OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [bfd/] [elflink.h] - Blame information for rev 1767

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 578 markom
/* ELF linker support.
2
   Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001
3
   Free Software Foundation, Inc.
4
 
5
This file is part of BFD, the Binary File Descriptor library.
6
 
7
This program is free software; you can redistribute it and/or modify
8
it under the terms of the GNU General Public License as published by
9
the Free Software Foundation; either version 2 of the License, or
10
(at your option) any later version.
11
 
12
This program is distributed in the hope that it will be useful,
13
but WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
GNU General Public License for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with this program; if not, write to the Free Software
19
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20
 
21
/* ELF linker code.  */
22
 
23
/* This struct is used to pass information to routines called via
24
   elf_link_hash_traverse which must return failure.  */
25
 
26
struct elf_info_failed
27
{
28
  boolean failed;
29
  struct bfd_link_info *info;
30
  struct bfd_elf_version_tree *verdefs;
31
};
32
 
33
static boolean elf_link_add_object_symbols
34
  PARAMS ((bfd *, struct bfd_link_info *));
35
static boolean elf_link_add_archive_symbols
36
  PARAMS ((bfd *, struct bfd_link_info *));
37
static boolean elf_merge_symbol
38
  PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
39
           asection **, bfd_vma *, struct elf_link_hash_entry **,
40
           boolean *, boolean *, boolean *, boolean));
41
static boolean elf_export_symbol
42
  PARAMS ((struct elf_link_hash_entry *, PTR));
43
static boolean elf_fix_symbol_flags
44
  PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
45
static boolean elf_adjust_dynamic_symbol
46
  PARAMS ((struct elf_link_hash_entry *, PTR));
47
static boolean elf_link_find_version_dependencies
48
  PARAMS ((struct elf_link_hash_entry *, PTR));
49
static boolean elf_link_find_version_dependencies
50
  PARAMS ((struct elf_link_hash_entry *, PTR));
51
static boolean elf_link_assign_sym_version
52
  PARAMS ((struct elf_link_hash_entry *, PTR));
53
static boolean elf_collect_hash_codes
54
  PARAMS ((struct elf_link_hash_entry *, PTR));
55
static boolean elf_link_read_relocs_from_section
56
  PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
57
static void elf_link_output_relocs
58
  PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
59
static boolean elf_link_size_reloc_section
60
  PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
61
static void elf_link_adjust_relocs
62
  PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
63
           struct elf_link_hash_entry **));
64
 
65
/* Given an ELF BFD, add symbols to the global hash table as
66
   appropriate.  */
67
 
68
boolean
69
elf_bfd_link_add_symbols (abfd, info)
70
     bfd *abfd;
71
     struct bfd_link_info *info;
72
{
73
  switch (bfd_get_format (abfd))
74
    {
75
    case bfd_object:
76
      return elf_link_add_object_symbols (abfd, info);
77
    case bfd_archive:
78
      return elf_link_add_archive_symbols (abfd, info);
79
    default:
80
      bfd_set_error (bfd_error_wrong_format);
81
      return false;
82
    }
83
}
84
 
85
/* Return true iff this is a non-common, definition of a non-function symbol.  */
86
static boolean
87
is_global_data_symbol_definition (abfd, sym)
88
     bfd * abfd ATTRIBUTE_UNUSED;
89
     Elf_Internal_Sym * sym;
90
{
91
  /* Local symbols do not count, but target specific ones might.  */
92
  if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
93
      && ELF_ST_BIND (sym->st_info) < STB_LOOS)
94
    return false;
95
 
96
  /* Function symbols do not count.  */
97
  if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
98
    return false;
99
 
100
  /* If the section is undefined, then so is the symbol.  */
101
  if (sym->st_shndx == SHN_UNDEF)
102
    return false;
103
 
104
  /* If the symbol is defined in the common section, then
105
     it is a common definition and so does not count.  */
106
  if (sym->st_shndx == SHN_COMMON)
107
    return false;
108
 
109
  /* If the symbol is in a target specific section then we
110
     must rely upon the backend to tell us what it is.  */
111
  if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
112
    /* FIXME - this function is not coded yet:
113
 
114
       return _bfd_is_global_symbol_definition (abfd, sym);
115
 
116
       Instead for now assume that the definition is not global,
117
       Even if this is wrong, at least the linker will behave
118
       in the same way that it used to do.  */
119
    return false;
120
 
121
  return true;
122
}
123
 
124
/* Search the symbol table of the archive element of the archive ABFD
125
   whose archive map contains a mention of SYMDEF, and determine if
126
   the symbol is defined in this element.  */
127
static boolean
128
elf_link_is_defined_archive_symbol (abfd, symdef)
129
     bfd * abfd;
130
     carsym * symdef;
131
{
132
  Elf_Internal_Shdr * hdr;
133
  Elf_External_Sym *  esym;
134
  Elf_External_Sym *  esymend;
135
  Elf_External_Sym *  buf = NULL;
136
  size_t symcount;
137
  size_t extsymcount;
138
  size_t extsymoff;
139
  boolean result = false;
140
 
141
  abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
142
  if (abfd == (bfd *) NULL)
143
    return false;
144
 
145
  if (! bfd_check_format (abfd, bfd_object))
146
    return false;
147
 
148
  /* If we have already included the element containing this symbol in the
149
     link then we do not need to include it again.  Just claim that any symbol
150
     it contains is not a definition, so that our caller will not decide to
151
     (re)include this element.  */
152
  if (abfd->archive_pass)
153
    return false;
154
 
155
  /* Select the appropriate symbol table.  */
156
  if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
157
    hdr = &elf_tdata (abfd)->symtab_hdr;
158
  else
159
    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
160
 
161
  symcount = hdr->sh_size / sizeof (Elf_External_Sym);
162
 
163
  /* The sh_info field of the symtab header tells us where the
164
     external symbols start.  We don't care about the local symbols.  */
165
  if (elf_bad_symtab (abfd))
166
    {
167
      extsymcount = symcount;
168
      extsymoff = 0;
169
    }
170
  else
171
    {
172
      extsymcount = symcount - hdr->sh_info;
173
      extsymoff = hdr->sh_info;
174
    }
175
 
176
  buf = ((Elf_External_Sym *)
177
         bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
178
  if (buf == NULL && extsymcount != 0)
179
    return false;
180
 
181
  /* Read in the symbol table.
182
     FIXME:  This ought to be cached somewhere.  */
183
  if (bfd_seek (abfd,
184
                hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
185
                SEEK_SET) != 0
186
      || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
187
          != extsymcount * sizeof (Elf_External_Sym)))
188
    {
189
      free (buf);
190
      return false;
191
    }
192
 
193
  /* Scan the symbol table looking for SYMDEF.  */
194
  esymend = buf + extsymcount;
195
  for (esym = buf;
196
       esym < esymend;
197
       esym++)
198
    {
199
      Elf_Internal_Sym sym;
200
      const char * name;
201
 
202
      elf_swap_symbol_in (abfd, esym, & sym);
203
 
204
      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
205
      if (name == (const char *) NULL)
206
        break;
207
 
208
      if (strcmp (name, symdef->name) == 0)
209
        {
210
          result = is_global_data_symbol_definition (abfd, & sym);
211
          break;
212
        }
213
    }
214
 
215
  free (buf);
216
 
217
  return result;
218
}
219
 
220
/* Add symbols from an ELF archive file to the linker hash table.  We
221
   don't use _bfd_generic_link_add_archive_symbols because of a
222
   problem which arises on UnixWare.  The UnixWare libc.so is an
223
   archive which includes an entry libc.so.1 which defines a bunch of
224
   symbols.  The libc.so archive also includes a number of other
225
   object files, which also define symbols, some of which are the same
226
   as those defined in libc.so.1.  Correct linking requires that we
227
   consider each object file in turn, and include it if it defines any
228
   symbols we need.  _bfd_generic_link_add_archive_symbols does not do
229
   this; it looks through the list of undefined symbols, and includes
230
   any object file which defines them.  When this algorithm is used on
231
   UnixWare, it winds up pulling in libc.so.1 early and defining a
232
   bunch of symbols.  This means that some of the other objects in the
233
   archive are not included in the link, which is incorrect since they
234
   precede libc.so.1 in the archive.
235
 
236
   Fortunately, ELF archive handling is simpler than that done by
237
   _bfd_generic_link_add_archive_symbols, which has to allow for a.out
238
   oddities.  In ELF, if we find a symbol in the archive map, and the
239
   symbol is currently undefined, we know that we must pull in that
240
   object file.
241
 
242
   Unfortunately, we do have to make multiple passes over the symbol
243
   table until nothing further is resolved.  */
244
 
245
static boolean
246
elf_link_add_archive_symbols (abfd, info)
247
     bfd *abfd;
248
     struct bfd_link_info *info;
249
{
250
  symindex c;
251
  boolean *defined = NULL;
252
  boolean *included = NULL;
253
  carsym *symdefs;
254
  boolean loop;
255
 
256
  if (! bfd_has_map (abfd))
257
    {
258
      /* An empty archive is a special case.  */
259
      if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
260
        return true;
261
      bfd_set_error (bfd_error_no_armap);
262
      return false;
263
    }
264
 
265
  /* Keep track of all symbols we know to be already defined, and all
266
     files we know to be already included.  This is to speed up the
267
     second and subsequent passes.  */
268
  c = bfd_ardata (abfd)->symdef_count;
269
  if (c == 0)
270
    return true;
271
  defined = (boolean *) bfd_malloc (c * sizeof (boolean));
272
  included = (boolean *) bfd_malloc (c * sizeof (boolean));
273
  if (defined == (boolean *) NULL || included == (boolean *) NULL)
274
    goto error_return;
275
  memset (defined, 0, c * sizeof (boolean));
276
  memset (included, 0, c * sizeof (boolean));
277
 
278
  symdefs = bfd_ardata (abfd)->symdefs;
279
 
280
  do
281
    {
282
      file_ptr last;
283
      symindex i;
284
      carsym *symdef;
285
      carsym *symdefend;
286
 
287
      loop = false;
288
      last = -1;
289
 
290
      symdef = symdefs;
291
      symdefend = symdef + c;
292
      for (i = 0; symdef < symdefend; symdef++, i++)
293
        {
294
          struct elf_link_hash_entry *h;
295
          bfd *element;
296
          struct bfd_link_hash_entry *undefs_tail;
297
          symindex mark;
298
 
299
          if (defined[i] || included[i])
300
            continue;
301
          if (symdef->file_offset == last)
302
            {
303
              included[i] = true;
304
              continue;
305
            }
306
 
307
          h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
308
                                    false, false, false);
309
 
310
          if (h == NULL)
311
            {
312
              char *p, *copy;
313
 
314
              /* If this is a default version (the name contains @@),
315
                 look up the symbol again without the version.  The
316
                 effect is that references to the symbol without the
317
                 version will be matched by the default symbol in the
318
                 archive.  */
319
 
320
              p = strchr (symdef->name, ELF_VER_CHR);
321
              if (p == NULL || p[1] != ELF_VER_CHR)
322
                continue;
323
 
324
              copy = bfd_alloc (abfd, p - symdef->name + 1);
325
              if (copy == NULL)
326
                goto error_return;
327
              memcpy (copy, symdef->name, p - symdef->name);
328
              copy[p - symdef->name] = '\0';
329
 
330
              h = elf_link_hash_lookup (elf_hash_table (info), copy,
331
                                        false, false, false);
332
 
333
              bfd_release (abfd, copy);
334
            }
335
 
336
          if (h == NULL)
337
            continue;
338
 
339
          if (h->root.type == bfd_link_hash_common)
340
            {
341
              /* We currently have a common symbol.  The archive map contains
342
                 a reference to this symbol, so we may want to include it.  We
343
                 only want to include it however, if this archive element
344
                 contains a definition of the symbol, not just another common
345
                 declaration of it.
346
 
347
                 Unfortunately some archivers (including GNU ar) will put
348
                 declarations of common symbols into their archive maps, as
349
                 well as real definitions, so we cannot just go by the archive
350
                 map alone.  Instead we must read in the element's symbol
351
                 table and check that to see what kind of symbol definition
352
                 this is.  */
353
              if (! elf_link_is_defined_archive_symbol (abfd, symdef))
354
                continue;
355
            }
356
          else if (h->root.type != bfd_link_hash_undefined)
357
            {
358
              if (h->root.type != bfd_link_hash_undefweak)
359
                defined[i] = true;
360
              continue;
361
            }
362
 
363
          /* We need to include this archive member.  */
364
          element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
365
          if (element == (bfd *) NULL)
366
            goto error_return;
367
 
368
          if (! bfd_check_format (element, bfd_object))
369
            goto error_return;
370
 
371
          /* Doublecheck that we have not included this object
372
             already--it should be impossible, but there may be
373
             something wrong with the archive.  */
374
          if (element->archive_pass != 0)
375
            {
376
              bfd_set_error (bfd_error_bad_value);
377
              goto error_return;
378
            }
379
          element->archive_pass = 1;
380
 
381
          undefs_tail = info->hash->undefs_tail;
382
 
383
          if (! (*info->callbacks->add_archive_element) (info, element,
384
                                                         symdef->name))
385
            goto error_return;
386
          if (! elf_link_add_object_symbols (element, info))
387
            goto error_return;
388
 
389
          /* If there are any new undefined symbols, we need to make
390
             another pass through the archive in order to see whether
391
             they can be defined.  FIXME: This isn't perfect, because
392
             common symbols wind up on undefs_tail and because an
393
             undefined symbol which is defined later on in this pass
394
             does not require another pass.  This isn't a bug, but it
395
             does make the code less efficient than it could be.  */
396
          if (undefs_tail != info->hash->undefs_tail)
397
            loop = true;
398
 
399
          /* Look backward to mark all symbols from this object file
400
             which we have already seen in this pass.  */
401
          mark = i;
402
          do
403
            {
404
              included[mark] = true;
405
              if (mark == 0)
406
                break;
407
              --mark;
408
            }
409
          while (symdefs[mark].file_offset == symdef->file_offset);
410
 
411
          /* We mark subsequent symbols from this object file as we go
412
             on through the loop.  */
413
          last = symdef->file_offset;
414
        }
415
    }
416
  while (loop);
417
 
418
  free (defined);
419
  free (included);
420
 
421
  return true;
422
 
423
 error_return:
424
  if (defined != (boolean *) NULL)
425
    free (defined);
426
  if (included != (boolean *) NULL)
427
    free (included);
428
  return false;
429
}
430
 
431
/* This function is called when we want to define a new symbol.  It
432
   handles the various cases which arise when we find a definition in
433
   a dynamic object, or when there is already a definition in a
434
   dynamic object.  The new symbol is described by NAME, SYM, PSEC,
435
   and PVALUE.  We set SYM_HASH to the hash table entry.  We set
436
   OVERRIDE if the old symbol is overriding a new definition.  We set
437
   TYPE_CHANGE_OK if it is OK for the type to change.  We set
438
   SIZE_CHANGE_OK if it is OK for the size to change.  By OK to
439
   change, we mean that we shouldn't warn if the type or size does
440
   change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
441
   a shared object.  */
442
 
443
static boolean
444
elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
445
                  override, type_change_ok, size_change_ok, dt_needed)
446
     bfd *abfd;
447
     struct bfd_link_info *info;
448
     const char *name;
449
     Elf_Internal_Sym *sym;
450
     asection **psec;
451
     bfd_vma *pvalue;
452
     struct elf_link_hash_entry **sym_hash;
453
     boolean *override;
454
     boolean *type_change_ok;
455
     boolean *size_change_ok;
456
     boolean dt_needed;
457
{
458
  asection *sec;
459
  struct elf_link_hash_entry *h;
460
  int bind;
461
  bfd *oldbfd;
462
  boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
463
 
464
  *override = false;
465
 
466
  sec = *psec;
467
  bind = ELF_ST_BIND (sym->st_info);
468
 
469
  if (! bfd_is_und_section (sec))
470
    h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
471
  else
472
    h = ((struct elf_link_hash_entry *)
473
         bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
474
  if (h == NULL)
475
    return false;
476
  *sym_hash = h;
477
 
478
  /* This code is for coping with dynamic objects, and is only useful
479
     if we are doing an ELF link.  */
480
  if (info->hash->creator != abfd->xvec)
481
    return true;
482
 
483
  /* For merging, we only care about real symbols.  */
484
 
485
  while (h->root.type == bfd_link_hash_indirect
486
         || h->root.type == bfd_link_hash_warning)
487
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
488
 
489
  /* If we just created the symbol, mark it as being an ELF symbol.
490
     Other than that, there is nothing to do--there is no merge issue
491
     with a newly defined symbol--so we just return.  */
492
 
493
  if (h->root.type == bfd_link_hash_new)
494
    {
495
      h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
496
      return true;
497
    }
498
 
499
  /* OLDBFD is a BFD associated with the existing symbol.  */
500
 
501
  switch (h->root.type)
502
    {
503
    default:
504
      oldbfd = NULL;
505
      break;
506
 
507
    case bfd_link_hash_undefined:
508
    case bfd_link_hash_undefweak:
509
      oldbfd = h->root.u.undef.abfd;
510
      break;
511
 
512
    case bfd_link_hash_defined:
513
    case bfd_link_hash_defweak:
514
      oldbfd = h->root.u.def.section->owner;
515
      break;
516
 
517
    case bfd_link_hash_common:
518
      oldbfd = h->root.u.c.p->section->owner;
519
      break;
520
    }
521
 
522
  /* In cases involving weak versioned symbols, we may wind up trying
523
     to merge a symbol with itself.  Catch that here, to avoid the
524
     confusion that results if we try to override a symbol with
525
     itself.  The additional tests catch cases like
526
     _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
527
     dynamic object, which we do want to handle here.  */
528
  if (abfd == oldbfd
529
      && ((abfd->flags & DYNAMIC) == 0
530
          || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
531
    return true;
532
 
533
  /* NEWDYN and OLDDYN indicate whether the new or old symbol,
534
     respectively, is from a dynamic object.  */
535
 
536
  if ((abfd->flags & DYNAMIC) != 0)
537
    newdyn = true;
538
  else
539
    newdyn = false;
540
 
541
  if (oldbfd != NULL)
542
    olddyn = (oldbfd->flags & DYNAMIC) != 0;
543
  else
544
    {
545
      asection *hsec;
546
 
547
      /* This code handles the special SHN_MIPS_{TEXT,DATA} section
548
         indices used by MIPS ELF.  */
549
      switch (h->root.type)
550
        {
551
        default:
552
          hsec = NULL;
553
          break;
554
 
555
        case bfd_link_hash_defined:
556
        case bfd_link_hash_defweak:
557
          hsec = h->root.u.def.section;
558
          break;
559
 
560
        case bfd_link_hash_common:
561
          hsec = h->root.u.c.p->section;
562
          break;
563
        }
564
 
565
      if (hsec == NULL)
566
        olddyn = false;
567
      else
568
        olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
569
    }
570
 
571
  /* NEWDEF and OLDDEF indicate whether the new or old symbol,
572
     respectively, appear to be a definition rather than reference.  */
573
 
574
  if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
575
    newdef = false;
576
  else
577
    newdef = true;
578
 
579
  if (h->root.type == bfd_link_hash_undefined
580
      || h->root.type == bfd_link_hash_undefweak
581
      || h->root.type == bfd_link_hash_common)
582
    olddef = false;
583
  else
584
    olddef = true;
585
 
586
  /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
587
     symbol, respectively, appears to be a common symbol in a dynamic
588
     object.  If a symbol appears in an uninitialized section, and is
589
     not weak, and is not a function, then it may be a common symbol
590
     which was resolved when the dynamic object was created.  We want
591
     to treat such symbols specially, because they raise special
592
     considerations when setting the symbol size: if the symbol
593
     appears as a common symbol in a regular object, and the size in
594
     the regular object is larger, we must make sure that we use the
595
     larger size.  This problematic case can always be avoided in C,
596
     but it must be handled correctly when using Fortran shared
597
     libraries.
598
 
599
     Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
600
     likewise for OLDDYNCOMMON and OLDDEF.
601
 
602
     Note that this test is just a heuristic, and that it is quite
603
     possible to have an uninitialized symbol in a shared object which
604
     is really a definition, rather than a common symbol.  This could
605
     lead to some minor confusion when the symbol really is a common
606
     symbol in some regular object.  However, I think it will be
607
     harmless.  */
608
 
609
  if (newdyn
610
      && newdef
611
      && (sec->flags & SEC_ALLOC) != 0
612
      && (sec->flags & SEC_LOAD) == 0
613
      && sym->st_size > 0
614
      && bind != STB_WEAK
615
      && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
616
    newdyncommon = true;
617
  else
618
    newdyncommon = false;
619
 
620
  if (olddyn
621
      && olddef
622
      && h->root.type == bfd_link_hash_defined
623
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
624
      && (h->root.u.def.section->flags & SEC_ALLOC) != 0
625
      && (h->root.u.def.section->flags & SEC_LOAD) == 0
626
      && h->size > 0
627
      && h->type != STT_FUNC)
628
    olddyncommon = true;
629
  else
630
    olddyncommon = false;
631
 
632
  /* It's OK to change the type if either the existing symbol or the
633
     new symbol is weak unless it comes from a DT_NEEDED entry of
634
     a shared object, in which case, the DT_NEEDED entry may not be
635
     required at the run time.  */
636
 
637
  if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
638
      || h->root.type == bfd_link_hash_undefweak
639
      || bind == STB_WEAK)
640
    *type_change_ok = true;
641
 
642
  /* It's OK to change the size if either the existing symbol or the
643
     new symbol is weak, or if the old symbol is undefined.  */
644
 
645
  if (*type_change_ok
646
      || h->root.type == bfd_link_hash_undefined)
647
    *size_change_ok = true;
648
 
649
  /* If both the old and the new symbols look like common symbols in a
650
     dynamic object, set the size of the symbol to the larger of the
651
     two.  */
652
 
653
  if (olddyncommon
654
      && newdyncommon
655
      && sym->st_size != h->size)
656
    {
657
      /* Since we think we have two common symbols, issue a multiple
658
         common warning if desired.  Note that we only warn if the
659
         size is different.  If the size is the same, we simply let
660
         the old symbol override the new one as normally happens with
661
         symbols defined in dynamic objects.  */
662
 
663
      if (! ((*info->callbacks->multiple_common)
664
             (info, h->root.root.string, oldbfd, bfd_link_hash_common,
665
              h->size, abfd, bfd_link_hash_common, sym->st_size)))
666
        return false;
667
 
668
      if (sym->st_size > h->size)
669
        h->size = sym->st_size;
670
 
671
      *size_change_ok = true;
672
    }
673
 
674
  /* If we are looking at a dynamic object, and we have found a
675
     definition, we need to see if the symbol was already defined by
676
     some other object.  If so, we want to use the existing
677
     definition, and we do not want to report a multiple symbol
678
     definition error; we do this by clobbering *PSEC to be
679
     bfd_und_section_ptr.
680
 
681
     We treat a common symbol as a definition if the symbol in the
682
     shared library is a function, since common symbols always
683
     represent variables; this can cause confusion in principle, but
684
     any such confusion would seem to indicate an erroneous program or
685
     shared library.  We also permit a common symbol in a regular
686
     object to override a weak symbol in a shared object.
687
 
688
     We prefer a non-weak definition in a shared library to a weak
689
     definition in the executable unless it comes from a DT_NEEDED
690
     entry of a shared object, in which case, the DT_NEEDED entry
691
     may not be required at the run time.  */
692
 
693
  if (newdyn
694
      && newdef
695
      && (olddef
696
          || (h->root.type == bfd_link_hash_common
697
              && (bind == STB_WEAK
698
                  || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
699
      && (h->root.type != bfd_link_hash_defweak
700
          || dt_needed
701
          || bind == STB_WEAK))
702
    {
703
      *override = true;
704
      newdef = false;
705
      newdyncommon = false;
706
 
707
      *psec = sec = bfd_und_section_ptr;
708
      *size_change_ok = true;
709
 
710
      /* If we get here when the old symbol is a common symbol, then
711
         we are explicitly letting it override a weak symbol or
712
         function in a dynamic object, and we don't want to warn about
713
         a type change.  If the old symbol is a defined symbol, a type
714
         change warning may still be appropriate.  */
715
 
716
      if (h->root.type == bfd_link_hash_common)
717
        *type_change_ok = true;
718
    }
719
 
720
  /* Handle the special case of an old common symbol merging with a
721
     new symbol which looks like a common symbol in a shared object.
722
     We change *PSEC and *PVALUE to make the new symbol look like a
723
     common symbol, and let _bfd_generic_link_add_one_symbol will do
724
     the right thing.  */
725
 
726
  if (newdyncommon
727
      && h->root.type == bfd_link_hash_common)
728
    {
729
      *override = true;
730
      newdef = false;
731
      newdyncommon = false;
732
      *pvalue = sym->st_size;
733
      *psec = sec = bfd_com_section_ptr;
734
      *size_change_ok = true;
735
    }
736
 
737
  /* If the old symbol is from a dynamic object, and the new symbol is
738
     a definition which is not from a dynamic object, then the new
739
     symbol overrides the old symbol.  Symbols from regular files
740
     always take precedence over symbols from dynamic objects, even if
741
     they are defined after the dynamic object in the link.
742
 
743
     As above, we again permit a common symbol in a regular object to
744
     override a definition in a shared object if the shared object
745
     symbol is a function or is weak.
746
 
747
     As above, we permit a non-weak definition in a shared object to
748
     override a weak definition in a regular object.  */
749
 
750
  if (! newdyn
751
      && (newdef
752
          || (bfd_is_com_section (sec)
753
              && (h->root.type == bfd_link_hash_defweak
754
                  || h->type == STT_FUNC)))
755
      && olddyn
756
      && olddef
757
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
758
      && (bind != STB_WEAK
759
          || h->root.type == bfd_link_hash_defweak))
760
    {
761
      /* Change the hash table entry to undefined, and let
762
         _bfd_generic_link_add_one_symbol do the right thing with the
763
         new definition.  */
764
 
765
      h->root.type = bfd_link_hash_undefined;
766
      h->root.u.undef.abfd = h->root.u.def.section->owner;
767
      *size_change_ok = true;
768
 
769
      olddef = false;
770
      olddyncommon = false;
771
 
772
      /* We again permit a type change when a common symbol may be
773
         overriding a function.  */
774
 
775
      if (bfd_is_com_section (sec))
776
        *type_change_ok = true;
777
 
778
      /* This union may have been set to be non-NULL when this symbol
779
         was seen in a dynamic object.  We must force the union to be
780
         NULL, so that it is correct for a regular symbol.  */
781
 
782
      h->verinfo.vertree = NULL;
783
 
784
      /* In this special case, if H is the target of an indirection,
785
         we want the caller to frob with H rather than with the
786
         indirect symbol.  That will permit the caller to redefine the
787
         target of the indirection, rather than the indirect symbol
788
         itself.  FIXME: This will break the -y option if we store a
789
         symbol with a different name.  */
790
      *sym_hash = h;
791
    }
792
 
793
  /* Handle the special case of a new common symbol merging with an
794
     old symbol that looks like it might be a common symbol defined in
795
     a shared object.  Note that we have already handled the case in
796
     which a new common symbol should simply override the definition
797
     in the shared library.  */
798
 
799
  if (! newdyn
800
      && bfd_is_com_section (sec)
801
      && olddyncommon)
802
    {
803
      /* It would be best if we could set the hash table entry to a
804
         common symbol, but we don't know what to use for the section
805
         or the alignment.  */
806
      if (! ((*info->callbacks->multiple_common)
807
             (info, h->root.root.string, oldbfd, bfd_link_hash_common,
808
              h->size, abfd, bfd_link_hash_common, sym->st_size)))
809
        return false;
810
 
811
      /* If the predumed common symbol in the dynamic object is
812
         larger, pretend that the new symbol has its size.  */
813
 
814
      if (h->size > *pvalue)
815
        *pvalue = h->size;
816
 
817
      /* FIXME: We no longer know the alignment required by the symbol
818
         in the dynamic object, so we just wind up using the one from
819
         the regular object.  */
820
 
821
      olddef = false;
822
      olddyncommon = false;
823
 
824
      h->root.type = bfd_link_hash_undefined;
825
      h->root.u.undef.abfd = h->root.u.def.section->owner;
826
 
827
      *size_change_ok = true;
828
      *type_change_ok = true;
829
 
830
      h->verinfo.vertree = NULL;
831
    }
832
 
833
  /* Handle the special case of a weak definition in a regular object
834
     followed by a non-weak definition in a shared object.  In this
835
     case, we prefer the definition in the shared object unless it
836
     comes from a DT_NEEDED entry of a shared object, in which case,
837
     the DT_NEEDED entry may not be required at the run time.  */
838
  if (olddef
839
      && ! dt_needed
840
      && h->root.type == bfd_link_hash_defweak
841
      && newdef
842
      && newdyn
843
      && bind != STB_WEAK)
844
    {
845
      /* To make this work we have to frob the flags so that the rest
846
         of the code does not think we are using the regular
847
         definition.  */
848
      if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
849
        h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
850
      else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
851
        h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
852
      h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
853
                                   | ELF_LINK_HASH_DEF_DYNAMIC);
854
 
855
      /* If H is the target of an indirection, we want the caller to
856
         use H rather than the indirect symbol.  Otherwise if we are
857
         defining a new indirect symbol we will wind up attaching it
858
         to the entry we are overriding.  */
859
      *sym_hash = h;
860
    }
861
 
862
  /* Handle the special case of a non-weak definition in a shared
863
     object followed by a weak definition in a regular object.  In
864
     this case we prefer to definition in the shared object.  To make
865
     this work we have to tell the caller to not treat the new symbol
866
     as a definition.  */
867
  if (olddef
868
      && olddyn
869
      && h->root.type != bfd_link_hash_defweak
870
      && newdef
871
      && ! newdyn
872
      && bind == STB_WEAK)
873
    *override = true;
874
 
875
  return true;
876
}
877
 
878
/* Add symbols from an ELF object file to the linker hash table.  */
879
 
880
static boolean
881
elf_link_add_object_symbols (abfd, info)
882
     bfd *abfd;
883
     struct bfd_link_info *info;
884
{
885
  boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
886
                                      const Elf_Internal_Sym *,
887
                                      const char **, flagword *,
888
                                      asection **, bfd_vma *));
889
  boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
890
                                   asection *, const Elf_Internal_Rela *));
891
  boolean collect;
892
  Elf_Internal_Shdr *hdr;
893
  size_t symcount;
894
  size_t extsymcount;
895
  size_t extsymoff;
896
  Elf_External_Sym *buf = NULL;
897
  struct elf_link_hash_entry **sym_hash;
898
  boolean dynamic;
899
  Elf_External_Versym *extversym = NULL;
900
  Elf_External_Versym *ever;
901
  Elf_External_Dyn *dynbuf = NULL;
902
  struct elf_link_hash_entry *weaks;
903
  Elf_External_Sym *esym;
904
  Elf_External_Sym *esymend;
905
  struct elf_backend_data *bed;
906
  boolean dt_needed;
907
 
908
  bed = get_elf_backend_data (abfd);
909
  add_symbol_hook = bed->elf_add_symbol_hook;
910
  collect = bed->collect;
911
 
912
  if ((abfd->flags & DYNAMIC) == 0)
913
    dynamic = false;
914
  else
915
    {
916
      dynamic = true;
917
 
