |
|
|
dynindx = h->dynindx;
|
2309 |
|
|
else
|
2310 |
|
|
dynindx
|
2311 |
|
|
= _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
|
2312 |
|
|
dyn_h->sym_indx);
|
2313 |
|
|
|
2314 |
|
|
for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
|
2315 |
|
|
{
|
2316 |
|
|
Elf64_Internal_Rela rel;
|
2317 |
|
|
|
2318 |
|
|
switch (rent->type)
|
2319 |
|
|
{
|
2320 |
|
|
case R_PARISC_FPTR64:
|
2321 |
|
|
/* Allocate one iff we are not building a shared library and
|
2322 |
|
|
!want_opd, which by this point will be true only if we're
|
2323 |
|
|
actually allocating one statically in the main executable. */
|
2324 |
|
|
if (!info->shared && dyn_h->want_opd)
|
2325 |
|
|
continue;
|
2326 |
|
|
break;
|
2327 |
|
|
}
|
2328 |
|
|
|
2329 |
|
|
/* Create a dynamic relocation for this entry.
|
2330 |
|
|
|
2331 |
|
|
We need the output offset for the reloc's section because
|
2332 |
|
|
we are creating an absolute address in the resulting object
|
2333 |
|
|
file. */
|
2334 |
|
|
rel.r_offset = (rent->offset + rent->sec->output_offset
|
2335 |
|
|
+ rent->sec->output_section->vma);
|
2336 |
|
|
|
2337 |
|
|
/* An FPTR64 relocation implies that we took the address of
|
2338 |
|
|
a function and that the function has an entry in the .opd
|
2339 |
|
|
section. We want the FPTR64 relocation to reference the
|
2340 |
|
|
entry in .opd.
|
2341 |
|
|
|
2342 |
|
|
We could munge the symbol value in the dynamic symbol table
|
2343 |
|
|
(in fact we already do for functions with global scope) to point
|
2344 |
|
|
to the .opd entry. Then we could use that dynamic symbol in
|
2345 |
|
|
this relocation.
|
2346 |
|
|
|
2347 |
|
|
Or we could do something sensible, not munge the symbol's
|
2348 |
|
|
address and instead just use a different symbol to reference
|
2349 |
|
|
the .opd entry. At least that seems sensible until you
|
2350 |
|
|
realize there's no local dynamic symbols we can use for that
|
2351 |
|
|
purpose. Thus the hair in the check_relocs routine.
|
2352 |
|
|
|
2353 |
|
|
We use a section symbol recorded by check_relocs as the
|
2354 |
|
|
base symbol for the relocation. The addend is the difference
|
2355 |
|
|
between the section symbol and the address of the .opd entry. */
|
2356 |
|
|
if (info->shared && rent->type == R_PARISC_FPTR64)
|
2357 |
|
|
{
|
2358 |
|
|
bfd_vma value, value2;
|
2359 |
|
|
|
2360 |
|
|
/* First compute the address of the opd entry for this symbol. */
|
2361 |
|
|
value = (dyn_h->opd_offset
|
2362 |
|
|
+ hppa_info->opd_sec->output_section->vma
|
2363 |
|
|
+ hppa_info->opd_sec->output_offset);
|
2364 |
|
|
|
2365 |
|
|
/* Compute the value of the start of the section with
|
2366 |
|
|
the relocation. */
|
2367 |
|
|
value2 = (rent->sec->output_section->vma
|
2368 |
|
|
+ rent->sec->output_offset);
|
2369 |
|
|
|
2370 |
|
|
/* Compute the difference between the start of the section
|
2371 |
|
|
with the relocation and the opd entry. */
