OpenCores
URL https://opencores.org/ocsvn/or1k/or1k/trunk

Subversion Repositories or1k

[/] [or1k/] [trunk/] [insight/] [bfd/] [linker.c] - Blame information for rev 1771

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 578 markom
/* linker.c -- BFD linker routines
2
   Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3
   Free Software Foundation, Inc.
4
   Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5
 
6
This file is part of BFD, the Binary File Descriptor library.
7
 
8
This program is free software; you can redistribute it and/or modify
9
it under the terms of the GNU General Public License as published by
10
the Free Software Foundation; either version 2 of the License, or
11
(at your option) any later version.
12
 
13
This program is distributed in the hope that it will be useful,
14
but WITHOUT ANY WARRANTY; without even the implied warranty of
15
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
GNU General Public License for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with this program; if not, write to the Free Software
20
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
21
 
22
#include "bfd.h"
23
#include "sysdep.h"
24
#include "libbfd.h"
25
#include "bfdlink.h"
26
#include "genlink.h"
27
 
28
/*
29
SECTION
30
        Linker Functions
31
 
32
@cindex Linker
33
        The linker uses three special entry points in the BFD target
34
        vector.  It is not necessary to write special routines for
35
        these entry points when creating a new BFD back end, since
36
        generic versions are provided.  However, writing them can
37
        speed up linking and make it use significantly less runtime
38
        memory.
39
 
40
        The first routine creates a hash table used by the other
41
        routines.  The second routine adds the symbols from an object
42
        file to the hash table.  The third routine takes all the
43
        object files and links them together to create the output
44
        file.  These routines are designed so that the linker proper
45
        does not need to know anything about the symbols in the object
46
        files that it is linking.  The linker merely arranges the
47
        sections as directed by the linker script and lets BFD handle
48
        the details of symbols and relocs.
49
 
50
        The second routine and third routines are passed a pointer to
51
        a <<struct bfd_link_info>> structure (defined in
52
        <<bfdlink.h>>) which holds information relevant to the link,
53
        including the linker hash table (which was created by the
54
        first routine) and a set of callback functions to the linker
55
        proper.
56
 
57
        The generic linker routines are in <<linker.c>>, and use the
58
        header file <<genlink.h>>.  As of this writing, the only back
59
        ends which have implemented versions of these routines are
60
        a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
61
        routines are used as examples throughout this section.
62
 
63
@menu
64
@* Creating a Linker Hash Table::
65
@* Adding Symbols to the Hash Table::
66
@* Performing the Final Link::
67
@end menu
68
 
69
INODE
70
Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71
SUBSECTION
72
        Creating a linker hash table
73
 
74
@cindex _bfd_link_hash_table_create in target vector
75
@cindex target vector (_bfd_link_hash_table_create)
76
        The linker routines must create a hash table, which must be
77
        derived from <<struct bfd_link_hash_table>> described in
78
        <<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
79
        create a derived hash table.  This entry point is called using
80
        the target vector of the linker output file.
81
 
82
        The <<_bfd_link_hash_table_create>> entry point must allocate
83
        and initialize an instance of the desired hash table.  If the
84
        back end does not require any additional information to be
85
        stored with the entries in the hash table, the entry point may
86
        simply create a <<struct bfd_link_hash_table>>.  Most likely,
87
        however, some additional information will be needed.
88
 
89
        For example, with each entry in the hash table the a.out
90
        linker keeps the index the symbol has in the final output file
91
        (this index number is used so that when doing a relocateable
92
        link the symbol index used in the output file can be quickly
93
        filled in when copying over a reloc).  The a.out linker code
94
        defines the required structures and functions for a hash table
95
        derived from <<struct bfd_link_hash_table>>.  The a.out linker
96
        hash table is created by the function
97
        <<NAME(aout,link_hash_table_create)>>; it simply allocates
98
        space for the hash table, initializes it, and returns a
99
        pointer to it.
100
 
101
        When writing the linker routines for a new back end, you will
102
        generally not know exactly which fields will be required until
103
        you have finished.  You should simply create a new hash table
104
        which defines no additional fields, and then simply add fields
105
        as they become necessary.
106
 
107
INODE
108
Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109
SUBSECTION
110
        Adding symbols to the hash table
111
 
112
@cindex _bfd_link_add_symbols in target vector
113
@cindex target vector (_bfd_link_add_symbols)
114
        The linker proper will call the <<_bfd_link_add_symbols>>
115
        entry point for each object file or archive which is to be
116
        linked (typically these are the files named on the command
117
        line, but some may also come from the linker script).  The
118
        entry point is responsible for examining the file.  For an
119
        object file, BFD must add any relevant symbol information to
120
        the hash table.  For an archive, BFD must determine which
121
        elements of the archive should be used and adding them to the
122
        link.
123
 
124
        The a.out version of this entry point is
125
        <<NAME(aout,link_add_symbols)>>.
126
 
127
@menu
128
@* Differing file formats::
129
@* Adding symbols from an object file::
130
@* Adding symbols from an archive::
131
@end menu
132
 
133
INODE
134
Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135
SUBSUBSECTION
136
        Differing file formats
137
 
138
        Normally all the files involved in a link will be of the same
139
        format, but it is also possible to link together different
140
        format object files, and the back end must support that.  The
141
        <<_bfd_link_add_symbols>> entry point is called via the target
142
        vector of the file to be added.  This has an important
143
        consequence: the function may not assume that the hash table
144
        is the type created by the corresponding
145
        <<_bfd_link_hash_table_create>> vector.  All the
146
        <<_bfd_link_add_symbols>> function can assume about the hash
147
        table is that it is derived from <<struct
148
        bfd_link_hash_table>>.
149
 
150
        Sometimes the <<_bfd_link_add_symbols>> function must store
151
        some information in the hash table entry to be used by the
152
        <<_bfd_final_link>> function.  In such a case the <<creator>>
153
        field of the hash table must be checked to make sure that the
154
        hash table was created by an object file of the same format.
155
 
156
        The <<_bfd_final_link>> routine must be prepared to handle a
157
        hash entry without any extra information added by the
158
        <<_bfd_link_add_symbols>> function.  A hash entry without
159
        extra information will also occur when the linker script
160
        directs the linker to create a symbol.  Note that, regardless
161
        of how a hash table entry is added, all the fields will be
162
        initialized to some sort of null value by the hash table entry
163
        initialization function.
164
 
165
        See <<ecoff_link_add_externals>> for an example of how to
166
        check the <<creator>> field before saving information (in this
167
        case, the ECOFF external symbol debugging information) in a
168
        hash table entry.
169
 
170
INODE
171
Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172
SUBSUBSECTION
173
        Adding symbols from an object file
174
 
175
        When the <<_bfd_link_add_symbols>> routine is passed an object
176
        file, it must add all externally visible symbols in that
177
        object file to the hash table.  The actual work of adding the
178
        symbol to the hash table is normally handled by the function
179
        <<_bfd_generic_link_add_one_symbol>>.  The
180
        <<_bfd_link_add_symbols>> routine is responsible for reading
181
        all the symbols from the object file and passing the correct
182
        information to <<_bfd_generic_link_add_one_symbol>>.
183
 
184
        The <<_bfd_link_add_symbols>> routine should not use
185
        <<bfd_canonicalize_symtab>> to read the symbols.  The point of
186
        providing this routine is to avoid the overhead of converting
187
        the symbols into generic <<asymbol>> structures.
188
 
189
@findex _bfd_generic_link_add_one_symbol
190
        <<_bfd_generic_link_add_one_symbol>> handles the details of
191
        combining common symbols, warning about multiple definitions,
192
        and so forth.  It takes arguments which describe the symbol to
193
        add, notably symbol flags, a section, and an offset.  The
194
        symbol flags include such things as <<BSF_WEAK>> or
195
        <<BSF_INDIRECT>>.  The section is a section in the object
196
        file, or something like <<bfd_und_section_ptr>> for an undefined
197
        symbol or <<bfd_com_section_ptr>> for a common symbol.
198
 
199
        If the <<_bfd_final_link>> routine is also going to need to
200
        read the symbol information, the <<_bfd_link_add_symbols>>
201
        routine should save it somewhere attached to the object file
202
        BFD.  However, the information should only be saved if the
203
        <<keep_memory>> field of the <<info>> argument is true, so
204
        that the <<-no-keep-memory>> linker switch is effective.
205
 
206
        The a.out function which adds symbols from an object file is
207
        <<aout_link_add_object_symbols>>, and most of the interesting
208
        work is in <<aout_link_add_symbols>>.  The latter saves
209
        pointers to the hash tables entries created by
210
        <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211
        so that the <<_bfd_final_link>> routine does not have to call
212
        the hash table lookup routine to locate the entry.
213
 
214
INODE
215
Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216
SUBSUBSECTION
217
        Adding symbols from an archive
218
 
219
        When the <<_bfd_link_add_symbols>> routine is passed an
220
        archive, it must look through the symbols defined by the
221
        archive and decide which elements of the archive should be
222
        included in the link.  For each such element it must call the
223
        <<add_archive_element>> linker callback, and it must add the
224
        symbols from the object file to the linker hash table.
225
 
226
@findex _bfd_generic_link_add_archive_symbols
227
        In most cases the work of looking through the symbols in the
228
        archive should be done by the
229
        <<_bfd_generic_link_add_archive_symbols>> function.  This
230
        function builds a hash table from the archive symbol table and
231
        looks through the list of undefined symbols to see which
232
        elements should be included.
233
        <<_bfd_generic_link_add_archive_symbols>> is passed a function
234
        to call to make the final decision about adding an archive
235
        element to the link and to do the actual work of adding the
236
        symbols to the linker hash table.
237
 
238
        The function passed to
239
        <<_bfd_generic_link_add_archive_symbols>> must read the
240
        symbols of the archive element and decide whether the archive
241
        element should be included in the link.  If the element is to
242
        be included, the <<add_archive_element>> linker callback
243
        routine must be called with the element as an argument, and
244
        the elements symbols must be added to the linker hash table
245
        just as though the element had itself been passed to the
246
        <<_bfd_link_add_symbols>> function.
247
 
248
        When the a.out <<_bfd_link_add_symbols>> function receives an
249
        archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250
        passing <<aout_link_check_archive_element>> as the function
251
        argument. <<aout_link_check_archive_element>> calls
252
        <<aout_link_check_ar_symbols>>.  If the latter decides to add
253
        the element (an element is only added if it provides a real,
254
        non-common, definition for a previously undefined or common
255
        symbol) it calls the <<add_archive_element>> callback and then
256
        <<aout_link_check_archive_element>> calls
257
        <<aout_link_add_symbols>> to actually add the symbols to the
258
        linker hash table.
259
 
260
        The ECOFF back end is unusual in that it does not normally
261
        call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262
        archives already contain a hash table of symbols.  The ECOFF
263
        back end searches the archive itself to avoid the overhead of
264
        creating a new hash table.
265
 
266
INODE
267
Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
268
SUBSECTION
269
        Performing the final link
270
 
271
@cindex _bfd_link_final_link in target vector
272
@cindex target vector (_bfd_final_link)
273
        When all the input files have been processed, the linker calls
274
        the <<_bfd_final_link>> entry point of the output BFD.  This
275
        routine is responsible for producing the final output file,
276
        which has several aspects.  It must relocate the contents of
277
        the input sections and copy the data into the output sections.
278
        It must build an output symbol table including any local
279
        symbols from the input files and the global symbols from the
280
        hash table.  When producing relocateable output, it must
281
        modify the input relocs and write them into the output file.
282
        There may also be object format dependent work to be done.
283
 
284
        The linker will also call the <<write_object_contents>> entry
285
        point when the BFD is closed.  The two entry points must work
286
        together in order to produce the correct output file.
287
 
288
        The details of how this works are inevitably dependent upon
289
        the specific object file format.  The a.out
290
        <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
291
 
292
@menu
293
@* Information provided by the linker::
294
@* Relocating the section contents::
295
@* Writing the symbol table::
296
@end menu
297
 
298
INODE
299
Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
300
SUBSUBSECTION
301
        Information provided by the linker
302
 
303
        Before the linker calls the <<_bfd_final_link>> entry point,
304
        it sets up some data structures for the function to use.
305
 
306
        The <<input_bfds>> field of the <<bfd_link_info>> structure
307
        will point to a list of all the input files included in the
308
        link.  These files are linked through the <<link_next>> field
309
        of the <<bfd>> structure.
310
 
311
        Each section in the output file will have a list of
312
        <<link_order>> structures attached to the <<link_order_head>>
313
        field (the <<link_order>> structure is defined in
314
        <<bfdlink.h>>).  These structures describe how to create the
315
        contents of the output section in terms of the contents of
316
        various input sections, fill constants, and, eventually, other
317
        types of information.  They also describe relocs that must be
318
        created by the BFD backend, but do not correspond to any input
319
        file; this is used to support -Ur, which builds constructors
320
        while generating a relocateable object file.
321
 