918
      /* You can't use -r against a dynamic object.  Also, there's no
919
         hope of using a dynamic object which does not exactly match
920
         the format of the output file.  */
921
      if (info->relocateable || info->hash->creator != abfd->xvec)
922
        {
923
          bfd_set_error (bfd_error_invalid_operation);
924
          goto error_return;
925
        }
926
    }
927
 
928
  /* As a GNU extension, any input sections which are named
929
     .gnu.warning.SYMBOL are treated as warning symbols for the given
930
     symbol.  This differs from .gnu.warning sections, which generate
931
     warnings when they are included in an output file.  */
932
  if (! info->shared)
933
    {
934
      asection *s;
935
 
936
      for (s = abfd->sections; s != NULL; s = s->next)
937
        {
938
          const char *name;
939
 
940
          name = bfd_get_section_name (abfd, s);
941
          if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
942
            {
943
              char *msg;
944
              bfd_size_type sz;
945
 
946
              name += sizeof ".gnu.warning." - 1;
947
 
948
              /* If this is a shared object, then look up the symbol
949
                 in the hash table.  If it is there, and it is already
950
                 been defined, then we will not be using the entry
951
                 from this shared object, so we don't need to warn.
952
                 FIXME: If we see the definition in a regular object
953
                 later on, we will warn, but we shouldn't.  The only
954
                 fix is to keep track of what warnings we are supposed
955
                 to emit, and then handle them all at the end of the
956
                 link.  */
957
              if (dynamic && abfd->xvec == info->hash->creator)
958
                {
959
                  struct elf_link_hash_entry *h;
960
 
961
                  h = elf_link_hash_lookup (elf_hash_table (info), name,
962
                                            false, false, true);
963
 
964
                  /* FIXME: What about bfd_link_hash_common?  */
965
                  if (h != NULL
966
                      && (h->root.type == bfd_link_hash_defined
967
                          || h->root.type == bfd_link_hash_defweak))
968
                    {
969
                      /* We don't want to issue this warning.  Clobber
970
                         the section size so that the warning does not
971
                         get copied into the output file.  */
972
                      s->_raw_size = 0;
973
                      continue;
974
                    }
975
                }
976
 
977
              sz = bfd_section_size (abfd, s);
978
              msg = (char *) bfd_alloc (abfd, sz + 1);
979
              if (msg == NULL)
980
                goto error_return;
981
 
982
              if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
983
                goto error_return;
984
 
985
              msg[sz] = '\0';
986
 
987
              if (! (_bfd_generic_link_add_one_symbol
988
                     (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
989
                      false, collect, (struct bfd_link_hash_entry **) NULL)))
990
                goto error_return;
991
 
992
              if (! info->relocateable)
993
                {
994
                  /* Clobber the section size so that the warning does
995
                     not get copied into the output file.  */
996
                  s->_raw_size = 0;
997
                }
998
            }
999
        }
1000
    }
1001
 
1002
  /* If this is a dynamic object, we always link against the .dynsym
1003
     symbol table, not the .symtab symbol table.  The dynamic linker
1004
     will only see the .dynsym symbol table, so there is no reason to
1005
     look at .symtab for a dynamic object.  */
1006
 
1007
  if (! dynamic || elf_dynsymtab (abfd) == 0)
1008
    hdr = &elf_tdata (abfd)->symtab_hdr;
1009
  else
1010
    hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1011
 
1012
  if (dynamic)
1013
    {
1014
      /* Read in any version definitions.  */
1015
 
1016
      if (! _bfd_elf_slurp_version_tables (abfd))
1017
        goto error_return;
1018
 
1019
      /* Read in the symbol versions, but don't bother to convert them
1020
         to internal format.  */
1021
      if (elf_dynversym (abfd) != 0)
1022
        {
1023
          Elf_Internal_Shdr *versymhdr;
1024
 
1025
          versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1026
          extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
1027
          if (extversym == NULL)
1028
            goto error_return;
1029
          if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1030
              || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1031
                  != versymhdr->sh_size))
1032
            goto error_return;
1033
        }
1034
    }
1035
 
1036
  symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1037
 
1038
  /* The sh_info field of the symtab header tells us where the
1039
     external symbols start.  We don't care about the local symbols at
1040
     this point.  */
1041
  if (elf_bad_symtab (abfd))
1042
    {
1043
      extsymcount = symcount;
1044
      extsymoff = 0;
1045
    }
1046
  else
1047
    {
1048
      extsymcount = symcount - hdr->sh_info;
1049
      extsymoff = hdr->sh_info;
1050
    }
1051
 
1052
  buf = ((Elf_External_Sym *)
1053
         bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1054
  if (buf == NULL && extsymcount != 0)
1055
    goto error_return;
1056
 
1057
  /* We store a pointer to the hash table entry for each external
1058
     symbol.  */
1059
  sym_hash = ((struct elf_link_hash_entry **)
1060
              bfd_alloc (abfd,
1061
                         extsymcount * sizeof (struct elf_link_hash_entry *)));
1062
  if (sym_hash == NULL)
1063
    goto error_return;
1064
  elf_sym_hashes (abfd) = sym_hash;
1065
 
1066
  dt_needed = false;
1067
 
1068
  if (! dynamic)
1069
    {
1070
      /* If we are creating a shared library, create all the dynamic
1071
         sections immediately.  We need to attach them to something,
1072
         so we attach them to this BFD, provided it is the right
1073
         format.  FIXME: If there are no input BFD's of the same
1074
         format as the output, we can't make a shared library.  */
1075
      if (info->shared
1076
          && ! elf_hash_table (info)->dynamic_sections_created
1077
          && abfd->xvec == info->hash->creator)
1078
        {
1079
          if (! elf_link_create_dynamic_sections (abfd, info))
1080
            goto error_return;
1081
        }
1082
    }
1083
  else
1084
    {
1085
      asection *s;
1086
      boolean add_needed;
1087
      const char *name;
1088
      bfd_size_type oldsize;
1089
      bfd_size_type strindex;
1090
 
1091
      /* Find the name to use in a DT_NEEDED entry that refers to this
1092
         object.  If the object has a DT_SONAME entry, we use it.
1093
         Otherwise, if the generic linker stuck something in
1094
         elf_dt_name, we use that.  Otherwise, we just use the file
1095
         name.  If the generic linker put a null string into
1096
         elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1097
         there is a DT_SONAME entry.  */
1098
      add_needed = true;
1099
      name = bfd_get_filename (abfd);
1100
      if (elf_dt_name (abfd) != NULL)
1101
        {
1102
          name = elf_dt_name (abfd);
1103
          if (*name == '\0')
1104
            {
1105
              if (elf_dt_soname (abfd) != NULL)
1106
                dt_needed = true;
1107
 
1108
              add_needed = false;
1109
            }
1110
        }
1111
      s = bfd_get_section_by_name (abfd, ".dynamic");
1112
      if (s != NULL)
1113
        {
1114
          Elf_External_Dyn *extdyn;
1115
          Elf_External_Dyn *extdynend;
1116
          int elfsec;
1117
          unsigned long link;
1118
          int rpath;
1119
          int runpath;
1120
 
1121
          dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1122
          if (dynbuf == NULL)
1123
            goto error_return;
1124
 
1125
          if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1126
                                          (file_ptr) 0, s->_raw_size))
1127
            goto error_return;
1128
 
1129
          elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1130
          if (elfsec == -1)
1131
            goto error_return;
1132
          link = elf_elfsections (abfd)[elfsec]->sh_link;
1133
 
1134
          {
1135
            /* The shared libraries distributed with hpux11 have a bogus
1136
               sh_link field for the ".dynamic" section.  This code detects
1137
               when LINK refers to a section that is not a string table and
1138
               tries to find the string table for the ".dynsym" section
1139
               instead.  */
1140
            Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1141
            if (hdr->sh_type != SHT_STRTAB)
1142
              {
1143
                asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1144
                int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1145
                if (elfsec == -1)
1146
                  goto error_return;
1147
                link = elf_elfsections (abfd)[elfsec]->sh_link;
1148
              }
1149
          }
1150
 
1151
          extdyn = dynbuf;
1152
          extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1153
          rpath = 0;
1154
          runpath = 0;
1155
          for (; extdyn < extdynend; extdyn++)
1156
            {
1157
              Elf_Internal_Dyn dyn;
1158
 
1159
              elf_swap_dyn_in (abfd, extdyn, &dyn);
1160
              if (dyn.d_tag == DT_SONAME)
1161
                {
1162
                  name = bfd_elf_string_from_elf_section (abfd, link,
1163
                                                          dyn.d_un.d_val);
1164
                  if (name == NULL)
1165
                    goto error_return;
1166
                }
1167
              if (dyn.d_tag == DT_NEEDED)
1168
                {
1169
                  struct bfd_link_needed_list *n, **pn;
1170
                  char *fnm, *anm;
1171
 
1172
                  n = ((struct bfd_link_needed_list *)
1173
                       bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1174
                  fnm = bfd_elf_string_from_elf_section (abfd, link,
1175
                                                         dyn.d_un.d_val);
1176
                  if (n == NULL || fnm == NULL)
1177
                    goto error_return;
1178
                  anm = bfd_alloc (abfd, strlen (fnm) + 1);
1179
                  if (anm == NULL)
1180
                    goto error_return;
1181
                  strcpy (anm, fnm);
1182
                  n->name = anm;
1183
                  n->by = abfd;
1184
                  n->next = NULL;
1185
                  for (pn = &elf_hash_table (info)->needed;
1186
                       *pn != NULL;
1187
                       pn = &(*pn)->next)
1188
                    ;
1189
                  *pn = n;
1190
                }
1191
              if (dyn.d_tag == DT_RUNPATH)
1192
                {
1193
                  struct bfd_link_needed_list *n, **pn;
1194
                  char *fnm, *anm;
1195
 
1196
                  /* When we see DT_RPATH before DT_RUNPATH, we have
1197
                     to clear runpath.  Do _NOT_ bfd_release, as that
1198
                     frees all more recently bfd_alloc'd blocks as
1199
                     well.  */
1200
                  if (rpath && elf_hash_table (info)->runpath)
1201
                    elf_hash_table (info)->runpath = NULL;
1202
 
1203
                  n = ((struct bfd_link_needed_list *)
1204
                       bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1205
                  fnm = bfd_elf_string_from_elf_section (abfd, link,
1206
                                                         dyn.d_un.d_val);
1207
                  if (n == NULL || fnm == NULL)
1208
                    goto error_return;
1209
                  anm = bfd_alloc (abfd, strlen (fnm) + 1);
1210
                  if (anm == NULL)
1211
                    goto error_return;
1212
                  strcpy (anm, fnm);
1213
                  n->name = anm;
1214
                  n->by = abfd;
1215
                  n->next = NULL;
1216
                  for (pn = &elf_hash_table (info)->runpath;
1217
                       *pn != NULL;
1218
                       pn = &(*pn)->next)
1219
                    ;
1220
                  *pn = n;
1221
                  runpath = 1;
1222
                  rpath = 0;
1223
                }
1224
              /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
1225
              if (!runpath && dyn.d_tag == DT_RPATH)
1226
                {
1227
                  struct bfd_link_needed_list *n, **pn;
1228
                  char *fnm, *anm;
1229
 
1230
                  n = ((struct bfd_link_needed_list *)
1231
                       bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1232
                  fnm = bfd_elf_string_from_elf_section (abfd, link,
1233
                                                         dyn.d_un.d_val);
1234
                  if (n == NULL || fnm == NULL)
1235
                    goto error_return;
1236
                  anm = bfd_alloc (abfd, strlen (fnm) + 1);
1237
                  if (anm == NULL)
1238
                    goto error_return;
1239
                  strcpy (anm, fnm);
1240
                  n->name = anm;
1241
                  n->by = abfd;
1242
                  n->next = NULL;
1243
                  for (pn = &elf_hash_table (info)->runpath;
1244
                       *pn != NULL;
1245
                       pn = &(*pn)->next)
1246
                    ;
1247
                  *pn = n;
1248
                  rpath = 1;
1249
                }
1250
            }
1251
 
1252
          free (dynbuf);
1253
          dynbuf = NULL;
1254
        }
1255
 
1256
      /* We do not want to include any of the sections in a dynamic
1257
         object in the output file.  We hack by simply clobbering the
1258
         list of sections in the BFD.  This could be handled more
1259
         cleanly by, say, a new section flag; the existing
1260
         SEC_NEVER_LOAD flag is not the one we want, because that one
1261
         still implies that the section takes up space in the output
1262
         file.  */
1263
      abfd->sections = NULL;
1264
      abfd->section_count = 0;
1265
 
1266
      /* If this is the first dynamic object found in the link, create
1267
         the special sections required for dynamic linking.  */
1268
      if (! elf_hash_table (info)->dynamic_sections_created)
1269
        {
1270
          if (! elf_link_create_dynamic_sections (abfd, info))
1271
            goto error_return;
1272
        }
1273
 
1274
      if (add_needed)
1275
        {
1276
          /* Add a DT_NEEDED entry for this dynamic object.  */
1277
          oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1278
          strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1279
                                         true, false);
1280
          if (strindex == (bfd_size_type) -1)
1281
            goto error_return;
1282
 
1283
          if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1284
            {
1285
              asection *sdyn;
1286
              Elf_External_Dyn *dyncon, *dynconend;
1287
 
1288
              /* The hash table size did not change, which means that
1289
                 the dynamic object name was already entered.  If we
1290
                 have already included this dynamic object in the
1291
                 link, just ignore it.  There is no reason to include
1292
                 a particular dynamic object more than once.  */
1293
              sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1294
                                              ".dynamic");
1295
              BFD_ASSERT (sdyn != NULL);
1296
 
1297
              dyncon = (Elf_External_Dyn *) sdyn->contents;
1298
              dynconend = (Elf_External_Dyn *) (sdyn->contents +
1299
                                                sdyn->_raw_size);
1300
              for (; dyncon < dynconend; dyncon++)
1301
                {
1302
                  Elf_Internal_Dyn dyn;
1303
 
1304
                  elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1305
                                   &dyn);
1306
                  if (dyn.d_tag == DT_NEEDED
1307
                      && dyn.d_un.d_val == strindex)
1308
                    {
1309
                      if (buf != NULL)
1310
                        free (buf);
1311
                      if (extversym != NULL)
1312
                        free (extversym);
1313
                      return true;
1314
                    }
1315
                }
1316
            }
1317
 
1318
          if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1319
            goto error_return;
1320
        }
1321
 
1322
      /* Save the SONAME, if there is one, because sometimes the
1323
         linker emulation code will need to know it.  */
1324
      if (*name == '\0')
1325
        name = basename (bfd_get_filename (abfd));
1326
      elf_dt_name (abfd) = name;
1327
    }
1328
 
1329
  if (bfd_seek (abfd,
1330
                hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1331
                SEEK_SET) != 0
1332
      || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1333
          != extsymcount * sizeof (Elf_External_Sym)))
1334
    goto error_return;
1335
 
1336
  weaks = NULL;
1337
 
1338
  ever = extversym != NULL ? extversym + extsymoff : NULL;
1339
  esymend = buf + extsymcount;
1340
  for (esym = buf;
1341
       esym < esymend;
1342
       esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1343
    {
1344
      Elf_Internal_Sym sym;
1345
      int bind;
1346
      bfd_vma value;
1347
      asection *sec;
1348
      flagword flags;
1349
      const char *name;
1350
      struct elf_link_hash_entry *h;
1351
      boolean definition;
1352
      boolean size_change_ok, type_change_ok;
1353
      boolean new_weakdef;
1354
      unsigned int old_alignment;
1355
 
1356
      elf_swap_symbol_in (abfd, esym, &sym);
1357
 
1358
      flags = BSF_NO_FLAGS;
1359
      sec = NULL;
1360
      value = sym.st_value;
1361
      *sym_hash = NULL;
1362
 
1363
      bind = ELF_ST_BIND (sym.st_info);
1364
      if (bind == STB_LOCAL)
1365
        {
1366
          /* This should be impossible, since ELF requires that all
1367
             global symbols follow all local symbols, and that sh_info
1368
             point to the first global symbol.  Unfortunatealy, Irix 5
1369
             screws this up.  */
1370
          continue;
1371
        }
1372
      else if (bind == STB_GLOBAL)
1373
        {
1374
          if (sym.st_shndx != SHN_UNDEF
1375
              && sym.st_shndx != SHN_COMMON)
1376
            flags = BSF_GLOBAL;
1377
        }
1378
      else if (bind == STB_WEAK)
1379
        flags = BSF_WEAK;
1380
      else
1381
        {
1382
          /* Leave it up to the processor backend.  */
1383
        }
1384
 
1385
      if (sym.st_shndx == SHN_UNDEF)
1386
        sec = bfd_und_section_ptr;
1387
      else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1388
        {
1389
          sec = section_from_elf_index (abfd, sym.st_shndx);
1390
          if (sec == NULL)
1391
            sec = bfd_abs_section_ptr;
1392
          else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1393
            value -= sec->vma;
1394
        }
1395
      else if (sym.st_shndx == SHN_ABS)
1396
        sec = bfd_abs_section_ptr;
1397
      else if (sym.st_shndx == SHN_COMMON)
1398
        {
1399
          sec = bfd_com_section_ptr;
1400
          /* What ELF calls the size we call the value.  What ELF
1401
             calls the value we call the alignment.  */
1402
          value = sym.st_size;
1403
        }
1404
      else
1405
        {
1406
          /* Leave it up to the processor backend.  */
1407
        }
1408
 
1409
      name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1410
      if (name == (const char *) NULL)
1411
        goto error_return;
1412
 
1413
      if (add_symbol_hook)
1414
        {
1415
          if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1416
                                    &value))
1417
            goto error_return;
1418
 
1419
          /* The hook function sets the name to NULL if this symbol
1420
             should be skipped for some reason.  */
1421
          if (name == (const char *) NULL)
1422
            continue;
1423
        }
1424
 
1425
      /* Sanity check that all possibilities were handled.  */
1426
      if (sec == (asection *) NULL)
1427
        {
1428
          bfd_set_error (bfd_error_bad_value);
1429
          goto error_return;
1430
        }
1431
 
1432
      if (bfd_is_und_section (sec)
1433
          || bfd_is_com_section (sec))
1434
        definition = false;
1435
      else
1436
        definition = true;
1437
 
1438
      size_change_ok = false;
1439
      type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1440
      old_alignment = 0;
1441
      if (info->hash->creator->flavour == bfd_target_elf_flavour)
1442
        {
1443
          Elf_Internal_Versym iver;
1444
          unsigned int vernum = 0;
1445
          boolean override;
1446
 
1447
          if (ever != NULL)
1448
            {
1449
              _bfd_elf_swap_versym_in (abfd, ever, &iver);
1450
              vernum = iver.vs_vers & VERSYM_VERSION;
1451
 
1452
              /* If this is a hidden symbol, or if it is not version
1453
                 1, we append the version name to the symbol name.
1454
                 However, we do not modify a non-hidden absolute
1455
                 symbol, because it might be the version symbol
1456
                 itself.  FIXME: What if it isn't?  */
1457
              if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1458
                  || (vernum > 1 && ! bfd_is_abs_section (sec)))
1459
                {
1460
                  const char *verstr;
1461
                  int namelen, newlen;
1462
                  char *newname, *p;
1463
 
1464
                  if (sym.st_shndx != SHN_UNDEF)
1465
                    {
1466
                      if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1467
                        {
1468
                          (*_bfd_error_handler)
1469
                            (_("%s: %s: invalid version %u (max %d)"),
1470
                             bfd_get_filename (abfd), name, vernum,
1471
                             elf_tdata (abfd)->dynverdef_hdr.sh_info);
1472
                          bfd_set_error (bfd_error_bad_value);
1473
                          goto error_return;
1474
                        }
1475
                      else if (vernum > 1)
1476
                        verstr =
1477
                          elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1478
                      else
1479
                        verstr = "";
1480
                    }
1481
                  else
1482
                    {
1483
                      /* We cannot simply test for the number of
1484
                         entries in the VERNEED section since the
1485
                         numbers for the needed versions do not start
1486
                         at 0.  */
1487
                      Elf_Internal_Verneed *t;
1488
 
1489
                      verstr = NULL;
1490
                      for (t = elf_tdata (abfd)->verref;
1491
                           t != NULL;
1492
                           t = t->vn_nextref)
1493
                        {
1494
                          Elf_Internal_Vernaux *a;
1495
 
1496
                          for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1497
                            {
1498
                              if (a->vna_other == vernum)
1499
                                {
1500
                                  verstr = a->vna_nodename;
1501
                                  break;
1502
                                }
1503
                            }
1504
                          if (a != NULL)
1505
                            break;
1506
                        }
1507
                      if (verstr == NULL)
1508
                        {
1509
                          (*_bfd_error_handler)
1510
                            (_("%s: %s: invalid needed version %d"),
1511
                             bfd_get_filename (abfd), name, vernum);
1512
                          bfd_set_error (bfd_error_bad_value);
1513
                          goto error_return;
1514
                        }
1515
                    }
1516
 
1517
                  namelen = strlen (name);
1518
                  newlen = namelen + strlen (verstr) + 2;
1519
                  if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1520
                    ++newlen;
1521
 
1522
                  newname = (char *) bfd_alloc (abfd, newlen);
1523
                  if (newname == NULL)
1524
                    goto error_return;
1525
                  strcpy (newname, name);
1526
                  p = newname + namelen;
1527
                  *p++ = ELF_VER_CHR;
1528
                  /* If this is a defined non-hidden version symbol,
1529
                     we add another @ to the name.  This indicates the
1530
                     default version of the symbol.  */
1531
                  if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1532
                      && sym.st_shndx != SHN_UNDEF)
1533
                    *p++ = ELF_VER_CHR;
1534
                  strcpy (p, verstr);
1535
 
1536
                  name = newname;
1537
                }
1538
            }
1539
 
1540
          if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1541
                                  sym_hash, &override, &type_change_ok,
1542
                                  &size_change_ok, dt_needed))
1543
            goto error_return;
1544
 
1545
          if (override)
1546
            definition = false;
1547
 
1548
          h = *sym_hash;
1549
          while (h->root.type == bfd_link_hash_indirect
1550
                 || h->root.type == bfd_link_hash_warning)
1551
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
1552
 
1553
          /* Remember the old alignment if this is a common symbol, so
1554
             that we don't reduce the alignment later on.  We can't
1555
             check later, because _bfd_generic_link_add_one_symbol
1556
             will set a default for the alignment which we want to
1557
             override.  */
1558
          if (h->root.type == bfd_link_hash_common)
1559
            old_alignment = h->root.u.c.p->alignment_power;
1560
 
1561
          if (elf_tdata (abfd)->verdef != NULL
1562
              && ! override
1563
              && vernum > 1
1564
              && definition)
1565
            h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1566
        }
1567
 
1568
      if (! (_bfd_generic_link_add_one_symbol
1569
             (info, abfd, name, flags, sec, value, (const char *) NULL,
1570
              false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1571
        goto error_return;
1572
 
1573
      h = *sym_hash;
1574
      while (h->root.type == bfd_link_hash_indirect
1575
             || h->root.type == bfd_link_hash_warning)
1576
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
1577
      *sym_hash = h;
1578
 
1579
      new_weakdef = false;
1580
      if (dynamic
1581
          && definition
1582
          && (flags & BSF_WEAK) != 0
1583
          && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1584
          && info->hash->creator->flavour == bfd_target_elf_flavour
1585
          && h->weakdef == NULL)
1586
        {
1587
          /* Keep a list of all weak defined non function symbols from
1588
             a dynamic object, using the weakdef field.  Later in this
1589
             function we will set the weakdef field to the correct
1590
             value.  We only put non-function symbols from dynamic
1591
             objects on this list, because that happens to be the only
1592
             time we need to know the normal symbol corresponding to a
1593
             weak symbol, and the information is time consuming to
1594
             figure out.  If the weakdef field is not already NULL,
1595
             then this symbol was already defined by some previous
1596
             dynamic object, and we will be using that previous
1597
             definition anyhow.  */
1598
 
1599
          h->weakdef = weaks;
1600
          weaks = h;
1601
          new_weakdef = true;
1602
        }
1603
 
1604
      /* Set the alignment of a common symbol.  */
1605
      if (sym.st_shndx == SHN_COMMON
1606
          && h->root.type == bfd_link_hash_common)
1607
        {
1608
          unsigned int align;
1609
 
1610
          align = bfd_log2 (sym.st_value);
1611
          if (align > old_alignment
1612
              /* Permit an alignment power of zero if an alignment of one
1613
                 is specified and no other alignments have been specified.  */
1614
              || (sym.st_value == 1 && old_alignment == 0))
1615
            h->root.u.c.p->alignment_power = align;
1616
        }
1617
 
1618
      if (info->hash->creator->flavour == bfd_target_elf_flavour)
1619
        {
1620
          int old_flags;
1621
          boolean dynsym;
1622
          int new_flag;
1623
 
1624
          /* Remember the symbol size and type.  */
1625
          if (sym.st_size != 0
1626
              && (definition || h->size == 0))
1627
            {
1628
              if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1629
                (*_bfd_error_handler)
1630
                  (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1631
                   name, (unsigned long) h->size, (unsigned long) sym.st_size,
1632
                   bfd_get_filename (abfd));
1633
 
1634
              h->size = sym.st_size;
1635
            }
1636
 
1637
          /* If this is a common symbol, then we always want H->SIZE
1638
             to be the size of the common symbol.  The code just above
1639
             won't fix the size if a common symbol becomes larger.  We
1640
             don't warn about a size change here, because that is
1641
             covered by --warn-common.  */
1642
          if (h->root.type == bfd_link_hash_common)
1643
            h->size = h->root.u.c.size;
1644
 
1645
          if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1646
              && (definition || h->type == STT_NOTYPE))
1647
            {
1648
              if (h->type != STT_NOTYPE
1649
                  && h->type != ELF_ST_TYPE (sym.st_info)
1650
                  && ! type_change_ok)
1651
                (*_bfd_error_handler)
1652
                  (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1653
                   name, h->type, ELF_ST_TYPE (sym.st_info),
1654
                   bfd_get_filename (abfd));
1655
 
1656
              h->type = ELF_ST_TYPE (sym.st_info);
1657
            }
1658
 
1659
          /* If st_other has a processor-specific meaning, specific code
1660
             might be needed here.  */
1661
          if (sym.st_other != 0)
1662
            {
1663
              /* Combine visibilities, using the most constraining one.  */
1664
              unsigned char hvis   = ELF_ST_VISIBILITY (h->other);
1665
              unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1666
 
1667
              if (symvis && (hvis > symvis || hvis == 0))
1668
                h->other = sym.st_other;
1669
 
1670
              /* If neither has visibility, use the st_other of the
1671
                 definition.  This is an arbitrary choice, since the
1672
                 other bits have no general meaning.  */
1673
              if (!symvis && !hvis
1674
                  && (definition || h->other == 0))
1675
                h->other = sym.st_other;
1676
            }
1677
 
1678
          /* Set a flag in the hash table entry indicating the type of
1679
             reference or definition we just found.  Keep a count of
1680
             the number of dynamic symbols we find.  A dynamic symbol
1681
             is one which is referenced or defined by both a regular
1682
             object and a shared object.  */
1683
          old_flags = h->elf_link_hash_flags;
1684
          dynsym = false;
1685
          if (! dynamic)
1686
            {
1687
              if (! definition)
1688
                {
1689
                  new_flag = ELF_LINK_HASH_REF_REGULAR;
1690
                  if (bind != STB_WEAK)
1691
                    new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1692
                }
1693
              else
1694
                new_flag = ELF_LINK_HASH_DEF_REGULAR;
1695
              if (info->shared
1696
                  || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1697
                                   | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1698
                dynsym = true;
1699
            }
1700
          else
1701
            {
1702
              if (! definition)
1703
                new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1704
              else
1705
                new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1706
              if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1707
                                | ELF_LINK_HASH_REF_REGULAR)) != 0
1708
                  || (h->weakdef != NULL
1709
                      && ! new_weakdef
1710
                      && h->weakdef->dynindx != -1))
1711
                dynsym = true;
1712
            }
1713
 
1714
          h->elf_link_hash_flags |= new_flag;
1715
 
1716
          /* If this symbol has a version, and it is the default
1717
             version, we create an indirect symbol from the default
1718
             name to the fully decorated name.  This will cause
1719
             external references which do not specify a version to be
1720
             bound to this version of the symbol.  */
1721
          if (definition || h->root.type == bfd_link_hash_common)
1722
            {
1723
              char *p;
1724
 
1725
              p = strchr (name, ELF_VER_CHR);
1726
              if (p != NULL && p[1] == ELF_VER_CHR)
1727
                {
1728
                  char *shortname;
1729
                  struct elf_link_hash_entry *hi;
1730
                  boolean override;
1731
 
1732
                  shortname = bfd_hash_allocate (&info->hash->table,
1733
                                                 p - name + 1);
1734
                  if (shortname == NULL)
1735
                    goto error_return;
1736
                  strncpy (shortname, name, p - name);
1737
                  shortname[p - name] = '\0';
1738
 
1739
                  /* We are going to create a new symbol.  Merge it
1740
                     with any existing symbol with this name.  For the
1741
                     purposes of the merge, act as though we were
1742
                     defining the symbol we just defined, although we
1743
                     actually going to define an indirect symbol.  */
1744
                  type_change_ok = false;
1745
                  size_change_ok = false;
1746
                  if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1747
                                          &value, &hi, &override,
1748
                                          &type_change_ok,
1749
                                          &size_change_ok, dt_needed))
1750
                    goto error_return;
1751
 
1752
                  if (! override)
1753
                    {
1754
                      if (! (_bfd_generic_link_add_one_symbol
1755
                             (info, abfd, shortname, BSF_INDIRECT,
1756
                              bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1757
                              collect, (struct bfd_link_hash_entry **) &hi)))
1758
                        goto error_return;
1759
                    }
1760
                  else
1761
                    {
1762
                      /* In this case the symbol named SHORTNAME is
1763
                         overriding the indirect symbol we want to
1764
                         add.  We were planning on making SHORTNAME an
1765
                         indirect symbol referring to NAME.  SHORTNAME
1766
                         is the name without a version.  NAME is the
1767
                         fully versioned name, and it is the default
1768
                         version.
1769
 
1770
                         Overriding means that we already saw a
1771
                         definition for the symbol SHORTNAME in a
1772
                         regular object, and it is overriding the
1773
                         symbol defined in the dynamic object.
1774
 
1775
                         When this happens, we actually want to change
1776
                         NAME, the symbol we just added, to refer to
1777
                         SHORTNAME.  This will cause references to
1778
                         NAME in the shared object to become
1779
                         references to SHORTNAME in the regular
1780
                         object.  This is what we expect when we
1781
                         override a function in a shared object: that
1782
                         the references in the shared object will be
1783
                         mapped to the definition in the regular
1784
                         object.  */
1785
 
1786
                      while (hi->root.type == bfd_link_hash_indirect
1787
                             || hi->root.type == bfd_link_hash_warning)
1788
                        hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1789
 
1790
                      h->root.type = bfd_link_hash_indirect;
1791
                      h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1792
                      if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1793
                        {
1794
                          h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1795
                          hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1796
                          if (hi->elf_link_hash_flags
1797
                              & (ELF_LINK_HASH_REF_REGULAR
1798
                                 | ELF_LINK_HASH_DEF_REGULAR))
1799
                            {
1800
                              if (! _bfd_elf_link_record_dynamic_symbol (info,
1801
                                                                         hi))
1802
                                goto error_return;
1803
                            }
1804
                        }
1805
 