|
2372 |
|
|
value -= value2;
|
2373 |
|
|
|
2374 |
|
|
/* The result becomes the addend of the relocation. */
|
2375 |
|
|
rel.r_addend = value;
|
2376 |
|
|
|
2377 |
|
|
/* The section symbol becomes the symbol for the dynamic
|
2378 |
|
|
relocation. */
|
2379 |
|
|
dynindx
|
2380 |
|
|
= _bfd_elf_link_lookup_local_dynindx (info,
|
2381 |
|
|
rent->sec->owner,
|
2382 |
|
|
rent->sec_symndx);
|
2383 |
|
|
}
|
2384 |
|
|
else
|
2385 |
|
|
rel.r_addend = rent->addend;
|
2386 |
|
|
|
2387 |
|
|
rel.r_info = ELF64_R_INFO (dynindx, rent->type);
|
2388 |
|
|
|
2389 |
|
|
bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
|
2390 |
|
|
&rel,
|
2391 |
|
|
(((Elf64_External_Rela *)
|
2392 |
|
|
hppa_info->other_rel_sec->contents)
|
2393 |
|
|
+ hppa_info->other_rel_sec->reloc_count));
|
2394 |
|
|
hppa_info->other_rel_sec->reloc_count++;
|
2395 |
|
|
}
|
2396 |
|
|
}
|
2397 |
|
|
|
2398 |
|
|
return true;
|
2399 |
|
|
}
|
2400 |
|
|
|
2401 |
|
|
/* Finish up the dynamic sections. */
|
2402 |
|
|
|
2403 |
|
|
static boolean
|
2404 |
|
|
elf64_hppa_finish_dynamic_sections (output_bfd, info)
|
2405 |
|
|
bfd *output_bfd;
|
2406 |
|
|
struct bfd_link_info *info;
|
2407 |
|
|
{
|
2408 |
|
|
bfd *dynobj;
|
2409 |
|
|
asection *sdyn;
|
2410 |
|
|
struct elf64_hppa_link_hash_table *hppa_info;
|
2411 |
|
|
|
2412 |
|
|
hppa_info = elf64_hppa_hash_table (info);
|
2413 |
|
|
|
2414 |
|
|
/* Finalize the contents of the .opd section. */
|
2415 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
2416 |
|
|
elf64_hppa_finalize_opd,
|
2417 |
|
|
info);
|
2418 |
|
|
|
2419 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
2420 |
|
|
elf64_hppa_finalize_dynreloc,
|
2421 |
|
|
info);
|
2422 |
|
|
|
2423 |
|
|
/* Finalize the contents of the .dlt section. */
|
2424 |
|
|
dynobj = elf_hash_table (info)->dynobj;
|
2425 |
|
|
/* Finalize the contents of the .dlt section. */
|
2426 |
|
|
elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
|
2427 |
|
|
elf64_hppa_finalize_dlt,
|
2428 |
|
|
info);
|
2429 |
|
|
|
2430 |
|
|
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
2431 |
|
|
|
2432 |
|
|
if (elf_hash_table (info)->dynamic_sections_created)
|
2433 |
|
|
{
|
2434 |
|
|
Elf64_External_Dyn *dyncon, *dynconend;
|
2435 |
|
|
|
2436 |
|
|
BFD_ASSERT (sdyn != NULL);
|
2437 |
|
|
|
2438 |
|
|
dyncon = (Elf64_External_Dyn *) sdyn->contents;
|
2439 |
|
|
dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
|
2440 |
|
|
for (; dyncon < dynconend; dyncon++)
|
2441 |
|
|
{
|
2442 |
|
|
Elf_Internal_Dyn dyn;
|
2443 |
|
|
asection *s;
|
2444 |
|
|
|
2445 |
|
|
bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
|
2446 |
|
|
|
2447 |
|
|
switch (dyn.d_tag)
|
2448 |
|
|
{
|
2449 |
|
|
default:
|
2450 |
|
|
break;
|
2451 |
|
|
|
2452 |
|
|
case DT_HP_LOAD_MAP:
|
2453 |
|
|
/* Compute the absolute address of 16byte scratchpad area
|
2454 |
|
|
for the dynamic linker.