322
INODE
323
Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
324
SUBSUBSECTION
325
        Relocating the section contents
326
 
327
        The <<_bfd_final_link>> function should look through the
328
        <<link_order>> structures attached to each section of the
329
        output file.  Each <<link_order>> structure should either be
330
        handled specially, or it should be passed to the function
331
        <<_bfd_default_link_order>> which will do the right thing
332
        (<<_bfd_default_link_order>> is defined in <<linker.c>>).
333
 
334
        For efficiency, a <<link_order>> of type
335
        <<bfd_indirect_link_order>> whose associated section belongs
336
        to a BFD of the same format as the output BFD must be handled
337
        specially.  This type of <<link_order>> describes part of an
338
        output section in terms of a section belonging to one of the
339
        input files.  The <<_bfd_final_link>> function should read the
340
        contents of the section and any associated relocs, apply the
341
        relocs to the section contents, and write out the modified
342
        section contents.  If performing a relocateable link, the
343
        relocs themselves must also be modified and written out.
344
 
345
@findex _bfd_relocate_contents
346
@findex _bfd_final_link_relocate
347
        The functions <<_bfd_relocate_contents>> and
348
        <<_bfd_final_link_relocate>> provide some general support for
349
        performing the actual relocations, notably overflow checking.
350
        Their arguments include information about the symbol the
351
        relocation is against and a <<reloc_howto_type>> argument
352
        which describes the relocation to perform.  These functions
353
        are defined in <<reloc.c>>.
354
 
355
        The a.out function which handles reading, relocating, and
356
        writing section contents is <<aout_link_input_section>>.  The
357
        actual relocation is done in <<aout_link_input_section_std>>
358
        and <<aout_link_input_section_ext>>.
359
 
360
INODE
361
Writing the symbol table, , Relocating the section contents, Performing the Final Link
362
SUBSUBSECTION
363
        Writing the symbol table
364
 
365
        The <<_bfd_final_link>> function must gather all the symbols
366
        in the input files and write them out.  It must also write out
367
        all the symbols in the global hash table.  This must be
368
        controlled by the <<strip>> and <<discard>> fields of the
369
        <<bfd_link_info>> structure.
370
 
371
        The local symbols of the input files will not have been
372
        entered into the linker hash table.  The <<_bfd_final_link>>
373
        routine must consider each input file and include the symbols
374
        in the output file.  It may be convenient to do this when
375
        looking through the <<link_order>> structures, or it may be
376
        done by stepping through the <<input_bfds>> list.
377
 
378
        The <<_bfd_final_link>> routine must also traverse the global
379
        hash table to gather all the externally visible symbols.  It
380
        is possible that most of the externally visible symbols may be
381
        written out when considering the symbols of each input file,
382
        but it is still necessary to traverse the hash table since the
383
        linker script may have defined some symbols that are not in
384
        any of the input files.
385
 
386
        The <<strip>> field of the <<bfd_link_info>> structure
387
        controls which symbols are written out.  The possible values
388
        are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
389
        then the <<keep_hash>> field of the <<bfd_link_info>>
390
        structure is a hash table of symbols to keep; each symbol
391
        should be looked up in this hash table, and only symbols which
392
        are present should be included in the output file.
393
 
394
        If the <<strip>> field of the <<bfd_link_info>> structure
395
        permits local symbols to be written out, the <<discard>> field
396
        is used to further controls which local symbols are included
397
        in the output file.  If the value is <<discard_l>>, then all
398
        local symbols which begin with a certain prefix are discarded;
399
        this is controlled by the <<bfd_is_local_label_name>> entry point.
400
 
401
        The a.out backend handles symbols by calling
402
        <<aout_link_write_symbols>> on each input BFD and then
403
        traversing the global hash table with the function
404
        <<aout_link_write_other_symbol>>.  It builds a string table
405
        while writing out the symbols, which is written to the output
406
        file at the end of <<NAME(aout,final_link)>>.
407
*/
408
 
409
static boolean generic_link_read_symbols
410
  PARAMS ((bfd *));
411
static boolean generic_link_add_symbols
412
  PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
413
static boolean generic_link_add_object_symbols
414
  PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
415
static boolean generic_link_check_archive_element_no_collect
416
  PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
417
static boolean generic_link_check_archive_element_collect
418
  PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
419
static boolean generic_link_check_archive_element
420
  PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded, boolean collect));
421
static boolean generic_link_add_symbol_list
422
  PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
423
           boolean collect));
424
static bfd *hash_entry_bfd PARAMS ((struct bfd_link_hash_entry *));
425
static void set_symbol_from_hash
426
  PARAMS ((asymbol *, struct bfd_link_hash_entry *));
427
static boolean generic_add_output_symbol
428
  PARAMS ((bfd *, size_t *psymalloc, asymbol *));
429
static boolean default_fill_link_order
430
  PARAMS ((bfd *, struct bfd_link_info *, asection *,
431
           struct bfd_link_order *));
432
static boolean default_indirect_link_order
433
  PARAMS ((bfd *, struct bfd_link_info *, asection *,
434
           struct bfd_link_order *, boolean));
435
 
436
/* The link hash table structure is defined in bfdlink.h.  It provides
437
   a base hash table which the backend specific hash tables are built
438
   upon.  */
439
 
440
/* Routine to create an entry in the link hash table.  */
441
 
442
struct bfd_hash_entry *
443
_bfd_link_hash_newfunc (entry, table, string)
444
     struct bfd_hash_entry *entry;
445
     struct bfd_hash_table *table;
446
     const char *string;
447
{
448
  struct bfd_link_hash_entry *ret = (struct bfd_link_hash_entry *) entry;
449
 
450
  /* Allocate the structure if it has not already been allocated by a
451
     subclass.  */
452
  if (ret == (struct bfd_link_hash_entry *) NULL)
453
    ret = ((struct bfd_link_hash_entry *)
454
           bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)));
455
  if (ret == (struct bfd_link_hash_entry *) NULL)
456
    return NULL;
457
 
458
  /* Call the allocation method of the superclass.  */
459
  ret = ((struct bfd_link_hash_entry *)
460
         bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
461
 
462
  if (ret)
463
    {
464
      /* Initialize the local fields.  */
465
      ret->type = bfd_link_hash_new;
466
      ret->next = NULL;
467
    }
468
 
469
  return (struct bfd_hash_entry *) ret;
470
}
471
 
472
/* Initialize a link hash table.  The BFD argument is the one
473
   responsible for creating this table.  */
474
 
475
boolean
476
_bfd_link_hash_table_init (table, abfd, newfunc)
477
     struct bfd_link_hash_table *table;
478
     bfd *abfd;
479
     struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
480
                                                struct bfd_hash_table *,
481
                                                const char *));
482
{
483
  table->creator = abfd->xvec;
484
  table->undefs = NULL;
485
  table->undefs_tail = NULL;
486
  return bfd_hash_table_init (&table->table, newfunc);
487
}
488
 
489
/* Look up a symbol in a link hash table.  If follow is true, we
490
   follow bfd_link_hash_indirect and bfd_link_hash_warning links to
491
   the real symbol.  */
492
 
493
struct bfd_link_hash_entry *
494
bfd_link_hash_lookup (table, string, create, copy, follow)
495
     struct bfd_link_hash_table *table;
496
     const char *string;
497
     boolean create;
498
     boolean copy;
499
     boolean follow;
500
{
501
  struct bfd_link_hash_entry *ret;
502
 
503
  ret = ((struct bfd_link_hash_entry *)
504
         bfd_hash_lookup (&table->table, string, create, copy));
505
 
506
  if (follow && ret != (struct bfd_link_hash_entry *) NULL)
507
    {
508
      while (ret->type == bfd_link_hash_indirect
509
             || ret->type == bfd_link_hash_warning)
510
        ret = ret->u.i.link;
511
    }
512
 
513
  return ret;
514
}
515
 
516
/* Look up a symbol in the main linker hash table if the symbol might
517
   be wrapped.  This should only be used for references to an
518
   undefined symbol, not for definitions of a symbol.  */
519
 
520
struct bfd_link_hash_entry *
521
bfd_wrapped_link_hash_lookup (abfd, info, string, create, copy, follow)
522
     bfd *abfd;
523
     struct bfd_link_info *info;
524
     const char *string;
525
     boolean create;
526
     boolean copy;
527
     boolean follow;
528
{
529
  if (info->wrap_hash != NULL)
530
    {
531
      const char *l;
532
 
533
      l = string;
534
      if (*l == bfd_get_symbol_leading_char (abfd))
535
        ++l;
536
 
537
#undef WRAP
538
#define WRAP "__wrap_"
539
 
540
      if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
541
        {
542
          char *n;
543
          struct bfd_link_hash_entry *h;
544
 
545
          /* This symbol is being wrapped.  We want to replace all
546
             references to SYM with references to __wrap_SYM.  */
547
 
548
          n = (char *) bfd_malloc (strlen (l) + sizeof WRAP + 1);
549
          if (n == NULL)
550
            return NULL;
551
 
552
          /* Note that symbol_leading_char may be '\0'.  */
553
          n[0] = bfd_get_symbol_leading_char (abfd);
554
          n[1] = '\0';
555
          strcat (n, WRAP);
556
          strcat (n, l);
557
          h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
558
          free (n);
559
          return h;
560
        }
561
 
562
#undef WRAP
563
 
564
#undef REAL
565
#define REAL "__real_"
566
 
567
      if (*l == '_'
568
          && strncmp (l, REAL, sizeof REAL - 1) == 0
569
          && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
570
                              false, false) != NULL)
571
        {
572
          char *n;
573
          struct bfd_link_hash_entry *h;
574
 
575
          /* This is a reference to __real_SYM, where SYM is being
576
             wrapped.  We want to replace all references to __real_SYM
577
             with references to SYM.  */
578
 
579
          n = (char *) bfd_malloc (strlen (l + sizeof REAL - 1) + 2);
580
          if (n == NULL)
581
            return NULL;
582
 
583
          /* Note that symbol_leading_char may be '\0'.  */
584
          n[0] = bfd_get_symbol_leading_char (abfd);
585
          n[1] = '\0';
586
          strcat (n, l + sizeof REAL - 1);
587
          h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
588
          free (n);
589
          return h;
590
        }
591
 
592
#undef REAL
593
    }
594
 
595
  return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
596
}
597
 
598
/* Traverse a generic link hash table.  The only reason this is not a
599
   macro is to do better type checking.  This code presumes that an
600
   argument passed as a struct bfd_hash_entry * may be caught as a
601
   struct bfd_link_hash_entry * with no explicit cast required on the
602
   call.  */
603
 
604
void
605
bfd_link_hash_traverse (table, func, info)
606
     struct bfd_link_hash_table *table;
607
     boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
608
     PTR info;
609
{
610
  bfd_hash_traverse (&table->table,
611
                     ((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
612
                      func),
613
                     info);
614
}
615
 
616
/* Add a symbol to the linker hash table undefs list.  */
617
 
618
INLINE void
619
bfd_link_add_undef (table, h)
620
     struct bfd_link_hash_table *table;
621
     struct bfd_link_hash_entry *h;
622
{
623
  BFD_ASSERT (h->next == NULL);
624
  if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
625
    table->undefs_tail->next = h;
626
  if (table->undefs == (struct bfd_link_hash_entry *) NULL)
627
    table->undefs = h;
628
  table->undefs_tail = h;
629
}
630
 
631
/* Routine to create an entry in an generic link hash table.  */
632
 
633
struct bfd_hash_entry *
634
_bfd_generic_link_hash_newfunc (entry, table, string)
635
     struct bfd_hash_entry *entry;
636
     struct bfd_hash_table *table;
637
     const char *string;
638
{
639
  struct generic_link_hash_entry *ret =
640
    (struct generic_link_hash_entry *) entry;
641
 
642
  /* Allocate the structure if it has not already been allocated by a
643
     subclass.  */
644
  if (ret == (struct generic_link_hash_entry *) NULL)
645
    ret = ((struct generic_link_hash_entry *)
646
           bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)));
647
  if (ret == (struct generic_link_hash_entry *) NULL)
648
    return NULL;
649
 
650
  /* Call the allocation method of the superclass.  */
651
  ret = ((struct generic_link_hash_entry *)
652
         _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
653
                                 table, string));
654
 
655
  if (ret)
656
    {
657
      /* Set local fields.  */
658
      ret->written = false;
659
      ret->sym = NULL;
660
    }
661
 
662
  return (struct bfd_hash_entry *) ret;
663
}
664
 
665
/* Create an generic link hash table.  */
666
 
667
struct bfd_link_hash_table *
668
_bfd_generic_link_hash_table_create (abfd)
669
     bfd *abfd;
670
{
671
  struct generic_link_hash_table *ret;
672
 