1806
                      /* Now set HI to H, so that the following code
1807
                         will set the other fields correctly.  */
1808
                      hi = h;
1809
                    }
1810
 
1811
                  /* If there is a duplicate definition somewhere,
1812
                     then HI may not point to an indirect symbol.  We
1813
                     will have reported an error to the user in that
1814
                     case.  */
1815
 
1816
                  if (hi->root.type == bfd_link_hash_indirect)
1817
                    {
1818
                      struct elf_link_hash_entry *ht;
1819
 
1820
                      /* If the symbol became indirect, then we assume
1821
                         that we have not seen a definition before.  */
1822
                      BFD_ASSERT ((hi->elf_link_hash_flags
1823
                                   & (ELF_LINK_HASH_DEF_DYNAMIC
1824
                                      | ELF_LINK_HASH_DEF_REGULAR))
1825
                                  == 0);
1826
 
1827
                      ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1828
                      (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1829
 
1830
                      /* See if the new flags lead us to realize that
1831
                         the symbol must be dynamic.  */
1832
                      if (! dynsym)
1833
                        {
1834
                          if (! dynamic)
1835
                            {
1836
                              if (info->shared
1837
                                  || ((hi->elf_link_hash_flags
1838
                                       & ELF_LINK_HASH_REF_DYNAMIC)
1839
                                      != 0))
1840
                                dynsym = true;
1841
                            }
1842
                          else
1843
                            {
1844
                              if ((hi->elf_link_hash_flags
1845
                                   & ELF_LINK_HASH_REF_REGULAR) != 0)
1846
                                dynsym = true;
1847
                            }
1848
                        }
1849
                    }
1850
 
1851
                  /* We also need to define an indirection from the
1852
                     nondefault version of the symbol.  */
1853
 
1854
                  shortname = bfd_hash_allocate (&info->hash->table,
1855
                                                 strlen (name));
1856
                  if (shortname == NULL)
1857
                    goto error_return;
1858
                  strncpy (shortname, name, p - name);
1859
                  strcpy (shortname + (p - name), p + 1);
1860
 
1861
                  /* Once again, merge with any existing symbol.  */
1862
                  type_change_ok = false;
1863
                  size_change_ok = false;
1864
                  if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1865
                                          &value, &hi, &override,
1866
                                          &type_change_ok,
1867
                                          &size_change_ok, dt_needed))
1868
                    goto error_return;
1869
 
1870
                  if (override)
1871
                    {
1872
                      /* Here SHORTNAME is a versioned name, so we
1873
                         don't expect to see the type of override we
1874
                         do in the case above.  */
1875
                      (*_bfd_error_handler)
1876
                        (_("%s: warning: unexpected redefinition of `%s'"),
1877
                         bfd_get_filename (abfd), shortname);
1878
                    }
1879
                  else
1880
                    {
1881
                      if (! (_bfd_generic_link_add_one_symbol
1882
                             (info, abfd, shortname, BSF_INDIRECT,
1883
                              bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1884
                              collect, (struct bfd_link_hash_entry **) &hi)))
1885
                        goto error_return;
1886
 
1887
                      /* If there is a duplicate definition somewhere,
1888
                         then HI may not point to an indirect symbol.
1889
                         We will have reported an error to the user in
1890
                         that case.  */
1891
 
1892
                      if (hi->root.type == bfd_link_hash_indirect)
1893
                        {
1894
                          /* If the symbol became indirect, then we
1895
                             assume that we have not seen a definition
1896
                             before.  */
1897
                          BFD_ASSERT ((hi->elf_link_hash_flags
1898
                                       & (ELF_LINK_HASH_DEF_DYNAMIC
1899
                                          | ELF_LINK_HASH_DEF_REGULAR))
1900
                                      == 0);
1901
 
1902
                          (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1903
 
1904
                          /* See if the new flags lead us to realize
1905
                             that the symbol must be dynamic.  */
1906
                          if (! dynsym)
1907
                            {
1908
                              if (! dynamic)
1909
                                {
1910
                                  if (info->shared
1911
                                      || ((hi->elf_link_hash_flags
1912
                                           & ELF_LINK_HASH_REF_DYNAMIC)
1913
                                          != 0))
1914
                                    dynsym = true;
1915
                                }
1916
                              else
1917
                                {
1918
                                  if ((hi->elf_link_hash_flags
1919
                                       & ELF_LINK_HASH_REF_REGULAR) != 0)
1920
                                    dynsym = true;
1921
                                }
1922
                            }
1923
                        }
1924
                    }
1925
                }
1926
            }
1927
 
1928
          if (dynsym && h->dynindx == -1)
1929
            {
1930
              if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1931
                goto error_return;
1932
              if (h->weakdef != NULL
1933
                  && ! new_weakdef
1934
                  && h->weakdef->dynindx == -1)
1935
                {
1936
                  if (! _bfd_elf_link_record_dynamic_symbol (info,
1937
                                                             h->weakdef))
1938
                    goto error_return;
1939
                }
1940
            }
1941
          else if (dynsym && h->dynindx != -1)
1942
            /* If the symbol already has a dynamic index, but
1943
               visibility says it should not be visible, turn it into
1944
               a local symbol.  */
1945
            switch (ELF_ST_VISIBILITY (h->other))
1946
              {
1947
              case STV_INTERNAL:
1948
              case STV_HIDDEN:
1949
                h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1950
                (*bed->elf_backend_hide_symbol) (info, h);
1951
                break;
1952
              }
1953
 
1954
          if (dt_needed && definition
1955
              && (h->elf_link_hash_flags
1956
                  & ELF_LINK_HASH_REF_REGULAR) != 0)
1957
            {
1958
              bfd_size_type oldsize;
1959
              bfd_size_type strindex;
1960
 
1961
              /* The symbol from a DT_NEEDED object is referenced from
1962
                 the regular object to create a dynamic executable. We
1963
                 have to make sure there is a DT_NEEDED entry for it.  */
1964
 
1965
              dt_needed = false;
1966
              oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1967
              strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
1968
                                             elf_dt_soname (abfd),
1969
                                             true, false);
1970
              if (strindex == (bfd_size_type) -1)
1971
                goto error_return;
1972
 
1973
              if (oldsize
1974
                  == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1975
                {
1976
                  asection *sdyn;
1977
                  Elf_External_Dyn *dyncon, *dynconend;
1978
 
1979
                  sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1980
                                                  ".dynamic");
1981
                  BFD_ASSERT (sdyn != NULL);
1982
 
1983
                  dyncon = (Elf_External_Dyn *) sdyn->contents;
1984
                  dynconend = (Elf_External_Dyn *) (sdyn->contents +
1985
                                                    sdyn->_raw_size);
1986
                  for (; dyncon < dynconend; dyncon++)
1987
                    {
1988
                      Elf_Internal_Dyn dyn;
1989
 
1990
                      elf_swap_dyn_in (elf_hash_table (info)->dynobj,
1991
                                       dyncon, &dyn);
1992
                      BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
1993
                                  dyn.d_un.d_val != strindex);
1994
                    }
1995
                }
1996
 
1997
              if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1998
                goto error_return;
1999
            }
2000
        }
2001
    }
2002
 
2003
  /* Now set the weakdefs field correctly for all the weak defined
2004
     symbols we found.  The only way to do this is to search all the
2005
     symbols.  Since we only need the information for non functions in
2006
     dynamic objects, that's the only time we actually put anything on
2007
     the list WEAKS.  We need this information so that if a regular
2008
     object refers to a symbol defined weakly in a dynamic object, the
2009
     real symbol in the dynamic object is also put in the dynamic
2010
     symbols; we also must arrange for both symbols to point to the
2011
     same memory location.  We could handle the general case of symbol
2012
     aliasing, but a general symbol alias can only be generated in
2013
     assembler code, handling it correctly would be very time
2014
     consuming, and other ELF linkers don't handle general aliasing
2015
     either.  */
2016
  while (weaks != NULL)
2017
    {
2018
      struct elf_link_hash_entry *hlook;
2019
      asection *slook;
2020
      bfd_vma vlook;
2021
      struct elf_link_hash_entry **hpp;
2022
      struct elf_link_hash_entry **hppend;
2023
 
2024
      hlook = weaks;
2025
      weaks = hlook->weakdef;
2026
      hlook->weakdef = NULL;
2027
 
2028
      BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2029
                  || hlook->root.type == bfd_link_hash_defweak
2030
                  || hlook->root.type == bfd_link_hash_common
2031
                  || hlook->root.type == bfd_link_hash_indirect);
2032
      slook = hlook->root.u.def.section;
2033
      vlook = hlook->root.u.def.value;
2034
 
2035
      hpp = elf_sym_hashes (abfd);
2036
      hppend = hpp + extsymcount;
2037
      for (; hpp < hppend; hpp++)
2038
        {
2039
          struct elf_link_hash_entry *h;
2040
 
2041
          h = *hpp;
2042
          if (h != NULL && h != hlook
2043
              && h->root.type == bfd_link_hash_defined
2044
              && h->root.u.def.section == slook
2045
              && h->root.u.def.value == vlook)
2046
            {
2047
              hlook->weakdef = h;
2048
 
2049
              /* If the weak definition is in the list of dynamic
2050
                 symbols, make sure the real definition is put there
2051
                 as well.  */
2052
              if (hlook->dynindx != -1
2053
                  && h->dynindx == -1)
2054
                {
2055
                  if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2056
                    goto error_return;
2057
                }
2058
 
2059
              /* If the real definition is in the list of dynamic
2060
                 symbols, make sure the weak definition is put there
2061
                 as well.  If we don't do this, then the dynamic
2062
                 loader might not merge the entries for the real
2063
                 definition and the weak definition.  */
2064
              if (h->dynindx != -1
2065
                  && hlook->dynindx == -1)
2066
                {
2067
                  if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2068
                    goto error_return;
2069
                }
2070
 
2071
              break;
2072
            }
2073
        }
2074
    }
2075
 
2076
  if (buf != NULL)
2077
    {
2078
      free (buf);
2079
      buf = NULL;
2080
    }
2081
 
2082
  if (extversym != NULL)
2083
    {
2084
      free (extversym);
2085
      extversym = NULL;
2086
    }
2087
 
2088
  /* If this object is the same format as the output object, and it is
2089
     not a shared library, then let the backend look through the
2090
     relocs.
2091
 
2092
     This is required to build global offset table entries and to
2093
     arrange for dynamic relocs.  It is not required for the
2094
     particular common case of linking non PIC code, even when linking
2095
     against shared libraries, but unfortunately there is no way of
2096
     knowing whether an object file has been compiled PIC or not.
2097
     Looking through the relocs is not particularly time consuming.
2098
     The problem is that we must either (1) keep the relocs in memory,
2099
     which causes the linker to require additional runtime memory or
2100
     (2) read the relocs twice from the input file, which wastes time.
2101
     This would be a good case for using mmap.
2102
 
2103
     I have no idea how to handle linking PIC code into a file of a
2104
     different format.  It probably can't be done.  */
2105
  check_relocs = get_elf_backend_data (abfd)->check_relocs;
2106
  if (! dynamic
2107
      && abfd->xvec == info->hash->creator
2108
      && check_relocs != NULL)
2109
    {
2110
      asection *o;
2111
 
2112
      for (o = abfd->sections; o != NULL; o = o->next)
2113
        {
2114
          Elf_Internal_Rela *internal_relocs;
2115
          boolean ok;
2116
 
2117
          if ((o->flags & SEC_RELOC) == 0
2118
              || o->reloc_count == 0
2119
              || ((info->strip == strip_all || info->strip == strip_debugger)
2120
                  && (o->flags & SEC_DEBUGGING) != 0)
2121
              || bfd_is_abs_section (o->output_section))
2122
            continue;
2123
 
2124
          internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2125
                             (abfd, o, (PTR) NULL,
2126
                              (Elf_Internal_Rela *) NULL,
2127
                              info->keep_memory));
2128
          if (internal_relocs == NULL)
2129
            goto error_return;
2130
 
2131
          ok = (*check_relocs) (abfd, info, o, internal_relocs);
2132
 
2133
          if (! info->keep_memory)
2134
            free (internal_relocs);
2135
 
2136
          if (! ok)
2137
            goto error_return;
2138
        }
2139
    }
2140
 
2141
  /* If this is a non-traditional, non-relocateable link, try to
2142
     optimize the handling of the .stab/.stabstr sections.  */
2143
  if (! dynamic
2144
      && ! info->relocateable
2145
      && ! info->traditional_format
2146
      && info->hash->creator->flavour == bfd_target_elf_flavour
2147
      && (info->strip != strip_all && info->strip != strip_debugger))
2148
    {
2149
      asection *stab, *stabstr;
2150
 
2151
      stab = bfd_get_section_by_name (abfd, ".stab");
2152
      if (stab != NULL)
2153
        {
2154
          stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2155
 
2156
          if (stabstr != NULL)
2157
            {
2158
              struct bfd_elf_section_data *secdata;
2159
 
2160
              secdata = elf_section_data (stab);
2161
              if (! _bfd_link_section_stabs (abfd,
2162
                                             &elf_hash_table (info)->stab_info,
2163
                                             stab, stabstr,
2164
                                             &secdata->stab_info))
2165
                goto error_return;
2166
            }
2167
        }
2168
    }
2169
 
2170
  if (! info->relocateable && ! dynamic)
2171
    {
2172
      asection *s;
2173
 
2174
      for (s = abfd->sections; s != NULL; s = s->next)
2175
        if ((s->flags & SEC_MERGE)
2176
            && ! _bfd_merge_section (abfd,
2177
                                     &elf_hash_table (info)->merge_info,
2178
                                     s, &elf_section_data (s)->merge_info))
2179
          goto error_return;
2180
    }
2181
 
2182
  return true;
2183
 
2184
 error_return:
2185
  if (buf != NULL)
2186
    free (buf);
2187
  if (dynbuf != NULL)
2188
    free (dynbuf);
2189
  if (extversym != NULL)
2190
    free (extversym);
2191
  return false;
2192
}
2193
 
2194
/* Create some sections which will be filled in with dynamic linking
2195
   information.  ABFD is an input file which requires dynamic sections
2196
   to be created.  The dynamic sections take up virtual memory space
2197
   when the final executable is run, so we need to create them before
2198
   addresses are assigned to the output sections.  We work out the
2199
   actual contents and size of these sections later.  */
2200
 
2201
boolean
2202
elf_link_create_dynamic_sections (abfd, info)
2203
     bfd *abfd;
2204
     struct bfd_link_info *info;
2205
{
2206
  flagword flags;
2207
  register asection *s;
2208
  struct elf_link_hash_entry *h;
2209
  struct elf_backend_data *bed;
2210
 
2211
  if (elf_hash_table (info)->dynamic_sections_created)
2212
    return true;
2213
 
2214
  /* Make sure that all dynamic sections use the same input BFD.  */
2215
  if (elf_hash_table (info)->dynobj == NULL)
2216
    elf_hash_table (info)->dynobj = abfd;
2217
  else
2218
    abfd = elf_hash_table (info)->dynobj;
2219
 
2220
  /* Note that we set the SEC_IN_MEMORY flag for all of these
2221
     sections.  */
2222
  flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2223
           | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2224
 
2225
  /* A dynamically linked executable has a .interp section, but a
2226
     shared library does not.  */
2227
  if (! info->shared)
2228
    {
2229
      s = bfd_make_section (abfd, ".interp");
2230
      if (s == NULL
2231
          || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2232
        return false;
2233
    }
2234
 
2235
  /* Create sections to hold version informations.  These are removed
2236
     if they are not needed.  */
2237
  s = bfd_make_section (abfd, ".gnu.version_d");
2238
  if (s == NULL
2239
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2240
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2241
    return false;
2242
 
2243
  s = bfd_make_section (abfd, ".gnu.version");
2244
  if (s == NULL
2245
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2246
      || ! bfd_set_section_alignment (abfd, s, 1))
2247
    return false;
2248
 
2249
  s = bfd_make_section (abfd, ".gnu.version_r");
2250
  if (s == NULL
2251
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2252
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2253
    return false;
2254
 
2255
  s = bfd_make_section (abfd, ".dynsym");
2256
  if (s == NULL
2257
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2258
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2259
    return false;
2260
 
2261
  s = bfd_make_section (abfd, ".dynstr");
2262
  if (s == NULL
2263
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2264
    return false;
2265
 
2266
  /* Create a strtab to hold the dynamic symbol names.  */
2267
  if (elf_hash_table (info)->dynstr == NULL)
2268
    {
2269
      elf_hash_table (info)->dynstr = elf_stringtab_init ();
2270
      if (elf_hash_table (info)->dynstr == NULL)
2271
        return false;
2272
    }
2273
 
2274
  s = bfd_make_section (abfd, ".dynamic");
2275
  if (s == NULL
2276
      || ! bfd_set_section_flags (abfd, s, flags)
2277
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2278
    return false;
2279
 
2280
  /* The special symbol _DYNAMIC is always set to the start of the
2281
     .dynamic section.  This call occurs before we have processed the
2282
     symbols for any dynamic object, so we don't have to worry about
2283
     overriding a dynamic definition.  We could set _DYNAMIC in a
2284
     linker script, but we only want to define it if we are, in fact,
2285
     creating a .dynamic section.  We don't want to define it if there
2286
     is no .dynamic section, since on some ELF platforms the start up
2287
     code examines it to decide how to initialize the process.  */
2288
  h = NULL;
2289
  if (! (_bfd_generic_link_add_one_symbol
2290
         (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2291
          (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2292
          (struct bfd_link_hash_entry **) &h)))
2293
    return false;
2294
  h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2295
  h->type = STT_OBJECT;
2296
 
2297
  if (info->shared
2298
      && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2299
    return false;
2300
 
2301
  bed = get_elf_backend_data (abfd);
2302
 
2303
  s = bfd_make_section (abfd, ".hash");
2304
  if (s == NULL
2305
      || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2306
      || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2307
    return false;
2308
  elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2309
 
2310
  /* Let the backend create the rest of the sections.  This lets the
2311
     backend set the right flags.  The backend will normally create
2312
     the .got and .plt sections.  */
2313
  if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2314
    return false;
2315
 
2316
  elf_hash_table (info)->dynamic_sections_created = true;
2317
 
2318
  return true;
2319
}
2320
 
2321
/* Add an entry to the .dynamic table.  */
2322
 
2323
boolean
2324
elf_add_dynamic_entry (info, tag, val)
2325
     struct bfd_link_info *info;
2326
     bfd_vma tag;
2327
     bfd_vma val;
2328
{
2329
  Elf_Internal_Dyn dyn;
2330
  bfd *dynobj;
2331
  asection *s;
2332
  size_t newsize;
2333
  bfd_byte *newcontents;
2334
 
2335
  dynobj = elf_hash_table (info)->dynobj;
2336
 
2337
  s = bfd_get_section_by_name (dynobj, ".dynamic");
2338
  BFD_ASSERT (s != NULL);
2339
 
2340
  newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2341
  newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2342
  if (newcontents == NULL)
2343
    return false;
2344
 
2345
  dyn.d_tag = tag;
2346
  dyn.d_un.d_val = val;
2347
  elf_swap_dyn_out (dynobj, &dyn,
2348
                    (Elf_External_Dyn *) (newcontents + s->_raw_size));
2349
 
2350
  s->_raw_size = newsize;
2351
  s->contents = newcontents;
2352
 
2353
  return true;
2354
}
2355
 
2356
/* Record a new local dynamic symbol.  */
2357
 
2358
boolean
2359
elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2360
     struct bfd_link_info *info;
2361
     bfd *input_bfd;
2362
     long input_indx;
2363
{
2364
  struct elf_link_local_dynamic_entry *entry;
2365
  struct elf_link_hash_table *eht;
2366
  struct bfd_strtab_hash *dynstr;
2367
  Elf_External_Sym esym;
2368
  unsigned long dynstr_index;
2369
  char *name;
2370
 
2371
  /* See if the entry exists already.  */
2372
  for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2373
    if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2374
      return true;
2375
 
2376
  entry = (struct elf_link_local_dynamic_entry *)
2377
    bfd_alloc (input_bfd, sizeof (*entry));
2378
  if (entry == NULL)
2379
    return false;
2380
 
2381
  /* Go find the symbol, so that we can find it's name.  */
2382
  if (bfd_seek (input_bfd,
2383
                (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2384
                 + input_indx * sizeof (Elf_External_Sym)),
2385
                SEEK_SET) != 0
2386
      || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2387
          != sizeof (Elf_External_Sym)))
2388
    return false;
2389
  elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2390
 
2391
  name = (bfd_elf_string_from_elf_section
2392
          (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2393
           entry->isym.st_name));
2394
 
2395
  dynstr = elf_hash_table (info)->dynstr;
2396
  if (dynstr == NULL)
2397
    {
2398
      /* Create a strtab to hold the dynamic symbol names.  */
2399
      elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2400
      if (dynstr == NULL)
2401
        return false;
2402
    }
2403
 
2404
  dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2405
  if (dynstr_index == (unsigned long) -1)
2406
    return false;
2407
  entry->isym.st_name = dynstr_index;
2408
 
2409
  eht = elf_hash_table (info);
2410
 
2411
  entry->next = eht->dynlocal;
2412
  eht->dynlocal = entry;
2413
  entry->input_bfd = input_bfd;
2414
  entry->input_indx = input_indx;
2415
  eht->dynsymcount++;
2416
 
2417
  /* Whatever binding the symbol had before, it's now local.  */
2418
  entry->isym.st_info
2419
    = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2420
 
2421
  /* The dynindx will be set at the end of size_dynamic_sections.  */
2422
 
2423
  return true;
2424
}
2425
 
2426
/* Read and swap the relocs from the section indicated by SHDR.  This
2427
   may be either a REL or a RELA section.  The relocations are
2428
   translated into RELA relocations and stored in INTERNAL_RELOCS,
2429
   which should have already been allocated to contain enough space.
2430
   The EXTERNAL_RELOCS are a buffer where the external form of the
2431
   relocations should be stored.
2432
 
2433
   Returns false if something goes wrong.  */
2434
 
2435
static boolean
2436
elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2437
                                   internal_relocs)
2438
     bfd *abfd;
2439
     Elf_Internal_Shdr *shdr;
2440
     PTR external_relocs;
2441
     Elf_Internal_Rela *internal_relocs;
2442
{
2443
  struct elf_backend_data *bed;
2444
 
2445
  /* If there aren't any relocations, that's OK.  */
2446
  if (!shdr)
2447
    return true;
2448
 
2449
  /* Position ourselves at the start of the section.  */
2450
  if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2451
    return false;
2452
 
2453
  /* Read the relocations.  */
2454
  if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2455
      != shdr->sh_size)
2456
    return false;
2457
 
2458
  bed = get_elf_backend_data (abfd);
2459
 
2460
  /* Convert the external relocations to the internal format.  */
2461
  if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2462
    {
2463
      Elf_External_Rel *erel;
2464
      Elf_External_Rel *erelend;
2465
      Elf_Internal_Rela *irela;
2466
      Elf_Internal_Rel *irel;
2467
 
2468
      erel = (Elf_External_Rel *) external_relocs;
2469
      erelend = erel + NUM_SHDR_ENTRIES (shdr);
2470
      irela = internal_relocs;
2471
      irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2472
                               * sizeof (Elf_Internal_Rel)));
2473
      for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2474
        {
2475
          unsigned int i;
2476
 
2477
          if (bed->s->swap_reloc_in)
2478
            (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2479
          else
2480
            elf_swap_reloc_in (abfd, erel, irel);
2481
 
2482
          for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2483
            {
2484
              irela[i].r_offset = irel[i].r_offset;
2485
              irela[i].r_info = irel[i].r_info;
2486
              irela[i].r_addend = 0;
2487
            }
2488
        }
2489
    }
2490
  else
2491
    {
2492
      Elf_External_Rela *erela;
2493
      Elf_External_Rela *erelaend;
2494
      Elf_Internal_Rela *irela;
2495
 
2496
      BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2497
 
2498
      erela = (Elf_External_Rela *) external_relocs;
2499
      erelaend = erela + NUM_SHDR_ENTRIES (shdr);
2500
      irela = internal_relocs;
2501
      for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2502
        {
2503
          if (bed->s->swap_reloca_in)
2504
            (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2505
          else
2506
            elf_swap_reloca_in (abfd, erela, irela);
2507
        }
2508
    }
2509
 
2510
  return true;
2511
}
2512
 
2513
/* Read and swap the relocs for a section O.  They may have been
2514
   cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2515
   not NULL, they are used as buffers to read into.  They are known to
2516
   be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
2517
   the return value is allocated using either malloc or bfd_alloc,
2518
   according to the KEEP_MEMORY argument.  If O has two relocation
2519
   sections (both REL and RELA relocations), then the REL_HDR
2520
   relocations will appear first in INTERNAL_RELOCS, followed by the
2521
   REL_HDR2 relocations.  */
2522
 
2523
Elf_Internal_Rela *
2524
NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2525
                                 keep_memory)
2526
     bfd *abfd;
2527
     asection *o;
2528
     PTR external_relocs;
2529
     Elf_Internal_Rela *internal_relocs;
2530
     boolean keep_memory;
2531
{
2532
  Elf_Internal_Shdr *rel_hdr;
2533
  PTR alloc1 = NULL;
2534
  Elf_Internal_Rela *alloc2 = NULL;
2535
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
2536
 
2537
  if (elf_section_data (o)->relocs != NULL)
2538
    return elf_section_data (o)->relocs;
2539
 
2540
  if (o->reloc_count == 0)
2541
    return NULL;
2542
 
2543
  rel_hdr = &elf_section_data (o)->rel_hdr;
2544
 
2545
  if (internal_relocs == NULL)
2546
    {
2547
      size_t size;
2548
 
2549
      size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2550
              * sizeof (Elf_Internal_Rela));
2551
      if (keep_memory)
2552
        internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2553
      else
2554
        internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2555
      if (internal_relocs == NULL)
2556
        goto error_return;
2557
    }
2558
 
2559
  if (external_relocs == NULL)
2560
    {
2561
      size_t size = (size_t) rel_hdr->sh_size;
2562
 
2563
      if (elf_section_data (o)->rel_hdr2)
2564
        size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2565
      alloc1 = (PTR) bfd_malloc (size);
2566
      if (alloc1 == NULL)
2567
        goto error_return;
2568
      external_relocs = alloc1;
2569
    }
2570
 
2571
  if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2572
                                          external_relocs,
2573
                                          internal_relocs))
2574
    goto error_return;
2575
  if (!elf_link_read_relocs_from_section
2576
      (abfd,
2577
       elf_section_data (o)->rel_hdr2,
2578
       ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2579
       internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2580
                          * bed->s->int_rels_per_ext_rel)))
2581
    goto error_return;
2582
 
2583
  /* Cache the results for next time, if we can.  */
2584
  if (keep_memory)
2585
    elf_section_data (o)->relocs = internal_relocs;
2586
 
2587
  if (alloc1 != NULL)
2588
    free (alloc1);
2589
 
2590
  /* Don't free alloc2, since if it was allocated we are passing it
2591
     back (under the name of internal_relocs).  */
2592
 
2593
  return internal_relocs;
2594
 
2595
 error_return:
2596
  if (alloc1 != NULL)
2597
    free (alloc1);
2598
  if (alloc2 != NULL)
2599
    free (alloc2);
2600
  return NULL;
2601
}
2602
 
2603
/* Record an assignment to a symbol made by a linker script.  We need
2604
   this in case some dynamic object refers to this symbol.  */
2605
 
2606
/*ARGSUSED*/
2607
boolean
2608
NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2609
     bfd *output_bfd ATTRIBUTE_UNUSED;
2610
     struct bfd_link_info *info;
2611
     const char *name;
2612
     boolean provide;
2613
{
2614
  struct elf_link_hash_entry *h;
2615
 
2616
  if (info->hash->creator->flavour != bfd_target_elf_flavour)
2617
    return true;
2618
 
2619
  h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2620
  if (h == NULL)
2621
    return false;
2622
 
2623
  if (h->root.type == bfd_link_hash_new)
2624
    h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2625
 
2626
  /* If this symbol is being provided by the linker script, and it is
2627
     currently defined by a dynamic object, but not by a regular
2628
     object, then mark it as undefined so that the generic linker will
2629
     force the correct value.  */
2630
  if (provide
2631
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2632
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2633
    h->root.type = bfd_link_hash_undefined;
2634
 
2635
  /* If this symbol is not being provided by the linker script, and it is
2636
     currently defined by a dynamic object, but not by a regular object,
2637
     then clear out any version information because the symbol will not be
2638
     associated with the dynamic object any more.  */
2639
  if (!provide
2640
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2641
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2642
    h->verinfo.verdef = NULL;
2643
 
2644
  h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2645
 
2646
  /* When possible, keep the original type of the symbol */
2647
  if (h->type == STT_NOTYPE)
2648
    h->type = STT_OBJECT;
2649
 
2650
  if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2651
                                  | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2652
       || info->shared)
2653
      && h->dynindx == -1)
2654
    {
2655
      if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2656
        return false;
2657
 
2658
      /* If this is a weak defined symbol, and we know a corresponding
2659
         real symbol from the same dynamic object, make sure the real
2660
         symbol is also made into a dynamic symbol.  */
2661
      if (h->weakdef != NULL
2662
          && h->weakdef->dynindx == -1)
2663
        {
2664
          if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2665
            return false;
2666
        }
2667
    }
2668
 
2669
  return true;
2670
}
2671
 
2672
/* This structure is used to pass information to
2673
   elf_link_assign_sym_version.  */
2674
 
2675
struct elf_assign_sym_version_info
2676
{
2677
  /* Output BFD.  */
2678
  bfd *output_bfd;
2679
  /* General link information.  */
2680
  struct bfd_link_info *info;
2681
  /* Version tree.  */
2682
  struct bfd_elf_version_tree *verdefs;
2683
  /* Whether we had a failure.  */
2684
  boolean failed;
2685
};
2686
 
2687
/* This structure is used to pass information to
2688
   elf_link_find_version_dependencies.  */
2689
 
2690
struct elf_find_verdep_info
2691
{
2692
  /* Output BFD.  */
2693
  bfd *output_bfd;
2694
  /* General link information.  */
2695
  struct bfd_link_info *info;
2696
  /* The number of dependencies.  */
2697
  unsigned int vers;
2698
  /* Whether we had a failure.  */
2699
  boolean failed;
2700
};
2701
 
2702
/* Array used to determine the number of hash table buckets to use
2703
   based on the number of symbols there are.  If there are fewer than
2704
   3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2705
   fewer than 37 we use 17 buckets, and so forth.  We never use more
2706
   than 32771 buckets.  */
2707
 
2708
static const size_t elf_buckets[] =
2709
{
2710
  1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2711
  16411, 32771, 0
2712
};
2713
 
2714
/* Compute bucket count for hashing table.  We do not use a static set
2715
   of possible tables sizes anymore.  Instead we determine for all
2716
   possible reasonable sizes of the table the outcome (i.e., the
2717
   number of collisions etc) and choose the best solution.  The
2718
   weighting functions are not too simple to allow the table to grow
2719
   without bounds.  Instead one of the weighting factors is the size.
2720
   Therefore the result is always a good payoff between few collisions
2721
   (= short chain lengths) and table size.  */
2722
static size_t
2723
compute_bucket_count (info)
2724
     struct bfd_link_info *info;
2725
{
2726
  size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2727
  size_t best_size = 0;
2728
  unsigned long int *hashcodes;
2729
  unsigned long int *hashcodesp;
2730
  unsigned long int i;
2731
 