|
2455 |
|
|
|
2456 |
|
|
By convention the linker script will allocate the scratchpad
|
2457 |
|
|
area at the start of the .data section. So all we have to
|
2458 |
|
|
to is find the start of the .data section. */
|
2459 |
|
|
s = bfd_get_section_by_name (output_bfd, ".data");
|
2460 |
|
|
dyn.d_un.d_ptr = s->vma;
|
2461 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2462 |
|
|
break;
|
2463 |
|
|
|
2464 |
|
|
case DT_PLTGOT:
|
2465 |
|
|
/* HP's use PLTGOT to set the GOT register. */
|
2466 |
|
|
dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
|
2467 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2468 |
|
|
break;
|
2469 |
|
|
|
2470 |
|
|
case DT_JMPREL:
|
2471 |
|
|
s = hppa_info->plt_rel_sec;
|
2472 |
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
2473 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2474 |
|
|
break;
|
2475 |
|
|
|
2476 |
|
|
case DT_PLTRELSZ:
|
2477 |
|
|
s = hppa_info->plt_rel_sec;
|
2478 |
|
|
dyn.d_un.d_val = s->_raw_size;
|
2479 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2480 |
|
|
break;
|
2481 |
|
|
|
2482 |
|
|
case DT_RELA:
|
2483 |
|
|
s = hppa_info->other_rel_sec;
|
2484 |
|
|
if (! s)
|
2485 |
|
|
s = hppa_info->dlt_rel_sec;
|
2486 |
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
2487 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2488 |
|
|
break;
|
2489 |
|
|
|
2490 |
|
|
case DT_RELASZ:
|
2491 |
|
|
s = hppa_info->other_rel_sec;
|
2492 |
|
|
dyn.d_un.d_val = s->_raw_size;
|
2493 |
|
|
s = hppa_info->dlt_rel_sec;
|
2494 |
|
|
dyn.d_un.d_val += s->_raw_size;
|
2495 |
|
|
s = hppa_info->opd_rel_sec;
|
2496 |
|
|
dyn.d_un.d_val += s->_raw_size;
|
2497 |
|
|
/* There is some question about whether or not the size of
|
2498 |
|
|
the PLT relocs should be included here. HP's tools do
|
2499 |
|
|
it, so we'll emulate them. */
|
2500 |
|
|
s = hppa_info->plt_rel_sec;
|
2501 |
|
|
dyn.d_un.d_val += s->_raw_size;
|
2502 |
|
|
bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
|
2503 |
|
|
break;
|
2504 |
|
|
|
2505 |
|
|
}
|
2506 |
|
|
}
|
2507 |
|
|
}
|
2508 |
|
|
|
2509 |
|
|
return true;
|
2510 |
|
|
}
|
2511 |
|
|
|
2512 |
|
|
/* Return the number of additional phdrs we will need.
|
2513 |
|
|
|
2514 |
|
|
The generic ELF code only creates PT_PHDRs for executables. The HP
|
2515 |
|
|
dynamic linker requires PT_PHDRs for dynamic libraries too.
|
2516 |
|
|
|
2517 |
|
|
This routine indicates that the backend needs one additional program
|
2518 |
|
|
header for that case.
|
2519 |
|
|
|
2520 |
|
|
Note we do not have access to the link info structure here, so we have
|
2521 |
|
|
to guess whether or not we are building a shared library based on the
|
2522 |
|
|
existence of a .interp section. */
|
2523 |
|
|
|
2524 |
|
|
static int
|
2525 |
|
|
elf64_hppa_additional_program_headers (abfd)
|
2526 |
|
|
bfd *abfd;
|
2527 |
|
|
{
|
2528 |
|
|
asection *s;
|
2529 |
|
|
|
2530 |
|
|
/* If we are creating a shared library, then we have to create a
|
2531 |
|
|
PT_PHDR segment. HP's dynamic linker chokes without it. */
|
2532 |
|
|
s = bfd_get_section_by_name (abfd, ".interp");
|
2533 |
|
|
if (! s)
|
2534 |
|
|
return 1;
|
2535 |
|
|
return 0;
|
2536 |
|
|
}
|
2537 |
|
|
|
2538 |
|
|
/* Allocate and initialize any program headers required by this
|
2539 |
|
|
specific backend.
|
2540 |
|
|
|
2541 |
|
|
The generic ELF code only creates PT_PHDRs for executables. The HP
|
2542 |
|
|
dynamic linker requires PT_PHDRs for dynamic libraries too.
|
2543 |
|
|
|
2544 |
|
|
This allocates the PT_PHDR and initializes it in a manner suitable
|
2545 |
|
|
for the HP linker.