673
  ret = ((struct generic_link_hash_table *)
674
         bfd_alloc (abfd, sizeof (struct generic_link_hash_table)));
675
  if (ret == NULL)
676
    return (struct bfd_link_hash_table *) NULL;
677
  if (! _bfd_link_hash_table_init (&ret->root, abfd,
678
                                   _bfd_generic_link_hash_newfunc))
679
    {
680
      free (ret);
681
      return (struct bfd_link_hash_table *) NULL;
682
    }
683
  return &ret->root;
684
}
685
 
686
/* Grab the symbols for an object file when doing a generic link.  We
687
   store the symbols in the outsymbols field.  We need to keep them
688
   around for the entire link to ensure that we only read them once.
689
   If we read them multiple times, we might wind up with relocs and
690
   the hash table pointing to different instances of the symbol
691
   structure.  */
692
 
693
static boolean
694
generic_link_read_symbols (abfd)
695
     bfd *abfd;
696
{
697
  if (bfd_get_outsymbols (abfd) == (asymbol **) NULL)
698
    {
699
      long symsize;
700
      long symcount;
701
 
702
      symsize = bfd_get_symtab_upper_bound (abfd);
703
      if (symsize < 0)
704
        return false;
705
      bfd_get_outsymbols (abfd) = (asymbol **) bfd_alloc (abfd, symsize);
706
      if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
707
        return false;
708
      symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
709
      if (symcount < 0)
710
        return false;
711
      bfd_get_symcount (abfd) = symcount;
712
    }
713
 
714
  return true;
715
}
716
 
717
/* Generic function to add symbols to from an object file to the
718
   global hash table.  This version does not automatically collect
719
   constructors by name.  */
720
 
721
boolean
722
_bfd_generic_link_add_symbols (abfd, info)
723
     bfd *abfd;
724
     struct bfd_link_info *info;
725
{
726
  return generic_link_add_symbols (abfd, info, false);
727
}
728
 
729
/* Generic function to add symbols from an object file to the global
730
   hash table.  This version automatically collects constructors by
731
   name, as the collect2 program does.  It should be used for any
732
   target which does not provide some other mechanism for setting up
733
   constructors and destructors; these are approximately those targets
734
   for which gcc uses collect2 and do not support stabs.  */
735
 
736
boolean
737
_bfd_generic_link_add_symbols_collect (abfd, info)
738
     bfd *abfd;
739
     struct bfd_link_info *info;
740
{
741
  return generic_link_add_symbols (abfd, info, true);
742
}
743
 
744
/* Add symbols from an object file to the global hash table.  */
745
 
746
static boolean
747
generic_link_add_symbols (abfd, info, collect)
748
     bfd *abfd;
749
     struct bfd_link_info *info;
750
     boolean collect;
751
{
752
  boolean ret;
753
 
754
  switch (bfd_get_format (abfd))
755
    {
756
    case bfd_object:
757
      ret = generic_link_add_object_symbols (abfd, info, collect);
758
      break;
759
    case bfd_archive:
760
      ret = (_bfd_generic_link_add_archive_symbols
761
             (abfd, info,
762
              (collect
763
               ? generic_link_check_archive_element_collect
764
               : generic_link_check_archive_element_no_collect)));
765
      break;
766
    default:
767
      bfd_set_error (bfd_error_wrong_format);
768
      ret = false;
769
    }
770
 
771
  return ret;
772
}
773
 
774
/* Add symbols from an object file to the global hash table.  */
775
 
776
static boolean
777
generic_link_add_object_symbols (abfd, info, collect)
778
     bfd *abfd;
779
     struct bfd_link_info *info;
780
     boolean collect;
781
{
782
  if (! generic_link_read_symbols (abfd))
783
    return false;
784
  return generic_link_add_symbol_list (abfd, info,
785
                                       _bfd_generic_link_get_symcount (abfd),
786
                                       _bfd_generic_link_get_symbols (abfd),
787
                                       collect);
788
}
789
 
790
/* We build a hash table of all symbols defined in an archive.  */
791
 
792
/* An archive symbol may be defined by multiple archive elements.
793
   This linked list is used to hold the elements.  */
794
 
795
struct archive_list
796
{
797
  struct archive_list *next;
798
  int indx;
799
};
800
 
801
/* An entry in an archive hash table.  */
802
 
803
struct archive_hash_entry
804
{
805
  struct bfd_hash_entry root;
806
  /* Where the symbol is defined.  */
807
  struct archive_list *defs;
808
};
809
 
810
/* An archive hash table itself.  */
811
 
812
struct archive_hash_table
813
{
814
  struct bfd_hash_table table;
815
};
816
 
817
static struct bfd_hash_entry *archive_hash_newfunc
818
  PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
819
static boolean archive_hash_table_init
820
  PARAMS ((struct archive_hash_table *,
821
           struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
822
                                       struct bfd_hash_table *,
823
                                       const char *)));
824
 
825
/* Create a new entry for an archive hash table.  */
826
 
827
static struct bfd_hash_entry *
828
archive_hash_newfunc (entry, table, string)
829
     struct bfd_hash_entry *entry;
830
     struct bfd_hash_table *table;
831
     const char *string;
832
{
833
  struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
834
 
835
  /* Allocate the structure if it has not already been allocated by a
836
     subclass.  */
837
  if (ret == (struct archive_hash_entry *) NULL)
838
    ret = ((struct archive_hash_entry *)
839
           bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
840
  if (ret == (struct archive_hash_entry *) NULL)
841
    return NULL;
842
 
843
  /* Call the allocation method of the superclass.  */
844
  ret = ((struct archive_hash_entry *)
845
         bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
846
 
847
  if (ret)
848
    {
849
      /* Initialize the local fields.  */
850
      ret->defs = (struct archive_list *) NULL;
851
    }
852
 
853
  return (struct bfd_hash_entry *) ret;
854
}
855
 
856
/* Initialize an archive hash table.  */
857
 
858
static boolean
859
archive_hash_table_init (table, newfunc)
860
     struct archive_hash_table *table;
861
     struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
862
                                                struct bfd_hash_table *,
863
                                                const char *));
864
{
865
  return bfd_hash_table_init (&table->table, newfunc);
866
}
867
 
868
/* Look up an entry in an archive hash table.  */
869
 
870
#define archive_hash_lookup(t, string, create, copy) \
871
  ((struct archive_hash_entry *) \
872
   bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
873
 
874
/* Allocate space in an archive hash table.  */
875
 
876
#define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
877
 
878
/* Free an archive hash table.  */
879
 
880
#define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
881
 
882
/* Generic function to add symbols from an archive file to the global
883
   hash file.  This function presumes that the archive symbol table
884
   has already been read in (this is normally done by the
885
   bfd_check_format entry point).  It looks through the undefined and
886
   common symbols and searches the archive symbol table for them.  If
887
   it finds an entry, it includes the associated object file in the
888
   link.
889
 
890
   The old linker looked through the archive symbol table for
891
   undefined symbols.  We do it the other way around, looking through
892
   undefined symbols for symbols defined in the archive.  The
893
   advantage of the newer scheme is that we only have to look through
894
   the list of undefined symbols once, whereas the old method had to
895
   re-search the symbol table each time a new object file was added.
896
 
897
   The CHECKFN argument is used to see if an object file should be
898
   included.  CHECKFN should set *PNEEDED to true if the object file
899
   should be included, and must also call the bfd_link_info
900
   add_archive_element callback function and handle adding the symbols
901
   to the global hash table.  CHECKFN should only return false if some
902
   sort of error occurs.
903
 
904
   For some formats, such as a.out, it is possible to look through an
905
   object file but not actually include it in the link.  The
906
   archive_pass field in a BFD is used to avoid checking the symbols
907
   of an object files too many times.  When an object is included in
908
   the link, archive_pass is set to -1.  If an object is scanned but
909
   not included, archive_pass is set to the pass number.  The pass
910
   number is incremented each time a new object file is included.  The
911
   pass number is used because when a new object file is included it
912
   may create new undefined symbols which cause a previously examined
913
   object file to be included.  */
914
 
915
boolean
916
_bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
917
     bfd *abfd;
918
     struct bfd_link_info *info;
919
     boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
920
                                 boolean *pneeded));
921
{
922
  carsym *arsyms;
923
  carsym *arsym_end;
924
  register carsym *arsym;
925
  int pass;
926
  struct archive_hash_table arsym_hash;
927
  int indx;
928
  struct bfd_link_hash_entry **pundef;
929
 
930
  if (! bfd_has_map (abfd))
931
    {
932
      /* An empty archive is a special case.  */
933
      if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
934
        return true;
935
      bfd_set_error (bfd_error_no_armap);
936
      return false;
937
    }
938
 
939
  arsyms = bfd_ardata (abfd)->symdefs;
940
  arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
941
 
942
  /* In order to quickly determine whether an symbol is defined in
943
     this archive, we build a hash table of the symbols.  */
944
  if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
945
    return false;
946
  for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
947
    {
948
      struct archive_hash_entry *arh;
949
      struct archive_list *l, **pp;
950
 
951
      arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
952
      if (arh == (struct archive_hash_entry *) NULL)
953
        goto error_return;
954
      l = ((struct archive_list *)
955
           archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
956
      if (l == NULL)
957
        goto error_return;
958
      l->indx = indx;
959
      for (pp = &arh->defs;
960
           *pp != (struct archive_list *) NULL;
961
           pp = &(*pp)->next)
962
        ;
963
      *pp = l;
964
      l->next = NULL;
965
    }
966
 
967
  /* The archive_pass field in the archive itself is used to
968
     initialize PASS, sine we may search the same archive multiple
969
     times.  */
970
  pass = abfd->archive_pass + 1;
971
 
972
  /* New undefined symbols are added to the end of the list, so we
973
     only need to look through it once.  */
974
  pundef = &info->hash->undefs;
975
  while (*pundef != (struct bfd_link_hash_entry *) NULL)
976
    {
977
      struct bfd_link_hash_entry *h;
978
      struct archive_hash_entry *arh;
979
      struct archive_list *l;
980
 
981
      h = *pundef;
982
 
983
      /* When a symbol is defined, it is not necessarily removed from
984
         the list.  */
985
      if (h->type != bfd_link_hash_undefined
986
          && h->type != bfd_link_hash_common)
987
        {
988
          /* Remove this entry from the list, for general cleanliness
989
             and because we are going to look through the list again
990
             if we search any more libraries.  We can't remove the
991
             entry if it is the tail, because that would lose any
992
             entries we add to the list later on (it would also cause
993
             us to lose track of whether the symbol has been
994
             referenced).  */
995
          if (*pundef != info->hash->undefs_tail)
996
            *pundef = (*pundef)->next;
997
          else
998
            pundef = &(*pundef)->next;
999
          continue;
1000
        }
1001
 
1002
      /* Look for this symbol in the archive symbol map.  */
1003
      arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
1004
      if (arh == (struct archive_hash_entry *) NULL)
1005
        {
1006
          pundef = &(*pundef)->next;
1007
          continue;
1008
        }
1009
 
1010
      /* Look at all the objects which define this symbol.  */
1011
      for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
1012
        {
1013
          bfd *element;
1014
          boolean needed;
1015
 
1016
          /* If the symbol has gotten defined along the way, quit.  */
1017
          if (h->type != bfd_link_hash_undefined
1018
              && h->type != bfd_link_hash_common)
1019
            break;
1020
 
1021
          element = bfd_get_elt_at_index (abfd, l->indx);
1022
          if (element == (bfd *) NULL)
1023
            goto error_return;
1024
 
1025
          /* If we've already included this element, or if we've
1026
             already checked it on this pass, continue.  */
1027
          if (element->archive_pass == -1
1028
              || element->archive_pass == pass)
1029
            continue;
1030
 
1031
          /* If we can't figure this element out, just ignore it.  */
1032
          if (! bfd_check_format (element, bfd_object))
1033
            {
1034
              element->archive_pass = -1;
1035
              continue;
1036
            }
1037
 
1038
          /* CHECKFN will see if this element should be included, and
1039
             go ahead and include it if appropriate.  */
1040
          if (! (*checkfn) (element, info, &needed))
1041
            goto error_return;
1042
 
1043
          if (! needed)
1044
            element->archive_pass = pass;
1045
          else
1046
            {
1047
              element->archive_pass = -1;
1048
 
1049
              /* Increment the pass count to show that we may need to
1050
                 recheck object files which were already checked.  */
1051
              ++pass;
1052
            }
1053
        }
1054
 
1055
      pundef = &(*pundef)->next;
1056
    }
1057
 
1058
  archive_hash_table_free (&arsym_hash);
1059
 
1060
  /* Save PASS in case we are called again.  */
1061
  abfd->archive_pass = pass;
1062
 