2732
  /* Compute the hash values for all exported symbols.  At the same
2733
     time store the values in an array so that we could use them for
2734
     optimizations.  */
2735
  hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2736
                                                * sizeof (unsigned long int));
2737
  if (hashcodes == NULL)
2738
    return 0;
2739
  hashcodesp = hashcodes;
2740
 
2741
  /* Put all hash values in HASHCODES.  */
2742
  elf_link_hash_traverse (elf_hash_table (info),
2743
                          elf_collect_hash_codes, &hashcodesp);
2744
 
2745
/* We have a problem here.  The following code to optimize the table
2746
   size requires an integer type with more the 32 bits.  If
2747
   BFD_HOST_U_64_BIT is set we know about such a type.  */
2748
#ifdef BFD_HOST_U_64_BIT
2749
  if (info->optimize == true)
2750
    {
2751
      unsigned long int nsyms = hashcodesp - hashcodes;
2752
      size_t minsize;
2753
      size_t maxsize;
2754
      BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2755
      unsigned long int *counts ;
2756
 
2757
      /* Possible optimization parameters: if we have NSYMS symbols we say
2758
         that the hashing table must at least have NSYMS/4 and at most
2759
         2*NSYMS buckets.  */
2760
      minsize = nsyms / 4;
2761
      if (minsize == 0)
2762
        minsize = 1;
2763
      best_size = maxsize = nsyms * 2;
2764
 
2765
      /* Create array where we count the collisions in.  We must use bfd_malloc
2766
         since the size could be large.  */
2767
      counts = (unsigned long int *) bfd_malloc (maxsize
2768
                                                 * sizeof (unsigned long int));
2769
      if (counts == NULL)
2770
        {
2771
          free (hashcodes);
2772
          return 0;
2773
        }
2774
 
2775
      /* Compute the "optimal" size for the hash table.  The criteria is a
2776
         minimal chain length.  The minor criteria is (of course) the size
2777
         of the table.  */
2778
      for (i = minsize; i < maxsize; ++i)
2779
        {
2780
          /* Walk through the array of hashcodes and count the collisions.  */
2781
          BFD_HOST_U_64_BIT max;
2782
          unsigned long int j;
2783
          unsigned long int fact;
2784
 
2785
          memset (counts, '\0', i * sizeof (unsigned long int));
2786
 
2787
          /* Determine how often each hash bucket is used.  */
2788
          for (j = 0; j < nsyms; ++j)
2789
            ++counts[hashcodes[j] % i];
2790
 
2791
          /* For the weight function we need some information about the
2792
             pagesize on the target.  This is information need not be 100%
2793
             accurate.  Since this information is not available (so far) we
2794
             define it here to a reasonable default value.  If it is crucial
2795
             to have a better value some day simply define this value.  */
2796
# ifndef BFD_TARGET_PAGESIZE
2797
#  define BFD_TARGET_PAGESIZE   (4096)
2798
# endif
2799
 
2800
          /* We in any case need 2 + NSYMS entries for the size values and
2801
             the chains.  */
2802
          max = (2 + nsyms) * (ARCH_SIZE / 8);
2803
 
2804
# if 1
2805
          /* Variant 1: optimize for short chains.  We add the squares
2806
             of all the chain lengths (which favous many small chain
2807
             over a few long chains).  */
2808
          for (j = 0; j < i; ++j)
2809
            max += counts[j] * counts[j];
2810
 
2811
          /* This adds penalties for the overall size of the table.  */
2812
          fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2813
          max *= fact * fact;
2814
# else
2815
          /* Variant 2: Optimize a lot more for small table.  Here we
2816
             also add squares of the size but we also add penalties for
2817
             empty slots (the +1 term).  */
2818
          for (j = 0; j < i; ++j)
2819
            max += (1 + counts[j]) * (1 + counts[j]);
2820
 
2821
          /* The overall size of the table is considered, but not as
2822
             strong as in variant 1, where it is squared.  */
2823
          fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2824
          max *= fact;
2825
# endif
2826
 
2827
          /* Compare with current best results.  */
2828
          if (max < best_chlen)
2829
            {
2830
              best_chlen = max;
2831
              best_size = i;
2832
            }
2833
        }
2834
 
2835
      free (counts);
2836
    }
2837
  else
2838
#endif /* defined (BFD_HOST_U_64_BIT) */
2839
    {
2840
      /* This is the fallback solution if no 64bit type is available or if we
2841
         are not supposed to spend much time on optimizations.  We select the
2842
         bucket count using a fixed set of numbers.  */
2843
      for (i = 0; elf_buckets[i] != 0; i++)
2844
        {
2845
          best_size = elf_buckets[i];
2846
          if (dynsymcount < elf_buckets[i + 1])
2847
            break;
2848
        }
2849
    }
2850
 
2851
  /* Free the arrays we needed.  */
2852
  free (hashcodes);
2853
 
2854
  return best_size;
2855
}
2856
 
2857
/* Set up the sizes and contents of the ELF dynamic sections.  This is
2858
   called by the ELF linker emulation before_allocation routine.  We
2859
   must set the sizes of the sections before the linker sets the
2860
   addresses of the various sections.  */
2861
 
2862
boolean
2863
NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2864
                                     filter_shlib,
2865
                                     auxiliary_filters, info, sinterpptr,
2866
                                     verdefs)
2867
     bfd *output_bfd;
2868
     const char *soname;
2869
     const char *rpath;
2870
     const char *filter_shlib;
2871
     const char * const *auxiliary_filters;
2872
     struct bfd_link_info *info;
2873
     asection **sinterpptr;
2874
     struct bfd_elf_version_tree *verdefs;
2875
{
2876
  bfd_size_type soname_indx;
2877
  bfd *dynobj;
2878
  struct elf_backend_data *bed;
2879
  struct elf_assign_sym_version_info asvinfo;
2880
 
2881
  *sinterpptr = NULL;
2882
 
2883
  soname_indx = (bfd_size_type) -1;
2884
 
2885
  if (info->hash->creator->flavour != bfd_target_elf_flavour)
2886
    return true;
2887
 
2888
  /* The backend may have to create some sections regardless of whether
2889
     we're dynamic or not.  */
2890
  bed = get_elf_backend_data (output_bfd);
2891
  if (bed->elf_backend_always_size_sections
2892
      && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2893
    return false;
2894
 
2895
  dynobj = elf_hash_table (info)->dynobj;
2896
 
2897
  /* If there were no dynamic objects in the link, there is nothing to
2898
     do here.  */
2899
  if (dynobj == NULL)
2900
    return true;
2901
 
2902
  if (elf_hash_table (info)->dynamic_sections_created)
2903
    {
2904
      struct elf_info_failed eif;
2905
      struct elf_link_hash_entry *h;
2906
      asection *dynstr;
2907
 
2908
      *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2909
      BFD_ASSERT (*sinterpptr != NULL || info->shared);
2910
 
2911
      if (soname != NULL)
2912
        {
2913
          soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2914
                                            soname, true, true);
2915
          if (soname_indx == (bfd_size_type) -1
2916
              || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2917
            return false;
2918
        }
2919
 
2920
      if (info->symbolic)
2921
        {
2922
          if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2923
            return false;
2924
          info->flags |= DF_SYMBOLIC;
2925
        }
2926
 
2927
      if (rpath != NULL)
2928
        {
2929
          bfd_size_type indx;
2930
 
2931
          indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2932
                                     true, true);
2933
          if (indx == (bfd_size_type) -1
2934
              || ! elf_add_dynamic_entry (info, DT_RPATH, indx)
2935
              || (info->new_dtags
2936
                  && ! elf_add_dynamic_entry (info, DT_RUNPATH, indx)))
2937
            return false;
2938
        }
2939
 
2940
      if (filter_shlib != NULL)
2941
        {
2942
          bfd_size_type indx;
2943
 
2944
          indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2945
                                     filter_shlib, true, true);
2946
          if (indx == (bfd_size_type) -1
2947
              || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2948
            return false;
2949
        }
2950
 
2951
      if (auxiliary_filters != NULL)
2952
        {
2953
          const char * const *p;
2954
 
2955
          for (p = auxiliary_filters; *p != NULL; p++)
2956
            {
2957
              bfd_size_type indx;
2958
 
2959
              indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2960
                                         *p, true, true);
2961
              if (indx == (bfd_size_type) -1
2962
                  || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2963
                return false;
2964
            }
2965
        }
2966
 
2967
      eif.info = info;
2968
      eif.verdefs = verdefs;
2969
      eif.failed = false;
2970
 
2971
      /* If we are supposed to export all symbols into the dynamic symbol
2972
         table (this is not the normal case), then do so.  */
2973
      if (info->export_dynamic)
2974
        {
2975
          elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2976
                                  (PTR) &eif);
2977
          if (eif.failed)
2978
            return false;
2979
        }
2980
 
2981
      /* Attach all the symbols to their version information.  */
2982
      asvinfo.output_bfd = output_bfd;
2983
      asvinfo.info = info;
2984
      asvinfo.verdefs = verdefs;
2985
      asvinfo.failed = false;
2986
 
2987
      elf_link_hash_traverse (elf_hash_table (info),
2988
                              elf_link_assign_sym_version,
2989
                              (PTR) &asvinfo);
2990
      if (asvinfo.failed)
2991
        return false;
2992
 
2993
      /* Find all symbols which were defined in a dynamic object and make
2994
         the backend pick a reasonable value for them.  */
2995
      elf_link_hash_traverse (elf_hash_table (info),
2996
                              elf_adjust_dynamic_symbol,
2997
                              (PTR) &eif);
2998
      if (eif.failed)
2999
        return false;
3000
 
3001
      /* Add some entries to the .dynamic section.  We fill in some of the
3002
         values later, in elf_bfd_final_link, but we must add the entries
3003
         now so that we know the final size of the .dynamic section.  */
3004
 
3005
      /* If there are initialization and/or finalization functions to
3006
         call then add the corresponding DT_INIT/DT_FINI entries.  */
3007
      h = (info->init_function
3008
           ? elf_link_hash_lookup (elf_hash_table (info),
3009
                                   info->init_function, false,
3010
                                   false, false)
3011
           : NULL);
3012
      if (h != NULL
3013
          && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3014
                                        | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3015
        {
3016
          if (! elf_add_dynamic_entry (info, DT_INIT, 0))
3017
            return false;
3018
        }
3019
      h = (info->fini_function
3020
           ? elf_link_hash_lookup (elf_hash_table (info),
3021
                                   info->fini_function, false,
3022
                                   false, false)
3023
           : NULL);
3024
      if (h != NULL
3025
          && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3026
                                        | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3027
        {
3028
          if (! elf_add_dynamic_entry (info, DT_FINI, 0))
3029
            return false;
3030
        }
3031
 
3032
      dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3033
      /* If .dynstr is excluded from the link, we don't want any of
3034
         these tags.  Strictly, we should be checking each section
3035
         individually;  This quick check covers for the case where
3036
         someone does a /DISCARD/ : { *(*) }.  */
3037
      if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3038
        {
3039
          bfd_size_type strsize;
3040
 
3041
          strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3042
          if (! elf_add_dynamic_entry (info, DT_HASH, 0)
3043
              || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
3044
              || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
3045
              || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
3046
              || ! elf_add_dynamic_entry (info, DT_SYMENT,
3047
                                          sizeof (Elf_External_Sym)))
3048
            return false;
3049
        }
3050
    }
3051
 
3052
  /* The backend must work out the sizes of all the other dynamic
3053
     sections.  */
3054
  if (bed->elf_backend_size_dynamic_sections
3055
      && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3056
    return false;
3057
 
3058
  if (elf_hash_table (info)->dynamic_sections_created)
3059
    {
3060
      size_t dynsymcount;
3061
      asection *s;
3062
      size_t bucketcount = 0;
3063
      size_t hash_entry_size;
3064
 
3065
      /* Set up the version definition section.  */
3066
      s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3067
      BFD_ASSERT (s != NULL);
3068
 
3069
      /* We may have created additional version definitions if we are
3070
         just linking a regular application.  */
3071
      verdefs = asvinfo.verdefs;
3072
 
3073
      if (verdefs == NULL)
3074
        _bfd_strip_section_from_output (info, s);
3075
      else
3076
        {
3077
          unsigned int cdefs;
3078
          bfd_size_type size;
3079
          struct bfd_elf_version_tree *t;
3080
          bfd_byte *p;
3081
          Elf_Internal_Verdef def;
3082
          Elf_Internal_Verdaux defaux;
3083
 
3084
          cdefs = 0;
3085
          size = 0;
3086
 
3087
          /* Make space for the base version.  */
3088
          size += sizeof (Elf_External_Verdef);
3089
          size += sizeof (Elf_External_Verdaux);
3090
          ++cdefs;
3091
 
3092
          for (t = verdefs; t != NULL; t = t->next)
3093
            {
3094
              struct bfd_elf_version_deps *n;
3095
 
3096
              size += sizeof (Elf_External_Verdef);
3097
              size += sizeof (Elf_External_Verdaux);
3098
              ++cdefs;
3099
 
3100
              for (n = t->deps; n != NULL; n = n->next)
3101
                size += sizeof (Elf_External_Verdaux);
3102
            }
3103
 
3104
          s->_raw_size = size;
3105
          s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3106
          if (s->contents == NULL && s->_raw_size != 0)
3107
            return false;
3108
 
3109
          /* Fill in the version definition section.  */
3110
 
3111
          p = s->contents;
3112
 
3113
          def.vd_version = VER_DEF_CURRENT;
3114
          def.vd_flags = VER_FLG_BASE;
3115
          def.vd_ndx = 1;
3116
          def.vd_cnt = 1;
3117
          def.vd_aux = sizeof (Elf_External_Verdef);
3118
          def.vd_next = (sizeof (Elf_External_Verdef)
3119
                         + sizeof (Elf_External_Verdaux));
3120
 
3121
          if (soname_indx != (bfd_size_type) -1)
3122
            {
3123
              def.vd_hash = bfd_elf_hash (soname);
3124
              defaux.vda_name = soname_indx;
3125
            }
3126
          else
3127
            {
3128
              const char *name;
3129
              bfd_size_type indx;
3130
 
3131
              name = basename (output_bfd->filename);
3132
              def.vd_hash = bfd_elf_hash (name);
3133
              indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3134
                                            name, true, false);
3135
              if (indx == (bfd_size_type) -1)
3136
                return false;
3137
              defaux.vda_name = indx;
3138
            }
3139
          defaux.vda_next = 0;
3140
 
3141
          _bfd_elf_swap_verdef_out (output_bfd, &def,
3142
                                    (Elf_External_Verdef *)p);
3143
          p += sizeof (Elf_External_Verdef);
3144
          _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3145
                                     (Elf_External_Verdaux *) p);
3146
          p += sizeof (Elf_External_Verdaux);
3147
 
3148
          for (t = verdefs; t != NULL; t = t->next)
3149
            {
3150
              unsigned int cdeps;
3151
              struct bfd_elf_version_deps *n;
3152
              struct elf_link_hash_entry *h;
3153
 
3154
              cdeps = 0;
3155
              for (n = t->deps; n != NULL; n = n->next)
3156
                ++cdeps;
3157
 
3158
              /* Add a symbol representing this version.  */
3159
              h = NULL;
3160
              if (! (_bfd_generic_link_add_one_symbol
3161
                     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3162
                      (bfd_vma) 0, (const char *) NULL, false,
3163
                      get_elf_backend_data (dynobj)->collect,
3164
                      (struct bfd_link_hash_entry **) &h)))
3165
                return false;
3166
              h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3167
              h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3168
              h->type = STT_OBJECT;
3169
              h->verinfo.vertree = t;
3170
 
3171
              if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3172
                return false;
3173
 
3174
              def.vd_version = VER_DEF_CURRENT;
3175
              def.vd_flags = 0;
3176
              if (t->globals == NULL && t->locals == NULL && ! t->used)
3177
                def.vd_flags |= VER_FLG_WEAK;
3178
              def.vd_ndx = t->vernum + 1;
3179
              def.vd_cnt = cdeps + 1;
3180
              def.vd_hash = bfd_elf_hash (t->name);
3181
              def.vd_aux = sizeof (Elf_External_Verdef);
3182
              if (t->next != NULL)
3183
                def.vd_next = (sizeof (Elf_External_Verdef)
3184
                               + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3185
              else
3186
                def.vd_next = 0;
3187
 
3188
              _bfd_elf_swap_verdef_out (output_bfd, &def,
3189
                                        (Elf_External_Verdef *) p);
3190
              p += sizeof (Elf_External_Verdef);
3191
 
3192
              defaux.vda_name = h->dynstr_index;
3193
              if (t->deps == NULL)
3194
                defaux.vda_next = 0;
3195
              else
3196
                defaux.vda_next = sizeof (Elf_External_Verdaux);
3197
              t->name_indx = defaux.vda_name;
3198
 
3199
              _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3200
                                         (Elf_External_Verdaux *) p);
3201
              p += sizeof (Elf_External_Verdaux);
3202
 
3203
              for (n = t->deps; n != NULL; n = n->next)
3204
                {
3205
                  if (n->version_needed == NULL)
3206
                    {
3207
                      /* This can happen if there was an error in the
3208
                         version script.  */
3209
                      defaux.vda_name = 0;
3210
                    }
3211
                  else
3212
                    defaux.vda_name = n->version_needed->name_indx;
3213
                  if (n->next == NULL)
3214
                    defaux.vda_next = 0;
3215
                  else
3216
                    defaux.vda_next = sizeof (Elf_External_Verdaux);
3217
 
3218
                  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3219
                                             (Elf_External_Verdaux *) p);
3220
                  p += sizeof (Elf_External_Verdaux);
3221
                }
3222
            }
3223
 
3224
          if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3225
              || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3226
            return false;
3227
 
3228
          elf_tdata (output_bfd)->cverdefs = cdefs;
3229
        }
3230
 
3231
      if (info->new_dtags && info->flags)
3232
        {
3233
          if (! elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
3234
            return false;
3235
        }
3236
 
3237
      if (info->flags_1)
3238
        {
3239
          if (! info->shared)
3240
            info->flags_1 &= ~ (DF_1_INITFIRST
3241
                                | DF_1_NODELETE
3242
                                | DF_1_NOOPEN);
3243
          if (! elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
3244
            return false;
3245
        }
3246
 
3247
      /* Work out the size of the version reference section.  */
3248
 
3249
      s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3250
      BFD_ASSERT (s != NULL);
3251
      {
3252
        struct elf_find_verdep_info sinfo;
3253
 
3254
        sinfo.output_bfd = output_bfd;
3255
        sinfo.info = info;
3256
        sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3257
        if (sinfo.vers == 0)
3258
          sinfo.vers = 1;
3259
        sinfo.failed = false;
3260
 
3261
        elf_link_hash_traverse (elf_hash_table (info),
3262
                                elf_link_find_version_dependencies,
3263
                                (PTR) &sinfo);
3264
 
3265
        if (elf_tdata (output_bfd)->verref == NULL)
3266
          _bfd_strip_section_from_output (info, s);
3267
        else
3268
          {
3269
            Elf_Internal_Verneed *t;
3270
            unsigned int size;
3271
            unsigned int crefs;
3272
            bfd_byte *p;
3273
 
3274
            /* Build the version definition section.  */
3275
            size = 0;
3276
            crefs = 0;
3277
            for (t = elf_tdata (output_bfd)->verref;
3278
                 t != NULL;
3279
                 t = t->vn_nextref)
3280
              {
3281
                Elf_Internal_Vernaux *a;
3282
 
3283
                size += sizeof (Elf_External_Verneed);
3284
                ++crefs;
3285
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3286
                  size += sizeof (Elf_External_Vernaux);
3287
              }
3288
 
3289
            s->_raw_size = size;
3290
            s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3291
            if (s->contents == NULL)
3292
              return false;
3293
 
3294
            p = s->contents;
3295
            for (t = elf_tdata (output_bfd)->verref;
3296
                 t != NULL;
3297
                 t = t->vn_nextref)
3298
              {
3299
                unsigned int caux;
3300
                Elf_Internal_Vernaux *a;
3301
                bfd_size_type indx;
3302
 
3303
                caux = 0;
3304
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3305
                  ++caux;
3306
 
3307
                t->vn_version = VER_NEED_CURRENT;
3308
                t->vn_cnt = caux;
3309
                if (elf_dt_name (t->vn_bfd) != NULL)
3310
                  indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3311
                                             elf_dt_name (t->vn_bfd),
3312
                                             true, false);
3313
                else
3314
                  indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3315
                                             basename (t->vn_bfd->filename),
3316
                                             true, false);
3317
                if (indx == (bfd_size_type) -1)
3318
                  return false;
3319
                t->vn_file = indx;
3320
                t->vn_aux = sizeof (Elf_External_Verneed);
3321
                if (t->vn_nextref == NULL)
3322
                  t->vn_next = 0;
3323
                else
3324
                  t->vn_next = (sizeof (Elf_External_Verneed)
3325
                                + caux * sizeof (Elf_External_Vernaux));
3326
 
3327
                _bfd_elf_swap_verneed_out (output_bfd, t,
3328
                                           (Elf_External_Verneed *) p);
3329
                p += sizeof (Elf_External_Verneed);
3330
 
3331
                for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3332
                  {
3333
                    a->vna_hash = bfd_elf_hash (a->vna_nodename);
3334
                    indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3335
                                               a->vna_nodename, true, false);
3336
                    if (indx == (bfd_size_type) -1)
3337
                      return false;
3338
                    a->vna_name = indx;
3339
                    if (a->vna_nextptr == NULL)
3340
                      a->vna_next = 0;
3341
                    else
3342
                      a->vna_next = sizeof (Elf_External_Vernaux);
3343
 
3344
                    _bfd_elf_swap_vernaux_out (output_bfd, a,
3345
                                               (Elf_External_Vernaux *) p);
3346
                    p += sizeof (Elf_External_Vernaux);
3347
                  }
3348
              }
3349
 
3350
            if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3351
                || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3352
              return false;
3353
 
3354
            elf_tdata (output_bfd)->cverrefs = crefs;
3355
          }
3356
      }
3357
 
3358
      /* Assign dynsym indicies.  In a shared library we generate a
3359
         section symbol for each output section, which come first.
3360
         Next come all of the back-end allocated local dynamic syms,
3361
         followed by the rest of the global symbols.  */
3362
 
3363
      dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3364
 
3365
      /* Work out the size of the symbol version section.  */
3366
      s = bfd_get_section_by_name (dynobj, ".gnu.version");
3367
      BFD_ASSERT (s != NULL);
3368
      if (dynsymcount == 0
3369
          || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3370
        {
3371
          _bfd_strip_section_from_output (info, s);
3372
          /* The DYNSYMCOUNT might have changed if we were going to
3373
             output a dynamic symbol table entry for S.  */
3374
          dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3375
        }
3376
      else
3377
        {
3378
          s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3379
          s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3380
          if (s->contents == NULL)
3381
            return false;
3382
 
3383
          if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3384
            return false;
3385
        }
3386
 
3387
      /* Set the size of the .dynsym and .hash sections.  We counted
3388
         the number of dynamic symbols in elf_link_add_object_symbols.
3389
         We will build the contents of .dynsym and .hash when we build
3390
         the final symbol table, because until then we do not know the
3391
         correct value to give the symbols.  We built the .dynstr
3392
         section as we went along in elf_link_add_object_symbols.  */
3393
      s = bfd_get_section_by_name (dynobj, ".dynsym");
3394
      BFD_ASSERT (s != NULL);
3395
      s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3396
      s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3397
      if (s->contents == NULL && s->_raw_size != 0)
3398
        return false;
3399
 
3400
      if (dynsymcount != 0)
3401
        {
3402
          Elf_Internal_Sym isym;
3403
 
3404
          /* The first entry in .dynsym is a dummy symbol.  */
3405
          isym.st_value = 0;
3406
          isym.st_size = 0;
3407
          isym.st_name = 0;
3408
          isym.st_info = 0;
3409
          isym.st_other = 0;
3410
          isym.st_shndx = 0;
3411
          elf_swap_symbol_out (output_bfd, &isym,
3412
                               (PTR) (Elf_External_Sym *) s->contents);
3413
        }
3414
 
3415
      /* Compute the size of the hashing table.  As a side effect this
3416
         computes the hash values for all the names we export.  */
3417
      bucketcount = compute_bucket_count (info);
3418
 
3419
      s = bfd_get_section_by_name (dynobj, ".hash");
3420
      BFD_ASSERT (s != NULL);
3421
      hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3422
      s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3423
      s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3424
      if (s->contents == NULL)
3425
        return false;
3426
      memset (s->contents, 0, (size_t) s->_raw_size);
3427
 
3428
      bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3429
      bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3430
               s->contents + hash_entry_size);
3431
 
3432
      elf_hash_table (info)->bucketcount = bucketcount;
3433
 
3434
      s = bfd_get_section_by_name (dynobj, ".dynstr");
3435
      BFD_ASSERT (s != NULL);
3436
      s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3437
 
3438
      if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3439
        return false;
3440
    }
3441
 
3442
  return true;
3443
}
3444
 
3445
/* Fix up the flags for a symbol.  This handles various cases which
3446
   can only be fixed after all the input files are seen.  This is
3447
   currently called by both adjust_dynamic_symbol and
3448
   assign_sym_version, which is unnecessary but perhaps more robust in
3449
   the face of future changes.  */
3450
 
3451
static boolean
3452
elf_fix_symbol_flags (h, eif)
3453
     struct elf_link_hash_entry *h;
3454
     struct elf_info_failed *eif;
3455
{
3456
  /* If this symbol was mentioned in a non-ELF file, try to set
3457
     DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
3458
     permit a non-ELF file to correctly refer to a symbol defined in
3459
     an ELF dynamic object.  */
3460
  if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3461
    {
3462
      while (h->root.type == bfd_link_hash_indirect)
3463
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
3464
 
3465
      if (h->root.type != bfd_link_hash_defined
3466
          && h->root.type != bfd_link_hash_defweak)
3467
        h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3468
                                   | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3469
      else
3470
        {
3471
          if (h->root.u.def.section->owner != NULL
3472
              && (bfd_get_flavour (h->root.u.def.section->owner)
3473
                  == bfd_target_elf_flavour))
3474
            h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3475
                                       | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3476
          else
3477
            h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3478
        }
3479
 
3480
      if (h->dynindx == -1
3481
          && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3482
              || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3483
        {
3484
          if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3485
            {
3486
              eif->failed = true;
3487
              return false;
3488
            }
3489
        }
3490
    }
3491
  else
3492
    {
3493
      /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3494
         was first seen in a non-ELF file.  Fortunately, if the symbol
3495
         was first seen in an ELF file, we're probably OK unless the
3496
         symbol was defined in a non-ELF file.  Catch that case here.
3497
         FIXME: We're still in trouble if the symbol was first seen in
3498
         a dynamic object, and then later in a non-ELF regular object.  */
3499
      if ((h->root.type == bfd_link_hash_defined
3500
           || h->root.type == bfd_link_hash_defweak)
3501
          && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3502
          && (h->root.u.def.section->owner != NULL
3503
              ? (bfd_get_flavour (h->root.u.def.section->owner)
3504
                 != bfd_target_elf_flavour)
3505
              : (bfd_is_abs_section (h->root.u.def.section)
3506
                 && (h->elf_link_hash_flags
3507
                     & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3508
        h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3509
    }
3510
 
3511
  /* If this is a final link, and the symbol was defined as a common
3512
     symbol in a regular object file, and there was no definition in
3513
     any dynamic object, then the linker will have allocated space for
3514
     the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3515
     flag will not have been set.  */
3516
  if (h->root.type == bfd_link_hash_defined
3517
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3518
      && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3519
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3520
      && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3521
    h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3522
 
3523
  /* If -Bsymbolic was used (which means to bind references to global
3524
     symbols to the definition within the shared object), and this
3525
     symbol was defined in a regular object, then it actually doesn't
3526
     need a PLT entry, and we can accomplish that by forcing it local.
3527
     Likewise, if the symbol has hidden or internal visibility.
3528
     FIXME: It might be that we also do not need a PLT for other
3529
     non-hidden visibilities, but we would have to tell that to the
3530
     backend specifically; we can't just clear PLT-related data here.  */
3531
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3532
      && eif->info->shared
3533
      && (eif->info->symbolic
3534
          || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3535
          || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3536
      && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3537
    {
3538
      struct elf_backend_data *bed;
3539
      bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3540
      if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3541
          || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3542
        h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3543
      (*bed->elf_backend_hide_symbol) (eif->info, h);
3544
    }
3545
 
3546
  /* If this is a weak defined symbol in a dynamic object, and we know
3547
     the real definition in the dynamic object, copy interesting flags
3548
     over to the real definition.  */
3549
  if (h->weakdef != NULL)
3550
    {
3551
      struct elf_link_hash_entry *weakdef;
3552
 
3553
      BFD_ASSERT (h->root.type == bfd_link_hash_defined
3554
                  || h->root.type == bfd_link_hash_defweak);
3555
      weakdef = h->weakdef;
3556
      BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3557
                  || weakdef->root.type == bfd_link_hash_defweak);
3558
      BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3559
 
3560
      /* If the real definition is defined by a regular object file,
3561
         don't do anything special.  See the longer description in
3562
         elf_adjust_dynamic_symbol, below.  */
3563
      if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3564
        h->weakdef = NULL;
3565
      else
3566
        weakdef->elf_link_hash_flags |=
3567
          (h->elf_link_hash_flags
3568
           & (ELF_LINK_HASH_REF_REGULAR
3569
              | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3570
              | ELF_LINK_NON_GOT_REF));
3571
    }
3572
 
3573
  return true;
3574
}
3575
 
3576
/* Make the backend pick a good value for a dynamic symbol.  This is
3577
   called via elf_link_hash_traverse, and also calls itself
3578
   recursively.  */
3579
 
3580
static boolean
3581
elf_adjust_dynamic_symbol (h, data)
3582
     struct elf_link_hash_entry *h;
3583
     PTR data;
3584
{
3585
  struct elf_info_failed *eif = (struct elf_info_failed *) data;
3586
  bfd *dynobj;
3587
  struct elf_backend_data *bed;
3588
 
3589
  /* Ignore indirect symbols.  These are added by the versioning code.  */
3590
  if (h->root.type == bfd_link_hash_indirect)
3591
    return true;
3592
 
3593
  /* Fix the symbol flags.  */
3594
  if (! elf_fix_symbol_flags (h, eif))
3595
    return false;
3596
 
3597
  /* If this symbol does not require a PLT entry, and it is not
3598
     defined by a dynamic object, or is not referenced by a regular
3599
     object, ignore it.  We do have to handle a weak defined symbol,
3600
     even if no regular object refers to it, if we decided to add it
3601
     to the dynamic symbol table.  FIXME: Do we normally need to worry
3602
     about symbols which are defined by one dynamic object and
3603
     referenced by another one?  */
3604
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3605
      && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3606
          || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3607
          || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3608
              && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3609
    {
3610
      h->plt.offset = (bfd_vma) -1;
3611
      return true;
3612
    }
3613
 
3614
  /* If we've already adjusted this symbol, don't do it again.  This
3615
     can happen via a recursive call.  */
3616
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3617
    return true;
3618
 
3619
  /* Don't look at this symbol again.  Note that we must set this
3620
     after checking the above conditions, because we may look at a
3621
     symbol once, decide not to do anything, and then get called
3622
     recursively later after REF_REGULAR is set below.  */
3623
  h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3624
 