|
2546 |
|
|
|
2547 |
|
|
Note we do not have access to the link info structure here, so we have
|
2548 |
|
|
to guess whether or not we are building a shared library based on the
|
2549 |
|
|
existence of a .interp section. */
|
2550 |
|
|
|
2551 |
|
|
static boolean
|
2552 |
|
|
elf64_hppa_modify_segment_map (abfd)
|
2553 |
|
|
bfd *abfd;
|
2554 |
|
|
{
|
2555 |
|
|
struct elf_segment_map *m;
|
2556 |
|
|
asection *s;
|
2557 |
|
|
|
2558 |
|
|
s = bfd_get_section_by_name (abfd, ".interp");
|
2559 |
|
|
if (! s)
|
2560 |
|
|
{
|
2561 |
|
|
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
2562 |
|
|
if (m->p_type == PT_PHDR)
|
2563 |
|
|
break;
|
2564 |
|
|
if (m == NULL)
|
2565 |
|
|
{
|
2566 |
|
|
m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
|
2567 |
|
|
if (m == NULL)
|
2568 |
|
|
return false;
|
2569 |
|
|
|
2570 |
|
|
m->p_type = PT_PHDR;
|
2571 |
|
|
m->p_flags = PF_R | PF_X;
|
2572 |
|
|
m->p_flags_valid = 1;
|
2573 |
|
|
m->p_paddr_valid = 1;
|
2574 |
|
|
m->includes_phdrs = 1;
|
2575 |
|
|
|
2576 |
|
|
m->next = elf_tdata (abfd)->segment_map;
|
2577 |
|
|
elf_tdata (abfd)->segment_map = m;
|
2578 |
|
|
}
|
2579 |
|
|
}
|
2580 |
|
|
|
2581 |
|
|
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
2582 |
|
|
if (m->p_type == PT_LOAD)
|
2583 |
|
|
{
|
2584 |
|
|
unsigned int i;
|
2585 |
|
|
|
2586 |
|
|
for (i = 0; i < m->count; i++)
|
2587 |
|
|
{
|
2588 |
|
|
/* The code "hint" is not really a hint. It is a requirement
|
2589 |
|
|
for certain versions of the HP dynamic linker. Worse yet,
|
2590 |
|
|
it must be set even if the shared library does not have
|
2591 |
|
|
any code in its "text" segment (thus the check for .hash
|
2592 |
|
|
to catch this situation). */
|
2593 |
|
|
if (m->sections[i]->flags & SEC_CODE
|
2594 |
|
|
|| (strcmp (m->sections[i]->name, ".hash") == 0))
|
2595 |
|
|
m->p_flags |= (PF_X | PF_HP_CODE);
|
2596 |
|
|
}
|
2597 |
|
|
}
|
2598 |
|
|
|
2599 |
|
|
return true;
|
2600 |
|
|
}
|
2601 |
|
|
|
2602 |
|
|
/* Called when writing out an object file to decide the type of a
|
2603 |
|
|
symbol. */
|
2604 |
|
|
static int
|
2605 |
|
|
elf64_hppa_elf_get_symbol_type (elf_sym, type)
|
2606 |
|
|
Elf_Internal_Sym *elf_sym;
|
2607 |
|
|
int type;
|
2608 |
|
|
{
|
2609 |
|
|
if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
|
2610 |
|
|
return STT_PARISC_MILLI;
|
2611 |
|
|
else
|
2612 |
|
|
return type;
|
2613 |
|
|
}
|
2614 |
|
|
|
2615 |
|
|
/* The hash bucket size is the standard one, namely 4. */
|
2616 |
|
|
|
2617 |
|
|
const struct elf_size_info hppa64_elf_size_info =
|
2618 |
|
|
{
|
2619 |
|
|
sizeof (Elf64_External_Ehdr),
|
2620 |
|
|
sizeof (Elf64_External_Phdr),
|
2621 |
|
|
sizeof (Elf64_External_Shdr),
|
2622 |
|
|
sizeof (Elf64_External_Rel),
|
2623 |
|
|
sizeof (Elf64_External_Rela),
|
2624 |
|
|
sizeof (Elf64_External_Sym),
|
2625 |
|
|
sizeof (Elf64_External_Dyn),
|
2626 |
|
|
sizeof (Elf_External_Note),
|
2627 |
|
|
4,
|
2628 |
|
|
1,
|
2629 |
|
|
64, 8,
|
2630 |
|
|
ELFCLASS64, EV_CURRENT,
|
2631 |
|
|
bfd_elf64_write_out_phdrs,
|
2632 |
|
|
bfd_elf64_write_shdrs_and_ehdr,
|
2633 |
|
|
bfd_elf64_write_relocs,
|
2634 |
|
|
bfd_elf64_swap_symbol_out,
|
2635 |
|
|
bfd_elf64_slurp_reloc_table,
|
2636 |
|
|
bfd_elf64_slurp_symbol_table,
|
2637 |
|
|
bfd_elf64_swap_dyn_in,
|
2638 |
|
|
bfd_elf64_swap_dyn_out,
|
2639 |
|
|
NULL,
|
2640 |
|
|