1063
  return true;
1064
 
1065
 error_return:
1066
  archive_hash_table_free (&arsym_hash);
1067
  return false;
1068
}
1069
 
1070
/* See if we should include an archive element.  This version is used
1071
   when we do not want to automatically collect constructors based on
1072
   the symbol name, presumably because we have some other mechanism
1073
   for finding them.  */
1074
 
1075
static boolean
1076
generic_link_check_archive_element_no_collect (abfd, info, pneeded)
1077
     bfd *abfd;
1078
     struct bfd_link_info *info;
1079
     boolean *pneeded;
1080
{
1081
  return generic_link_check_archive_element (abfd, info, pneeded, false);
1082
}
1083
 
1084
/* See if we should include an archive element.  This version is used
1085
   when we want to automatically collect constructors based on the
1086
   symbol name, as collect2 does.  */
1087
 
1088
static boolean
1089
generic_link_check_archive_element_collect (abfd, info, pneeded)
1090
     bfd *abfd;
1091
     struct bfd_link_info *info;
1092
     boolean *pneeded;
1093
{
1094
  return generic_link_check_archive_element (abfd, info, pneeded, true);
1095
}
1096
 
1097
/* See if we should include an archive element.  Optionally collect
1098
   constructors.  */
1099
 
1100
static boolean
1101
generic_link_check_archive_element (abfd, info, pneeded, collect)
1102
     bfd *abfd;
1103
     struct bfd_link_info *info;
1104
     boolean *pneeded;
1105
     boolean collect;
1106
{
1107
  asymbol **pp, **ppend;
1108
 
1109
  *pneeded = false;
1110
 
1111
  if (! generic_link_read_symbols (abfd))
1112
    return false;
1113
 
1114
  pp = _bfd_generic_link_get_symbols (abfd);
1115
  ppend = pp + _bfd_generic_link_get_symcount (abfd);
1116
  for (; pp < ppend; pp++)
1117
    {
1118
      asymbol *p;
1119
      struct bfd_link_hash_entry *h;
1120
 
1121
      p = *pp;
1122
 
1123
      /* We are only interested in globally visible symbols.  */
1124
      if (! bfd_is_com_section (p->section)
1125
          && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1126
        continue;
1127
 
1128
      /* We are only interested if we know something about this
1129
         symbol, and it is undefined or common.  An undefined weak
1130
         symbol (type bfd_link_hash_undefweak) is not considered to be
1131
         a reference when pulling files out of an archive.  See the
1132
         SVR4 ABI, p. 4-27.  */
1133
      h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1134
                                false, true);
1135
      if (h == (struct bfd_link_hash_entry *) NULL
1136
          || (h->type != bfd_link_hash_undefined
1137
              && h->type != bfd_link_hash_common))
1138
        continue;
1139
 
1140
      /* P is a symbol we are looking for.  */
1141
 
1142
      if (! bfd_is_com_section (p->section))
1143
        {
1144
          bfd_size_type symcount;
1145
          asymbol **symbols;
1146
 
1147
          /* This object file defines this symbol, so pull it in.  */
1148
          if (! (*info->callbacks->add_archive_element) (info, abfd,
1149
                                                         bfd_asymbol_name (p)))
1150
            return false;
1151
          symcount = _bfd_generic_link_get_symcount (abfd);
1152
          symbols = _bfd_generic_link_get_symbols (abfd);
1153
          if (! generic_link_add_symbol_list (abfd, info, symcount,
1154
                                              symbols, collect))
1155
            return false;
1156
          *pneeded = true;
1157
          return true;
1158
        }
1159
 
1160
      /* P is a common symbol.  */
1161
 
1162
      if (h->type == bfd_link_hash_undefined)
1163
        {
1164
          bfd *symbfd;
1165
          bfd_vma size;
1166
          unsigned int power;
1167
 
1168
          symbfd = h->u.undef.abfd;
1169
          if (symbfd == (bfd *) NULL)
1170
            {
1171
              /* This symbol was created as undefined from outside
1172
                 BFD.  We assume that we should link in the object
1173
                 file.  This is for the -u option in the linker.  */
1174
              if (! (*info->callbacks->add_archive_element)
1175
                  (info, abfd, bfd_asymbol_name (p)))
1176
                return false;
1177
              *pneeded = true;
1178
              return true;
1179
            }
1180
 
1181
          /* Turn the symbol into a common symbol but do not link in
1182
             the object file.  This is how a.out works.  Object
1183
             formats that require different semantics must implement
1184
             this function differently.  This symbol is already on the
1185
             undefs list.  We add the section to a common section
1186
             attached to symbfd to ensure that it is in a BFD which
1187
             will be linked in.  */
1188
          h->type = bfd_link_hash_common;
1189
          h->u.c.p =
1190
            ((struct bfd_link_hash_common_entry *)
1191
             bfd_hash_allocate (&info->hash->table,
1192
                                sizeof (struct bfd_link_hash_common_entry)));
1193
          if (h->u.c.p == NULL)
1194
            return false;
1195
 
1196
          size = bfd_asymbol_value (p);
1197
          h->u.c.size = size;
1198
 
1199
          power = bfd_log2 (size);
1200
          if (power > 4)
1201
            power = 4;
1202
          h->u.c.p->alignment_power = power;
1203
 
1204
          if (p->section == bfd_com_section_ptr)
1205
            h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1206
          else
1207
            h->u.c.p->section = bfd_make_section_old_way (symbfd,
1208
                                                          p->section->name);
1209
          h->u.c.p->section->flags = SEC_ALLOC;
1210
        }
1211
      else
1212
        {
1213
          /* Adjust the size of the common symbol if necessary.  This
1214
             is how a.out works.  Object formats that require
1215
             different semantics must implement this function
1216
             differently.  */
1217
          if (bfd_asymbol_value (p) > h->u.c.size)
1218
            h->u.c.size = bfd_asymbol_value (p);
1219
        }
1220
    }
1221
 
1222
  /* This archive element is not needed.  */
1223
  return true;
1224
}
1225
 
1226
/* Add the symbols from an object file to the global hash table.  ABFD
1227
   is the object file.  INFO is the linker information.  SYMBOL_COUNT
1228
   is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1229
   is true if constructors should be automatically collected by name
1230
   as is done by collect2.  */
1231
 
1232
static boolean
1233
generic_link_add_symbol_list (abfd, info, symbol_count, symbols, collect)
1234
     bfd *abfd;
1235
     struct bfd_link_info *info;
1236
     bfd_size_type symbol_count;
1237
     asymbol **symbols;
1238
     boolean collect;
1239
{
1240
  asymbol **pp, **ppend;
1241
 
1242
  pp = symbols;
1243
  ppend = symbols + symbol_count;
1244
  for (; pp < ppend; pp++)
1245
    {
1246
      asymbol *p;
1247
 
1248
      p = *pp;
1249
 
1250
      if ((p->flags & (BSF_INDIRECT
1251
                       | BSF_WARNING
1252
                       | BSF_GLOBAL
1253
                       | BSF_CONSTRUCTOR
1254
                       | BSF_WEAK)) != 0
1255
          || bfd_is_und_section (bfd_get_section (p))
1256
          || bfd_is_com_section (bfd_get_section (p))
1257
          || bfd_is_ind_section (bfd_get_section (p)))
1258
        {
1259
          const char *name;
1260
          const char *string;
1261
          struct generic_link_hash_entry *h;
1262
 
1263
          name = bfd_asymbol_name (p);
1264
          if (((p->flags & BSF_INDIRECT) != 0
1265
               || bfd_is_ind_section (p->section))
1266
              && pp + 1 < ppend)
1267
            {
1268
              pp++;
1269
              string = bfd_asymbol_name (*pp);
1270
            }
1271
          else if ((p->flags & BSF_WARNING) != 0
1272
                   && pp + 1 < ppend)
1273
            {
1274
              /* The name of P is actually the warning string, and the
1275
                 next symbol is the one to warn about.  */
1276
              string = name;
1277
              pp++;
1278
              name = bfd_asymbol_name (*pp);
1279
            }
1280
          else
1281
            string = NULL;
1282
 
1283
          h = NULL;
1284
          if (! (_bfd_generic_link_add_one_symbol
1285
                 (info, abfd, name, p->flags, bfd_get_section (p),
1286
                  p->value, string, false, collect,
1287
                  (struct bfd_link_hash_entry **) &h)))
1288
            return false;
1289
 
1290
          /* If this is a constructor symbol, and the linker didn't do
1291
             anything with it, then we want to just pass the symbol
1292
             through to the output file.  This will happen when
1293
             linking with -r.  */
1294
          if ((p->flags & BSF_CONSTRUCTOR) != 0
1295
              && (h == NULL || h->root.type == bfd_link_hash_new))
1296
            {
1297
              p->udata.p = NULL;
1298
              continue;
1299
            }
1300
 
1301
          /* Save the BFD symbol so that we don't lose any backend
1302
             specific information that may be attached to it.  We only
1303
             want this one if it gives more information than the
1304
             existing one; we don't want to replace a defined symbol
1305
             with an undefined one.  This routine may be called with a
1306
             hash table other than the generic hash table, so we only
1307
             do this if we are certain that the hash table is a
1308
             generic one.  */
1309
          if (info->hash->creator == abfd->xvec)
1310
            {
1311
              if (h->sym == (asymbol *) NULL
1312
                  || (! bfd_is_und_section (bfd_get_section (p))
1313
                      && (! bfd_is_com_section (bfd_get_section (p))
1314
                          || bfd_is_und_section (bfd_get_section (h->sym)))))
1315
                {
1316
                  h->sym = p;
1317
                  /* BSF_OLD_COMMON is a hack to support COFF reloc
1318
                     reading, and it should go away when the COFF
1319
                     linker is switched to the new version.  */
1320
                  if (bfd_is_com_section (bfd_get_section (p)))
1321
                    p->flags |= BSF_OLD_COMMON;
1322
                }
1323
            }
1324
 
1325
          /* Store a back pointer from the symbol to the hash
1326
             table entry for the benefit of relaxation code until
1327
             it gets rewritten to not use asymbol structures.
1328
             Setting this is also used to check whether these
1329
             symbols were set up by the generic linker.  */
1330
          p->udata.p = (PTR) h;
1331
        }
1332
    }
1333
 
1334
  return true;
1335
}
1336
 
1337
/* We use a state table to deal with adding symbols from an object
1338
   file.  The first index into the state table describes the symbol
1339
   from the object file.  The second index into the state table is the
1340
   type of the symbol in the hash table.  */
1341
 
1342
/* The symbol from the object file is turned into one of these row
1343
   values.  */
1344
 
1345
enum link_row
1346
{
1347
  UNDEF_ROW,            /* Undefined.  */
1348
  UNDEFW_ROW,           /* Weak undefined.  */
1349
  DEF_ROW,              /* Defined.  */
1350
  DEFW_ROW,             /* Weak defined.  */
1351
  COMMON_ROW,           /* Common.  */
1352
  INDR_ROW,             /* Indirect.  */
1353
  WARN_ROW,             /* Warning.  */
1354
  SET_ROW               /* Member of set.  */
1355
};
1356
 
1357
/* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1358
#undef FAIL
1359
 
1360
/* The actions to take in the state table.  */
1361
 
1362
enum link_action
1363
{
1364
  FAIL,         /* Abort.  */
1365
  UND,          /* Mark symbol undefined.  */
1366
  WEAK,         /* Mark symbol weak undefined.  */
1367
  DEF,          /* Mark symbol defined.  */
1368
  DEFW,         /* Mark symbol weak defined.  */
1369
  COM,          /* Mark symbol common.  */
1370
  REF,          /* Mark defined symbol referenced.  */
1371
  CREF,         /* Possibly warn about common reference to defined symbol.  */
1372
  CDEF,         /* Define existing common symbol.  */
1373
  NOACT,        /* No action.  */
1374
  BIG,          /* Mark symbol common using largest size.  */
1375
  MDEF,         /* Multiple definition error.  */
1376
  MIND,         /* Multiple indirect symbols.  */
1377
  IND,          /* Make indirect symbol.  */
1378
  CIND,         /* Make indirect symbol from existing common symbol.  */
1379
  SET,          /* Add value to set.  */
1380
  MWARN,        /* Make warning symbol.  */
1381
  WARN,         /* Issue warning.  */
1382
  CWARN,        /* Warn if referenced, else MWARN.  */
1383
  CYCLE,        /* Repeat with symbol pointed to.  */
1384
  REFC,         /* Mark indirect symbol referenced and then CYCLE.  */
1385
  WARNC         /* Issue warning and then CYCLE.  */
1386
};
1387
 
1388
/* The state table itself.  The first index is a link_row and the
1389
   second index is a bfd_link_hash_type.  */
1390
 