3625
  /* If this is a weak definition, and we know a real definition, and
3626
     the real symbol is not itself defined by a regular object file,
3627
     then get a good value for the real definition.  We handle the
3628
     real symbol first, for the convenience of the backend routine.
3629
 
3630
     Note that there is a confusing case here.  If the real definition
3631
     is defined by a regular object file, we don't get the real symbol
3632
     from the dynamic object, but we do get the weak symbol.  If the
3633
     processor backend uses a COPY reloc, then if some routine in the
3634
     dynamic object changes the real symbol, we will not see that
3635
     change in the corresponding weak symbol.  This is the way other
3636
     ELF linkers work as well, and seems to be a result of the shared
3637
     library model.
3638
 
3639
     I will clarify this issue.  Most SVR4 shared libraries define the
3640
     variable _timezone and define timezone as a weak synonym.  The
3641
     tzset call changes _timezone.  If you write
3642
       extern int timezone;
3643
       int _timezone = 5;
3644
       int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3645
     you might expect that, since timezone is a synonym for _timezone,
3646
     the same number will print both times.  However, if the processor
3647
     backend uses a COPY reloc, then actually timezone will be copied
3648
     into your process image, and, since you define _timezone
3649
     yourself, _timezone will not.  Thus timezone and _timezone will
3650
     wind up at different memory locations.  The tzset call will set
3651
     _timezone, leaving timezone unchanged.  */
3652
 
3653
  if (h->weakdef != NULL)
3654
    {
3655
      /* If we get to this point, we know there is an implicit
3656
         reference by a regular object file via the weak symbol H.
3657
         FIXME: Is this really true?  What if the traversal finds
3658
         H->WEAKDEF before it finds H?  */
3659
      h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3660
 
3661
      if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3662
        return false;
3663
    }
3664
 
3665
  /* If a symbol has no type and no size and does not require a PLT
3666
     entry, then we are probably about to do the wrong thing here: we
3667
     are probably going to create a COPY reloc for an empty object.
3668
     This case can arise when a shared object is built with assembly
3669
     code, and the assembly code fails to set the symbol type.  */
3670
  if (h->size == 0
3671
      && h->type == STT_NOTYPE
3672
      && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3673
    (*_bfd_error_handler)
3674
      (_("warning: type and size of dynamic symbol `%s' are not defined"),
3675
         h->root.root.string);
3676
 
3677
  dynobj = elf_hash_table (eif->info)->dynobj;
3678
  bed = get_elf_backend_data (dynobj);
3679
  if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3680
    {
3681
      eif->failed = true;
3682
      return false;
3683
    }
3684
 
3685
  return true;
3686
}
3687
 
3688
/* This routine is used to export all defined symbols into the dynamic
3689
   symbol table.  It is called via elf_link_hash_traverse.  */
3690
 
3691
static boolean
3692
elf_export_symbol (h, data)
3693
     struct elf_link_hash_entry *h;
3694
     PTR data;
3695
{
3696
  struct elf_info_failed *eif = (struct elf_info_failed *) data;
3697
 
3698
  /* Ignore indirect symbols.  These are added by the versioning code.  */
3699
  if (h->root.type == bfd_link_hash_indirect)
3700
    return true;
3701
 
3702
  if (h->dynindx == -1
3703
      && (h->elf_link_hash_flags
3704
          & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3705
    {
3706
      struct bfd_elf_version_tree *t;
3707
      struct bfd_elf_version_expr *d;
3708
 
3709
      for (t = eif->verdefs; t != NULL; t = t->next)
3710
        {
3711
          if (t->globals != NULL)
3712
            {
3713
              for (d = t->globals; d != NULL; d = d->next)
3714
                {
3715
                  if ((*d->match) (d, h->root.root.string))
3716
                    goto doit;
3717
                }
3718
            }
3719
 
3720
          if (t->locals != NULL)
3721
            {
3722
              for (d = t->locals ; d != NULL; d = d->next)
3723
                {
3724
                  if ((*d->match) (d, h->root.root.string))
3725
                    return true;
3726
                }
3727
            }
3728
        }
3729
 
3730
      if (!eif->verdefs)
3731
        {
3732
doit:
3733
          if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3734
            {
3735
              eif->failed = true;
3736
              return false;
3737
            }
3738
        }
3739
    }
3740
 
3741
  return true;
3742
}
3743
 
3744
/* Look through the symbols which are defined in other shared
3745
   libraries and referenced here.  Update the list of version
3746
   dependencies.  This will be put into the .gnu.version_r section.
3747
   This function is called via elf_link_hash_traverse.  */
3748
 
3749
static boolean
3750
elf_link_find_version_dependencies (h, data)
3751
     struct elf_link_hash_entry *h;
3752
     PTR data;
3753
{
3754
  struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3755
  Elf_Internal_Verneed *t;
3756
  Elf_Internal_Vernaux *a;
3757
 
3758
  /* We only care about symbols defined in shared objects with version
3759
     information.  */
3760
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3761
      || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3762
      || h->dynindx == -1
3763
      || h->verinfo.verdef == NULL)
3764
    return true;
3765
 
3766
  /* See if we already know about this version.  */
3767
  for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3768
    {
3769
      if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3770
        continue;
3771
 
3772
      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3773
        if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3774
          return true;
3775
 
3776
      break;
3777
    }
3778
 
3779
  /* This is a new version.  Add it to tree we are building.  */
3780
 
3781
  if (t == NULL)
3782
    {
3783
      t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3784
      if (t == NULL)
3785
        {
3786
          rinfo->failed = true;
3787
          return false;
3788
        }
3789
 
3790
      t->vn_bfd = h->verinfo.verdef->vd_bfd;
3791
      t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3792
      elf_tdata (rinfo->output_bfd)->verref = t;
3793
    }
3794
 
3795
  a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3796
 
3797
  /* Note that we are copying a string pointer here, and testing it
3798
     above.  If bfd_elf_string_from_elf_section is ever changed to
3799
     discard the string data when low in memory, this will have to be
3800
     fixed.  */
3801
  a->vna_nodename = h->verinfo.verdef->vd_nodename;
3802
 
3803
  a->vna_flags = h->verinfo.verdef->vd_flags;
3804
  a->vna_nextptr = t->vn_auxptr;
3805
 
3806
  h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3807
  ++rinfo->vers;
3808
 
3809
  a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3810
 
3811
  t->vn_auxptr = a;
3812
 
3813
  return true;
3814
}
3815
 
3816
/* Figure out appropriate versions for all the symbols.  We may not
3817
   have the version number script until we have read all of the input
3818
   files, so until that point we don't know which symbols should be
3819
   local.  This function is called via elf_link_hash_traverse.  */
3820
 
3821
static boolean
3822
elf_link_assign_sym_version (h, data)
3823
     struct elf_link_hash_entry *h;
3824
     PTR data;
3825
{
3826
  struct elf_assign_sym_version_info *sinfo =
3827
    (struct elf_assign_sym_version_info *) data;
3828
  struct bfd_link_info *info = sinfo->info;
3829
  struct elf_backend_data *bed;
3830
  struct elf_info_failed eif;
3831
  char *p;
3832
 
3833
  /* Fix the symbol flags.  */
3834
  eif.failed = false;
3835
  eif.info = info;
3836
  if (! elf_fix_symbol_flags (h, &eif))
3837
    {
3838
      if (eif.failed)
3839
        sinfo->failed = true;
3840
      return false;
3841
    }
3842
 
3843
  /* We only need version numbers for symbols defined in regular
3844
     objects.  */
3845
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3846
    return true;
3847
 
3848
  bed = get_elf_backend_data (sinfo->output_bfd);
3849
  p = strchr (h->root.root.string, ELF_VER_CHR);
3850
  if (p != NULL && h->verinfo.vertree == NULL)
3851
    {
3852
      struct bfd_elf_version_tree *t;
3853
      boolean hidden;
3854
 
3855
      hidden = true;
3856
 
3857
      /* There are two consecutive ELF_VER_CHR characters if this is
3858
         not a hidden symbol.  */
3859
      ++p;
3860
      if (*p == ELF_VER_CHR)
3861
        {
3862
          hidden = false;
3863
          ++p;
3864
        }
3865
 
3866
      /* If there is no version string, we can just return out.  */
3867
      if (*p == '\0')
3868
        {
3869
          if (hidden)
3870
            h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3871
          return true;
3872
        }
3873
 
3874
      /* Look for the version.  If we find it, it is no longer weak.  */
3875
      for (t = sinfo->verdefs; t != NULL; t = t->next)
3876
        {
3877
          if (strcmp (t->name, p) == 0)
3878
            {
3879
              int len;
3880
              char *alc;
3881
              struct bfd_elf_version_expr *d;
3882
 
3883
              len = p - h->root.root.string;
3884
              alc = bfd_alloc (sinfo->output_bfd, len);
3885
              if (alc == NULL)
3886
                return false;
3887
              strncpy (alc, h->root.root.string, len - 1);
3888
              alc[len - 1] = '\0';
3889
              if (alc[len - 2] == ELF_VER_CHR)
3890
                alc[len - 2] = '\0';
3891
 
3892
              h->verinfo.vertree = t;
3893
              t->used = true;
3894
              d = NULL;
3895
 
3896
              if (t->globals != NULL)
3897
                {
3898
                  for (d = t->globals; d != NULL; d = d->next)
3899
                    if ((*d->match) (d, alc))
3900
                      break;
3901
                }
3902
 
3903
              /* See if there is anything to force this symbol to
3904
                 local scope.  */
3905
              if (d == NULL && t->locals != NULL)
3906
                {
3907
                  for (d = t->locals; d != NULL; d = d->next)
3908
                    {
3909
                      if ((*d->match) (d, alc))
3910
                        {
3911
                          if (h->dynindx != -1
3912
                              && info->shared
3913
                              && ! info->export_dynamic)
3914
                            {
3915
                              h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3916
                              (*bed->elf_backend_hide_symbol) (info, h);
3917
                              /* FIXME: The name of the symbol has
3918
                                 already been recorded in the dynamic
3919
                                 string table section.  */
3920
                            }
3921
 
3922
                          break;
3923
                        }
3924
                    }
3925
                }
3926
 
3927
              bfd_release (sinfo->output_bfd, alc);
3928
              break;
3929
            }
3930
        }
3931
 
3932
      /* If we are building an application, we need to create a
3933
         version node for this version.  */
3934
      if (t == NULL && ! info->shared)
3935
        {
3936
          struct bfd_elf_version_tree **pp;
3937
          int version_index;
3938
 
3939
          /* If we aren't going to export this symbol, we don't need
3940
             to worry about it.  */
3941
          if (h->dynindx == -1)
3942
            return true;
3943
 
3944
          t = ((struct bfd_elf_version_tree *)
3945
               bfd_alloc (sinfo->output_bfd, sizeof *t));
3946
          if (t == NULL)
3947
            {
3948
              sinfo->failed = true;
3949
              return false;
3950
            }
3951
 
3952
          t->next = NULL;
3953
          t->name = p;
3954
          t->globals = NULL;
3955
          t->locals = NULL;
3956
          t->deps = NULL;
3957
          t->name_indx = (unsigned int) -1;
3958
          t->used = true;
3959
 
3960
          version_index = 1;
3961
          for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3962
            ++version_index;
3963
          t->vernum = version_index;
3964
 
3965
          *pp = t;
3966
 
3967
          h->verinfo.vertree = t;
3968
        }
3969
      else if (t == NULL)
3970
        {
3971
          /* We could not find the version for a symbol when
3972
             generating a shared archive.  Return an error.  */
3973
          (*_bfd_error_handler)
3974
            (_("%s: undefined versioned symbol name %s"),
3975
             bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3976
          bfd_set_error (bfd_error_bad_value);
3977
          sinfo->failed = true;
3978
          return false;
3979
        }
3980
 
3981
      if (hidden)
3982
        h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3983
    }
3984
 
3985
  /* If we don't have a version for this symbol, see if we can find
3986
     something.  */
3987
  if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3988
    {
3989
      struct bfd_elf_version_tree *t;
3990
      struct bfd_elf_version_tree *deflt;
3991
      struct bfd_elf_version_expr *d;
3992
 
3993
      /* See if can find what version this symbol is in.  If the
3994
         symbol is supposed to be local, then don't actually register
3995
         it.  */
3996
      deflt = NULL;
3997
      for (t = sinfo->verdefs; t != NULL; t = t->next)
3998
        {
3999
          if (t->globals != NULL)
4000
            {
4001
              for (d = t->globals; d != NULL; d = d->next)
4002
                {
4003
                  if ((*d->match) (d, h->root.root.string))
4004
                    {
4005
                      h->verinfo.vertree = t;
4006
                      break;
4007
                    }
4008
                }
4009
 
4010
              if (d != NULL)
4011
                break;
4012
            }
4013
 
4014
          if (t->locals != NULL)
4015
            {
4016
              for (d = t->locals; d != NULL; d = d->next)
4017
                {
4018
                  if (d->pattern[0] == '*' && d->pattern[1] == '\0')
4019
                    deflt = t;
4020
                  else if ((*d->match) (d, h->root.root.string))
4021
                    {
4022
                      h->verinfo.vertree = t;
4023
                      if (h->dynindx != -1
4024
                          && info->shared
4025
                          && ! info->export_dynamic)
4026
                        {
4027
                          h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
4028
                          (*bed->elf_backend_hide_symbol) (info, h);
4029
                          /* FIXME: The name of the symbol has already
4030
                             been recorded in the dynamic string table
4031
                             section.  */
4032
                        }
4033
                      break;
4034
                    }
4035
                }
4036
 
4037
              if (d != NULL)
4038
                break;
4039
            }
4040
        }
4041
 
4042
      if (deflt != NULL && h->verinfo.vertree == NULL)
4043
        {
4044
          h->verinfo.vertree = deflt;
4045
          if (h->dynindx != -1
4046
              && info->shared
4047
              && ! info->export_dynamic)
4048
            {
4049
              h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
4050
              (*bed->elf_backend_hide_symbol) (info, h);
4051
              /* FIXME: The name of the symbol has already been
4052
                 recorded in the dynamic string table section.  */
4053
            }
4054
        }
4055
    }
4056
 
4057
  return true;
4058
}
4059
 
4060
/* Final phase of ELF linker.  */
4061
 
4062
/* A structure we use to avoid passing large numbers of arguments.  */
4063
 
4064
struct elf_final_link_info
4065
{
4066
  /* General link information.  */
4067
  struct bfd_link_info *info;
4068
  /* Output BFD.  */
4069
  bfd *output_bfd;
4070
  /* Symbol string table.  */
4071
  struct bfd_strtab_hash *symstrtab;
4072
  /* .dynsym section.  */
4073
  asection *dynsym_sec;
4074
  /* .hash section.  */
4075
  asection *hash_sec;
4076
  /* symbol version section (.gnu.version).  */
4077
  asection *symver_sec;
4078
  /* Buffer large enough to hold contents of any section.  */
4079
  bfd_byte *contents;
4080
  /* Buffer large enough to hold external relocs of any section.  */
4081
  PTR external_relocs;
4082
  /* Buffer large enough to hold internal relocs of any section.  */
4083
  Elf_Internal_Rela *internal_relocs;
4084
  /* Buffer large enough to hold external local symbols of any input
4085
     BFD.  */
4086
  Elf_External_Sym *external_syms;
4087
  /* Buffer large enough to hold internal local symbols of any input
4088
     BFD.  */
4089
  Elf_Internal_Sym *internal_syms;
4090
  /* Array large enough to hold a symbol index for each local symbol
4091
     of any input BFD.  */
4092
  long *indices;
4093
  /* Array large enough to hold a section pointer for each local
4094
     symbol of any input BFD.  */
4095
  asection **sections;
4096
  /* Buffer to hold swapped out symbols.  */
4097
  Elf_External_Sym *symbuf;
4098
  /* Number of swapped out symbols in buffer.  */
4099
  size_t symbuf_count;
4100
  /* Number of symbols which fit in symbuf.  */
4101
  size_t symbuf_size;
4102
};
4103
 
4104
static boolean elf_link_output_sym
4105
  PARAMS ((struct elf_final_link_info *, const char *,
4106
           Elf_Internal_Sym *, asection *));
4107
static boolean elf_link_flush_output_syms
4108
  PARAMS ((struct elf_final_link_info *));
4109
static boolean elf_link_output_extsym
4110
  PARAMS ((struct elf_link_hash_entry *, PTR));
4111
static boolean elf_link_sec_merge_syms
4112
  PARAMS ((struct elf_link_hash_entry *, PTR));
4113
static boolean elf_link_input_bfd
4114
  PARAMS ((struct elf_final_link_info *, bfd *));
4115
static boolean elf_reloc_link_order
4116
  PARAMS ((bfd *, struct bfd_link_info *, asection *,
4117
           struct bfd_link_order *));
4118
 
4119
/* This struct is used to pass information to elf_link_output_extsym.  */
4120
 
4121
struct elf_outext_info
4122
{
4123
  boolean failed;
4124
  boolean localsyms;
4125
  struct elf_final_link_info *finfo;
4126
};
4127
 
4128
/* Compute the size of, and allocate space for, REL_HDR which is the
4129
   section header for a section containing relocations for O.  */
4130
 
4131
static boolean
4132
elf_link_size_reloc_section (abfd, rel_hdr, o)
4133
     bfd *abfd;
4134
     Elf_Internal_Shdr *rel_hdr;
4135
     asection *o;
4136
{
4137
  unsigned reloc_count;
4138
  unsigned num_rel_hashes;
4139
 
4140
  /* Figure out how many relocations there will be.  */
4141
  if (rel_hdr == &elf_section_data (o)->rel_hdr)
4142
    reloc_count = elf_section_data (o)->rel_count;
4143
  else
4144
    reloc_count = elf_section_data (o)->rel_count2;
4145
 
4146
  num_rel_hashes = o->reloc_count;
4147
  if (num_rel_hashes < reloc_count)
4148
    num_rel_hashes = reloc_count;
4149
 
4150
  /* That allows us to calculate the size of the section.  */
4151
  rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4152
 
4153
  /* The contents field must last into write_object_contents, so we
4154
     allocate it with bfd_alloc rather than malloc.  Also since we
4155
     cannot be sure that the contents will actually be filled in,
4156
     we zero the allocated space.  */
4157
  rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4158
  if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4159
    return false;
4160
 
4161
  /* We only allocate one set of hash entries, so we only do it the
4162
     first time we are called.  */
4163
  if (elf_section_data (o)->rel_hashes == NULL
4164
      && num_rel_hashes)
4165
    {
4166
      struct elf_link_hash_entry **p;
4167
 
4168
      p = ((struct elf_link_hash_entry **)
4169
           bfd_zmalloc (num_rel_hashes
4170
                        * sizeof (struct elf_link_hash_entry *)));
4171
      if (p == NULL)
4172
        return false;
4173
 
4174
      elf_section_data (o)->rel_hashes = p;
4175
    }
4176
 
4177
  return true;
4178
}
4179
 
4180
/* When performing a relocateable link, the input relocations are
4181
   preserved.  But, if they reference global symbols, the indices
4182
   referenced must be updated.  Update all the relocations in
4183
   REL_HDR (there are COUNT of them), using the data in REL_HASH.  */
4184
 
4185
static void
4186
elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4187
     bfd *abfd;
4188
     Elf_Internal_Shdr *rel_hdr;
4189
     unsigned int count;
4190
     struct elf_link_hash_entry **rel_hash;
4191
{
4192
  unsigned int i;
4193
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
4194
  Elf_Internal_Rel *irel;
4195
  Elf_Internal_Rela *irela;
4196
 
4197
  irel = (Elf_Internal_Rel *) bfd_zmalloc (sizeof (Elf_Internal_Rel)
4198
                                           * bed->s->int_rels_per_ext_rel);
4199
  if (irel == NULL)
4200
    {
4201
      (*_bfd_error_handler) (_("Error: out of memory"));
4202
      abort ();
4203
    }
4204
 
4205
  irela = (Elf_Internal_Rela *) bfd_zmalloc (sizeof (Elf_Internal_Rela)
4206
                                             * bed->s->int_rels_per_ext_rel);
4207
  if (irela == NULL)
4208
    {
4209
      (*_bfd_error_handler) (_("Error: out of memory"));
4210
      abort ();
4211
    }
4212
 
4213
  for (i = 0; i < count; i++, rel_hash++)
4214
    {
4215
      if (*rel_hash == NULL)
4216
        continue;
4217
 
4218
      BFD_ASSERT ((*rel_hash)->indx >= 0);
4219
 
4220
      if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4221
        {
4222
          Elf_External_Rel *erel;
4223
          unsigned int j;
4224
 
4225
          erel = (Elf_External_Rel *) rel_hdr->contents + i;
4226
          if (bed->s->swap_reloc_in)
4227
            (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
4228
          else
4229
            elf_swap_reloc_in (abfd, erel, irel);
4230
 
4231
          for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4232
            irel[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4233
                                         ELF_R_TYPE (irel[j].r_info));
4234
 
4235
          if (bed->s->swap_reloc_out)
4236
            (*bed->s->swap_reloc_out) (abfd, irel, (bfd_byte *) erel);
4237
          else
4238
            elf_swap_reloc_out (abfd, irel, erel);
4239
        }
4240
      else
4241
        {
4242
          Elf_External_Rela *erela;
4243
          unsigned int j;
4244
 
4245
          BFD_ASSERT (rel_hdr->sh_entsize
4246
                      == sizeof (Elf_External_Rela));
4247
 
4248
          erela = (Elf_External_Rela *) rel_hdr->contents + i;
4249
          if (bed->s->swap_reloca_in)
4250
            (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
4251
          else
4252
            elf_swap_reloca_in (abfd, erela, irela);
4253
 
4254
          for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
4255
            irela[j].r_info = ELF_R_INFO ((*rel_hash)->indx,
4256
                                       ELF_R_TYPE (irela[j].r_info));
4257
 
4258
          if (bed->s->swap_reloca_out)
4259
            (*bed->s->swap_reloca_out) (abfd, irela, (bfd_byte *) erela);
4260
          else
4261
            elf_swap_reloca_out (abfd, irela, erela);
4262
        }
4263
    }
4264
 
4265
  free (irel);
4266
  free (irela);
4267
}
4268
 
4269
/* Do the final step of an ELF link.  */
4270
 
4271
boolean
4272
elf_bfd_final_link (abfd, info)
4273
     bfd *abfd;
4274
     struct bfd_link_info *info;
4275
{
4276
  boolean dynamic;
4277
  boolean emit_relocs;
4278
  bfd *dynobj;
4279
  struct elf_final_link_info finfo;
4280
  register asection *o;
4281
  register struct bfd_link_order *p;
4282
  register bfd *sub;
4283
  size_t max_contents_size;
4284
  size_t max_external_reloc_size;
4285
  size_t max_internal_reloc_count;
4286
  size_t max_sym_count;
4287
  file_ptr off;
4288
  Elf_Internal_Sym elfsym;
4289
  unsigned int i;
4290
  Elf_Internal_Shdr *symtab_hdr;
4291
  Elf_Internal_Shdr *symstrtab_hdr;
4292
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
4293
  struct elf_outext_info eoinfo;
4294
  boolean merged;
4295
 
4296
  if (info->shared)
4297
    abfd->flags |= DYNAMIC;
4298
 
4299
  dynamic = elf_hash_table (info)->dynamic_sections_created;
4300
  dynobj = elf_hash_table (info)->dynobj;
4301
 
4302
  emit_relocs = (info->relocateable
4303
                 || info->emitrelocations
4304
                 || bed->elf_backend_emit_relocs);
4305
 
4306
  finfo.info = info;
4307
  finfo.output_bfd = abfd;
4308
  finfo.symstrtab = elf_stringtab_init ();
4309
  if (finfo.symstrtab == NULL)
4310
    return false;
4311
 
4312
  if (! dynamic)
4313
    {
4314
      finfo.dynsym_sec = NULL;
4315
      finfo.hash_sec = NULL;
4316
      finfo.symver_sec = NULL;
4317
    }
4318
  else
4319
    {
4320
      finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4321
      finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4322
      BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4323
      finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4324
      /* Note that it is OK if symver_sec is NULL.  */
4325
    }
4326
 
4327
  finfo.contents = NULL;
4328
  finfo.external_relocs = NULL;
4329
  finfo.internal_relocs = NULL;
4330
  finfo.external_syms = NULL;
4331
  finfo.internal_syms = NULL;
4332
  finfo.indices = NULL;
4333
  finfo.sections = NULL;
4334
  finfo.symbuf = NULL;
4335
  finfo.symbuf_count = 0;
4336
 
4337
  /* Count up the number of relocations we will output for each output
4338
     section, so that we know the sizes of the reloc sections.  We
4339
     also figure out some maximum sizes.  */
4340
  max_contents_size = 0;
4341
  max_external_reloc_size = 0;
4342
  max_internal_reloc_count = 0;
4343
  max_sym_count = 0;
4344
  merged = false;
4345
  for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4346
    {
4347
      o->reloc_count = 0;
4348
 
4349
      for (p = o->link_order_head; p != NULL; p = p->next)
4350
        {
4351
          if (p->type == bfd_section_reloc_link_order
4352
              || p->type == bfd_symbol_reloc_link_order)
4353
            ++o->reloc_count;
4354
          else if (p->type == bfd_indirect_link_order)
4355
            {
4356
              asection *sec;
4357
 
4358
              sec = p->u.indirect.section;
4359
 
4360
              /* Mark all sections which are to be included in the
4361
                 link.  This will normally be every section.  We need
4362
                 to do this so that we can identify any sections which
4363
                 the linker has decided to not include.  */
4364
              sec->linker_mark = true;
4365
 
4366
              if (sec->flags & SEC_MERGE)
4367
                merged = true;
4368
 
4369
              if (info->relocateable || info->emitrelocations)
4370
                o->reloc_count += sec->reloc_count;
4371
              else if (bed->elf_backend_count_relocs)
4372
                {
4373
                  Elf_Internal_Rela * relocs;
4374
 
4375
                  relocs = (NAME(_bfd_elf,link_read_relocs)
4376
                            (abfd, sec, (PTR) NULL,
4377
                             (Elf_Internal_Rela *) NULL, info->keep_memory));
4378
 
4379
                  o->reloc_count += (*bed->elf_backend_count_relocs)
4380
                                      (sec, relocs);
4381
 
4382
                  if (!info->keep_memory)
4383
                    free (relocs);
4384
                }
4385
 
4386
              if (sec->_raw_size > max_contents_size)
4387
                max_contents_size = sec->_raw_size;
4388
              if (sec->_cooked_size > max_contents_size)
4389
                max_contents_size = sec->_cooked_size;
4390
 
4391
              /* We are interested in just local symbols, not all
4392
                 symbols.  */
4393
              if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4394
                  && (sec->owner->flags & DYNAMIC) == 0)
4395
                {
4396
                  size_t sym_count;
4397
 
4398
                  if (elf_bad_symtab (sec->owner))
4399
                    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4400
                                 / sizeof (Elf_External_Sym));
4401
                  else
4402
                    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4403
 
4404
                  if (sym_count > max_sym_count)
4405
                    max_sym_count = sym_count;
4406
 
4407
                  if ((sec->flags & SEC_RELOC) != 0)
4408
                    {
4409
                      size_t ext_size;
4410
 
4411
                      ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4412
                      if (ext_size > max_external_reloc_size)
4413
                        max_external_reloc_size = ext_size;
4414
                      if (sec->reloc_count > max_internal_reloc_count)
4415
                        max_internal_reloc_count = sec->reloc_count;
4416
                    }
4417
                }
4418
            }
4419
        }
4420
 
4421
      if (o->reloc_count > 0)
4422
        o->flags |= SEC_RELOC;
4423
      else
4424
        {
4425
          /* Explicitly clear the SEC_RELOC flag.  The linker tends to
4426
             set it (this is probably a bug) and if it is set
4427
             assign_section_numbers will create a reloc section.  */
4428
          o->flags &=~ SEC_RELOC;
4429
        }
4430
 
4431
      /* If the SEC_ALLOC flag is not set, force the section VMA to
4432
         zero.  This is done in elf_fake_sections as well, but forcing
4433
         the VMA to 0 here will ensure that relocs against these
4434
         sections are handled correctly.  */
4435
      if ((o->flags & SEC_ALLOC) == 0
4436
          && ! o->user_set_vma)
4437
        o->vma = 0;
4438
    }
4439
 
4440
  if (! info->relocateable && merged)
4441
    elf_link_hash_traverse (elf_hash_table (info),
4442
                            elf_link_sec_merge_syms, (PTR) abfd);
4443
 
4444
  /* Figure out the file positions for everything but the symbol table
4445
     and the relocs.  We set symcount to force assign_section_numbers
4446
     to create a symbol table.  */
4447
  bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4448
  BFD_ASSERT (! abfd->output_has_begun);
4449
  if (! _bfd_elf_compute_section_file_positions (abfd, info))
4450
    goto error_return;
4451
 
4452
  /* Figure out how many relocations we will have in each section.
4453
     Just using RELOC_COUNT isn't good enough since that doesn't
4454
     maintain a separate value for REL vs. RELA relocations.  */
4455
  if (emit_relocs)
4456
    for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4457
      for (o = sub->sections; o != NULL; o = o->next)
4458
        {
4459
          asection *output_section;
4460
 
4461
          if (! o->linker_mark)
4462
            {
4463
              /* This section was omitted from the link.  */
4464
              continue;
4465
            }
4466
 
4467
          output_section = o->output_section;
4468
 
4469
          if (output_section != NULL
4470
              && (o->flags & SEC_RELOC) != 0)
4471
            {
4472
              struct bfd_elf_section_data *esdi
4473
                = elf_section_data (o);
4474
              struct bfd_elf_section_data *esdo
4475
                = elf_section_data (output_section);
4476
              unsigned int *rel_count;
4477
              unsigned int *rel_count2;
4478
 
4479
              /* We must be careful to add the relocation froms the
4480
                 input section to the right output count.  */
4481
              if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4482
                {
4483
                  rel_count = &esdo->rel_count;
4484
                  rel_count2 = &esdo->rel_count2;
4485
                }
4486
              else
4487
                {
4488
                  rel_count = &esdo->rel_count2;
4489
                  rel_count2 = &esdo->rel_count;
4490
                }
4491
 
4492
              *rel_count += NUM_SHDR_ENTRIES (& esdi->rel_hdr);
4493
              if (esdi->rel_hdr2)
4494
                *rel_count2 += NUM_SHDR_ENTRIES (esdi->rel_hdr2);
4495
              output_section->flags |= SEC_RELOC;
4496
            }
4497
        }
4498
 
4499
  /* That created the reloc sections.  Set their sizes, and assign
4500
     them file positions, and allocate some buffers.  */
4501
  for (o = abfd->sections; o != NULL; o = o->next)
4502
    {
4503
      if ((o->flags & SEC_RELOC) != 0)
4504
        {
4505
          if (!elf_link_size_reloc_section (abfd,
4506
                                            &elf_section_data (o)->rel_hdr,
4507
                                            o))
4508
            goto error_return;
4509
 
4510
          if (elf_section_data (o)->rel_hdr2
4511
              && !elf_link_size_reloc_section (abfd,
4512
                                               elf_section_data (o)->rel_hdr2,
4513
                                               o))
4514
            goto error_return;
4515
        }
4516
 
4517
      /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4518
         to count upwards while actually outputting the relocations.  */
4519
      elf_section_data (o)->rel_count = 0;
4520
      elf_section_data (o)->rel_count2 = 0;
4521
    }
4522
 