NULL,
|
2641 |
|
|
NULL,
|
2642 |
|
|
NULL
|
2643 |
|
|
};
|
2644 |
|
|
|
2645 |
|
|
#define TARGET_BIG_SYM bfd_elf64_hppa_vec
|
2646 |
|
|
#define TARGET_BIG_NAME "elf64-hppa"
|
2647 |
|
|
#define ELF_ARCH bfd_arch_hppa
|
2648 |
|
|
#define ELF_MACHINE_CODE EM_PARISC
|
2649 |
|
|
/* This is not strictly correct. The maximum page size for PA2.0 is
|
2650 |
|
|
64M. But everything still uses 4k. */
|
2651 |
|
|
#define ELF_MAXPAGESIZE 0x1000
|
2652 |
|
|
#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
|
2653 |
|
|
#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
|
2654 |
|
|
#define elf_info_to_howto elf_hppa_info_to_howto
|
2655 |
|
|
#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
|
2656 |
|
|
|
2657 |
|
|
#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
|
2658 |
|
|
#define elf_backend_object_p elf64_hppa_object_p
|
2659 |
|
|
#define elf_backend_final_write_processing \
|
2660 |
|
|
elf_hppa_final_write_processing
|
2661 |
|
|
#define elf_backend_fake_sections elf_hppa_fake_sections
|
2662 |
|
|
#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
|
2663 |
|
|
|
2664 |
|
|
#define elf_backend_relocate_section elf_hppa_relocate_section
|
2665 |
|
|
|
2666 |
|
|
#define bfd_elf64_bfd_final_link elf_hppa_final_link
|
2667 |
|
|
|
2668 |
|
|
#define elf_backend_create_dynamic_sections \
|
2669 |
|
|
elf64_hppa_create_dynamic_sections
|
2670 |
|
|
#define elf_backend_post_process_headers elf64_hppa_post_process_headers
|
2671 |
|
|
|
2672 |
|
|
#define elf_backend_adjust_dynamic_symbol \
|
2673 |
|
|
elf64_hppa_adjust_dynamic_symbol
|
2674 |
|
|
|
2675 |
|
|
#define elf_backend_size_dynamic_sections \
|
2676 |
|
|
elf64_hppa_size_dynamic_sections
|
2677 |
|
|
|
2678 |
|
|
#define elf_backend_finish_dynamic_symbol \
|
2679 |
|
|
elf64_hppa_finish_dynamic_symbol
|
2680 |
|
|
#define elf_backend_finish_dynamic_sections \
|
2681 |
|
|
elf64_hppa_finish_dynamic_sections
|
2682 |
|
|
|
2683 |
|
|
/* Stuff for the BFD linker: */
|
2684 |
|
|
#define bfd_elf64_bfd_link_hash_table_create \
|
2685 |
|
|
elf64_hppa_hash_table_create
|
2686 |
|
|
|
2687 |
|
|
#define elf_backend_check_relocs \
|
2688 |
|
|
elf64_hppa_check_relocs
|
2689 |
|
|
|
2690 |
|
|
#define elf_backend_size_info \
|
2691 |
|
|
hppa64_elf_size_info
|
2692 |
|
|
|
2693 |
|
|
#define elf_backend_additional_program_headers \
|
2694 |
|
|
elf64_hppa_additional_program_headers
|
2695 |
|
|
|
2696 |
|
|
#define elf_backend_modify_segment_map \
|
2697 |
|
|
elf64_hppa_modify_segment_map
|
2698 |
|
|
|
2699 |
|
|
#define elf_backend_link_output_symbol_hook \
|
2700 |
|
|
elf64_hppa_link_output_symbol_hook
|
2701 |
|
|
|
2702 |
|
|
#define elf_backend_want_got_plt 0
|
2703 |
|
|
#define elf_backend_plt_readonly 0
|
2704 |
|
|
#define elf_backend_want_plt_sym 0
|
2705 |
|
|
#define elf_backend_got_header_size 0
|
2706 |
|
|
#define elf_backend_plt_header_size 0
|
2707 |
|
|
#define elf_backend_type_change_ok true
|
2708 |
|
|
#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
|
2709 |
|
|
|
2710 |
|
|
#include "elf64-target.h"
|
2711 |
|
|
|
2712 |
|
|
#undef TARGET_BIG_SYM
|
2713 |
|
|
#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
|
2714 |
|
|
#undef TARGET_BIG_NAME
|
2715 |
|
|
#define TARGET_BIG_NAME "elf64-hppa-linux"
|
2716 |
|
|
|
2717 |
|
|
#define INCLUDED_TARGET_FILE 1
|
2718 |
|
|
#include "elf64-target.h"
|