1391
static const enum link_action link_action[8][8] =
1392
{
1393
  /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1394
  /* UNDEF_ROW  */  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1395
  /* UNDEFW_ROW */  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1396
  /* DEF_ROW    */  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1397
  /* DEFW_ROW   */  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1398
  /* COMMON_ROW */  {COM,   COM,   COM,   CREF,  CREF,  BIG,   REFC,  WARNC },
1399
  /* INDR_ROW   */  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1400
  /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, MWARN },
1401
  /* SET_ROW    */  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1402
};
1403
 
1404
/* Most of the entries in the LINK_ACTION table are straightforward,
1405
   but a few are somewhat subtle.
1406
 
1407
   A reference to an indirect symbol (UNDEF_ROW/indr or
1408
   UNDEFW_ROW/indr) is counted as a reference both to the indirect
1409
   symbol and to the symbol the indirect symbol points to.
1410
 
1411
   A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1412
   causes the warning to be issued.
1413
 
1414
   A common definition of an indirect symbol (COMMON_ROW/indr) is
1415
   treated as a multiple definition error.  Likewise for an indirect
1416
   definition of a common symbol (INDR_ROW/com).
1417
 
1418
   An indirect definition of a warning (INDR_ROW/warn) does not cause
1419
   the warning to be issued.
1420
 
1421
   If a warning is created for an indirect symbol (WARN_ROW/indr) no
1422
   warning is created for the symbol the indirect symbol points to.
1423
 
1424
   Adding an entry to a set does not count as a reference to a set,
1425
   and no warning is issued (SET_ROW/warn).  */
1426
 
1427
/* Return the BFD in which a hash entry has been defined, if known.  */
1428
 
1429
static bfd *
1430
hash_entry_bfd (h)
1431
     struct bfd_link_hash_entry *h;
1432
{
1433
  while (h->type == bfd_link_hash_warning)
1434
    h = h->u.i.link;
1435
  switch (h->type)
1436
    {
1437
    default:
1438
      return NULL;
1439
    case bfd_link_hash_undefined:
1440
    case bfd_link_hash_undefweak:
1441
      return h->u.undef.abfd;
1442
    case bfd_link_hash_defined:
1443
    case bfd_link_hash_defweak:
1444
      return h->u.def.section->owner;
1445
    case bfd_link_hash_common:
1446
      return h->u.c.p->section->owner;
1447
    }
1448
  /*NOTREACHED*/
1449
}
1450
 
1451
/* Add a symbol to the global hash table.
1452
   ABFD is the BFD the symbol comes from.
1453
   NAME is the name of the symbol.
1454
   FLAGS is the BSF_* bits associated with the symbol.
1455
   SECTION is the section in which the symbol is defined; this may be
1456
     bfd_und_section_ptr or bfd_com_section_ptr.
1457
   VALUE is the value of the symbol, relative to the section.
1458
   STRING is used for either an indirect symbol, in which case it is
1459
     the name of the symbol to indirect to, or a warning symbol, in
1460
     which case it is the warning string.
1461
   COPY is true if NAME or STRING must be copied into locally
1462
     allocated memory if they need to be saved.
1463
   COLLECT is true if we should automatically collect gcc constructor
1464
     or destructor names as collect2 does.
1465
   HASHP, if not NULL, is a place to store the created hash table
1466
     entry; if *HASHP is not NULL, the caller has already looked up
1467
     the hash table entry, and stored it in *HASHP.  */
1468
 
1469
boolean
1470
_bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
1471
                                  string, copy, collect, hashp)
1472
     struct bfd_link_info *info;
1473
     bfd *abfd;
1474
     const char *name;
1475
     flagword flags;
1476
     asection *section;
1477
     bfd_vma value;
1478
     const char *string;
1479
     boolean copy;
1480
     boolean collect;
1481
     struct bfd_link_hash_entry **hashp;
1482
{
1483
  enum link_row row;
1484
  struct bfd_link_hash_entry *h;
1485
  boolean cycle;
1486
 
1487
  if (bfd_is_ind_section (section)
1488
      || (flags & BSF_INDIRECT) != 0)
1489
    row = INDR_ROW;
1490
  else if ((flags & BSF_WARNING) != 0)
1491
    row = WARN_ROW;
1492
  else if ((flags & BSF_CONSTRUCTOR) != 0)
1493
    row = SET_ROW;
1494
  else if (bfd_is_und_section (section))
1495
    {
1496
      if ((flags & BSF_WEAK) != 0)
1497
        row = UNDEFW_ROW;
1498
      else
1499
        row = UNDEF_ROW;
1500
    }
1501
  else if ((flags & BSF_WEAK) != 0)
1502
    row = DEFW_ROW;
1503
  else if (bfd_is_com_section (section))
1504
    row = COMMON_ROW;
1505
  else
1506
    row = DEF_ROW;
1507
 
1508
  if (hashp != NULL && *hashp != NULL)
1509
    h = *hashp;
1510
  else
1511
    {
1512
      if (row == UNDEF_ROW || row == UNDEFW_ROW)
1513
        h = bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false);
1514
      else
1515
        h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1516
      if (h == NULL)
1517
        {
1518
          if (hashp != NULL)
1519
            *hashp = NULL;
1520
          return false;
1521
        }
1522
    }
1523
 
1524
  if (info->notice_all
1525
      || (info->notice_hash != (struct bfd_hash_table *) NULL
1526
          && (bfd_hash_lookup (info->notice_hash, name, false, false)
1527
              != (struct bfd_hash_entry *) NULL)))
1528
    {
1529
      if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1530
                                        value))
1531
        return false;
1532
    }
1533
 
1534
  if (hashp != (struct bfd_link_hash_entry **) NULL)
1535
    *hashp = h;
1536
 
1537
  do
1538
    {
1539
      enum link_action action;
1540
 
1541
      cycle = false;
1542
      action = link_action[(int) row][(int) h->type];
1543
      switch (action)
1544
        {
1545
        case FAIL:
1546
          abort ();
1547
 
1548
        case NOACT:
1549
          /* Do nothing.  */
1550
          break;
1551
 
1552
        case UND:
1553
          /* Make a new undefined symbol.  */
1554
          h->type = bfd_link_hash_undefined;
1555
          h->u.undef.abfd = abfd;
1556
          bfd_link_add_undef (info->hash, h);
1557
          break;
1558
 
1559
        case WEAK:
1560
          /* Make a new weak undefined symbol.  */
1561
          h->type = bfd_link_hash_undefweak;
1562
          h->u.undef.abfd = abfd;
1563
          break;
1564
 
1565
        case CDEF:
1566
          /* We have found a definition for a symbol which was
1567
             previously common.  */
1568
          BFD_ASSERT (h->type == bfd_link_hash_common);
1569
          if (! ((*info->callbacks->multiple_common)
1570
                 (info, h->root.string,
1571
                  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1572
                  abfd, bfd_link_hash_defined, (bfd_vma) 0)))
1573
            return false;
1574
          /* Fall through.  */
1575
        case DEF:
1576
        case DEFW:
1577
          {
1578
            enum bfd_link_hash_type oldtype;
1579
 
1580
            /* Define a symbol.  */
1581
            oldtype = h->type;
1582
            if (action == DEFW)
1583
              h->type = bfd_link_hash_defweak;
1584
            else
1585
              h->type = bfd_link_hash_defined;
1586
            h->u.def.section = section;
1587
            h->u.def.value = value;
1588
 
1589
            /* If we have been asked to, we act like collect2 and
1590
               identify all functions that might be global
1591
               constructors and destructors and pass them up in a
1592
               callback.  We only do this for certain object file
1593
               types, since many object file types can handle this
1594
               automatically.  */
1595
            if (collect && name[0] == '_')
1596
              {
1597
                const char *s;
1598
 
1599
                /* A constructor or destructor name starts like this:
1600
                   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1601
                   the second are the same character (we accept any
1602
                   character there, in case a new object file format
1603
                   comes along with even worse naming restrictions).  */
1604
 
1605
#define CONS_PREFIX "GLOBAL_"
1606
#define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1607
 
1608
                s = name + 1;
1609
                while (*s == '_')
1610
                  ++s;
1611
                if (s[0] == 'G'
1612
                    && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1613
                  {
1614
                    char c;
1615
 
1616
                    c = s[CONS_PREFIX_LEN + 1];
1617
                    if ((c == 'I' || c == 'D')
1618
                        && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1619
                      {
1620
                        /* If this is a definition of a symbol which
1621
                           was previously weakly defined, we are in
1622
                           trouble.  We have already added a
1623
                           constructor entry for the weak defined
1624
                           symbol, and now we are trying to add one
1625
                           for the new symbol.  Fortunately, this case
1626
                           should never arise in practice.  */
1627
                        if (oldtype == bfd_link_hash_defweak)
1628
                          abort ();
1629
 
1630
                        if (! ((*info->callbacks->constructor)
1631
                               (info,
1632
                                c == 'I' ? true : false,
1633
                                h->root.string, abfd, section, value)))
1634
                          return false;
1635
                      }
1636
                  }
1637
              }
1638
          }
1639
 
1640
          break;
1641
 
1642
        case COM:
1643
          /* We have found a common definition for a symbol.  */
1644
          if (h->type == bfd_link_hash_new)
1645
            bfd_link_add_undef (info->hash, h);
1646
          h->type = bfd_link_hash_common;
1647
          h->u.c.p =
1648
            ((struct bfd_link_hash_common_entry *)
1649
             bfd_hash_allocate (&info->hash->table,
1650
                                sizeof (struct bfd_link_hash_common_entry)));
1651
          if (h->u.c.p == NULL)
1652
            return false;
1653
 
1654
          h->u.c.size = value;
1655
 
1656
          /* Select a default alignment based on the size.  This may
1657
             be overridden by the caller.  */
1658
          {
1659
            unsigned int power;
1660
 
1661
            power = bfd_log2 (value);
1662
            if (power > 4)
1663
              power = 4;
1664
            h->u.c.p->alignment_power = power;
1665
          }
1666
 
1667
          /* The section of a common symbol is only used if the common
1668
             symbol is actually allocated.  It basically provides a
1669
             hook for the linker script to decide which output section
1670
             the common symbols should be put in.  In most cases, the
1671
             section of a common symbol will be bfd_com_section_ptr,
1672
             the code here will choose a common symbol section named
1673
             "COMMON", and the linker script will contain *(COMMON) in
1674
             the appropriate place.  A few targets use separate common
1675
             sections for small symbols, and they require special
1676
             handling.  */
1677
          if (section == bfd_com_section_ptr)
1678
            {
1679
              h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1680
              h->u.c.p->section->flags = SEC_ALLOC;
1681
            }
1682
          else if (section->owner != abfd)
1683
            {
1684
              h->u.c.p->section = bfd_make_section_old_way (abfd,
1685
                                                            section->name);
1686
              h->u.c.p->section->flags = SEC_ALLOC;
1687
            }
1688
          else
1689
            h->u.c.p->section = section;
1690
          break;
1691
 
1692
        case REF:
1693
          /* A reference to a defined symbol.  */
1694
          if (h->next == NULL && info->hash->undefs_tail != h)
1695
            h->next = h;
1696
          break;
1697
 
1698
        case BIG:
1699
          /* We have found a common definition for a symbol which
1700
             already had a common definition.  Use the maximum of the
1701
             two sizes, and use the section required by the larger symbol.  */
1702
          BFD_ASSERT (h->type == bfd_link_hash_common);
1703
          if (! ((*info->callbacks->multiple_common)
1704
                 (info, h->root.string,
1705
                  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1706
                  abfd, bfd_link_hash_common, value)))
1707
            return false;
1708
          if (value > h->u.c.size)
1709
            {
1710
              unsigned int power;
1711
 
1712
              h->u.c.size = value;
1713
 
1714
              /* Select a default alignment based on the size.  This may
1715
                 be overridden by the caller.  */
1716
              power = bfd_log2 (value);
1717
              if (power > 4)
1718
                power = 4;
1719
              h->u.c.p->alignment_power = power;
1720
 
1721
              /* Some systems have special treatment for small commons,
1722
                 hence we want to select the section used by the larger
1723
                 symbol.  This makes sure the symbol does not go in a
1724
                 small common section if it is now too large.  */
1725
              if (section == bfd_com_section_ptr)
1726
                {
1727
                  h->u.c.p->section
1728
                    = bfd_make_section_old_way (abfd, "COMMON");
1729
                  h->u.c.p->section->flags = SEC_ALLOC;
1730
                }
1731
              else if (section->owner != abfd)
1732
                {
1733
                  h->u.c.p->section
1734
                    = bfd_make_section_old_way (abfd, section->name);
1735
                  h->u.c.p->section->flags = SEC_ALLOC;
1736
                }
1737
              else
1738
                h->u.c.p->section = section;
1739
            }
1740
          break;
1741
 