4523
  _bfd_elf_assign_file_positions_for_relocs (abfd);
4524
 
4525
  /* We have now assigned file positions for all the sections except
4526
     .symtab and .strtab.  We start the .symtab section at the current
4527
     file position, and write directly to it.  We build the .strtab
4528
     section in memory.  */
4529
  bfd_get_symcount (abfd) = 0;
4530
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4531
  /* sh_name is set in prep_headers.  */
4532
  symtab_hdr->sh_type = SHT_SYMTAB;
4533
  symtab_hdr->sh_flags = 0;
4534
  symtab_hdr->sh_addr = 0;
4535
  symtab_hdr->sh_size = 0;
4536
  symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4537
  /* sh_link is set in assign_section_numbers.  */
4538
  /* sh_info is set below.  */
4539
  /* sh_offset is set just below.  */
4540
  symtab_hdr->sh_addralign = bed->s->file_align;
4541
 
4542
  off = elf_tdata (abfd)->next_file_pos;
4543
  off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4544
 
4545
  /* Note that at this point elf_tdata (abfd)->next_file_pos is
4546
     incorrect.  We do not yet know the size of the .symtab section.
4547
     We correct next_file_pos below, after we do know the size.  */
4548
 
4549
  /* Allocate a buffer to hold swapped out symbols.  This is to avoid
4550
     continuously seeking to the right position in the file.  */
4551
  if (! info->keep_memory || max_sym_count < 20)
4552
    finfo.symbuf_size = 20;
4553
  else
4554
    finfo.symbuf_size = max_sym_count;
4555
  finfo.symbuf = ((Elf_External_Sym *)
4556
                  bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4557
  if (finfo.symbuf == NULL)
4558
    goto error_return;
4559
 
4560
  /* Start writing out the symbol table.  The first symbol is always a
4561
     dummy symbol.  */
4562
  if (info->strip != strip_all
4563
      || emit_relocs)
4564
    {
4565
      elfsym.st_value = 0;
4566
      elfsym.st_size = 0;
4567
      elfsym.st_info = 0;
4568
      elfsym.st_other = 0;
4569
      elfsym.st_shndx = SHN_UNDEF;
4570
      if (! elf_link_output_sym (&finfo, (const char *) NULL,
4571
                                 &elfsym, bfd_und_section_ptr))
4572
        goto error_return;
4573
    }
4574
 
4575
#if 0
4576
  /* Some standard ELF linkers do this, but we don't because it causes
4577
     bootstrap comparison failures.  */
4578
  /* Output a file symbol for the output file as the second symbol.
4579
     We output this even if we are discarding local symbols, although
4580
     I'm not sure if this is correct.  */
4581
  elfsym.st_value = 0;
4582
  elfsym.st_size = 0;
4583
  elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4584
  elfsym.st_other = 0;
4585
  elfsym.st_shndx = SHN_ABS;
4586
  if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4587
                             &elfsym, bfd_abs_section_ptr))
4588
    goto error_return;
4589
#endif
4590
 
4591
  /* Output a symbol for each section.  We output these even if we are
4592
     discarding local symbols, since they are used for relocs.  These
4593
     symbols have no names.  We store the index of each one in the
4594
     index field of the section, so that we can find it again when
4595
     outputting relocs.  */
4596
  if (info->strip != strip_all
4597
      || emit_relocs)
4598
    {
4599
      elfsym.st_size = 0;
4600
      elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4601
      elfsym.st_other = 0;
4602
      for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4603
        {
4604
          o = section_from_elf_index (abfd, i);
4605
          if (o != NULL)
4606
            o->target_index = bfd_get_symcount (abfd);
4607
          elfsym.st_shndx = i;
4608
          if (info->relocateable || o == NULL)
4609
            elfsym.st_value = 0;
4610
          else
4611
            elfsym.st_value = o->vma;
4612
          if (! elf_link_output_sym (&finfo, (const char *) NULL,
4613
                                     &elfsym, o))
4614
            goto error_return;
4615
        }
4616
    }
4617
 
4618
  /* Allocate some memory to hold information read in from the input
4619
     files.  */
4620
  finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4621
  finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4622
  finfo.internal_relocs = ((Elf_Internal_Rela *)
4623
                           bfd_malloc (max_internal_reloc_count
4624
                                       * sizeof (Elf_Internal_Rela)
4625
                                       * bed->s->int_rels_per_ext_rel));
4626
  finfo.external_syms = ((Elf_External_Sym *)
4627
                         bfd_malloc (max_sym_count
4628
                                     * sizeof (Elf_External_Sym)));
4629
  finfo.internal_syms = ((Elf_Internal_Sym *)
4630
                         bfd_malloc (max_sym_count
4631
                                     * sizeof (Elf_Internal_Sym)));
4632
  finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4633
  finfo.sections = ((asection **)
4634
                    bfd_malloc (max_sym_count * sizeof (asection *)));
4635
  if ((finfo.contents == NULL && max_contents_size != 0)
4636
      || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4637
      || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4638
      || (finfo.external_syms == NULL && max_sym_count != 0)
4639
      || (finfo.internal_syms == NULL && max_sym_count != 0)
4640
      || (finfo.indices == NULL && max_sym_count != 0)
4641
      || (finfo.sections == NULL && max_sym_count != 0))
4642
    goto error_return;
4643
 
4644
  /* Since ELF permits relocations to be against local symbols, we
4645
     must have the local symbols available when we do the relocations.
4646
     Since we would rather only read the local symbols once, and we
4647
     would rather not keep them in memory, we handle all the
4648
     relocations for a single input file at the same time.
4649
 
4650
     Unfortunately, there is no way to know the total number of local
4651
     symbols until we have seen all of them, and the local symbol
4652
     indices precede the global symbol indices.  This means that when
4653
     we are generating relocateable output, and we see a reloc against
4654
     a global symbol, we can not know the symbol index until we have
4655
     finished examining all the local symbols to see which ones we are
4656
     going to output.  To deal with this, we keep the relocations in
4657
     memory, and don't output them until the end of the link.  This is
4658
     an unfortunate waste of memory, but I don't see a good way around
4659
     it.  Fortunately, it only happens when performing a relocateable
4660
     link, which is not the common case.  FIXME: If keep_memory is set
4661
     we could write the relocs out and then read them again; I don't
4662
     know how bad the memory loss will be.  */
4663
 
4664
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4665
    sub->output_has_begun = false;
4666
  for (o = abfd->sections; o != NULL; o = o->next)
4667
    {
4668
      for (p = o->link_order_head; p != NULL; p = p->next)
4669
        {
4670
          if (p->type == bfd_indirect_link_order
4671
              && (bfd_get_flavour (p->u.indirect.section->owner)
4672
                  == bfd_target_elf_flavour))
4673
            {
4674
              sub = p->u.indirect.section->owner;
4675
              if (! sub->output_has_begun)
4676
                {
4677
                  if (! elf_link_input_bfd (&finfo, sub))
4678
                    goto error_return;
4679
                  sub->output_has_begun = true;
4680
                }
4681
            }
4682
          else if (p->type == bfd_section_reloc_link_order
4683
                   || p->type == bfd_symbol_reloc_link_order)
4684
            {
4685
              if (! elf_reloc_link_order (abfd, info, o, p))
4686
                goto error_return;
4687
            }
4688
          else
4689
            {
4690
              if (! _bfd_default_link_order (abfd, info, o, p))
4691
                goto error_return;
4692
            }
4693
        }
4694
    }
4695
 
4696
  /* That wrote out all the local symbols.  Finish up the symbol table
4697
     with the global symbols. Even if we want to strip everything we
4698
     can, we still need to deal with those global symbols that got
4699
     converted to local in a version script.  */
4700
 
4701
  if (info->shared)
4702
    {
4703
      /* Output any global symbols that got converted to local in a
4704
         version script.  We do this in a separate step since ELF
4705
         requires all local symbols to appear prior to any global
4706
         symbols.  FIXME: We should only do this if some global
4707
         symbols were, in fact, converted to become local.  FIXME:
4708
         Will this work correctly with the Irix 5 linker?  */
4709
      eoinfo.failed = false;
4710
      eoinfo.finfo = &finfo;
4711
      eoinfo.localsyms = true;
4712
      elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4713
                              (PTR) &eoinfo);
4714
      if (eoinfo.failed)
4715
        return false;
4716
    }
4717
 
4718
  /* The sh_info field records the index of the first non local symbol.  */
4719
  symtab_hdr->sh_info = bfd_get_symcount (abfd);
4720
 
4721
  if (dynamic
4722
      && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
4723
    {
4724
      Elf_Internal_Sym sym;
4725
      Elf_External_Sym *dynsym =
4726
        (Elf_External_Sym *)finfo.dynsym_sec->contents;
4727
      long last_local = 0;
4728
 
4729
      /* Write out the section symbols for the output sections.  */
4730
      if (info->shared)
4731
        {
4732
          asection *s;
4733
 
4734
          sym.st_size = 0;
4735
          sym.st_name = 0;
4736
          sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4737
          sym.st_other = 0;
4738
 
4739
          for (s = abfd->sections; s != NULL; s = s->next)
4740
            {
4741
              int indx;
4742
              indx = elf_section_data (s)->this_idx;
4743
              BFD_ASSERT (indx > 0);
4744
              sym.st_shndx = indx;
4745
              sym.st_value = s->vma;
4746
 
4747
              elf_swap_symbol_out (abfd, &sym,
4748
                                   dynsym + elf_section_data (s)->dynindx);
4749
            }
4750
 
4751
          last_local = bfd_count_sections (abfd);
4752
        }
4753
 
4754
      /* Write out the local dynsyms.  */
4755
      if (elf_hash_table (info)->dynlocal)
4756
        {
4757
          struct elf_link_local_dynamic_entry *e;
4758
          for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4759
            {
4760
              asection *s;
4761
 
4762
              sym.st_size = e->isym.st_size;
4763
              sym.st_other = e->isym.st_other;
4764
 
4765
              /* Copy the internal symbol as is.
4766
                 Note that we saved a word of storage and overwrote
4767
                 the original st_name with the dynstr_index.  */
4768
              sym = e->isym;
4769
 
4770
              if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4771
                {
4772
                  s = bfd_section_from_elf_index (e->input_bfd,
4773
                                                  e->isym.st_shndx);
4774
 
4775
                  sym.st_shndx =
4776
                    elf_section_data (s->output_section)->this_idx;
4777
                  sym.st_value = (s->output_section->vma
4778
                                  + s->output_offset
4779
                                  + e->isym.st_value);
4780
                }
4781
 
4782
              if (last_local < e->dynindx)
4783
                last_local = e->dynindx;
4784
 
4785
              elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4786
            }
4787
        }
4788
 
4789
      elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4790
        last_local + 1;
4791
    }
4792
 
4793
  /* We get the global symbols from the hash table.  */
4794
  eoinfo.failed = false;
4795
  eoinfo.localsyms = false;
4796
  eoinfo.finfo = &finfo;
4797
  elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4798
                          (PTR) &eoinfo);
4799
  if (eoinfo.failed)
4800
    return false;
4801
 
4802
  /* If backend needs to output some symbols not present in the hash
4803
     table, do it now.  */
4804
  if (bed->elf_backend_output_arch_syms)
4805
    {
4806
      if (! (*bed->elf_backend_output_arch_syms)
4807
              (abfd, info, (PTR) &finfo,
4808
               (boolean (*) PARAMS ((PTR, const char *,
4809
                            Elf_Internal_Sym *, asection *)))
4810
               elf_link_output_sym))
4811
        return false;
4812
    }
4813
 
4814
  /* Flush all symbols to the file.  */
4815
  if (! elf_link_flush_output_syms (&finfo))
4816
    return false;
4817
 
4818
  /* Now we know the size of the symtab section.  */
4819
  off += symtab_hdr->sh_size;
4820
 
4821
  /* Finish up and write out the symbol string table (.strtab)
4822
     section.  */
4823
  symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4824
  /* sh_name was set in prep_headers.  */
4825
  symstrtab_hdr->sh_type = SHT_STRTAB;
4826
  symstrtab_hdr->sh_flags = 0;
4827
  symstrtab_hdr->sh_addr = 0;
4828
  symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4829
  symstrtab_hdr->sh_entsize = 0;
4830
  symstrtab_hdr->sh_link = 0;
4831
  symstrtab_hdr->sh_info = 0;
4832
  /* sh_offset is set just below.  */
4833
  symstrtab_hdr->sh_addralign = 1;
4834
 
4835
  off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4836
  elf_tdata (abfd)->next_file_pos = off;
4837
 
4838
  if (bfd_get_symcount (abfd) > 0)
4839
    {
4840
      if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4841
          || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4842
        return false;
4843
    }
4844
 
4845
  /* Adjust the relocs to have the correct symbol indices.  */
4846
  for (o = abfd->sections; o != NULL; o = o->next)
4847
    {
4848
      if ((o->flags & SEC_RELOC) == 0)
4849
        continue;
4850
 
4851
      elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4852
                              elf_section_data (o)->rel_count,
4853
                              elf_section_data (o)->rel_hashes);
4854
      if (elf_section_data (o)->rel_hdr2 != NULL)
4855
        elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4856
                                elf_section_data (o)->rel_count2,
4857
                                (elf_section_data (o)->rel_hashes
4858
                                 + elf_section_data (o)->rel_count));
4859
 
4860
      /* Set the reloc_count field to 0 to prevent write_relocs from
4861
         trying to swap the relocs out itself.  */
4862
      o->reloc_count = 0;
4863
    }
4864
 
4865
  /* If we are linking against a dynamic object, or generating a
4866
     shared library, finish up the dynamic linking information.  */
4867
  if (dynamic)
4868
    {
4869
      Elf_External_Dyn *dyncon, *dynconend;
4870
 
4871
      /* Fix up .dynamic entries.  */
4872
      o = bfd_get_section_by_name (dynobj, ".dynamic");
4873
      BFD_ASSERT (o != NULL);
4874
 
4875
      dyncon = (Elf_External_Dyn *) o->contents;
4876
      dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4877
      for (; dyncon < dynconend; dyncon++)
4878
        {
4879
          Elf_Internal_Dyn dyn;
4880
          const char *name;
4881
          unsigned int type;
4882
 
4883
          elf_swap_dyn_in (dynobj, dyncon, &dyn);
4884
 
4885
          switch (dyn.d_tag)
4886
            {
4887
            default:
4888
              break;
4889
            case DT_INIT:
4890
              name = info->init_function;
4891
              goto get_sym;
4892
            case DT_FINI:
4893
              name = info->fini_function;
4894
            get_sym:
4895
              {
4896
                struct elf_link_hash_entry *h;
4897
 
4898
                h = elf_link_hash_lookup (elf_hash_table (info), name,
4899
                                          false, false, true);
4900
                if (h != NULL
4901
                    && (h->root.type == bfd_link_hash_defined
4902
                        || h->root.type == bfd_link_hash_defweak))
4903
                  {
4904
                    dyn.d_un.d_val = h->root.u.def.value;
4905
                    o = h->root.u.def.section;
4906
                    if (o->output_section != NULL)
4907
                      dyn.d_un.d_val += (o->output_section->vma
4908
                                         + o->output_offset);
4909
                    else
4910
                      {
4911
                        /* The symbol is imported from another shared
4912
                           library and does not apply to this one.  */
4913
                        dyn.d_un.d_val = 0;
4914
                      }
4915
 
4916
                    elf_swap_dyn_out (dynobj, &dyn, dyncon);
4917
                  }
4918
              }
4919
              break;
4920
 
4921
            case DT_HASH:
4922
              name = ".hash";
4923
              goto get_vma;
4924
            case DT_STRTAB:
4925
              name = ".dynstr";
4926
              goto get_vma;
4927
            case DT_SYMTAB:
4928
              name = ".dynsym";
4929
              goto get_vma;
4930
            case DT_VERDEF:
4931
              name = ".gnu.version_d";
4932
              goto get_vma;
4933
            case DT_VERNEED:
4934
              name = ".gnu.version_r";
4935
              goto get_vma;
4936
            case DT_VERSYM:
4937
              name = ".gnu.version";
4938
            get_vma:
4939
              o = bfd_get_section_by_name (abfd, name);
4940
              BFD_ASSERT (o != NULL);
4941
              dyn.d_un.d_ptr = o->vma;
4942
              elf_swap_dyn_out (dynobj, &dyn, dyncon);
4943
              break;
4944
 
4945
            case DT_REL:
4946
            case DT_RELA:
4947
            case DT_RELSZ:
4948
            case DT_RELASZ:
4949
              if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4950
                type = SHT_REL;
4951
              else
4952
                type = SHT_RELA;
4953
              dyn.d_un.d_val = 0;
4954
              for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4955
                {
4956
                  Elf_Internal_Shdr *hdr;
4957
 
4958
                  hdr = elf_elfsections (abfd)[i];
4959
                  if (hdr->sh_type == type
4960
                      && (hdr->sh_flags & SHF_ALLOC) != 0)
4961
                    {
4962
                      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4963
                        dyn.d_un.d_val += hdr->sh_size;
4964
                      else
4965
                        {
4966
                          if (dyn.d_un.d_val == 0
4967
                              || hdr->sh_addr < dyn.d_un.d_val)
4968
                            dyn.d_un.d_val = hdr->sh_addr;
4969
                        }
4970
                    }
4971
                }
4972
              elf_swap_dyn_out (dynobj, &dyn, dyncon);
4973
              break;
4974
            }
4975
        }
4976
    }
4977
 
4978
  /* If we have created any dynamic sections, then output them.  */
4979
  if (dynobj != NULL)
4980
    {
4981
      if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4982
        goto error_return;
4983
 
4984
      for (o = dynobj->sections; o != NULL; o = o->next)
4985
        {
4986
          if ((o->flags & SEC_HAS_CONTENTS) == 0
4987
              || o->_raw_size == 0
4988
              || o->output_section == bfd_abs_section_ptr)
4989
            continue;
4990
          if ((o->flags & SEC_LINKER_CREATED) == 0)
4991
            {
4992
              /* At this point, we are only interested in sections
4993
                 created by elf_link_create_dynamic_sections.  */
4994
              continue;
4995
            }
4996
          if ((elf_section_data (o->output_section)->this_hdr.sh_type
4997
               != SHT_STRTAB)
4998
              || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4999
            {
5000
              if (! bfd_set_section_contents (abfd, o->output_section,
5001
                                              o->contents, o->output_offset,
5002
                                              o->_raw_size))
5003
                goto error_return;
5004
            }
5005
          else
5006
            {
5007
              file_ptr off;
5008
 
5009
              /* The contents of the .dynstr section are actually in a
5010
                 stringtab.  */
5011
              off = elf_section_data (o->output_section)->this_hdr.sh_offset;
5012
              if (bfd_seek (abfd, off, SEEK_SET) != 0
5013
                  || ! _bfd_stringtab_emit (abfd,
5014
                                            elf_hash_table (info)->dynstr))
5015
                goto error_return;
5016
            }
5017
        }
5018
    }
5019
 
5020
  /* If we have optimized stabs strings, output them.  */
5021
  if (elf_hash_table (info)->stab_info != NULL)
5022
    {
5023
      if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
5024
        goto error_return;
5025
    }
5026
 
5027
  if (finfo.symstrtab != NULL)
5028
    _bfd_stringtab_free (finfo.symstrtab);
5029
  if (finfo.contents != NULL)
5030
    free (finfo.contents);
5031
  if (finfo.external_relocs != NULL)
5032
    free (finfo.external_relocs);
5033
  if (finfo.internal_relocs != NULL)
5034
    free (finfo.internal_relocs);
5035
  if (finfo.external_syms != NULL)
5036
    free (finfo.external_syms);
5037
  if (finfo.internal_syms != NULL)
5038
    free (finfo.internal_syms);
5039
  if (finfo.indices != NULL)
5040
    free (finfo.indices);
5041
  if (finfo.sections != NULL)
5042
    free (finfo.sections);
5043
  if (finfo.symbuf != NULL)
5044
    free (finfo.symbuf);
5045
  for (o = abfd->sections; o != NULL; o = o->next)
5046
    {
5047
      if ((o->flags & SEC_RELOC) != 0
5048
          && elf_section_data (o)->rel_hashes != NULL)
5049
        free (elf_section_data (o)->rel_hashes);
5050
    }
5051
 
5052
  elf_tdata (abfd)->linker = true;
5053
 
5054
  return true;
5055
 
5056
 error_return:
5057
  if (finfo.symstrtab != NULL)
5058
    _bfd_stringtab_free (finfo.symstrtab);
5059
  if (finfo.contents != NULL)
5060
    free (finfo.contents);
5061
  if (finfo.external_relocs != NULL)
5062
    free (finfo.external_relocs);
5063
  if (finfo.internal_relocs != NULL)
5064
    free (finfo.internal_relocs);
5065
  if (finfo.external_syms != NULL)
5066
    free (finfo.external_syms);
5067
  if (finfo.internal_syms != NULL)
5068
    free (finfo.internal_syms);
5069
  if (finfo.indices != NULL)
5070
    free (finfo.indices);
5071
  if (finfo.sections != NULL)
5072
    free (finfo.sections);
5073
  if (finfo.symbuf != NULL)
5074
    free (finfo.symbuf);
5075
  for (o = abfd->sections; o != NULL; o = o->next)
5076
    {
5077
      if ((o->flags & SEC_RELOC) != 0
5078
          && elf_section_data (o)->rel_hashes != NULL)
5079
        free (elf_section_data (o)->rel_hashes);
5080
    }
5081
 
5082
  return false;
5083
}
5084
 
5085
/* Add a symbol to the output symbol table.  */
5086
 
5087
static boolean
5088
elf_link_output_sym (finfo, name, elfsym, input_sec)
5089
     struct elf_final_link_info *finfo;
5090
     const char *name;
5091
     Elf_Internal_Sym *elfsym;
5092
     asection *input_sec;
5093
{
5094
  boolean (*output_symbol_hook) PARAMS ((bfd *,
5095
                                         struct bfd_link_info *info,
5096
                                         const char *,
5097
                                         Elf_Internal_Sym *,
5098
                                         asection *));
5099
 
5100
  output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5101
    elf_backend_link_output_symbol_hook;
5102
  if (output_symbol_hook != NULL)
5103
    {
5104
      if (! ((*output_symbol_hook)
5105
             (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5106
        return false;
5107
    }
5108
 
5109
  if (name == (const char *) NULL || *name == '\0')
5110
    elfsym->st_name = 0;
5111
  else if (input_sec->flags & SEC_EXCLUDE)
5112
    elfsym->st_name = 0;
5113
  else
5114
    {
5115
      elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5116
                                                            name, true,
5117
                                                            false);
5118
      if (elfsym->st_name == (unsigned long) -1)
5119
        return false;
5120
    }
5121
 
5122
  if (finfo->symbuf_count >= finfo->symbuf_size)
5123
    {
5124
      if (! elf_link_flush_output_syms (finfo))
5125
        return false;
5126
    }
5127
 
5128
  elf_swap_symbol_out (finfo->output_bfd, elfsym,
5129
                       (PTR) (finfo->symbuf + finfo->symbuf_count));
5130
  ++finfo->symbuf_count;
5131
 
5132
  ++ bfd_get_symcount (finfo->output_bfd);
5133
 
5134
  return true;
5135
}
5136
 
5137
/* Flush the output symbols to the file.  */
5138
 
5139
static boolean
5140
elf_link_flush_output_syms (finfo)
5141
     struct elf_final_link_info *finfo;
5142
{
5143
  if (finfo->symbuf_count > 0)
5144
    {
5145
      Elf_Internal_Shdr *symtab;
5146
 
5147
      symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5148
 
5149
      if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
5150
                    SEEK_SET) != 0
5151
          || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
5152
                         sizeof (Elf_External_Sym), finfo->output_bfd)
5153
              != finfo->symbuf_count * sizeof (Elf_External_Sym)))
5154
        return false;
5155
 
5156
      symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
5157
 
5158
      finfo->symbuf_count = 0;
5159
    }
5160
 
5161
  return true;
5162
}
5163
 
5164
/* Adjust all external symbols pointing into SEC_MERGE sections
5165
   to reflect the object merging within the sections.  */
5166
 
5167
static boolean
5168
elf_link_sec_merge_syms (h, data)
5169
     struct elf_link_hash_entry *h;
5170
     PTR data;
5171
{
5172
  asection *sec;
5173
 
5174
  if ((h->root.type == bfd_link_hash_defined
5175
       || h->root.type == bfd_link_hash_defweak)
5176
      && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
5177
      && elf_section_data (sec)->merge_info)
5178
    {
5179
      bfd *output_bfd = (bfd *) data;
5180
 
5181
      h->root.u.def.value =
5182
        _bfd_merged_section_offset (output_bfd,
5183
                                    &h->root.u.def.section,
5184
                                    elf_section_data (sec)->merge_info,
5185
                                    h->root.u.def.value, (bfd_vma) 0);
5186
    }
5187
 
5188
  return true;
5189
}
5190
 
5191
/* Add an external symbol to the symbol table.  This is called from
5192
   the hash table traversal routine.  When generating a shared object,
5193
   we go through the symbol table twice.  The first time we output
5194
   anything that might have been forced to local scope in a version
5195
   script.  The second time we output the symbols that are still
5196
   global symbols.  */
5197
 
5198
static boolean
5199
elf_link_output_extsym (h, data)
5200
     struct elf_link_hash_entry *h;
5201
     PTR data;
5202
{
5203
  struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
5204
  struct elf_final_link_info *finfo = eoinfo->finfo;
5205
  boolean strip;
5206
  Elf_Internal_Sym sym;
5207
  asection *input_sec;
5208
 
5209
  /* Decide whether to output this symbol in this pass.  */
5210
  if (eoinfo->localsyms)
5211
    {
5212
      if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5213
        return true;
5214
    }
5215
  else
5216
    {
5217
      if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5218
        return true;
5219
    }
5220
 
5221
  /* If we are not creating a shared library, and this symbol is
5222
     referenced by a shared library but is not defined anywhere, then
5223
     warn that it is undefined.  If we do not do this, the runtime
5224
     linker will complain that the symbol is undefined when the
5225
     program is run.  We don't have to worry about symbols that are
5226
     referenced by regular files, because we will already have issued
5227
     warnings for them.  */
5228
  if (! finfo->info->relocateable
5229
      && ! finfo->info->allow_shlib_undefined
5230
      && ! finfo->info->shared
5231
      && h->root.type == bfd_link_hash_undefined
5232
      && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5233
      && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5234
    {
5235
      if (! ((*finfo->info->callbacks->undefined_symbol)
5236
             (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5237
              (asection *) NULL, 0, true)))
5238
        {
5239
          eoinfo->failed = true;
5240
          return false;
5241
        }
5242
    }
5243
 
5244
  /* We don't want to output symbols that have never been mentioned by
5245
     a regular file, or that we have been told to strip.  However, if
5246
     h->indx is set to -2, the symbol is used by a reloc and we must
5247
     output it.  */
5248
  if (h->indx == -2)
5249
    strip = false;
5250
  else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5251
            || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
5252
           && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5253
           && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5254
    strip = true;
5255
  else if (finfo->info->strip == strip_all
5256
           || (finfo->info->strip == strip_some
5257
               && bfd_hash_lookup (finfo->info->keep_hash,
5258
                                   h->root.root.string,
5259
                                   false, false) == NULL))
5260
    strip = true;
5261
  else
5262
    strip = false;
5263
 
5264
  /* If we're stripping it, and it's not a dynamic symbol, there's
5265
     nothing else to do unless it is a forced local symbol.  */
5266
  if (strip
5267
      && h->dynindx == -1
5268
      && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5269
    return true;
5270
 
5271
  sym.st_value = 0;
5272
  sym.st_size = h->size;
5273
  sym.st_other = h->other;
5274
  if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5275
    sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
5276
  else if (h->root.type == bfd_link_hash_undefweak
5277
           || h->root.type == bfd_link_hash_defweak)
5278
    sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
5279
  else
5280
    sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
5281
 
5282
  switch (h->root.type)
5283
    {
5284
    default:
5285
    case bfd_link_hash_new:
5286
      abort ();
5287
      return false;
5288
 
5289
    case bfd_link_hash_undefined:
5290
      input_sec = bfd_und_section_ptr;
5291
      sym.st_shndx = SHN_UNDEF;
5292
      break;
5293
 
5294
    case bfd_link_hash_undefweak:
5295
      input_sec = bfd_und_section_ptr;
5296
      sym.st_shndx = SHN_UNDEF;
5297
      break;
5298
 
5299
    case bfd_link_hash_defined:
5300
    case bfd_link_hash_defweak:
5301
      {
5302
        input_sec = h->root.u.def.section;
5303
        if (input_sec->output_section != NULL)
5304
          {
5305
            sym.st_shndx =
5306
              _bfd_elf_section_from_bfd_section (finfo->output_bfd,
5307
                                                 input_sec->output_section);
5308
            if (sym.st_shndx == (unsigned short) -1)
5309
              {
5310
                (*_bfd_error_handler)
5311
                  (_("%s: could not find output section %s for input section %s"),
5312
                   bfd_get_filename (finfo->output_bfd),
5313
                   input_sec->output_section->name,
5314
                   input_sec->name);
5315
                eoinfo->failed = true;
5316
                return false;
5317
              }
5318
 
5319
            /* ELF symbols in relocateable files are section relative,
5320
               but in nonrelocateable files they are virtual
5321
               addresses.  */
5322
            sym.st_value = h->root.u.def.value + input_sec->output_offset;
5323
            if (! finfo->info->relocateable)
5324
              sym.st_value += input_sec->output_section->vma;
5325
          }
5326
        else
5327
          {
5328
            BFD_ASSERT (input_sec->owner == NULL
5329
                        || (input_sec->owner->flags & DYNAMIC) != 0);
5330
            sym.st_shndx = SHN_UNDEF;
5331
            input_sec = bfd_und_section_ptr;
5332
          }
5333
      }
5334
      break;
5335
 
5336
    case bfd_link_hash_common:
5337
      input_sec = h->root.u.c.p->section;
5338
      sym.st_shndx = SHN_COMMON;
5339
      sym.st_value = 1 << h->root.u.c.p->alignment_power;
5340
      break;
5341
 
5342
    case bfd_link_hash_indirect:
5343
      /* These symbols are created by symbol versioning.  They point
5344
         to the decorated version of the name.  For example, if the
5345
         symbol foo@@GNU_1.2 is the default, which should be used when
5346
         foo is used with no version, then we add an indirect symbol
5347
         foo which points to foo@@GNU_1.2.  We ignore these symbols,
5348
         since the indirected symbol is already in the hash table.  */
5349
      return true;
5350
 
5351
    case bfd_link_hash_warning:
5352
      /* We can't represent these symbols in ELF, although a warning
5353
         symbol may have come from a .gnu.warning.SYMBOL section.  We
5354
         just put the target symbol in the hash table.  If the target
5355
         symbol does not really exist, don't do anything.  */
5356
      if (h->root.u.i.link->type == bfd_link_hash_new)
5357
        return true;
5358
      return (elf_link_output_extsym
5359
              ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5360
    }
5361
 
5362
  /* Give the processor backend a chance to tweak the symbol value,
5363
     and also to finish up anything that needs to be done for this
5364
     symbol.  */
5365
  if ((h->dynindx != -1
5366
       || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5367
      && elf_hash_table (finfo->info)->dynamic_sections_created)
5368
    {
5369
      struct elf_backend_data *bed;
5370
 