1742
        case CREF:
1743
          {
1744
            bfd *obfd;
1745
 
1746
            /* We have found a common definition for a symbol which
1747
               was already defined.  FIXME: It would nice if we could
1748
               report the BFD which defined an indirect symbol, but we
1749
               don't have anywhere to store the information.  */
1750
            if (h->type == bfd_link_hash_defined
1751
                || h->type == bfd_link_hash_defweak)
1752
              obfd = h->u.def.section->owner;
1753
            else
1754
              obfd = NULL;
1755
            if (! ((*info->callbacks->multiple_common)
1756
                   (info, h->root.string, obfd, h->type, (bfd_vma) 0,
1757
                    abfd, bfd_link_hash_common, value)))
1758
              return false;
1759
          }
1760
          break;
1761
 
1762
        case MIND:
1763
          /* Multiple indirect symbols.  This is OK if they both point
1764
             to the same symbol.  */
1765
          if (strcmp (h->u.i.link->root.string, string) == 0)
1766
            break;
1767
          /* Fall through.  */
1768
        case MDEF:
1769
          /* Handle a multiple definition.  */
1770
          {
1771
            asection *msec = NULL;
1772
            bfd_vma mval = 0;
1773
 
1774
            switch (h->type)
1775
              {
1776
              case bfd_link_hash_defined:
1777
                msec = h->u.def.section;
1778
                mval = h->u.def.value;
1779
                break;
1780
              case bfd_link_hash_indirect:
1781
                msec = bfd_ind_section_ptr;
1782
                mval = 0;
1783
                break;
1784
              default:
1785
                abort ();
1786
              }
1787
 
1788
            /* Ignore a redefinition of an absolute symbol to the same
1789
               value; it's harmless.  */
1790
            if (h->type == bfd_link_hash_defined
1791
                && bfd_is_abs_section (msec)
1792
                && bfd_is_abs_section (section)
1793
                && value == mval)
1794
              break;
1795
 
1796
            if (! ((*info->callbacks->multiple_definition)
1797
                   (info, h->root.string, msec->owner, msec, mval, abfd,
1798
                    section, value)))
1799
              return false;
1800
          }
1801
          break;
1802
 
1803
        case CIND:
1804
          /* Create an indirect symbol from an existing common symbol.  */
1805
          BFD_ASSERT (h->type == bfd_link_hash_common);
1806
          if (! ((*info->callbacks->multiple_common)
1807
                 (info, h->root.string,
1808
                  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1809
                  abfd, bfd_link_hash_indirect, (bfd_vma) 0)))
1810
            return false;
1811
          /* Fall through.  */
1812
        case IND:
1813
          /* Create an indirect symbol.  */
1814
          {
1815
            struct bfd_link_hash_entry *inh;
1816
 
1817
            /* STRING is the name of the symbol we want to indirect
1818
               to.  */
1819
            inh = bfd_wrapped_link_hash_lookup (abfd, info, string, true,
1820
                                                copy, false);
1821
            if (inh == (struct bfd_link_hash_entry *) NULL)
1822
              return false;
1823
            if (inh->type == bfd_link_hash_indirect
1824
                && inh->u.i.link == h)
1825
              {
1826
                (*_bfd_error_handler)
1827
                  (_("%s: indirect symbol `%s' to `%s' is a loop"),
1828
                   bfd_get_filename (abfd), name, string);
1829
                bfd_set_error (bfd_error_invalid_operation);
1830
                return false;
1831
              }
1832
            if (inh->type == bfd_link_hash_new)
1833
              {
1834
                inh->type = bfd_link_hash_undefined;
1835
                inh->u.undef.abfd = abfd;
1836
                bfd_link_add_undef (info->hash, inh);
1837
              }
1838
 
1839
            /* If the indirect symbol has been referenced, we need to
1840
               push the reference down to the symbol we are
1841
               referencing.  */
1842
            if (h->type != bfd_link_hash_new)
1843
              {
1844
                row = UNDEF_ROW;
1845
                cycle = true;
1846
              }
1847
 
1848
            h->type = bfd_link_hash_indirect;
1849
            h->u.i.link = inh;
1850
          }
1851
          break;
1852
 
1853
        case SET:
1854
          /* Add an entry to a set.  */
1855
          if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1856
                                                abfd, section, value))
1857
            return false;
1858
          break;
1859
 
1860
        case WARNC:
1861
          /* Issue a warning and cycle.  */
1862
          if (h->u.i.warning != NULL)
1863
            {
1864
              if (! (*info->callbacks->warning) (info, h->u.i.warning,
1865
                                                 h->root.string, abfd,
1866
                                                 (asection *) NULL,
1867
                                                 (bfd_vma) 0))
1868
                return false;
1869
              /* Only issue a warning once.  */
1870
              h->u.i.warning = NULL;
1871
            }
1872
          /* Fall through.  */
1873
        case CYCLE:
1874
          /* Try again with the referenced symbol.  */
1875
          h = h->u.i.link;
1876
          cycle = true;
1877
          break;
1878
 
1879
        case REFC:
1880
          /* A reference to an indirect symbol.  */
1881
          if (h->next == NULL && info->hash->undefs_tail != h)
1882
            h->next = h;
1883
          h = h->u.i.link;
1884
          cycle = true;
1885
          break;
1886
 
1887
        case WARN:
1888
          /* Issue a warning.  */
1889
          if (! (*info->callbacks->warning) (info, string, h->root.string,
1890
                                             hash_entry_bfd (h),
1891
                                             (asection *) NULL, (bfd_vma) 0))
1892
            return false;
1893
          break;
1894
 
1895
        case CWARN:
1896
          /* Warn if this symbol has been referenced already,
1897
             otherwise add a warning.  A symbol has been referenced if
1898
             the next field is not NULL, or it is the tail of the
1899
             undefined symbol list.  The REF case above helps to
1900
             ensure this.  */
1901
          if (h->next != NULL || info->hash->undefs_tail == h)
1902
            {
1903
              if (! (*info->callbacks->warning) (info, string, h->root.string,
1904
                                                 hash_entry_bfd (h),
1905
                                                 (asection *) NULL,
1906
                                                 (bfd_vma) 0))
1907
                return false;
1908
              break;
1909
            }
1910
          /* Fall through.  */
1911
        case MWARN:
1912
          /* Make a warning symbol.  */
1913
          {
1914
            struct bfd_link_hash_entry *sub;
1915
 
1916
            /* STRING is the warning to give.  */
1917
            sub = ((struct bfd_link_hash_entry *)
1918
                   ((*info->hash->table.newfunc)
1919
                    ((struct bfd_hash_entry *) NULL, &info->hash->table,
1920
                     h->root.string)));
1921
            if (sub == NULL)
1922
              return false;
1923
            *sub = *h;
1924
            sub->type = bfd_link_hash_warning;
1925
            sub->u.i.link = h;
1926
            if (! copy)
1927
              sub->u.i.warning = string;
1928
            else
1929
              {
1930
                char *w;
1931
 
1932
                w = bfd_hash_allocate (&info->hash->table,
1933
                                       strlen (string) + 1);
1934
                if (w == NULL)
1935
                  return false;
1936
                strcpy (w, string);
1937
                sub->u.i.warning = w;
1938
              }
1939
 
1940
            bfd_hash_replace (&info->hash->table,
1941
                              (struct bfd_hash_entry *) h,
1942
                              (struct bfd_hash_entry *) sub);
1943
            if (hashp != NULL)
1944
              *hashp = sub;
1945
          }
1946
          break;
1947
        }
1948
    }
1949
  while (cycle);
1950
 
1951
  return true;
1952
}
1953
 
1954
/* Generic final link routine.  */
1955
 
1956
boolean
1957
_bfd_generic_final_link (abfd, info)
1958
     bfd *abfd;
1959
     struct bfd_link_info *info;
1960
{
1961
  bfd *sub;
1962
  asection *o;
1963
  struct bfd_link_order *p;
1964
  size_t outsymalloc;
1965
  struct generic_write_global_symbol_info wginfo;
1966
 
1967
  bfd_get_outsymbols (abfd) = (asymbol **) NULL;
1968
  bfd_get_symcount (abfd) = 0;
1969
  outsymalloc = 0;
1970
 
1971
  /* Mark all sections which will be included in the output file.  */
1972
  for (o = abfd->sections; o != NULL; o = o->next)
1973
    for (p = o->link_order_head; p != NULL; p = p->next)
1974
      if (p->type == bfd_indirect_link_order)
1975
        p->u.indirect.section->linker_mark = true;
1976
 
1977
  /* Build the output symbol table.  */
1978
  for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
1979
    if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1980
      return false;
1981
 
1982
  /* Accumulate the global symbols.  */
1983
  wginfo.info = info;
1984
  wginfo.output_bfd = abfd;
1985
  wginfo.psymalloc = &outsymalloc;
1986
  _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1987
                                   _bfd_generic_link_write_global_symbol,
1988
                                   (PTR) &wginfo);
1989
 
1990
  /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
1991
     shouldn't really need one, since we have SYMCOUNT, but some old
1992
     code still expects one.  */
1993
  if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1994
    return false;
1995
 
1996
  if (info->relocateable)
1997
    {
1998
      /* Allocate space for the output relocs for each section.  */
1999
      for (o = abfd->sections;
2000
           o != (asection *) NULL;
2001
           o = o->next)
2002
        {
2003
          o->reloc_count = 0;
2004
          for (p = o->link_order_head;
2005
               p != (struct bfd_link_order *) NULL;
2006
               p = p->next)
2007
            {
2008
              if (p->type == bfd_section_reloc_link_order
2009
                  || p->type == bfd_symbol_reloc_link_order)
2010
                ++o->reloc_count;
2011
              else if (p->type == bfd_indirect_link_order)
2012
                {
2013
                  asection *input_section;
2014
                  bfd *input_bfd;
2015
                  long relsize;
2016
                  arelent **relocs;
2017
                  asymbol **symbols;
2018
                  long reloc_count;
2019
 
2020
                  input_section = p->u.indirect.section;
2021
                  input_bfd = input_section->owner;
2022
                  relsize = bfd_get_reloc_upper_bound (input_bfd,
2023
                                                       input_section);
2024
                  if (relsize < 0)
2025
                    return false;
2026
                  relocs = (arelent **) bfd_malloc ((size_t) relsize);
2027
                  if (!relocs && relsize != 0)
2028
                    return false;
2029
                  symbols = _bfd_generic_link_get_symbols (input_bfd);
2030
                  reloc_count = bfd_canonicalize_reloc (input_bfd,
2031
                                                        input_section,
2032
                                                        relocs,
2033
                                                        symbols);
2034
                  if (reloc_count < 0)
2035
                    return false;
2036
                  BFD_ASSERT ((unsigned long) reloc_count
2037
                              == input_section->reloc_count);
2038
                  o->reloc_count += reloc_count;
2039
                  free (relocs);
2040
                }
2041
            }
2042
          if (o->reloc_count > 0)
2043
            {
2044
              o->orelocation = ((arelent **)
2045
                                bfd_alloc (abfd,
2046
                                           (o->reloc_count
2047
                                            * sizeof (arelent *))));
2048
              if (!o->orelocation)
2049
                return false;
2050
              o->flags |= SEC_RELOC;
2051
              /* Reset the count so that it can be used as an index
2052
                 when putting in the output relocs.  */
2053
              o->reloc_count = 0;
2054
            }
2055
        }
2056
    }
2057
 
2058
  /* Handle all the link order information for the sections.  */
2059
  for (o = abfd->sections;
2060
       o != (asection *) NULL;
2061
       o = o->next)
2062
    {
2063
      for (p = o->link_order_head;
2064
           p != (struct bfd_link_order *) NULL;
2065
           p = p->next)
2066
        {
2067
          switch (p->type)
2068
            {
2069
            case bfd_section_reloc_link_order:
2070
            case bfd_symbol_reloc_link_order:
2071
              if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2072
                return false;
2073
              break;
2074
            case bfd_indirect_link_order:
2075
              if (! default_indirect_link_order (abfd, info, o, p, true))
2076
                return false;
2077
              break;
2078
            default:
2079
              if (! _bfd_default_link_order (abfd, info, o, p))
2080
                return false;
2081
              break;
2082
            }
2083
        }
2084
    }
2085
 
2086
  return true;
2087
}
2088
 
2089
/* Add an output symbol to the output BFD.  */
2090
 
2091
static boolean
2092
generic_add_output_symbol (output_bfd, psymalloc, sym)
2093
     bfd *output_bfd;
2094
     size_t *psymalloc;
2095
     asymbol *sym;
2096
{
2097
  if (bfd_get_symcount (output_bfd) >= *psymalloc)
2098
    {
2099
      asymbol **newsyms;
2100
 
2101
      if (*psymalloc == 0)
2102
        *psymalloc = 124;
2103
      else
2104
        *psymalloc *= 2;
2105
      newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd),
2106
                                          *psymalloc * sizeof (asymbol *));
2107
      if (newsyms == (asymbol **) NULL)
2108
        return false;
2109
      bfd_get_outsymbols (output_bfd) = newsyms;
2110
    }
2111
 