5371
      bed = get_elf_backend_data (finfo->output_bfd);
5372
      if (! ((*bed->elf_backend_finish_dynamic_symbol)
5373
             (finfo->output_bfd, finfo->info, h, &sym)))
5374
        {
5375
          eoinfo->failed = true;
5376
          return false;
5377
        }
5378
    }
5379
 
5380
  /* If we are marking the symbol as undefined, and there are no
5381
     non-weak references to this symbol from a regular object, then
5382
     mark the symbol as weak undefined; if there are non-weak
5383
     references, mark the symbol as strong.  We can't do this earlier,
5384
     because it might not be marked as undefined until the
5385
     finish_dynamic_symbol routine gets through with it.  */
5386
  if (sym.st_shndx == SHN_UNDEF
5387
      && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
5388
      && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5389
          || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5390
    {
5391
      int bindtype;
5392
 
5393
      if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5394
        bindtype = STB_GLOBAL;
5395
      else
5396
        bindtype = STB_WEAK;
5397
      sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5398
    }
5399
 
5400
  /* If a symbol is not defined locally, we clear the visibility
5401
     field.  */
5402
  if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5403
    sym.st_other ^= ELF_ST_VISIBILITY(sym.st_other);
5404
 
5405
  /* If this symbol should be put in the .dynsym section, then put it
5406
     there now.  We have already know the symbol index.  We also fill
5407
     in the entry in the .hash section.  */
5408
  if (h->dynindx != -1
5409
      && elf_hash_table (finfo->info)->dynamic_sections_created)
5410
    {
5411
      size_t bucketcount;
5412
      size_t bucket;
5413
      size_t hash_entry_size;
5414
      bfd_byte *bucketpos;
5415
      bfd_vma chain;
5416
 
5417
      sym.st_name = h->dynstr_index;
5418
 
5419
      elf_swap_symbol_out (finfo->output_bfd, &sym,
5420
                           (PTR) (((Elf_External_Sym *)
5421
                                   finfo->dynsym_sec->contents)
5422
                                  + h->dynindx));
5423
 
5424
      bucketcount = elf_hash_table (finfo->info)->bucketcount;
5425
      bucket = h->elf_hash_value % bucketcount;
5426
      hash_entry_size
5427
        = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
5428
      bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5429
                   + (bucket + 2) * hash_entry_size);
5430
      chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5431
      bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5432
      bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5433
               ((bfd_byte *) finfo->hash_sec->contents
5434
                + (bucketcount + 2 + h->dynindx) * hash_entry_size));
5435
 
5436
      if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5437
        {
5438
          Elf_Internal_Versym iversym;
5439
 
5440
          if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5441
            {
5442
              if (h->verinfo.verdef == NULL)
5443
                iversym.vs_vers = 0;
5444
              else
5445
                iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5446
            }
5447
          else
5448
            {
5449
              if (h->verinfo.vertree == NULL)
5450
                iversym.vs_vers = 1;
5451
              else
5452
                iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5453
            }
5454
 
5455
          if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5456
            iversym.vs_vers |= VERSYM_HIDDEN;
5457
 
5458
          _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5459
                                    (((Elf_External_Versym *)
5460
                                      finfo->symver_sec->contents)
5461
                                     + h->dynindx));
5462
        }
5463
    }
5464
 
5465
  /* If we're stripping it, then it was just a dynamic symbol, and
5466
     there's nothing else to do.  */
5467
  if (strip)
5468
    return true;
5469
 
5470
  h->indx = bfd_get_symcount (finfo->output_bfd);
5471
 
5472
  if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5473
    {
5474
      eoinfo->failed = true;
5475
      return false;
5476
    }
5477
 
5478
  return true;
5479
}
5480
 
5481
/* Copy the relocations indicated by the INTERNAL_RELOCS (which
5482
   originated from the section given by INPUT_REL_HDR) to the
5483
   OUTPUT_BFD.  */
5484
 
5485
static void
5486
elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5487
                        internal_relocs)
5488
     bfd *output_bfd;
5489
     asection *input_section;
5490
     Elf_Internal_Shdr *input_rel_hdr;
5491
     Elf_Internal_Rela *internal_relocs;
5492
{
5493
  Elf_Internal_Rela *irela;
5494
  Elf_Internal_Rela *irelaend;
5495
  Elf_Internal_Shdr *output_rel_hdr;
5496
  asection *output_section;
5497
  unsigned int *rel_countp = NULL;
5498
  struct elf_backend_data *bed;
5499
 
5500
  output_section = input_section->output_section;
5501
  output_rel_hdr = NULL;
5502
 
5503
  if (elf_section_data (output_section)->rel_hdr.sh_entsize
5504
      == input_rel_hdr->sh_entsize)
5505
    {
5506
      output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5507
      rel_countp = &elf_section_data (output_section)->rel_count;
5508
    }
5509
  else if (elf_section_data (output_section)->rel_hdr2
5510
           && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5511
               == input_rel_hdr->sh_entsize))
5512
    {
5513
      output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5514
      rel_countp = &elf_section_data (output_section)->rel_count2;
5515
    }
5516
 
5517
  BFD_ASSERT (output_rel_hdr != NULL);
5518
 
5519
  bed = get_elf_backend_data (output_bfd);
5520
  irela = internal_relocs;
5521
  irelaend = irela + NUM_SHDR_ENTRIES (input_rel_hdr)
5522
                     * bed->s->int_rels_per_ext_rel;
5523
 
5524
  if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5525
    {
5526
      Elf_External_Rel *erel;
5527
      Elf_Internal_Rel *irel;
5528
 
5529
      irel = (Elf_Internal_Rel *) bfd_zmalloc (bed->s->int_rels_per_ext_rel
5530
                                               * sizeof (Elf_Internal_Rel));
5531
      if (irel == NULL)
5532
        {
5533
          (*_bfd_error_handler) (_("Error: out of memory"));
5534
          abort ();
5535
        }
5536
 
5537
      erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5538
      for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erel++)
5539
        {
5540
          unsigned int i;
5541
 
5542
          for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
5543
            {
5544
              irel[i].r_offset = irela[i].r_offset;
5545
              irel[i].r_info = irela[i].r_info;
5546
              BFD_ASSERT (irela[i].r_addend == 0);
5547
            }
5548
 
5549
          if (bed->s->swap_reloc_out)
5550
            (*bed->s->swap_reloc_out) (output_bfd, irel, (PTR) erel);
5551
          else
5552
            elf_swap_reloc_out (output_bfd, irel, erel);
5553
        }
5554
 
5555
      free (irel);
5556
    }
5557
  else
5558
    {
5559
      Elf_External_Rela *erela;
5560
 
5561
      BFD_ASSERT (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
5562
 
5563
      erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5564
      for (; irela < irelaend; irela += bed->s->int_rels_per_ext_rel, erela++)
5565
        if (bed->s->swap_reloca_out)
5566
          (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
5567
        else
5568
          elf_swap_reloca_out (output_bfd, irela, erela);
5569
    }
5570
 
5571
  /* Bump the counter, so that we know where to add the next set of
5572
     relocations.  */
5573
  *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
5574
}
5575
 
5576
/* Link an input file into the linker output file.  This function
5577
   handles all the sections and relocations of the input file at once.
5578
   This is so that we only have to read the local symbols once, and
5579
   don't have to keep them in memory.  */
5580
 
5581
static boolean
5582
elf_link_input_bfd (finfo, input_bfd)
5583
     struct elf_final_link_info *finfo;
5584
     bfd *input_bfd;
5585
{
5586
  boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5587
                                       bfd *, asection *, bfd_byte *,
5588
                                       Elf_Internal_Rela *,
5589
                                       Elf_Internal_Sym *, asection **));
5590
  bfd *output_bfd;
5591
  Elf_Internal_Shdr *symtab_hdr;
5592
  size_t locsymcount;
5593
  size_t extsymoff;
5594
  Elf_External_Sym *external_syms;
5595
  Elf_External_Sym *esym;
5596
  Elf_External_Sym *esymend;
5597
  Elf_Internal_Sym *isym;
5598
  long *pindex;
5599
  asection **ppsection;
5600
  asection *o;
5601
  struct elf_backend_data *bed;
5602
  boolean emit_relocs;
5603
 
5604
  output_bfd = finfo->output_bfd;
5605
  bed = get_elf_backend_data (output_bfd);
5606
  relocate_section = bed->elf_backend_relocate_section;
5607
 
5608
  /* If this is a dynamic object, we don't want to do anything here:
5609
     we don't want the local symbols, and we don't want the section
5610
     contents.  */
5611
  if ((input_bfd->flags & DYNAMIC) != 0)
5612
    return true;
5613
 
5614
  emit_relocs = (finfo->info->relocateable
5615
                 || finfo->info->emitrelocations
5616
                 || bed->elf_backend_emit_relocs);
5617
 
5618
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5619
  if (elf_bad_symtab (input_bfd))
5620
    {
5621
      locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5622
      extsymoff = 0;
5623
    }
5624
  else
5625
    {
5626
      locsymcount = symtab_hdr->sh_info;
5627
      extsymoff = symtab_hdr->sh_info;
5628
    }
5629
 
5630
  /* Read the local symbols.  */
5631
  if (symtab_hdr->contents != NULL)
5632
    external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5633
  else if (locsymcount == 0)
5634
    external_syms = NULL;
5635
  else
5636
    {
5637
      external_syms = finfo->external_syms;
5638
      if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5639
          || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5640
                        locsymcount, input_bfd)
5641
              != locsymcount * sizeof (Elf_External_Sym)))
5642
        return false;
5643
    }
5644
 
5645
  /* Swap in the local symbols and write out the ones which we know
5646
     are going into the output file.  */
5647
  esym = external_syms;
5648
  esymend = esym + locsymcount;
5649
  isym = finfo->internal_syms;
5650
  pindex = finfo->indices;
5651
  ppsection = finfo->sections;
5652
  for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5653
    {
5654
      asection *isec;
5655
      const char *name;
5656
      Elf_Internal_Sym osym;
5657
 
5658
      elf_swap_symbol_in (input_bfd, esym, isym);
5659
      *pindex = -1;
5660
 
5661
      if (elf_bad_symtab (input_bfd))
5662
        {
5663
          if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5664
            {
5665
              *ppsection = NULL;
5666
              continue;
5667
            }
5668
        }
5669
 
5670
      name = NULL;
5671
      if (isym->st_shndx == SHN_UNDEF)
5672
        {
5673
          isec = bfd_und_section_ptr;
5674
          name = isec->name;
5675
        }
5676
      else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5677
        {
5678
          isec = section_from_elf_index (input_bfd, isym->st_shndx);
5679
          if (isec && elf_section_data (isec)->merge_info
5680
              && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
5681
            isym->st_value =
5682
              _bfd_merged_section_offset (output_bfd, &isec,
5683
                                          elf_section_data (isec)->merge_info,
5684
                                          isym->st_value, (bfd_vma) 0);
5685
        }
5686
      else if (isym->st_shndx == SHN_ABS)
5687
        {
5688
          isec = bfd_abs_section_ptr;
5689
          name = isec->name;
5690
        }
5691
      else if (isym->st_shndx == SHN_COMMON)
5692
        {
5693
          isec = bfd_com_section_ptr;
5694
          name = isec->name;
5695
        }
5696
      else
5697
        {
5698
          /* Who knows?  */
5699
          isec = NULL;
5700
        }
5701
 
5702
      *ppsection = isec;
5703
 
5704
      /* Don't output the first, undefined, symbol.  */
5705
      if (esym == external_syms)
5706
        continue;
5707
 
5708
      if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5709
        {
5710
          asection *ksec;
5711
 
5712
          /* Save away all section symbol values.  */
5713
          if (isec != NULL)
5714
            {
5715
              if (name)
5716
                {
5717
                  if (isec->symbol->value != isym->st_value)
5718
                    (*_bfd_error_handler)
5719
                      (_("%s: invalid section symbol index 0x%x (%s) ingored"),
5720
                       bfd_get_filename (input_bfd), isym->st_shndx,
5721
                       name);
5722
                  continue;
5723
                }
5724
              isec->symbol->value = isym->st_value;
5725
            }
5726
 
5727
          /* If this is a discarded link-once section symbol, update
5728
             it's value to that of the kept section symbol.  The
5729
             linker will keep the first of any matching link-once
5730
             sections, so we should have already seen it's section
5731
             symbol.  I trust no-one will have the bright idea of
5732
             re-ordering the bfd list...  */
5733
          if (isec != NULL
5734
              && (bfd_get_section_flags (input_bfd, isec) & SEC_LINK_ONCE) != 0
5735
              && (ksec = isec->kept_section) != NULL)
5736
            {
5737
              isym->st_value = ksec->symbol->value;
5738
 
5739
              /* That put the value right, but the section info is all
5740
                 wrong.  I hope this works.  */
5741
              isec->output_offset = ksec->output_offset;
5742
              isec->output_section = ksec->output_section;
5743
            }
5744
 
5745
          /* We never output section symbols.  Instead, we use the
5746
             section symbol of the corresponding section in the output
5747
             file.  */
5748
          continue;
5749
        }
5750
 
5751
      /* If we are stripping all symbols, we don't want to output this
5752
         one.  */
5753
      if (finfo->info->strip == strip_all)
5754
        continue;
5755
 
5756
      /* If we are discarding all local symbols, we don't want to
5757
         output this one.  If we are generating a relocateable output
5758
         file, then some of the local symbols may be required by
5759
         relocs; we output them below as we discover that they are
5760
         needed.  */
5761
      if (finfo->info->discard == discard_all)
5762
        continue;
5763
 
5764
      /* If this symbol is defined in a section which we are
5765
         discarding, we don't need to keep it, but note that
5766
         linker_mark is only reliable for sections that have contents.
5767
         For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5768
         as well as linker_mark.  */
5769
      if (isym->st_shndx > 0
5770
          && isym->st_shndx < SHN_LORESERVE
5771
          && isec != NULL
5772
          && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5773
              || (! finfo->info->relocateable
5774
                  && (isec->flags & SEC_EXCLUDE) != 0)))
5775
        continue;
5776
 
5777
      /* Get the name of the symbol.  */
5778
      name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5779
                                              isym->st_name);
5780
      if (name == NULL)
5781
        return false;
5782
 
5783
      /* See if we are discarding symbols with this name.  */
5784
      if ((finfo->info->strip == strip_some
5785
           && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5786
               == NULL))
5787
          || (((finfo->info->discard == discard_sec_merge
5788
                && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
5789
               || finfo->info->discard == discard_l)
5790
              && bfd_is_local_label_name (input_bfd, name)))
5791
        continue;
5792
 
5793
      /* If we get here, we are going to output this symbol.  */
5794
 
5795
      osym = *isym;
5796
 
5797
      /* Adjust the section index for the output file.  */
5798
      osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5799
                                                         isec->output_section);
5800
      if (osym.st_shndx == (unsigned short) -1)
5801
        return false;
5802
 
5803
      *pindex = bfd_get_symcount (output_bfd);
5804
 
5805
      /* ELF symbols in relocateable files are section relative, but
5806
         in executable files they are virtual addresses.  Note that
5807
         this code assumes that all ELF sections have an associated
5808
         BFD section with a reasonable value for output_offset; below
5809
         we assume that they also have a reasonable value for
5810
         output_section.  Any special sections must be set up to meet
5811
         these requirements.  */
5812
      osym.st_value += isec->output_offset;
5813
      if (! finfo->info->relocateable)
5814
        osym.st_value += isec->output_section->vma;
5815
 
5816
      if (! elf_link_output_sym (finfo, name, &osym, isec))
5817
        return false;
5818
    }
5819
 
5820
  /* Relocate the contents of each section.  */
5821
  for (o = input_bfd->sections; o != NULL; o = o->next)
5822
    {
5823
      bfd_byte *contents;
5824
 
5825
      if (! o->linker_mark)
5826
        {
5827
          /* This section was omitted from the link.  */
5828
          continue;
5829
        }
5830
 
5831
      if ((o->flags & SEC_HAS_CONTENTS) == 0
5832
          || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5833
        continue;
5834
 
5835
      if ((o->flags & SEC_LINKER_CREATED) != 0)
5836
        {
5837
          /* Section was created by elf_link_create_dynamic_sections
5838
             or somesuch.  */
5839
          continue;
5840
        }
5841
 
5842
      /* Get the contents of the section.  They have been cached by a
5843
         relaxation routine.  Note that o is a section in an input
5844
         file, so the contents field will not have been set by any of
5845
         the routines which work on output files.  */
5846
      if (elf_section_data (o)->this_hdr.contents != NULL)
5847
        contents = elf_section_data (o)->this_hdr.contents;
5848
      else
5849
        {
5850
          contents = finfo->contents;
5851
          if (! bfd_get_section_contents (input_bfd, o, contents,
5852
                                          (file_ptr) 0, o->_raw_size))
5853
            return false;
5854
        }
5855
 
5856
      if ((o->flags & SEC_RELOC) != 0)
5857
        {
5858
          Elf_Internal_Rela *internal_relocs;
5859
 
5860
          /* Get the swapped relocs.  */
5861
          internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5862
                             (input_bfd, o, finfo->external_relocs,
5863
                              finfo->internal_relocs, false));
5864
          if (internal_relocs == NULL
5865
              && o->reloc_count > 0)
5866
            return false;
5867
 
5868
          /* Relocate the section by invoking a back end routine.
5869
 
5870
             The back end routine is responsible for adjusting the
5871
             section contents as necessary, and (if using Rela relocs
5872
             and generating a relocateable output file) adjusting the
5873
             reloc addend as necessary.
5874
 
5875
             The back end routine does not have to worry about setting
5876
             the reloc address or the reloc symbol index.
5877
 
5878
             The back end routine is given a pointer to the swapped in
5879
             internal symbols, and can access the hash table entries
5880
             for the external symbols via elf_sym_hashes (input_bfd).
5881
 
5882
             When generating relocateable output, the back end routine
5883
             must handle STB_LOCAL/STT_SECTION symbols specially.  The
5884
             output symbol is going to be a section symbol
5885
             corresponding to the output section, which will require
5886
             the addend to be adjusted.  */
5887
 
5888
          if (! (*relocate_section) (output_bfd, finfo->info,
5889
                                     input_bfd, o, contents,
5890
                                     internal_relocs,
5891
                                     finfo->internal_syms,
5892
                                     finfo->sections))
5893
            return false;
5894
 
5895
          if (emit_relocs)
5896
            {
5897
              Elf_Internal_Rela *irela;
5898
              Elf_Internal_Rela *irelaend;
5899
              struct elf_link_hash_entry **rel_hash;
5900
              Elf_Internal_Shdr *input_rel_hdr;
5901
              unsigned int next_erel;
5902
              void (* reloc_emitter) PARAMS ((bfd *, asection *,
5903
                                              Elf_Internal_Shdr *,
5904
                                              Elf_Internal_Rela *));
5905
 
5906
              /* Adjust the reloc addresses and symbol indices.  */
5907
 
5908
              irela = internal_relocs;
5909
              irelaend = irela
5910
                         + o->reloc_count * bed->s->int_rels_per_ext_rel;
5911
              rel_hash = (elf_section_data (o->output_section)->rel_hashes
5912
                          + elf_section_data (o->output_section)->rel_count
5913
                          + elf_section_data (o->output_section)->rel_count2);
5914
              for (next_erel = 0; irela < irelaend; irela++, next_erel++)
5915
                {
5916
                  unsigned long r_symndx;
5917
                  Elf_Internal_Sym *isym;
5918
                  asection *sec;
5919
 
5920
                  if (next_erel == bed->s->int_rels_per_ext_rel)
5921
                    {
5922
                      rel_hash++;
5923
                      next_erel = 0;
5924
                    }
5925
 
5926
                  irela->r_offset += o->output_offset;
5927
 
5928
                  /* Relocs in an executable have to be virtual addresses.  */
5929
                  if (finfo->info->emitrelocations)
5930
                    irela->r_offset += o->output_section->vma;
5931
 
5932
                  r_symndx = ELF_R_SYM (irela->r_info);
5933
 
5934
                  if (r_symndx == 0)
5935
                    continue;
5936
 
5937
                  if (r_symndx >= locsymcount
5938
                      || (elf_bad_symtab (input_bfd)
5939
                          && finfo->sections[r_symndx] == NULL))
5940
                    {
5941
                      struct elf_link_hash_entry *rh;
5942
                      unsigned long indx;
5943
 
5944
                      /* This is a reloc against a global symbol.  We
5945
                         have not yet output all the local symbols, so
5946
                         we do not know the symbol index of any global
5947
                         symbol.  We set the rel_hash entry for this
5948
                         reloc to point to the global hash table entry
5949
                         for this symbol.  The symbol index is then
5950
                         set at the end of elf_bfd_final_link.  */
5951
                      indx = r_symndx - extsymoff;
5952
                      rh = elf_sym_hashes (input_bfd)[indx];
5953
                      while (rh->root.type == bfd_link_hash_indirect
5954
                             || rh->root.type == bfd_link_hash_warning)
5955
                        rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5956
 
5957
                      /* Setting the index to -2 tells
5958
                         elf_link_output_extsym that this symbol is
5959
                         used by a reloc.  */
5960
                      BFD_ASSERT (rh->indx < 0);
5961
                      rh->indx = -2;
5962
 
5963
                      *rel_hash = rh;
5964
 
5965
                      continue;
5966
                    }
5967
 
5968
                  /* This is a reloc against a local symbol.  */
5969
 
5970
                  *rel_hash = NULL;
5971
                  isym = finfo->internal_syms + r_symndx;
5972
                  sec = finfo->sections[r_symndx];
5973
                  if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5974
                    {
5975
                      /* I suppose the backend ought to fill in the
5976
                         section of any STT_SECTION symbol against a
5977
                         processor specific section.  If we have
5978
                         discarded a section, the output_section will
5979
                         be the absolute section.  */
5980
                      if (sec != NULL
5981
                          && (bfd_is_abs_section (sec)
5982
                              || (sec->output_section != NULL
5983
                                  && bfd_is_abs_section (sec->output_section))))
5984
                        r_symndx = 0;
5985
                      else if (sec == NULL || sec->owner == NULL)
5986
                        {
5987
                          bfd_set_error (bfd_error_bad_value);
5988
                          return false;
5989
                        }
5990
                      else
5991
                        {
5992
                          r_symndx = sec->output_section->target_index;
5993
                          BFD_ASSERT (r_symndx != 0);
5994
                        }
5995
                    }
5996
                  else
5997
                    {
5998
                      if (finfo->indices[r_symndx] == -1)
5999
                        {
6000
                          unsigned long link;
6001
                          const char *name;
6002
                          asection *osec;
6003
 
6004
                          if (finfo->info->strip == strip_all)
6005
                            {
6006
                              /* You can't do ld -r -s.  */
6007
                              bfd_set_error (bfd_error_invalid_operation);
6008
                              return false;
6009
                            }
6010
 
6011
                          /* This symbol was skipped earlier, but
6012
                             since it is needed by a reloc, we
6013
                             must output it now.  */
6014
                          link = symtab_hdr->sh_link;
6015
                          name = bfd_elf_string_from_elf_section (input_bfd,
6016
                                                                  link,
6017
                                                                  isym->st_name);
6018
                          if (name == NULL)
6019
                            return false;
6020
 
6021
                          osec = sec->output_section;
6022
                          isym->st_shndx =
6023
                            _bfd_elf_section_from_bfd_section (output_bfd,
6024
                                                               osec);
6025
                          if (isym->st_shndx == (unsigned short) -1)
6026
                            return false;
6027
 
6028
                          isym->st_value += sec->output_offset;
6029
                          if (! finfo->info->relocateable)
6030
                            isym->st_value += osec->vma;
6031
 
6032
                          finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
6033
 
6034
                          if (! elf_link_output_sym (finfo, name, isym, sec))
6035
                            return false;
6036
                        }
6037
 
6038
                      r_symndx = finfo->indices[r_symndx];
6039
                    }
6040
 
6041
                  irela->r_info = ELF_R_INFO (r_symndx,
6042
                                              ELF_R_TYPE (irela->r_info));
6043
                }
6044
 
6045
              /* Swap out the relocs.  */
6046
              if (bed->elf_backend_emit_relocs
6047
                  && ! (finfo->info->relocateable || finfo->info->emitrelocations))
6048
                reloc_emitter = bed->elf_backend_emit_relocs;
6049
              else
6050
                reloc_emitter = elf_link_output_relocs;
6051
 
6052
              input_rel_hdr = &elf_section_data (o)->rel_hdr;
6053
              (*reloc_emitter) (output_bfd, o, input_rel_hdr, internal_relocs);
6054
 
6055
              input_rel_hdr = elf_section_data (o)->rel_hdr2;
6056
              if (input_rel_hdr)
6057
                {
6058
                  internal_relocs += NUM_SHDR_ENTRIES (input_rel_hdr)
6059
                                     * bed->s->int_rels_per_ext_rel;
6060
                  reloc_emitter (output_bfd, o, input_rel_hdr, internal_relocs);
6061
                }
6062
 
6063
            }
6064
        }
6065
 
6066
      /* Write out the modified section contents.  */
6067
      if (elf_section_data (o)->stab_info)
6068
        {
6069
          if (! (_bfd_write_section_stabs
6070
                 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
6071
                  o, &elf_section_data (o)->stab_info, contents)))
6072
            return false;
6073
        }
6074
      else if (elf_section_data (o)->merge_info)
6075
        {
6076
          if (! (_bfd_write_merged_section
6077
                 (output_bfd, o, elf_section_data (o)->merge_info)))
6078
            return false;
6079
        }
6080
      else
6081
        {
6082
          if (! (o->flags & SEC_EXCLUDE) &&
6083
              ! bfd_set_section_contents (output_bfd, o->output_section,
6084
                                          contents, o->output_offset,
6085
                                          (o->_cooked_size != 0
6086
                                           ? o->_cooked_size
6087
                                           : o->_raw_size)))
6088
            return false;
6089
        }
6090
    }
6091
 
6092
  return true;
6093
}
6094
 
6095
/* Generate a reloc when linking an ELF file.  This is a reloc
6096
   requested by the linker, and does come from any input file.  This
6097
   is used to build constructor and destructor tables when linking
6098
   with -Ur.  */
6099
 
6100
static boolean
6101
elf_reloc_link_order (output_bfd, info, output_section, link_order)
6102
     bfd *output_bfd;
6103
     struct bfd_link_info *info;
6104
     asection *output_section;
6105
     struct bfd_link_order *link_order;
6106
{
6107
  reloc_howto_type *howto;
6108
  long indx;
6109
  bfd_vma offset;
6110
  bfd_vma addend;
6111
  struct elf_link_hash_entry **rel_hash_ptr;
6112
  Elf_Internal_Shdr *rel_hdr;
6113
  struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
6114
 
6115
  howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
6116
  if (howto == NULL)
6117
    {
6118
      bfd_set_error (bfd_error_bad_value);
6119
      return false;
6120
    }
6121
 
6122
  addend = link_order->u.reloc.p->addend;
6123
 
6124
  /* Figure out the symbol index.  */
6125
  rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
6126
                  + elf_section_data (output_section)->rel_count
6127
                  + elf_section_data (output_section)->rel_count2);
6128
  if (link_order->type == bfd_section_reloc_link_order)
6129
    {
6130
      indx = link_order->u.reloc.p->u.section->target_index;
6131
      BFD_ASSERT (indx != 0);
6132
      *rel_hash_ptr = NULL;
6133
    }
6134
  else
6135
    {
6136
      struct elf_link_hash_entry *h;
6137
 
6138
      /* Treat a reloc against a defined symbol as though it were
6139
         actually against the section.  */
6140
      h = ((struct elf_link_hash_entry *)
6141
           bfd_wrapped_link_hash_lookup (output_bfd, info,
6142
                                         link_order->u.reloc.p->u.name,
6143
                                         false, false, true));
6144
      if (h != NULL
6145
          && (h->root.type == bfd_link_hash_defined
6146
              || h->root.type == bfd_link_hash_defweak))
6147
        {
6148
          asection *section;
6149
 
6150
          section = h->root.u.def.section;
6151
          indx = section->output_section->target_index;
6152
          *rel_hash_ptr = NULL;
6153
          /* It seems that we ought to add the symbol value to the
6154
             addend here, but in practice it has already been added
6155
             because it was passed to constructor_callback.  */
6156
          addend += section->output_section->vma + section->output_offset;
6157
        }
6158
      else if (h != NULL)
6159
        {
6160
          /* Setting the index to -2 tells elf_link_output_extsym that
6161
             this symbol is used by a reloc.  */
6162
          h->indx = -2;
6163
          *rel_hash_ptr = h;
6164
          indx = 0;
6165
        }
6166
      else
6167
        {
6168
          if (! ((*info->callbacks->unattached_reloc)
6169
                 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
6170
                  (asection *) NULL, (bfd_vma) 0)))
6171
            return false;
6172
          indx = 0;
6173
        }
6174
    }
6175
 
6176
  /* If this is an inplace reloc, we must write the addend into the
6177
     object file.  */
6178
  if (howto->partial_inplace && addend != 0)
6179
    {
6180
      bfd_size_type size;
6181
      bfd_reloc_status_type rstat;
6182
      bfd_byte *buf;
6183
      boolean ok;
6184
 
6185
      size = bfd_get_reloc_size (howto);
6186
      buf = (bfd_byte *) bfd_zmalloc (size);
6187
      if (buf == (bfd_byte *) NULL)
6188
        return false;
6189
      rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
6190
      switch (rstat)
6191
        {
6192
        case bfd_reloc_ok:
6193
          break;
6194
        default:
6195
        case bfd_reloc_outofrange:
6196
          abort ();
6197
        case bfd_reloc_overflow:
6198
          if (! ((*info->callbacks->reloc_overflow)
6199
                 (info,
6200
                  (link_order->type == bfd_section_reloc_link_order
6201
                   ? bfd_section_name (output_bfd,
6202
                                       link_order->u.reloc.p->u.section)
6203
                   : link_order->u.reloc.p->u.name),
6204
                  howto->name, addend, (bfd *) NULL, (asection *) NULL,
6205
                  (bfd_vma) 0)))
6206
            {
6207
              free (buf);
6208
              return false;
6209
            }
6210
          break;
6211
        }
6212
      ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
6213
                                     (file_ptr) link_order->offset, size);
6214
      free (buf);
6215
      if (! ok)
6216
        return false;
6217
    }
6218
 
6219
  /* The address of a reloc is relative to the section in a
6220
     relocateable file, and is a virtual address in an executable
6221
     file.  */
6222
  offset = link_order->offset;
6223
  if (! info->relocateable)
6224
    offset += output_section->vma;
6225
 
6226
  rel_hdr = &elf_section_data (output_section)->rel_hdr;
6227
 
6228
  if (rel_hdr->sh_type == SHT_REL)
6229
    {
6230
      Elf_Internal_Rel *irel;
6231
      Elf_External_Rel *erel;
6232
      unsigned int i;
6233
 
6234
      irel = (Elf_Internal_Rel *) bfd_zmalloc (bed->s->int_rels_per_ext_rel
6235
                                               * sizeof (Elf_Internal_Rel));
6236
      if (irel == NULL)
6237
        return false;
6238
 
6239
      for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6240
        irel[i].r_offset = offset;
6241
      irel[0].r_info = ELF_R_INFO (indx, howto->type);
6242
 
6243
      erel = ((Elf_External_Rel *) rel_hdr->contents
6244
              + elf_section_data (output_section)->rel_count);
6245
 