2112
  bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2113
  if (sym != NULL)
2114
    ++ bfd_get_symcount (output_bfd);
2115
 
2116
  return true;
2117
}
2118
 
2119
/* Handle the symbols for an input BFD.  */
2120
 
2121
boolean
2122
_bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
2123
     bfd *output_bfd;
2124
     bfd *input_bfd;
2125
     struct bfd_link_info *info;
2126
     size_t *psymalloc;
2127
{
2128
  asymbol **sym_ptr;
2129
  asymbol **sym_end;
2130
 
2131
  if (! generic_link_read_symbols (input_bfd))
2132
    return false;
2133
 
2134
  /* Create a filename symbol if we are supposed to.  */
2135
  if (info->create_object_symbols_section != (asection *) NULL)
2136
    {
2137
      asection *sec;
2138
 
2139
      for (sec = input_bfd->sections;
2140
           sec != (asection *) NULL;
2141
           sec = sec->next)
2142
        {
2143
          if (sec->output_section == info->create_object_symbols_section)
2144
            {
2145
              asymbol *newsym;
2146
 
2147
              newsym = bfd_make_empty_symbol (input_bfd);
2148
              if (!newsym)
2149
                return false;
2150
              newsym->name = input_bfd->filename;
2151
              newsym->value = 0;
2152
              newsym->flags = BSF_LOCAL | BSF_FILE;
2153
              newsym->section = sec;
2154
 
2155
              if (! generic_add_output_symbol (output_bfd, psymalloc,
2156
                                               newsym))
2157
                return false;
2158
 
2159
              break;
2160
            }
2161
        }
2162
    }
2163
 
2164
  /* Adjust the values of the globally visible symbols, and write out
2165
     local symbols.  */
2166
  sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2167
  sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2168
  for (; sym_ptr < sym_end; sym_ptr++)
2169
    {
2170
      asymbol *sym;
2171
      struct generic_link_hash_entry *h;
2172
      boolean output;
2173
 
2174
      h = (struct generic_link_hash_entry *) NULL;
2175
      sym = *sym_ptr;
2176
      if ((sym->flags & (BSF_INDIRECT
2177
                         | BSF_WARNING
2178
                         | BSF_GLOBAL
2179
                         | BSF_CONSTRUCTOR
2180
                         | BSF_WEAK)) != 0
2181
          || bfd_is_und_section (bfd_get_section (sym))
2182
          || bfd_is_com_section (bfd_get_section (sym))
2183
          || bfd_is_ind_section (bfd_get_section (sym)))
2184
        {
2185
          if (sym->udata.p != NULL)
2186
            h = (struct generic_link_hash_entry *) sym->udata.p;
2187
          else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2188
            {
2189
              /* This case normally means that the main linker code
2190
                 deliberately ignored this constructor symbol.  We
2191
                 should just pass it through.  This will screw up if
2192
                 the constructor symbol is from a different,
2193
                 non-generic, object file format, but the case will
2194
                 only arise when linking with -r, which will probably
2195
                 fail anyhow, since there will be no way to represent
2196
                 the relocs in the output format being used.  */
2197
              h = NULL;
2198
            }
2199
          else if (bfd_is_und_section (bfd_get_section (sym)))
2200
            h = ((struct generic_link_hash_entry *)
2201
                 bfd_wrapped_link_hash_lookup (output_bfd, info,
2202
                                               bfd_asymbol_name (sym),
2203
                                               false, false, true));
2204
          else
2205
            h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2206
                                               bfd_asymbol_name (sym),
2207
                                               false, false, true);
2208
 
2209
          if (h != (struct generic_link_hash_entry *) NULL)
2210
            {
2211
              /* Force all references to this symbol to point to
2212
                 the same area in memory.  It is possible that
2213
                 this routine will be called with a hash table
2214
                 other than a generic hash table, so we double
2215
                 check that.  */
2216
              if (info->hash->creator == input_bfd->xvec)
2217
                {
2218
                  if (h->sym != (asymbol *) NULL)
2219
                    *sym_ptr = sym = h->sym;
2220
                }
2221
 
2222
              switch (h->root.type)
2223
                {
2224
                default:
2225
                case bfd_link_hash_new:
2226
                  abort ();
2227
                case bfd_link_hash_undefined:
2228
                  break;
2229
                case bfd_link_hash_undefweak:
2230
                  sym->flags |= BSF_WEAK;
2231
                  break;
2232
                case bfd_link_hash_indirect:
2233
                  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2234
                  /* fall through */
2235
                case bfd_link_hash_defined:
2236
                  sym->flags |= BSF_GLOBAL;
2237
                  sym->flags &=~ BSF_CONSTRUCTOR;
2238
                  sym->value = h->root.u.def.value;
2239
                  sym->section = h->root.u.def.section;
2240
                  break;
2241
                case bfd_link_hash_defweak:
2242
                  sym->flags |= BSF_WEAK;
2243
                  sym->flags &=~ BSF_CONSTRUCTOR;
2244
                  sym->value = h->root.u.def.value;
2245
                  sym->section = h->root.u.def.section;
2246
                  break;
2247
                case bfd_link_hash_common:
2248
                  sym->value = h->root.u.c.size;
2249
                  sym->flags |= BSF_GLOBAL;
2250
                  if (! bfd_is_com_section (sym->section))
2251
                    {
2252
                      BFD_ASSERT (bfd_is_und_section (sym->section));
2253
                      sym->section = bfd_com_section_ptr;
2254
                    }
2255
                  /* We do not set the section of the symbol to
2256
                     h->root.u.c.p->section.  That value was saved so
2257
                     that we would know where to allocate the symbol
2258
                     if it was defined.  In this case the type is
2259
                     still bfd_link_hash_common, so we did not define
2260
                     it, so we do not want to use that section.  */
2261
                  break;
2262
                }
2263
            }
2264
        }
2265
 
2266
      /* This switch is straight from the old code in
2267
         write_file_locals in ldsym.c.  */
2268
      if (info->strip == strip_all
2269
          || (info->strip == strip_some
2270
              && (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2271
                                   false, false)
2272
                  == (struct bfd_hash_entry *) NULL)))
2273
        output = false;
2274
      else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2275
        {
2276
          /* If this symbol is marked as occurring now, rather
2277
             than at the end, output it now.  This is used for
2278
             COFF C_EXT FCN symbols.  FIXME: There must be a
2279
             better way.  */
2280
          if (bfd_asymbol_bfd (sym) == input_bfd
2281
              && (sym->flags & BSF_NOT_AT_END) != 0)
2282
            output = true;
2283
          else
2284
            output = false;
2285
        }
2286
      else if (bfd_is_ind_section (sym->section))
2287
        output = false;
2288
      else if ((sym->flags & BSF_DEBUGGING) != 0)
2289
        {
2290
          if (info->strip == strip_none)
2291
            output = true;
2292
          else
2293
            output = false;
2294
        }
2295
      else if (bfd_is_und_section (sym->section)
2296
               || bfd_is_com_section (sym->section))
2297
        output = false;
2298
      else if ((sym->flags & BSF_LOCAL) != 0)
2299
        {
2300
          if ((sym->flags & BSF_WARNING) != 0)
2301
            output = false;
2302
          else
2303
            {
2304
              switch (info->discard)
2305
                {
2306
                default:
2307
                case discard_all:
2308
                  output = false;
2309
                  break;
2310
                case discard_sec_merge:
2311
                  output = true;
2312
                  if (info->relocateable
2313
                      || ! (sym->section->flags & SEC_MERGE))
2314
                    break;
2315
                  /* FALLTHROUGH */
2316
                case discard_l:
2317
                  if (bfd_is_local_label (input_bfd, sym))
2318
                    output = false;
2319
                  else
2320
                    output = true;
2321
                  break;
2322
                case discard_none:
2323
                  output = true;
2324
                  break;
2325
                }
2326
            }
2327
        }
2328
      else if ((sym->flags & BSF_CONSTRUCTOR))
2329
        {
2330
          if (info->strip != strip_all)
2331
            output = true;
2332
          else
2333
            output = false;
2334
        }
2335
      else
2336
        abort ();
2337
 
2338
      /* If this symbol is in a section which is not being included
2339
         in the output file, then we don't want to output the symbol.
2340
 
2341
         Gross.  .bss and similar sections won't have the linker_mark
2342
         field set.  */
2343
      if ((sym->section->flags & SEC_HAS_CONTENTS) != 0
2344
          && sym->section->linker_mark == false)
2345
        output = false;
2346
 
2347
      if (output)
2348
        {
2349
          if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2350
            return false;
2351
          if (h != (struct generic_link_hash_entry *) NULL)
2352
            h->written = true;
2353
        }
2354
    }
2355
 
2356
  return true;
2357
}
2358
 
2359
/* Set the section and value of a generic BFD symbol based on a linker
2360
   hash table entry.  */
2361
 
2362
static void
2363
set_symbol_from_hash (sym, h)
2364
     asymbol *sym;
2365
     struct bfd_link_hash_entry *h;
2366
{
2367
  switch (h->type)
2368
    {
2369
    default:
2370
      abort ();
2371
      break;
2372
    case bfd_link_hash_new:
2373
      /* This can happen when a constructor symbol is seen but we are
2374
         not building constructors.  */
2375
      if (sym->section != NULL)
2376
        {
2377
          BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2378
        }
2379
      else
2380
        {
2381
          sym->flags |= BSF_CONSTRUCTOR;
2382
          sym->section = bfd_abs_section_ptr;
2383
          sym->value = 0;
2384
        }
2385
      break;
2386
    case bfd_link_hash_undefined:
2387
      sym->section = bfd_und_section_ptr;
2388
      sym->value = 0;
2389
      break;
2390
    case bfd_link_hash_undefweak:
2391
      sym->section = bfd_und_section_ptr;
2392
      sym->value = 0;
2393
      sym->flags |= BSF_WEAK;
2394
      break;
2395
    case bfd_link_hash_defined:
2396
      sym->section = h->u.def.section;
2397
      sym->value = h->u.def.value;
2398
      break;
2399
    case bfd_link_hash_defweak:
2400
      sym->flags |= BSF_WEAK;
2401
      sym->section = h->u.def.section;
2402
      sym->value = h->u.def.value;
2403
      break;
2404
    case bfd_link_hash_common:
2405
      sym->value = h->u.c.size;
2406
      if (sym->section == NULL)
2407
        sym->section = bfd_com_section_ptr;
2408
      else if (! bfd_is_com_section (sym->section))
2409
        {
2410
          BFD_ASSERT (bfd_is_und_section (sym->section));
2411
          sym->section = bfd_com_section_ptr;
2412
        }
2413
      /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2414
      break;
2415
    case bfd_link_hash_indirect:
2416
    case bfd_link_hash_warning:
2417
      /* FIXME: What should we do here?  */
2418
      break;
2419
    }
2420
}
2421
 
2422
/* Write out a global symbol, if it hasn't already been written out.
2423
   This is called for each symbol in the hash table.  */
2424
 
2425
boolean
2426
_bfd_generic_link_write_global_symbol (h, data)
2427
     struct generic_link_hash_entry *h;
2428
     PTR data;
2429
{
2430
  struct generic_write_global_symbol_info *wginfo =
2431
    (struct generic_write_global_symbol_info *) data;
2432
  asymbol *sym;
2433
 
2434
  if (h->written)
2435
    return true;
2436
 
2437
  h->written = true;
2438
 
2439
  if (wginfo->info->strip == strip_all
2440
      || (wginfo->info->strip == strip_some
2441
          && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2442
                              false, false) == NULL))
2443
    return true;
2444
 
2445
  if (h->sym != (asymbol *) NULL)
2446
    sym = h->sym;
2447
  else
2448
    {
2449
      sym = bfd_make_empty_symbol (wginfo->output_bfd);
2450
      if (!sym)
2451
        return false;
2452
      sym->name = h->root.root.string;
2453
      sym->flags = 0;
2454
    }
2455
 
2456
  set_symbol_from_hash (sym, &h->root);
2457
 
2458
  sym->flags |= BSF_GLOBAL;
2459
 
2460
  if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2461
                                   sym))
2462
    {
2463
      /* FIXME: No way to return failure.  */
2464
      abort ();
2465
    }
2466
 
2467
  return true;
2468
}
2469
 
2470
/* Create a relocation.  */
2471
 
2472
boolean
2473
_bfd_generic_reloc_link_order (abfd, info, sec, link_order)
2474
     bfd *abfd;
2475
     struct bfd_link_info *info;
2476
     asection *sec;
2477
     struct bfd_link_order *link_order;
2478
{
2479
  arelent *r;
2480
 
2481
  if (! info->relocateable)
2482
    abort ();
2483
  if (sec->orelocation == (arelent **) NULL)
2484
    abort ();
2485
 
2486
  r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2487
  if (r == (arelent *) NULL)
2488
    return false;
2489
 
2490
  r->address = link_order->offset;
2491
  r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2492
  if (r->howto == 0)
2493
    {
2494
      bfd_set_error (bfd_error_bad_value);
2495
      return false;
2496
    }
2497
 
2498
  /* Get the symbol to use for the relocation.  */
2499
  if (link_order->type == bfd_section_reloc_link_order)
2500
    r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2501
  else
2502
    {
2503
      struct generic_link_hash_entry *h;
2504
 
2505
      h = ((struct generic_link_hash_entry *)
2506
           bfd_wrapped_link_hash_lookup (abfd, info,
2507
                                         link_order->u.reloc.p->u.name,
2508
                                         false, false, true));
2509
      if (h == (struct generic_link_hash_entry *) NULL
2510
          || ! h->written)
2511
        {
2512
          if (! ((*info->callbacks->unattached_reloc)
2513
                 (info, link_order->u.reloc.p->u.name,
2514
                  (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2515
            return false;
2516
          bfd_set_error (bfd_error_bad_value);
2517
          return false;
2518
        }
2519
      r->sym_ptr_ptr = &h->sym;
2520
    }
2521
 
2522
  /* If this is an inplace reloc, write the addend to the object file.
2523
     Otherwise, store it in the reloc addend.  */
2524
  if (! r->howto->partial_inplace)
2525
    r->addend = link_order->u.reloc.p->addend;
2526
  else
2527
    {
2528
      bfd_size_type size;
2529
      bfd_reloc_status_type rstat;
2530
      bfd_byte *buf;
2531
      boolean ok;
2532
 
2533
      size = bfd_get_reloc_size (r->howto);
2534
      buf = (bfd_byte *) bfd_zmalloc (size);
2535
      if (buf == (bfd_byte *) NULL)
2536
        return false;
2537
      rstat = _bfd_relocate_contents (r->howto, abfd,
2538
                                      link_order->u.reloc.p->addend, buf);
2539
      switch (rstat)
2540
        {
2541
        case bfd_reloc_ok:
2542
          break;
2543
        default:
2544
        case bfd_reloc_outofrange:
2545
          abort ();
2546
        case bfd_reloc_overflow:
2547
          if (! ((*info->callbacks->reloc_overflow)
2548
                 (info,
2549
                  (link_order->type == bfd_section_reloc_link_order
2550
                   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2551
                   : link_order->u.reloc.p->u.name),
2552
                  r->howto->name, link_order->u.reloc.p->addend,
2553
                  (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2554
            {
2555
              free (buf);
2556
              return false;
2557
            }
2558
          break;
2559
        }
2560
      ok = bfd_set_section_contents (abfd, sec, (PTR) buf,
2561
                                     (file_ptr)
2562
                                     (link_order->offset *
2563
                                      bfd_octets_per_byte (abfd)), size);
2564
      free (buf);
2565
      if (! ok)
2566
        return false;
2567
 
2568
      r->addend = 0;
2569
    }
2570
 
2571
  sec->orelocation[sec->reloc_count] = r;
2572
  ++sec->reloc_count;
2573
 
2574
  return true;
2575
}
2576
 
2577
/* Allocate a new link_order for a section.  */
2578
 
2579
struct bfd_link_order *
2580
bfd_new_link_order (abfd, section)
2581
     bfd *abfd;
2582
     asection *section;
2583
{
2584
  struct bfd_link_order *new;
2585
 
2586
  new = ((struct bfd_link_order *)
2587
         bfd_alloc (abfd, sizeof (struct bfd_link_order)));
2588
  if (!new)
2589
    return NULL;
2590
 
2591
  new->type = bfd_undefined_link_order;
2592
  new->offset = 0;
2593
  new->size = 0;
2594
  new->next = (struct bfd_link_order *) NULL;
2595
 
2596
  if (section->link_order_tail != (struct bfd_link_order *) NULL)
2597
    section->link_order_tail->next = new;
2598
  else
2599
    section->link_order_head = new;
2600
  section->link_order_tail = new;
2601
 
2602
  return new;
2603
}
2604
 
2605
/* Default link order processing routine.  Note that we can not handle
2606
   the reloc_link_order types here, since they depend upon the details
2607
   of how the particular backends generates relocs.  */
2608
 
2609
boolean
2610
_bfd_default_link_order (abfd, info, sec, link_order)
2611
     bfd *abfd;
2612
     struct bfd_link_info *info;
2613
     asection *sec;
2614
     struct bfd_link_order *link_order;
2615
{
2616
  switch (link_order->type)
2617
    {
2618
    case bfd_undefined_link_order:
2619
    case bfd_section_reloc_link_order:
2620
    case bfd_symbol_reloc_link_order:
2621
    default:
2622
      abort ();
2623
    case bfd_indirect_link_order:
2624
      return default_indirect_link_order (abfd, info, sec, link_order,
2625
                                          false);
2626
    case bfd_fill_link_order:
2627
      return default_fill_link_order (abfd, info, sec, link_order);
2628
    case bfd_data_link_order:
2629
      return bfd_set_section_contents (abfd, sec,
2630
                                       (PTR) link_order->u.data.contents,
2631
                                       (file_ptr)
2632
                                       (link_order->offset *
2633
                                        bfd_octets_per_byte (abfd)),
2634
                                       link_order->size);
2635
    }
2636
}
2637
 
2638
/* Default routine to handle a bfd_fill_link_order.  */
2639
 
2640
static boolean
2641
default_fill_link_order (abfd, info, sec, link_order)
2642
     bfd *abfd;
2643
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
2644
     asection *sec;
2645
     struct bfd_link_order *link_order;
2646
{
2647
  size_t size;
2648
  char *space;
2649
  size_t i;
2650
  int fill;
2651
  boolean result;
2652
 
2653
  BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2654
 
2655
  size = (size_t) link_order->size;
2656
  space = (char *) bfd_malloc (size);
2657
  if (space == NULL && size != 0)
2658
    return false;
2659
 
2660
  fill = link_order->u.fill.value;
2661
  for (i = 0; i < size; i += 2)
2662
    space[i] = fill >> 8;
2663
  for (i = 1; i < size; i += 2)
2664
    space[i] = fill;
2665
  result = bfd_set_section_contents (abfd, sec, space,
2666
                                     (file_ptr)
2667
                                     (link_order->offset *
2668
                                      bfd_octets_per_byte (abfd)),
2669
                                     link_order->size);
2670
  free (space);
2671
  return result;
2672
}
2673
 
2674
/* Default routine to handle a bfd_indirect_link_order.  */
2675
 
2676
static boolean
2677
default_indirect_link_order (output_bfd, info, output_section, link_order,
2678
                             generic_linker)
2679
     bfd *output_bfd;
2680
     struct bfd_link_info *info;
2681
     asection *output_section;
2682
     struct bfd_link_order *link_order;
2683
     boolean generic_linker;
2684
{
2685
  asection *input_section;
2686
  bfd *input_bfd;
2687
  bfd_byte *contents = NULL;
2688
  bfd_byte *new_contents;
2689
 
2690
  BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2691
 
2692
  if (link_order->size == 0)
2693
    return true;
2694
 
2695
  input_section = link_order->u.indirect.section;
2696
  input_bfd = input_section->owner;
2697
 
2698
  BFD_ASSERT (input_section->output_section == output_section);
2699
  BFD_ASSERT (input_section->output_offset == link_order->offset);
2700
  BFD_ASSERT (input_section->_cooked_size == link_order->size);
2701
 
2702
  if (info->relocateable
2703
      && input_section->reloc_count > 0
2704
      && output_section->orelocation == (arelent **) NULL)
2705
    {
2706
      /* Space has not been allocated for the output relocations.
2707
         This can happen when we are called by a specific backend
2708
         because somebody is attempting to link together different
2709
         types of object files.  Handling this case correctly is
2710
         difficult, and sometimes impossible.  */
2711
      (*_bfd_error_handler)
2712
        (_("Attempt to do relocateable link with %s input and %s output"),
2713
         bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2714
      bfd_set_error (bfd_error_wrong_format);
2715
      return false;
2716
    }
2717
 
2718
  if (! generic_linker)
2719
    {
2720
      asymbol **sympp;
2721
      asymbol **symppend;
2722
 
2723
      /* Get the canonical symbols.  The generic linker will always
2724
         have retrieved them by this point, but we are being called by
2725
         a specific linker, presumably because we are linking
2726
         different types of object files together.  */
2727
      if (! generic_link_read_symbols (input_bfd))
2728
        return false;
2729
 
2730
      /* Since we have been called by a specific linker, rather than
2731
         the generic linker, the values of the symbols will not be
2732
         right.  They will be the values as seen in the input file,
2733
         not the values of the final link.  We need to fix them up
2734
         before we can relocate the section.  */
2735
      sympp = _bfd_generic_link_get_symbols (input_bfd);
2736
      symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2737
      for (; sympp < symppend; sympp++)
2738
        {
2739
          asymbol *sym;
2740
          struct bfd_link_hash_entry *h;
2741
 
2742
          sym = *sympp;
2743
 
2744
          if ((sym->flags & (BSF_INDIRECT
2745
                             | BSF_WARNING
2746
                             | BSF_GLOBAL
2747
                             | BSF_CONSTRUCTOR
2748
                             | BSF_WEAK)) != 0
2749
              || bfd_is_und_section (bfd_get_section (sym))
2750
              || bfd_is_com_section (bfd_get_section (sym))
2751
              || bfd_is_ind_section (bfd_get_section (sym)))
2752
            {
2753
              /* sym->udata may have been set by
2754
                 generic_link_add_symbol_list.  */
2755
              if (sym->udata.p != NULL)
2756
                h = (struct bfd_link_hash_entry *) sym->udata.p;
2757
              else if (bfd_is_und_section (bfd_get_section (sym)))
2758
                h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2759
                                                  bfd_asymbol_name (sym),
2760
                                                  false, false, true);
2761
              else
2762
                h = bfd_link_hash_lookup (info->hash,
2763
                                          bfd_asymbol_name (sym),
2764
                                          false, false, true);
2765
              if (h != NULL)
2766
                set_symbol_from_hash (sym, h);
2767
            }
2768
        }
2769
    }
2770
 
2771
  /* Get and relocate the section contents.  */
2772
  contents = ((bfd_byte *)
2773
              bfd_malloc (bfd_section_size (input_bfd, input_section)));
2774
  if (contents == NULL && bfd_section_size (input_bfd, input_section) != 0)
2775
    goto error_return;
2776
  new_contents = (bfd_get_relocated_section_contents
2777
                  (output_bfd, info, link_order, contents, info->relocateable,
2778
                   _bfd_generic_link_get_symbols (input_bfd)));
2779
  if (!new_contents)
2780
    goto error_return;
2781
 
2782
  /* Output the section contents.  */
2783
  if (! bfd_set_section_contents (output_bfd, output_section,
2784
                                  (PTR) new_contents,
2785
                                  (file_ptr)
2786
                                  (link_order->offset *
2787
                                   bfd_octets_per_byte (output_bfd)),
2788
                                  link_order->size))
2789
    goto error_return;
2790
 
2791
  if (contents != NULL)
2792
    free (contents);
2793
  return true;
2794
 
2795
 error_return:
2796
  if (contents != NULL)
2797
    free (contents);
2798
  return false;
2799
}
2800
 
2801
/* A little routine to count the number of relocs in a link_order
2802
   list.  */
2803
 
2804
unsigned int
2805
_bfd_count_link_order_relocs (link_order)
2806
     struct bfd_link_order *link_order;
2807
{
2808
  register unsigned int c;
2809
  register struct bfd_link_order *l;
2810
 
2811
  c = 0;
2812
  for (l = link_order; l != (struct bfd_link_order *) NULL; l = l->next)
2813
    {
2814
      if (l->type == bfd_section_reloc_link_order
2815
          || l->type == bfd_symbol_reloc_link_order)
2816
        ++c;
2817
    }
2818
 
2819
  return c;
2820
}
2821
 
2822
/*
2823
FUNCTION
2824
        bfd_link_split_section
2825
 
2826
SYNOPSIS
2827
        boolean bfd_link_split_section(bfd *abfd, asection *sec);
2828
 
2829
DESCRIPTION
2830
        Return nonzero if @var{sec} should be split during a
2831
        reloceatable or final link.
2832
 
2833
.#define bfd_link_split_section(abfd, sec) \
2834
.       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2835
.
2836
 
2837
*/
2838
 
2839
boolean
2840
_bfd_generic_link_split_section (abfd, sec)
2841
     bfd *abfd ATTRIBUTE_UNUSED;
2842
     asection *sec ATTRIBUTE_UNUSED;
2843
{
2844
  return false;
2845
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.