6246
      if (bed->s->swap_reloc_out)
6247
        (*bed->s->swap_reloc_out) (output_bfd, irel, (bfd_byte *) erel);
6248
      else
6249
        elf_swap_reloc_out (output_bfd, irel, erel);
6250
 
6251
      free (irel);
6252
    }
6253
  else
6254
    {
6255
      Elf_Internal_Rela *irela;
6256
      Elf_External_Rela *erela;
6257
      unsigned int i;
6258
 
6259
      irela = (Elf_Internal_Rela *) bfd_zmalloc (bed->s->int_rels_per_ext_rel
6260
                                                 * sizeof (Elf_Internal_Rela));
6261
      if (irela == NULL)
6262
        return false;
6263
 
6264
      for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6265
        irela[i].r_offset = offset;
6266
      irela[0].r_info = ELF_R_INFO (indx, howto->type);
6267
      irela[0].r_addend = addend;
6268
 
6269
      erela = ((Elf_External_Rela *) rel_hdr->contents
6270
               + elf_section_data (output_section)->rel_count);
6271
 
6272
      if (bed->s->swap_reloca_out)
6273
        (*bed->s->swap_reloca_out) (output_bfd, irela, (bfd_byte *) erela);
6274
      else
6275
        elf_swap_reloca_out (output_bfd, irela, erela);
6276
    }
6277
 
6278
  ++elf_section_data (output_section)->rel_count;
6279
 
6280
  return true;
6281
}
6282
 
6283
/* Allocate a pointer to live in a linker created section.  */
6284
 
6285
boolean
6286
elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
6287
     bfd *abfd;
6288
     struct bfd_link_info *info;
6289
     elf_linker_section_t *lsect;
6290
     struct elf_link_hash_entry *h;
6291
     const Elf_Internal_Rela *rel;
6292
{
6293
  elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
6294
  elf_linker_section_pointers_t *linker_section_ptr;
6295
  unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
6296
 
6297
  BFD_ASSERT (lsect != NULL);
6298
 
6299
  /* Is this a global symbol? */
6300
  if (h != NULL)
6301
    {
6302
      /* Has this symbol already been allocated, if so, our work is done */
6303
      if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6304
                                                rel->r_addend,
6305
                                                lsect->which))
6306
        return true;
6307
 
6308
      ptr_linker_section_ptr = &h->linker_section_pointer;
6309
      /* Make sure this symbol is output as a dynamic symbol.  */
6310
      if (h->dynindx == -1)
6311
        {
6312
          if (! elf_link_record_dynamic_symbol (info, h))
6313
            return false;
6314
        }
6315
 
6316
      if (lsect->rel_section)
6317
        lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6318
    }
6319
 
6320
  else  /* Allocation of a pointer to a local symbol */
6321
    {
6322
      elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
6323
 
6324
      /* Allocate a table to hold the local symbols if first time */
6325
      if (!ptr)
6326
        {
6327
          unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
6328
          register unsigned int i;
6329
 
6330
          ptr = (elf_linker_section_pointers_t **)
6331
            bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
6332
 
6333
          if (!ptr)
6334
            return false;
6335
 
6336
          elf_local_ptr_offsets (abfd) = ptr;
6337
          for (i = 0; i < num_symbols; i++)
6338
            ptr[i] = (elf_linker_section_pointers_t *)0;
6339
        }
6340
 
6341
      /* Has this symbol already been allocated, if so, our work is done */
6342
      if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
6343
                                                rel->r_addend,
6344
                                                lsect->which))
6345
        return true;
6346
 
6347
      ptr_linker_section_ptr = &ptr[r_symndx];
6348
 
6349
      if (info->shared)
6350
        {
6351
          /* If we are generating a shared object, we need to
6352
             output a R_<xxx>_RELATIVE reloc so that the
6353
             dynamic linker can adjust this GOT entry.  */
6354
          BFD_ASSERT (lsect->rel_section != NULL);
6355
          lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6356
        }
6357
    }
6358
 
6359
  /* Allocate space for a pointer in the linker section, and allocate a new pointer record
6360
     from internal memory.  */
6361
  BFD_ASSERT (ptr_linker_section_ptr != NULL);
6362
  linker_section_ptr = (elf_linker_section_pointers_t *)
6363
    bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
6364
 
6365
  if (!linker_section_ptr)
6366
    return false;
6367
 
6368
  linker_section_ptr->next = *ptr_linker_section_ptr;
6369
  linker_section_ptr->addend = rel->r_addend;
6370
  linker_section_ptr->which = lsect->which;
6371
  linker_section_ptr->written_address_p = false;
6372
  *ptr_linker_section_ptr = linker_section_ptr;
6373
 
6374
#if 0
6375
  if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
6376
    {
6377
      linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
6378
      lsect->hole_offset += ARCH_SIZE / 8;
6379
      lsect->sym_offset  += ARCH_SIZE / 8;
6380
      if (lsect->sym_hash)      /* Bump up symbol value if needed */
6381
        {
6382
          lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
6383
#ifdef DEBUG
6384
          fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
6385
                   lsect->sym_hash->root.root.string,
6386
                   (long)ARCH_SIZE / 8,
6387
                   (long)lsect->sym_hash->root.u.def.value);
6388
#endif
6389
        }
6390
    }
6391
  else
6392
#endif
6393
    linker_section_ptr->offset = lsect->section->_raw_size;
6394
 
6395
  lsect->section->_raw_size += ARCH_SIZE / 8;
6396
 
6397
#ifdef DEBUG
6398
  fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
6399
           lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
6400
#endif
6401
 
6402
  return true;
6403
}
6404
 
6405
#if ARCH_SIZE==64
6406
#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
6407
#endif
6408
#if ARCH_SIZE==32
6409
#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
6410
#endif
6411
 
6412
/* Fill in the address for a pointer generated in a linker section.  */
6413
 
6414
bfd_vma
6415
elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
6416
     bfd *output_bfd;
6417
     bfd *input_bfd;
6418
     struct bfd_link_info *info;
6419
     elf_linker_section_t *lsect;
6420
     struct elf_link_hash_entry *h;
6421
     bfd_vma relocation;
6422
     const Elf_Internal_Rela *rel;
6423
     int relative_reloc;
6424
{
6425
  elf_linker_section_pointers_t *linker_section_ptr;
6426
 
6427
  BFD_ASSERT (lsect != NULL);
6428
 
6429
  if (h != NULL)                /* global symbol */
6430
    {
6431
      linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6432
                                                                 rel->r_addend,
6433
                                                                 lsect->which);
6434
 
6435
      BFD_ASSERT (linker_section_ptr != NULL);
6436
 
6437
      if (! elf_hash_table (info)->dynamic_sections_created
6438
          || (info->shared
6439
              && info->symbolic
6440
              && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6441
        {
6442
          /* This is actually a static link, or it is a
6443
             -Bsymbolic link and the symbol is defined
6444
             locally.  We must initialize this entry in the
6445
             global section.
6446
 
6447
             When doing a dynamic link, we create a .rela.<xxx>
6448
             relocation entry to initialize the value.  This
6449
             is done in the finish_dynamic_symbol routine.  */
6450
          if (!linker_section_ptr->written_address_p)
6451
            {
6452
              linker_section_ptr->written_address_p = true;
6453
              bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6454
                          lsect->section->contents + linker_section_ptr->offset);
6455
            }
6456
        }
6457
    }
6458
  else                          /* local symbol */
6459
    {
6460
      unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6461
      BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6462
      BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6463
      linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6464
                                                                 rel->r_addend,
6465
                                                                 lsect->which);
6466
 
6467
      BFD_ASSERT (linker_section_ptr != NULL);
6468
 
6469
      /* Write out pointer if it hasn't been rewritten out before */
6470
      if (!linker_section_ptr->written_address_p)
6471
        {
6472
          linker_section_ptr->written_address_p = true;
6473
          bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6474
                       lsect->section->contents + linker_section_ptr->offset);
6475
 
6476
          if (info->shared)
6477
            {
6478
              asection *srel = lsect->rel_section;
6479
              Elf_Internal_Rela *outrel;
6480
              struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
6481
              unsigned int i;
6482
 
6483
              outrel = (Elf_Internal_Rela *) bfd_zmalloc (sizeof (Elf_Internal_Rela)
6484
                                                          * bed->s->int_rels_per_ext_rel);
6485
              if (outrel == NULL)
6486
                {
6487
                  (*_bfd_error_handler) (_("Error: out of memory"));
6488
                  return 0;
6489
                }
6490
 
6491
              /* We need to generate a relative reloc for the dynamic linker.  */
6492
              if (!srel)
6493
                lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6494
                                                                     lsect->rel_name);
6495
 
6496
              BFD_ASSERT (srel != NULL);
6497
 
6498
              for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
6499
                outrel[i].r_offset = (lsect->section->output_section->vma
6500
                                      + lsect->section->output_offset
6501
                                      + linker_section_ptr->offset);
6502
              outrel[0].r_info = ELF_R_INFO (0, relative_reloc);
6503
              outrel[0].r_addend = 0;
6504
              elf_swap_reloca_out (output_bfd, outrel,
6505
                                   (((Elf_External_Rela *)
6506
                                     lsect->section->contents)
6507
                                    + elf_section_data (lsect->section)->rel_count));
6508
              ++elf_section_data (lsect->section)->rel_count;
6509
 
6510
              free (outrel);
6511
            }
6512
        }
6513
    }
6514
 
6515
  relocation = (lsect->section->output_offset
6516
                + linker_section_ptr->offset
6517
                - lsect->hole_offset
6518
                - lsect->sym_offset);
6519
 
6520
#ifdef DEBUG
6521
  fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6522
           lsect->name, (long)relocation, (long)relocation);
6523
#endif
6524
 
6525
  /* Subtract out the addend, because it will get added back in by the normal
6526
     processing.  */
6527
  return relocation - linker_section_ptr->addend;
6528
}
6529
 
6530
/* Garbage collect unused sections.  */
6531
 
6532
static boolean elf_gc_mark
6533
  PARAMS ((struct bfd_link_info *info, asection *sec,
6534
           asection * (*gc_mark_hook)
6535
             PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6536
                      struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6537
 
6538
static boolean elf_gc_sweep
6539
  PARAMS ((struct bfd_link_info *info,
6540
           boolean (*gc_sweep_hook)
6541
             PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6542
                      const Elf_Internal_Rela *relocs))));
6543
 
6544
static boolean elf_gc_sweep_symbol
6545
  PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6546
 
6547
static boolean elf_gc_allocate_got_offsets
6548
  PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6549
 
6550
static boolean elf_gc_propagate_vtable_entries_used
6551
  PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6552
 
6553
static boolean elf_gc_smash_unused_vtentry_relocs
6554
  PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6555
 
6556
/* The mark phase of garbage collection.  For a given section, mark
6557
   it, and all the sections which define symbols to which it refers.  */
6558
 
6559
static boolean
6560
elf_gc_mark (info, sec, gc_mark_hook)
6561
     struct bfd_link_info *info;
6562
     asection *sec;
6563
     asection * (*gc_mark_hook)
6564
       PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6565
                struct elf_link_hash_entry *, Elf_Internal_Sym *));
6566
{
6567
  boolean ret = true;
6568
 
6569
  sec->gc_mark = 1;
6570
 
6571
  /* Look through the section relocs.  */
6572
 
6573
  if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6574
    {
6575
      Elf_Internal_Rela *relstart, *rel, *relend;
6576
      Elf_Internal_Shdr *symtab_hdr;
6577
      struct elf_link_hash_entry **sym_hashes;
6578
      size_t nlocsyms;
6579
      size_t extsymoff;
6580
      Elf_External_Sym *locsyms, *freesyms = NULL;
6581
      bfd *input_bfd = sec->owner;
6582
      struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
6583
 
6584
      /* GCFIXME: how to arrange so that relocs and symbols are not
6585
         reread continually?  */
6586
 
6587
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6588
      sym_hashes = elf_sym_hashes (input_bfd);
6589
 
6590
      /* Read the local symbols.  */
6591
      if (elf_bad_symtab (input_bfd))
6592
        {
6593
          nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6594
          extsymoff = 0;
6595
        }
6596
      else
6597
        extsymoff = nlocsyms = symtab_hdr->sh_info;
6598
      if (symtab_hdr->contents)
6599
        locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6600
      else if (nlocsyms == 0)
6601
        locsyms = NULL;
6602
      else
6603
        {
6604
          locsyms = freesyms =
6605
            bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6606
          if (freesyms == NULL
6607
              || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6608
              || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6609
                            nlocsyms, input_bfd)
6610
                  != nlocsyms * sizeof (Elf_External_Sym)))
6611
            {
6612
              ret = false;
6613
              goto out1;
6614
            }
6615
        }
6616
 
6617
      /* Read the relocations.  */
6618
      relstart = (NAME(_bfd_elf,link_read_relocs)
6619
                  (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6620
                   info->keep_memory));
6621
      if (relstart == NULL)
6622
        {
6623
          ret = false;
6624
          goto out1;
6625
        }
6626
      relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6627
 
6628
      for (rel = relstart; rel < relend; rel++)
6629
        {
6630
          unsigned long r_symndx;
6631
          asection *rsec;
6632
          struct elf_link_hash_entry *h;
6633
          Elf_Internal_Sym s;
6634
 
6635
          r_symndx = ELF_R_SYM (rel->r_info);
6636
          if (r_symndx == 0)
6637
            continue;
6638
 
6639
          if (elf_bad_symtab (sec->owner))
6640
            {
6641
              elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6642
              if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6643
                rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
6644
              else
6645
                {
6646
                  h = sym_hashes[r_symndx - extsymoff];
6647
                  rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
6648
                }
6649
            }
6650
          else if (r_symndx >= nlocsyms)
6651
            {
6652
              h = sym_hashes[r_symndx - extsymoff];
6653
              rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
6654
            }
6655
          else
6656
            {
6657
              elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6658
              rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
6659
            }
6660
 
6661
          if (rsec && !rsec->gc_mark)
6662
            if (!elf_gc_mark (info, rsec, gc_mark_hook))
6663
              {
6664
                ret = false;
6665
                goto out2;
6666
              }
6667
        }
6668
 
6669
    out2:
6670
      if (!info->keep_memory)
6671
        free (relstart);
6672
    out1:
6673
      if (freesyms)
6674
        free (freesyms);
6675
    }
6676
 
6677
  return ret;
6678
}
6679
 
6680
/* The sweep phase of garbage collection.  Remove all garbage sections.  */
6681
 
6682
static boolean
6683
elf_gc_sweep (info, gc_sweep_hook)
6684
     struct bfd_link_info *info;
6685
     boolean (*gc_sweep_hook)
6686
       PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6687
                const Elf_Internal_Rela *relocs));
6688
{
6689
  bfd *sub;
6690
 
6691
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6692
    {
6693
      asection *o;
6694
 
6695
      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6696
        continue;
6697
 
6698
      for (o = sub->sections; o != NULL; o = o->next)
6699
        {
6700
          /* Keep special sections.  Keep .debug sections.  */
6701
          if ((o->flags & SEC_LINKER_CREATED)
6702
              || (o->flags & SEC_DEBUGGING))
6703
            o->gc_mark = 1;
6704
 
6705
          if (o->gc_mark)
6706
            continue;
6707
 
6708
          /* Skip sweeping sections already excluded.  */
6709
          if (o->flags & SEC_EXCLUDE)
6710
            continue;
6711
 
6712
          /* Since this is early in the link process, it is simple
6713
             to remove a section from the output.  */
6714
          o->flags |= SEC_EXCLUDE;
6715
 
6716
          /* But we also have to update some of the relocation
6717
             info we collected before.  */
6718
          if (gc_sweep_hook
6719
              && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6720
            {
6721
              Elf_Internal_Rela *internal_relocs;
6722
              boolean r;
6723
 
6724
              internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6725
                                 (o->owner, o, NULL, NULL, info->keep_memory));
6726
              if (internal_relocs == NULL)
6727
                return false;
6728
 
6729
              r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
6730
 
6731
              if (!info->keep_memory)
6732
                free (internal_relocs);
6733
 
6734
              if (!r)
6735
                return false;
6736
            }
6737
        }
6738
    }
6739
 
6740
  /* Remove the symbols that were in the swept sections from the dynamic
6741
     symbol table.  GCFIXME: Anyone know how to get them out of the
6742
     static symbol table as well?  */
6743
  {
6744
    int i = 0;
6745
 
6746
    elf_link_hash_traverse (elf_hash_table (info),
6747
                            elf_gc_sweep_symbol,
6748
                            (PTR) &i);
6749
 
6750
    elf_hash_table (info)->dynsymcount = i;
6751
  }
6752
 
6753
  return true;
6754
}
6755
 
6756
/* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
6757
 
6758
static boolean
6759
elf_gc_sweep_symbol (h, idxptr)
6760
     struct elf_link_hash_entry *h;
6761
     PTR idxptr;
6762
{
6763
  int *idx = (int *) idxptr;
6764
 
6765
  if (h->dynindx != -1
6766
      && ((h->root.type != bfd_link_hash_defined
6767
           && h->root.type != bfd_link_hash_defweak)
6768
          || h->root.u.def.section->gc_mark))
6769
    h->dynindx = (*idx)++;
6770
 
6771
  return true;
6772
}
6773
 
6774
/* Propogate collected vtable information.  This is called through
6775
   elf_link_hash_traverse.  */
6776
 
6777
static boolean
6778
elf_gc_propagate_vtable_entries_used (h, okp)
6779
     struct elf_link_hash_entry *h;
6780
     PTR okp;
6781
{
6782
  /* Those that are not vtables.  */
6783
  if (h->vtable_parent == NULL)
6784
    return true;
6785
 
6786
  /* Those vtables that do not have parents, we cannot merge.  */
6787
  if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6788
    return true;
6789
 
6790
  /* If we've already been done, exit.  */
6791
  if (h->vtable_entries_used && h->vtable_entries_used[-1])
6792
    return true;
6793
 
6794
  /* Make sure the parent's table is up to date.  */
6795
  elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6796
 
6797
  if (h->vtable_entries_used == NULL)
6798
    {
6799
      /* None of this table's entries were referenced.  Re-use the
6800
         parent's table.  */
6801
      h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6802
      h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6803
    }
6804
  else
6805
    {
6806
      size_t n;
6807
      boolean *cu, *pu;
6808
 
6809
 
6810
      /* Or the parent's entries into ours.  */
6811
      cu = h->vtable_entries_used;
6812
      cu[-1] = true;
6813
      pu = h->vtable_parent->vtable_entries_used;
6814
      if (pu != NULL)
6815
        {
6816
          asection *sec = h->root.u.def.section;
6817
          struct elf_backend_data *bed = get_elf_backend_data (sec->owner);
6818
          int file_align = bed->s->file_align;
6819
 
6820
          n = h->vtable_parent->vtable_entries_size / file_align;
6821
          while (--n != 0)
6822
            {
6823
              if (*pu) *cu = true;
6824
              pu++, cu++;
6825
            }
6826
        }
6827
    }
6828
 
6829
  return true;
6830
}
6831
 
6832
static boolean
6833
elf_gc_smash_unused_vtentry_relocs (h, okp)
6834
     struct elf_link_hash_entry *h;
6835
     PTR okp;
6836
{
6837
  asection *sec;
6838
  bfd_vma hstart, hend;
6839
  Elf_Internal_Rela *relstart, *relend, *rel;
6840
  struct elf_backend_data *bed;
6841
  int file_align;
6842
 
6843
  /* Take care of both those symbols that do not describe vtables as
6844
     well as those that are not loaded.  */
6845
  if (h->vtable_parent == NULL)
6846
    return true;
6847
 
6848
  BFD_ASSERT (h->root.type == bfd_link_hash_defined
6849
              || h->root.type == bfd_link_hash_defweak);
6850
 
6851
  sec = h->root.u.def.section;
6852
  hstart = h->root.u.def.value;
6853
  hend = hstart + h->size;
6854
 
6855
  relstart = (NAME(_bfd_elf,link_read_relocs)
6856
              (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6857
  if (!relstart)
6858
    return *(boolean *)okp = false;
6859
  bed = get_elf_backend_data (sec->owner);
6860
  file_align = bed->s->file_align;
6861
 
6862
  relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6863
 
6864
  for (rel = relstart; rel < relend; ++rel)
6865
    if (rel->r_offset >= hstart && rel->r_offset < hend)
6866
      {
6867
        /* If the entry is in use, do nothing.  */
6868
        if (h->vtable_entries_used
6869
            && (rel->r_offset - hstart) < h->vtable_entries_size)
6870
          {
6871
            bfd_vma entry = (rel->r_offset - hstart) / file_align;
6872
            if (h->vtable_entries_used[entry])
6873
              continue;
6874
          }
6875
        /* Otherwise, kill it.  */
6876
        rel->r_offset = rel->r_info = rel->r_addend = 0;
6877
      }
6878
 
6879
  return true;
6880
}
6881
 
6882
/* Do mark and sweep of unused sections.  */
6883
 
6884
boolean
6885
elf_gc_sections (abfd, info)
6886
     bfd *abfd;
6887
     struct bfd_link_info *info;
6888
{
6889
  boolean ok = true;
6890
  bfd *sub;
6891
  asection * (*gc_mark_hook)
6892
    PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6893
             struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6894
 
6895
  if (!get_elf_backend_data (abfd)->can_gc_sections
6896
      || info->relocateable || info->emitrelocations
6897
      || elf_hash_table (info)->dynamic_sections_created)
6898
    return true;
6899
 
6900
  /* Apply transitive closure to the vtable entry usage info.  */
6901
  elf_link_hash_traverse (elf_hash_table (info),
6902
                          elf_gc_propagate_vtable_entries_used,
6903
                          (PTR) &ok);
6904
  if (!ok)
6905
    return false;
6906
 
6907
  /* Kill the vtable relocations that were not used.  */
6908
  elf_link_hash_traverse (elf_hash_table (info),
6909
                          elf_gc_smash_unused_vtentry_relocs,
6910
                          (PTR) &ok);
6911
  if (!ok)
6912
    return false;
6913
 
6914
  /* Grovel through relocs to find out who stays ...  */
6915
 
6916
  gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6917
  for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6918
    {
6919
      asection *o;
6920
 
6921
      if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6922
        continue;
6923
 
6924
      for (o = sub->sections; o != NULL; o = o->next)
6925
        {
6926
          if (o->flags & SEC_KEEP)
6927
            if (!elf_gc_mark (info, o, gc_mark_hook))
6928
              return false;
6929
        }
6930
    }
6931
 
6932
  /* ... and mark SEC_EXCLUDE for those that go.  */
6933
  if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6934
    return false;
6935
 
6936
  return true;
6937
}
6938
 
6939
/* Called from check_relocs to record the existance of a VTINHERIT reloc.  */
6940
 
6941
boolean
6942
elf_gc_record_vtinherit (abfd, sec, h, offset)
6943
     bfd *abfd;
6944
     asection *sec;
6945
     struct elf_link_hash_entry *h;
6946
     bfd_vma offset;
6947
{
6948
  struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6949
  struct elf_link_hash_entry **search, *child;
6950
  bfd_size_type extsymcount;
6951
 
6952
  /* The sh_info field of the symtab header tells us where the
6953
     external symbols start.  We don't care about the local symbols at
6954
     this point.  */
6955
  extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6956
  if (!elf_bad_symtab (abfd))
6957
    extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6958
 
6959
  sym_hashes = elf_sym_hashes (abfd);
6960
  sym_hashes_end = sym_hashes + extsymcount;
6961
 
6962
  /* Hunt down the child symbol, which is in this section at the same
6963
     offset as the relocation.  */
6964
  for (search = sym_hashes; search != sym_hashes_end; ++search)
6965
    {
6966
      if ((child = *search) != NULL
6967
          && (child->root.type == bfd_link_hash_defined
6968
              || child->root.type == bfd_link_hash_defweak)
6969
          && child->root.u.def.section == sec
6970
          && child->root.u.def.value == offset)
6971
        goto win;
6972
    }
6973
 
6974
  (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6975
                         bfd_get_filename (abfd), sec->name,
6976
                         (unsigned long)offset);
6977
  bfd_set_error (bfd_error_invalid_operation);
6978
  return false;
6979
 
6980
win:
6981
  if (!h)
6982
    {
6983
      /* This *should* only be the absolute section.  It could potentially
6984
         be that someone has defined a non-global vtable though, which
6985
         would be bad.  It isn't worth paging in the local symbols to be
6986
         sure though; that case should simply be handled by the assembler.  */
6987
 
6988
      child->vtable_parent = (struct elf_link_hash_entry *) -1;
6989
    }
6990
  else
6991
    child->vtable_parent = h;
6992
 
6993
  return true;
6994
}
6995
 
6996
/* Called from check_relocs to record the existance of a VTENTRY reloc.  */
6997
 
6998
boolean
6999
elf_gc_record_vtentry (abfd, sec, h, addend)
7000
     bfd *abfd ATTRIBUTE_UNUSED;
7001
     asection *sec ATTRIBUTE_UNUSED;
7002
     struct elf_link_hash_entry *h;
7003
     bfd_vma addend;
7004
{
7005
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
7006
  int file_align = bed->s->file_align;
7007
 
7008
  if (addend >= h->vtable_entries_size)
7009
    {
7010
      size_t size, bytes;
7011
      boolean *ptr = h->vtable_entries_used;
7012
 
7013
      /* While the symbol is undefined, we have to be prepared to handle
7014
         a zero size.  */
7015
      if (h->root.type == bfd_link_hash_undefined)
7016
        size = addend;
7017
      else
7018
        {
7019
          size = h->size;
7020
          if (size < addend)
7021
            {
7022
              /* Oops!  We've got a reference past the defined end of
7023
                 the table.  This is probably a bug -- shall we warn?  */
7024
              size = addend;
7025
            }
7026
        }
7027
 
7028
      /* Allocate one extra entry for use as a "done" flag for the
7029
         consolidation pass.  */
7030
      bytes = (size / file_align + 1) * sizeof (boolean);
7031
 
7032
      if (ptr)
7033
        {
7034
          ptr = bfd_realloc (ptr - 1, bytes);
7035
 
7036
          if (ptr != NULL)
7037
            {
7038
              size_t oldbytes;
7039
 
7040
              oldbytes = (h->vtable_entries_size/file_align + 1) * sizeof (boolean);
7041
              memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
7042
            }
7043
        }
7044
      else
7045
        ptr = bfd_zmalloc (bytes);
7046
 
7047
      if (ptr == NULL)
7048
        return false;
7049
 
7050
      /* And arrange for that done flag to be at index -1.  */
7051
      h->vtable_entries_used = ptr + 1;
7052
      h->vtable_entries_size = size;
7053
    }
7054
 
7055
  h->vtable_entries_used[addend / file_align] = true;
7056
 
7057
  return true;
7058
}
7059
 
7060
/* And an accompanying bit to work out final got entry offsets once
7061
   we're done.  Should be called from final_link.  */
7062
 
7063
boolean
7064
elf_gc_common_finalize_got_offsets (abfd, info)
7065
     bfd *abfd;
7066
     struct bfd_link_info *info;
7067
{
7068
  bfd *i;
7069
  struct elf_backend_data *bed = get_elf_backend_data (abfd);
7070
  bfd_vma gotoff;
7071
 
7072
  /* The GOT offset is relative to the .got section, but the GOT header is
7073
     put into the .got.plt section, if the backend uses it.  */
7074
  if (bed->want_got_plt)
7075
    gotoff = 0;
7076
  else
7077
    gotoff = bed->got_header_size;
7078
 
7079
  /* Do the local .got entries first.  */
7080
  for (i = info->input_bfds; i; i = i->link_next)
7081
    {
7082
      bfd_signed_vma *local_got;
7083
      bfd_size_type j, locsymcount;
7084
      Elf_Internal_Shdr *symtab_hdr;
7085
 
7086
      if (bfd_get_flavour (i) != bfd_target_elf_flavour)
7087
        continue;
7088
 
7089
      local_got = elf_local_got_refcounts (i);
7090
      if (!local_got)
7091
        continue;
7092
 
7093
      symtab_hdr = &elf_tdata (i)->symtab_hdr;
7094
      if (elf_bad_symtab (i))
7095
        locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
7096
      else
7097
        locsymcount = symtab_hdr->sh_info;
7098
 
7099
      for (j = 0; j < locsymcount; ++j)
7100
        {
7101
          if (local_got[j] > 0)
7102
            {
7103
              local_got[j] = gotoff;
7104
              gotoff += ARCH_SIZE / 8;
7105
            }
7106
          else
7107
            local_got[j] = (bfd_vma) -1;
7108
        }
7109
    }
7110
 
7111
  /* Then the global .got entries.  .plt refcounts are handled by
7112
     adjust_dynamic_symbol  */
7113
  elf_link_hash_traverse (elf_hash_table (info),
7114
                          elf_gc_allocate_got_offsets,
7115
                          (PTR) &gotoff);
7116
  return true;
7117
}
7118
 
7119
/* We need a special top-level link routine to convert got reference counts
7120
   to real got offsets.  */
7121
 
7122
static boolean
7123
elf_gc_allocate_got_offsets (h, offarg)
7124
     struct elf_link_hash_entry *h;
7125
     PTR offarg;
7126
{
7127
  bfd_vma *off = (bfd_vma *) offarg;
7128
 
7129
  if (h->got.refcount > 0)
7130
    {
7131
      h->got.offset = off[0];
7132
      off[0] += ARCH_SIZE / 8;
7133
    }
7134
  else
7135
    h->got.offset = (bfd_vma) -1;
7136
 
7137
  return true;
7138
}
7139
 
7140
/* Many folk need no more in the way of final link than this, once
7141
   got entry reference counting is enabled.  */
7142
 
7143
boolean
7144
elf_gc_common_final_link (abfd, info)
7145
     bfd *abfd;
7146
     struct bfd_link_info *info;
7147
{
7148
  if (!elf_gc_common_finalize_got_offsets (abfd, info))
7149
    return false;
7150
 
7151
  /* Invoke the regular ELF backend linker to do all the work.  */
7152
  return elf_bfd_final_link (abfd, info);
7153
}
7154
 
7155
/* This function will be called though elf_link_hash_traverse to store
7156
   all hash value of the exported symbols in an array.  */
7157
 
7158
static boolean
7159
elf_collect_hash_codes (h, data)
7160
     struct elf_link_hash_entry *h;
7161
     PTR data;
7162
{
7163
  unsigned long **valuep = (unsigned long **) data;
7164
  const char *name;
7165
  char *p;
7166
  unsigned long ha;
7167
  char *alc = NULL;
7168
 
7169
  /* Ignore indirect symbols.  These are added by the versioning code.  */
7170
  if (h->dynindx == -1)
7171
    return true;
7172
 
7173
  name = h->root.root.string;
7174
  p = strchr (name, ELF_VER_CHR);
7175
  if (p != NULL)
7176
    {
7177
      alc = bfd_malloc (p - name + 1);
7178
      memcpy (alc, name, p - name);
7179
      alc[p - name] = '\0';
7180
      name = alc;
7181
    }
7182
 
7183
  /* Compute the hash value.  */
7184
  ha = bfd_elf_hash (name);
7185
 
7186
  /* Store the found hash value in the array given as the argument.  */
7187
  *(*valuep)++ = ha;
7188
 
7189
  /* And store it in the struct so that we can put it in the hash table
7190
     later.  */
7191
  h->elf_hash_value = ha;
7192
 
7193
  if (alc != NULL)
7194
    free (alc);
7195
 
7196
  return true;
7197
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.